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Abstract

A Total Maximum Daily Load (TMDL) study was conducted to evaluate dry season
water quality in the Black River, a tributary of the Chehalis River. Past studies have
documented low dissolved oxygen (DO) levels during the summer in the mainstem
Black River between Littlerock and Rochester. The Black River and tributaries were
evaluated for loading sources and other physical, chemical, and biological river
conditions that might contribute to the oxygen deficit.

Several surveys were conducted in the study area during the dry seasons of 1991 and
1992. Survey results showed widespread thermal stratification of the middle Black
River (RM 9.6 to RM 15.3) during the summer months, with hypoxic and anoxic
conditions in the hypolimnetic layer. DO below the water quality criterion of

8.0 mg/L was widespread in surface waters of the Black River. Chlorophyll a levels
indicated conditions ranging from mesotrophic to eutrophic. Temperatures in surface
waters often exceed the water quality criterion of 18.0°C.

Based on a modeling analysis using the WASPS water quality model, DO for
background conditions was found to be less than the water quality criterion of 8.0
mg/L. DO under existing conditions in some locations is degraded compared to
background conditions. Also, total phosphorus (TP) is close to levels that produce
eutrophic conditions, which would degrade both DO and aesthetic water quality
standards. ‘

A TMDL is recommended for TP, for oxygen-demanding materials (BOD), and for
temperature. The TP loading capacity (LC) is defined as an instream criterion of
0.05 mg/L, which applies to waters of the mainstem Black River from the surface to
two meters depth between RM 9.6 and RM 15.3 during the period May 1 to

October 31. The BOD LC is defined as an antidegradation criterion of no significant
degradation of DO due to any loading source or combination of loading sources as
compared to existing or background levels. The BOD LC applies to the mainstem
Black River for the period May 1 to October 31. The temperature TMDL
recommends preservation and restoration of the riparian shade canopy on the
mainstem Black River downstream from RM 10.0.

Wasteload Allocations (WLAs) and Load Allocations (LAs) are proposed for inclusion
in the TP and BOD TMDLs. Implementation strategies are suggested that include
modification of existing NPDES permits and improved Best Management Practices to
control nonpoint sources. A monitoring strategy is proposed to evaluate the
effectiveness of the TMDL and WLA/LAs. Additional studies are recommended to
increase understanding of Black River water quality, specifically in the areas of
ground water interactions, and aquatic macrophyte dynamics.
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1. Introduction

1.1 Basin Description

The Black River basin covers an area of 128 square miles in Western Washington
(Figure 1.1). Its drainage lies almost entirely in southwestern Thurston County, with
a small portion near the mouth in southeastern Grays Harbor County. The mainstem
Black River is about 24 miles long. The cities of Olympia and Tumwater are near the
northern end of the basin, and the river passes near the towns of Littlerock and
Rochester. The Chehalis Reservation is in the southwest end of the basin at the
mouth.

The basin shows several distinct physiographic areas. The Black River itself can be
divided into three stretches with different characteristics - the upper river, from the
headwaters to about River Mile! (RM) 15.2, the middle river from RM 15.2 to

RM 9.7, and the lower river from RM 9.7 to the confluence with the Chehalis River.
These areas and other features of the Black River named in this report are illustrated
in Figure 1.2. ‘

Headwaters of the Black River and its tributaries lie in the eastern Black Hills and in
the low-lying areas south of Olympia. The upper river drains an area of extensive
freshwater wetlands, one of the largest contiguous freshwater wetlands areas in the
Puget Sound region. These wetlands are most likely the source of humic acids and
other materials that cause the dark color that gives the Black River its name. This
area is also a residential area experiencing rapid growth.

The middle river, beginning roughly near the Department of Fish and Wildlife boat
launch south of Littlerock (RM 15.3), and extending downstream to the "Big Dock"
(RM 9.7), is an area of very slow flow bounded on both banks by brushy wetlands.
Measurements made in previous studies have observed thermal stratification in this
reach during the summer months. '

From the Big Dock to the mouth, the river is relatively swift and flows through an
area of mostly agricultural use. The Black River flows into the Chehalis River near
Oakville.

Several creeks are tributary to the Black River. Mima Creek enters the river from
the north at RM 11.8. Near Littlerock, Beaver Creek flows into the Black River

! River Mile designations are based on U.S. Geological Survey Topographic Maps.
River Mile values may not coincide exactly with those used in other reports.
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from the east just south of town, and Waddell Creek enters from the west just north
of town. Upstream of Waddell Creek are Blooms Ditch and Salmon Creek on the
east, and Dempsey Creek on the west. Although Black Lake historically flowed into
the Black River, recent investigations by Thurston County indicate that, at least ‘
during the dry season, the headwaters of the river near Black Lake are fed by ground
water sources with no direct connection to the lake (Berg, 1993).

A major kill of fish and other aquatic life in the Black River occurred in August 1989
(Ecology, 1989). Prior to that event, the river had been little studied. The Black
River fish kill sounded an alarm for a river system that was poorly understood, but
appeared to be very sensitive to environmental insult and under pressure from several
different land uses and from regional growth in general.

1.2 Pollutant Loading Sources

Loading sources to the Black River system consist of point and nonpoint sources.

Point sources are discharges from a distinct location and are regulated under the
federal and state National Pollutant Discharge Elimination System (NPDES).

Nonpoint sources are diffuse discharges that include, for example, stormwater runoff,
livestock access, and ground water discharge.  Land use activities that generate
nonpoint pollution include agriculture and livestock, urban commercial and residential
development, timber harvest, and the land disposal of industrial waste, solid waste,
and residential sanitary waste.

Several facilities in the Black River basin discharge as point sources under the
NPDES system. Most of these are aquaculture facilities covered by the Upland
Finfish Aquaculture General Permit. Permitted point sources in the Black River basin
are listed in Table 1.1

None of these discharges have outfalls directly in the Black River, and all are
physically distant from the mainstem river bank, with their discharges relatively
indirect. Rancho Cameron and Cedar Creek Corrections Wastewater Treatment Plant
(WTP) are located on tributaries, and their discharges have not been directly assessed.
Similarly, Carlson Salmon Farm is relatively small and during the study discharged
into the wetlands adjacent to the Black River with no defined entry to the Black
River; the facility ceased discharge and cancelled its permit in 1993.
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Table 1.1 Point Source Permitted Dischargers, Black River Basin.

Facility Name RM Type
Global Aqua/Black River 9.2 Fish Rearing
Steelhammer Salmon Farm? 9.6 ~ Fish Rearing
Carlson Salmon Farm? 10.1 Fish Rearing
Swecker Salmon Farm 10.7 Fish Rearing
Cedar Creek Corrections WTP (Mill Cr) 11.8 (Tributary) Sewage Treatment

Plant
Rancho Cameron (Salmon Cr)*? 20.1 (Tributary) Fish Rearing

Until the spring of 1992, Steelhammer Salmon Farm discharged into a flood channel
near their facility that has been dubbed "Rochester Slough." Although the discharge
has existed since the mid-1970s, it has mostly percolated, and a direct discharge only
reached the Black River in 1989. Due to problems attributed to the flooding of the
Rochester Slough, an enforcement action by Ecology resulted in the termination of the
discharge prior to the 1992 dry season sampling. :

Swecker Salmon Farm and the Global Aqua/Black River facility are the two largest
permitted dischargers to the Black River. These two facilities were selected for
effluent monitoring and Class II inspections, discussed below.

Water for the Swecker Salmon Farm facility is pumped from wells on site, and
approximately one-third of the water percolates to ground water through the bottom of
the facility ponds and channels. The balance of the wastewater flows through a
wetland area near the river bank, with part of the discharge reaching the river in a
well-defined channel.

2No discharge or permit at the time of this report’s completion.

*Rancho Cameron went into receivership during the course of this study, and the
bank that took over the facility renamed it Great Fish Farms, Ltd. A new permit has not
been issued for that facility as of the time of the writing of this report. This report will
refer to this facility as Rancho Cameron, since the change in ownership occurred after
the field work was done in this study. Permit conditions referred to in this study are
those in the original permit issued to Rancho Cameron.
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Global Aqua pumps their water supply from on-site wells, and wastewater discharges
to a large pond near the river. The discharge apparently percolates and generates a
large number of springs that can be found on the river bank just upstream of the steel
trestle (RM 9.1 to 9.3), in the area of "Big Rock" between the "Millpond" (RM 7.9),
and the bulkhead above Moon Road (RM 7.4). The continuity of the springs with the
Global Aqua discharge was demonstrated in 1989, when the springs dried up shortly
after Global Aqua shut down, and started up again shortly after Global Aqua resumed
operations (Erickson, 1990a). Investigations indicate that a confining layer limits
deeper percolation through otherwise highly permeable strata, creating a perched
aquifer that discharges to the river (Erickson, 1993).

A number of nonpoint sources are of potential significance in the Black River basin.
Stormwater runoff at commercial, light industrial areas and construction sites are
potential sources of pollutants, especially in the rapidly growing upper basin. Streets,
roads, and highways, including Interstate 5, could discharge pollutants in stormwater
or through spills to the Black River and its tributaries. Septic systems can be a
source of pollutants to the river if they are sub-standard, failing, or located adjacent
to a waterbody.

A dominant activity in the Black River basin is agriculture. A number of dairies are
in the basin, and many may be candidates for coverage under the Dairy General
Permit that has been drafted. The largest dairies are located near the 123rd Street
Bridge upstream of Littlerock, on Beaver Creek below Case Road, just east of Mima
Creek and northwest of the Black River, and between Moon Road and the mouth.
There are also poultry operations, a silvicultural nursery, a turf and berry farm, and
hobby farms. Timber harvest and management activities occur throughout the basin,
especially in the Black Hills.

1.3 Water Quality Standards

Water Quality Standards for Surface Waters for the State of Washington (Chapter
173-201A WAC) establish the water quality standards for the Black River basin. The
entire Black River basin in classified as Class A waters. Beneficial uses include
domestic, industrial, and agricultural water supply; stock watering; fish and shellfish
migration, rearing, spawning and harvesting; wildlife habitat; primary contact
recreation, sport fishing, boating, and aesthetic enjoyment; and commerce and
navigation. Several parameters were of particular interest in this study - pH,
temperature, dissolved oxygen (DO), fecal coliform bacteria (FC), and ammonia -
because they have water quality criteria specified in the Water Quality Standards, and
levels have been observed in previous studies that approach or exceed the standards.
The Class A criteria for these parameters are summarized in Table 1.2.
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Table 1.2 Class A Freshwater Criteria for Selected Parameters.

Parameter

Criteria

Temperature

pH

Dissolved oxygen

Fecal coliform

Ammonia

Shall not exceed 18.0°C due to human activities. When natural
conditions exceed 18.0°C, no temperature increases will be
allowed which will raise the receiving water temperature by
greater than 0.3°C.

Incremental temperature increases resulting from point source
activities shall not, at any time, exceed t=28/(T+7). .
Incremental temperature increases resulting from nonpoint
source activities shall not exceed 2.8°C. For purposes thereof,
"t" represents the maximum permissible temperature increase
measured at a mixing zone boundary; and "T" represents the
background temperature as measured at a point or points
unaffected by the discharge and representative of the highest
ambient water temperature in the vicinity of the discharge.

Shall be within the range of 6.5 to 8.5, with a human-caused
variation within a range of less than 0.5 units.

Shall exceed 8.0 mg/L.

Shall both not exceed a geometric mean value of 100
colonies/100 mL, and not have more than 10 percent of all
samples obtained for calculating the geometric mean value
exceeding 200 colonies/100 mL.

Acute and chronic toxicity criteria are defined as a function of
pH and temperature. See EPA (1986).

If natural conditions in a water body result in DO less than the water quality
standards, then the antidegradation policy applies (WAC 173-201A-070). Section 2 of
this policy states that "whenever the natural conditions of said waters are of a lower
quality than the criteria assigned, the natural conditions shall constitute the water
quality criteria.” Natural conditions are defined as "surface water quality that was
present before any human-caused pollution" (WAC 173-201A-020).

The primary mechanism for implementing Washington’s water quality standards is
provided under Section 303 of the Clean Water Act. Section 303(d) requires the
states and EPA to establish total maximum daily loads (TMDLs) for all water quality
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limited segments (i.e., those waters which cannot meet water quality standards after
application of technology-based source controls). After the Loading Capacity (LC)
for a given pollutant in the water body is established, loading sources are apportioned
between point sources (waste load allocations--WLASs) and nonpoint and natural
background sources (load allocations--LAs), which forms the TMDL. The WLAs and
LAs are implemented though NPDES permits, grant projects, and nonpoint source
controls.

Data collected during the 1989 fish kill and in several studies following the kill
(Dickes, 1990; TCEH, 1991) have shown that DO levels below the Class A criterion
are widespread and common during the dry season in the Black River. Ecology
ambient monitoring at Moon Road Bridge (Ecology, 1991) also found dry season DO
levels that did not meet the water quality standards. These studies did not attempt to
determine whether the low DO was due to natural conditions or human loading
sources. A more detailed review of historical water quality data can be found in
Pickett (1992).

The Southwest Regional Office Section of Ecology’s Water Quality Program has
requested that the Watershed Assessment Section of the Environmental Investigations
and Laboratory Services Program (EILS) evaluate stream segments in the Chehalis
Basin to determine if a TMDL is needed, determine the LCs for pollutants of
concern, and recommend the appropriate TMDL, including WLAs and LAs (Kendra
and Dickes, 1991).

The Black River was chosen for a TMDL study for a number of reasons. Foremost,
although the Black River has not been formally placed on the 303(d) list as water
quality-limited for DO (Ecology, 1992), the data collected since 1989 indicate that
water quality standards for DO are not being met. The river has been identified as an
important fisheries resource, and the 1989 kill demonstrated the sensitivity of that
resource to the water quality of the river. In addition, the upper basin is located near
the Olympia/Lacey/Tumwater urban area, which is experiencing rapid growth. These
reasons support the development of preventative TMDLs for those pollutants that
could degrade water quality and threaten beneficial uses of the Black River.

1.4 Project Goals and Objectives

The goal of the TMDL study was to assess the water quality of the Black River basin,
develop LCs and recommend WLA/LAs for the appropriate parameters and reaches of
the river for the protection of dissolved oxygen water quality standards. The specific
objectives of the study were:
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1. Assess water quality on the mainstem Black River, significant tributaries, and point
sources during the dry season (late spring to early fall) to identify reaches which
may be water quality-limited for dissolved oxygen, identify significant loading
sources, and provide data for computer modeling.

2. Identify and evaluate significant loading sources that appear to lack "all known
available and reasonable methods" of pollution control, and refer those sources to
regional staff for action.

3. Evaluate the cumulative effect of pollutant loadings through data analysis and
computer simulation of water quality in the Black River.

4. Evaluate sampling data and modeling results for historical conditions and estimated
critical conditions.

5. Estimate natural conditions in the river system and compare the State Water
Quality Standards to those conditions.

6. Establish LCs for pollutants most impacting dissolved oxygen levels.

7. Propose WLA/LA alternatives for control of point and nonpoint sources of
pollution.

This study focuses on the mainstem Black River from upstream of the boat launch
south of Littlerock (RM 15.3) to the confluence with the Chehalis. This includes the

- slowest stretches of the river, but does not directly evaluate the braided channels and
wetlands in the upper basin, due to their complexity. Selective sampling was done in
tributaries above the Littlerock boat launch to evaluate relative pollutant loading to the
river downstream.

1.5 Other Water Quality Activities

A number of groups in the Black River basin have been engaged in water quality
activities relevant to this study. Under a grant from Ecology, the Lewis County
Conservation District has organized the Chehalis River Council (CRC), a citizen’s
committee whose goal is the protection of aquatic resources in the Chehalis basin.
Under the grant, the CRC developed the Chehalis River basin Action Plan (Chehalis
River Council, 1992) to address nonpoint source pollution control efforts. The CRC
and its Action Plan should play a key role in the identification and implementation of
nonpoint source controls.
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The Thurston County Office of Water Quality received an Ecology grant to evaluate

~sources of pollutants in the Black River Watershed. Thurston County has coordinated
closely with Ecology on Black River issues. Thurston County has also coordinated
the Black River Watch, a citizens group that has for several years monitored water
quality in the Black River and organized educational activities. Both Thurston County
and the Black River Watch could have important roles in the implementation of the
TMDL and allocations.

The US Fish and Wildlife Service (USFWS) implemented the Chehalis River basin
Fishery Resources Study and Restoration Act of 1990. Under this Act, the USFWS
(1993) conducted an inventory of fishery habitat degradation, which includes water
quality problems and pollutant sources. Water quality was identified as one of the
critical areas needing improvement to restore the Chehalis River fishery. USFWS has
annually awarded grant funds for habitat improvement under the Chehalis Fisheries
Restoration Program (CFRP), which has been an important source of funding for
nonpoint source controls. The CFRP will continue for several more years, subject to
funding by the U.S. Congress.

Also active in water quality issues in the Black River basin is the Confederated Tribes
of the Chehalis Reservation (Chehalis Tribe). The Chehalis Tribe has received grant
money from USFWS and EPA for fishery improvement and water quality projects,
and is beginning a water quality monitoring program on the Black River as follow-up
to the work done in this study. Environmental issues on the Chehalis Reservation are
under the direct jurisdiction of EPA, and implementation of the TMDL on the
Reservation would be conducted by the Tribe and EPA.
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2. Methods

2.1 Data Collection

Two main components were included in the Black River DO TMDL study -- water
quality data collection and computer modeling.  The objectives of data collection were
to assess the quality of the Black River and its tributaries, identify the significant
sources of pollutant loading, and provide input data for a water quality model. The
model was used to mathematically simulate the dynamic systems of the river which
control dissolved oxygen levels. Based on the analysis of data and modeling results,
LCs were determined and TMDLs were recommended for the river.

Water quality data were collected from July to October 1991, and May to September
1992. Data collected consist of hydrodynamic and channel morphology measurements
_(flow, gage height, channel cross-section, and velocity by drogue); physical and
chemical field measurements (vertical profiles and 24-hour time series with Hydrolab®
multi-parameter meters; grab measurements with meter and thermometer; Secchi
depth; and vertical profiles of light intensity) and chemical and biological sampling
and laboratory analysis.

Data were collected from stations in the mainstem Black River, and from tributaries,
point sources, and other loading sources. The selection of sampling station locations
and water quality parameters for monitoring was based on EPA guidance for waste
load allocation and model development requirements (EPA, 1983a; Mills et al., 1986;
Ambrose et al., 1993), with consideration of site access and sampling logistics. A list
of the sites used for sampling and measurement (other than flow) is provided in Table
2.1. A map which shows the location of sampling stations is provided in Figure 2.1.

A detailed description of sampling and measurement methods is provided in
Appendix A. Model development methods are described in Section 4 and
Appendix G. .
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Table 2.1 Black River System Sampling Sites with RM Code

Mainstem Station Name RM Code Tributary Station Name
BR @ Howanut Rd Bridge 1.2
BR @ SR 12 Bridge 4.1
BR @ Moon Rd Bridge 74
BR abv Moon Rd (Bulkhead) 7.4
BR nr Big Rock 7.7
7.7001 | Springs nr Big Rock
BR abv Big Rock Springs 7.8
BR @ the Millpond 7.9
BR abv Schoolland BL 8.5
BR @ Steel Trestle 9.1
9.2001 | Springs nr Global Aqua
9.2003 | Global Aqua/BR
BR abv Global Aqua 9.3
BR blw Rochester SI 9.5
9.6002| Rochester Sl (Steelhammer)
BR abv Big Dock 9.7
BR nr Osprey Nest 10.1
BR @ Swecker Dock 10.6
10.7001 | Swecker Discharge Stream
10.7004 | Swecker Salmon Farm
_ 11.0001 | Big Lagoon
BR abv Big Lagoon 11.1
BR blw Mima Ck 11.8
- 11.8009 | Mima Ck @ Mima-Gate Rd
BR abv Mima Ck 11.9 :
BR biw Dairy Drainage 121
BR nr Dairy Drainage 12.2
BR abv Dairy Drainage 12.3
BR blw narrows blw Steel Piling 12.6
BR @ narrows blw Steel Piling 12.8
BR abv Steel Piling 13.1
BR blw Canoe Club 13.6
BR @ Canoe Club 14.1
14.1001 | Clearwater Lagoon
- BR blw Ltirck BL 14.7
BR abv Littlerock BL 15.3 ‘ ,
16.8002 | Beaver Ck @ SR 121 nr mouth
16.8023001 | Scott Lake Ck @ SR 121
16.8038 | Beaver Ck @ Case Rd
BR @ 128th St Br 17.2
17.3019| Waddell Ck @ Waddell Ck Rd
BR @ River Rd 17.4
BR blw 123d St Br 17.6 '
. 19.4003 | Blooms Ditch @ 110th St
BR blw 110th St Br 19.6 .
BR'@ 110th St Br 19.7
‘ 20.1005 | Salmon Ck @ Creekwood Dr

“RM Code" is a unique station |D code based on river or stream mile. For the mainstem, the RM Code is the approximate river mile
based on USGS topographic maps. For tributaries, the first decimal place is the Black River mile where the tributary enters, the
second through fourth place is the tributary stream mile, and fifth through seventh decimal place is the secondary tributary stream mile.
Example: 16.8023001 = Black river mile 16.8, Tributary stream mile 2.3, secondary tributary stream mile 0.1.
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3. Survey Results

3.1 Hydrodynamic and Channel Morphology
Measurements

3.1.1 Flow Measurements

Flow, channel dimension, and gage height measurement results are shown in
Appendix Table C.1. An estimation of the quality of the flow measurement is also
indicated. Several of the unusual characteristics of the Black River that affect the
quality of flow measurements are described in Appendix Section B.1.

USGS collected flow data on the Black River at Littlerock (Station Number

12029000) from 1942 to 1950 (Williams and Pearson, 1985). Otherwise, flows on
the Black River have not been measured routinely. USGS measures flow at two
locations on the Chehalis River upstream and downstream of the Black River. The
USGS stations are Chehalis River at Porter (Station Number 12031000) and Chehalis
River near Grand Mound (Station Number 12027500). The Porter station is at ‘
Chehalis RM 33.3, and the Grand Mound station at Chehalis RM 59.9. The mouth

~ of the Black River is at Chehalis RM 47.0.

The seven-day low flow with an average return time of 10 years (7Q10) is a standard
measure of critical low flow and is specified in the Water Quality Standards as the
flow to be considered in the analysis of standards compliance. The 7Q10 in the
Chehalis River at Porter is 198 cfs, and at Grand Mound is 114 cfs. Flows on
August 31, 1992 were 182 cfs at Porter and 117 cfs at Grand Mound. In 1991, daily
low flows were 337 cfs at Porter and 197 cfs at Grand Mound (on August 25). The
mean monthly flow for August is 402 cfs at Porter, and 237 cfs at Grand Mound.

Based on the Chehalis River data, flows were somewhat less than average for the
1991 low flow period, and critically low in 1992. Flows at Howanut Road were in
the range of 65 to 70 cubic feet per second (cfs) in the summer of 1991, while in |
1992, flows were as low as 45 cfs. In late August 1992, flows in the Black River
were most likely at 7Q10 levels.

To estimate the 7Q10 flow for the Black River at Howanut Road, an equation was
developed to predict Black River flows from flows at the two USGS stations.

Table 3.1 presents that analysis. ‘Measured flows at Howanut Road were compared to
the residual, or difference, between the flows at the Porter and Grand Mound USGS
stations. Linear, semi-log, and log-log regressions were evaluated. The best fit was
found for a semi-log regression, using the USGS flow residual and the log;, of the
 Howanut flows (© = 0.782, p<0.005).
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Based on the predictive equation shown in Table 3.1, Howanut Road flows in August
1992 were calculated (Table 3.2). The estimated 7Q10 critical low flow for the Black
River of 30 cfs was likely attained near the end of August 1992.

3.1.2 Drogue Results and Time of Travel

Table 3.3 presents the results of the drogue work. The slow velocities of the middle
Black River can be clearly seen. A few drogues showed no movement at all, while
very low velocities were measured with others. The Black River’s time of travel for
this stretch based on these velocities varied from 0.6 to 1.2 days per mile.

Using the "Occupied Channel Volume" method (Velz, 1970), the time of travel for
the entire river was estimated. A copy of the spreadsheet used is provided in
Appendix Table C.3. The estimated time of travel from the boat launch below
Littlerock (RM 15.3) to the mouth was 11.7 days for 1991 low flow conditions. The
river took about 9.7 days to travel the 5.7 miles from the Littlerock boat launch to the
end of the slow stretch, a rate of 1.7 days per mile. This rate compares well to the
drogue study results, where travel times were often above 1 day per mile (note that
river velocities too slow to measure by drogue would equate to very high travel
times). The almost 10 day residence time of the middle river is slightly less than the
15 day residence time that defines a lake or reservoir in the Water Quality Standards.

Travel time for the 9.7 miles from the end of the slow stretch to the mouth is about 2
days, or about 0.2 days per mile. This illustrates the significantly different character
of the middle and lower reaches of the Black River.

A time of travel estimate and channel dimensions are needed for model development.
The flow balance, ground water flows, and surface withdrawals used in the time of
travel estimate are only a "first-cut" estimate. To improve the estimate of inflows,
outflows, and the flow balance, a dissolved conservative tracer mass balance was
developed, using the WASPS model with chloride as the tracer. The conservative
tracer modeling effort is discussed in Section 4.

3.1.3 Staff Gage Measurements

Staff gage measurements were made at various locations on the Black River during
this study. In addition, Thurston County collected staff gage measurements as part of
their work. It was not possible to predict flows during the summer from the staff
gage readings because insufficient data were collected of gage readings and flow
measurements recorded at the same time.
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Table 3.1 Prediction of Black River Summer Low Flow
based on USGS flows in Chehalis River

All flows in cfs

USGS Observed Estimated
Porter - Grand Porter .

‘Date Mound - GdMd| Howanut Log(Hwnt)| Howanut
08/21/91 357 214 143 67 1.82 72
09/10/91 426 291 135 65 1.81 66
09/11/91 408 277 131 69 1.84 63
09/12/91 402 277 125 66 1.82 59
06/23/92 417 273 144 75 1.87 73
07/23/92 315 191 124 51 1.71 58
08/05/92 246 - 145 101 44 1.65 45

Regression Output (Semi-log):

Constant

Std Err of Y Est

R Squared

No. of Observations
Degrees of Freedom

X Coefficient(s)
Std Err of Coef.

t
1(.005,1,5)

1.1643
0.0409
0.7820
7

5

0.0048
0.0011
4.2355

4.032

Equation for Estimated Flows:

Q(H) = 10{.0048 [Q(P)-Q(GM)]+1.1644}

where:

Q(H) = Estimated Howanut Flows.
Q(P) = Gaged Flows at Porter

Q(GM) = Gaged Flows at Grand Mound
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Table 3.2 Estimated Flows
for Black River @ Howanut Rd Br
August 10-31, 1992

All flows in cfs
Shaded values indicate critical low flow

USGS Estimated
Grand Porter
Date Porter Mound - GdMd| Howanut
08/10/92 344 228 116 53
08/11/92 307 196 111 50
08/12/92 280 176 104 46
08/13/92 261 162 99 44
08/14/92 247 150 97 43
08/15/92 241 141 100 44
08/16/92 235 137 - 98 43
08/17/92 231 137 - 42
08/18/92 226 137 39
08/19/92 224 134 40
08/20/92 217 130 38
08/21/92 209 128 36
08/22/92 208 127 36
08/23/92 209 131 35
08/24/92 207 136 - 32
08/25/92 206 137 31
08/26/92 203 132 32
08/27/92 196 127 31
08/28/92 191 124 31
08/29/92

7Q10 Low Flow at Porter =
7Q10 Low Flow at Grand Mound =

7Q10 Low Flow Estimate at Howanut Rd =
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Table 3.3 Drogue Study Results for Black River, September 2-3,
1992
“ Time Dist Speed Travel Time
RM (min) (ft) (ft/sec) (days/mile)
| 14.9 > 10 No Movement
14.3 22.2 100 0.075 ' 0.8
13.7 32.0 | 100 0.052 1.2
1271 309 100 0.054 1.1
12.0 15.9 100 0.105 0.6
11.7 > 10 No Movement
101 | > 10 No Movement

Review of the combined Thurston County and Ecology gage readings showed a
curious result. Heights measured at the upstream gages tended to increase as flows
dropped in late August, which is counter to what one would expect. One possible
explanation for this is that macrophyte beds are increasing during mid-summer,
causing flow to slow through the beds’ dense growth, which in turn increases the
upstream head. There is an area of macrophytes downstream of Mima Creek where
growth could be dense enough to produce this effect.

3.2 Water Quality Data

3.2.1 Field Measurements - Grabs and Vertical Profiles

Four parameters were measured throughout the study as field parameters -
temperature, pH, specific conductance (conductivity), and dissolved oxygen. The
complete results of these field measurements are presented in Appendix D.

All field monitoring meters were.calibrated according to manufacturer’s
specifications. A bias was observed between calibrations in the field DO
measurements taken with the Hydrolab® Datasonde 3 (DS3) and Surveyor 2 (S2)
meters. DS3 and S2 data were corrected systematically to reduce error by
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subtracting a correction factor. The correction factor was the difference between a
field Winkler verification sample result and a paired meter reading. All DS3 and S2
dissolved oxygen data presented in this report have been corrected.

Data collected with the S2 during August 1991 showed a large amount of bias because
the meter was not properly calibrated. S2 data for pH during July and August 1991
showed unacceptable drift, and were corrected by average of the errors measured at
pre- and post-calibration. Conductivity data from this period had poor precision, but
were not corrected, and should be used with caution. '

All other meter data can be used with confidence, taking into consideration the
variability of results. A detailed description of quality assurance/quality control
procedures and measures used in the TMDL study field measurements are provided in
Appendix Section B.2.

3.2.1.1 Conductivity

Conductivity is a measure of how easily electricity can pass through the water. It is
an indirect measure of the amount of dissolved ions, since when more ions are
present, more electricity can pass. Conductivity can often be used to predict total
dissolved solids (TDS), but the relationship is site-specific, because different ions
conduct at different rates, and some dissolved substances are non-ionic.

Conductivity was used in this study primarily to identify suspected pollutant sources
that exhibit unusually high concentrations of TDS. This situation arose during the
1991 surveys, when unusually high conductivity pointed to some input of pollutants in
the area upstream of Mima Creek. The problem above Mima Creek is discussed later
in the sections for other parameters, and a detailed analysis is provided in Pickett
(1991). The conductivity data collected in this study are also useful for characterizing
baseline water quality conditions and for comparison to other studies. There are no
water quality standards for conductivity.

During the two summers of this study, conductivity measured in Black River surface
waters was typically in the range of 90 to 100 pmhos/cm from the boat launch below
Littlerock (RM 15.3) to the end of the slow stretch above Global Aqua (RM 9.3), and
between 100 and 110 pmhos/cm downstream to the mouth, with conductivity
gradually increasing in the downstream direction. Conductivities in the Black River
from Littlerock upstream were typically between 80 and 90 umhos/cm. In the
Clearwater Lagoon, a large backwater area off the mainstem Black River west of the
Canoe Club (RM 14:1), conductivities were between 70 and 80 pmhos/cm.
Conductivities in the spring were lower than summer values.

Page 19



In deeper pool areas, conductivities were typically in the range of 120 to 170
wmhos/cm. The exception to this was the deeper waters of the pool just above Mima
-Creek (RM 11.9), where conductivities were observed as high as 800 ymhos/cm in
1991 and close to 250 pmhos/cm in 1992.

Tributary conductivities ranged from 58 umhos/cm in Waddell Creek and 72
pmhos/cm in Mima Creek, to 93 umhos/cm in Beaver Creek and 98 umhos/cm in
Blooms Ditch. The springs near Global Aqua and Big Rock all had conductivities in
the range of 135 to 150 umhos/cm.

In general, conductivity measurements show that dissolved solids in the ground water
were higher than values in the surface waters of the Black River. Regional ground
water data are almost all in the range of 100 to 150 pumhos/cm (Sinclair and Hirschey,
1992; Erickson, 1990b; and Pearson and Higgins, 1977). Some of the deep areas
showed conductivities in this range, except for the pool above Mima Creek where
conductivities were notably higher. '

The lowest conductivity values were found both in tributaries draining the Black Hills
and in the Clearwater Lagoon. The low conductivity of the Clearwater Lagoon
suggests that ground water relatively low in dissolved solids is originating in the
Black Hills and surfacing in the lagoon. Field observations confirm that water in the
upper end of Clearwater Lagoon is fairly clear, suggesting a source other than
backwater from the Black River.

3.2.1.2 Temperature

Temperatures in the Black River were often higher than the criterion of 18°C
specified in the Water Quality Standards (Table 1.2). Figure 3.1 summarizes the
temperatures measured from grab and vertical profile measurement. The figure
shows that the upper Black River and the deeper waters of the middle river generally
had acceptable temperatures. Surface waters of the middle river frequently exceeded
18°C, and the lower river showed the highest proportion of values that exceeded the
criterion. Tributaries were below 18°C, except in locations where flows were very
low. Not surprisingly, the highest temperatures were found between mid-July and the
end of August.

The Water Quality Standards include criteria for maximum temperature increases. An
adequate understanding of the thermal balance of the Black River, and of the relative
contribution of natural conditions and human impacts on temperature, is beyond the
scope of this report and could only be achieved with a separate study. However,
based on field observations and other studies of stream temperature, some conclusions
can be drawn.
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The middle river is slow, wide, and lined on both banks by brush wetlands. This
area is relatively unimpacted by human activities in the riparian zone, and temperature
increases in this stretch are most a likely a result of natural conditions. The lower
river is swift with riffles, and some areas are quite shady. However, in many other
areas the riparian shade trees are absent, most likely due to human activities
associated with the agricultural and residential land uses of the lower river. Tall
shade trees that allow effective shading appear to be viable from about RM 10
downstream.

The U.S Fish and Wildlife Service Habitat Degradation Survey (Wampler et al.,
1993) included loss of riparian canopy as part of their observations. Widespread loss
of riparian canopy was documented in the stretch of the Black River from the steel
trestle (RM 9.1) to the mouth. In particular, from the steel trestle to the Schoolland -
Road boat launch 62% of riparian canopy was reduced or absent, and from the SR 12
boat launch to the mouth 65% of riparian canopy was reduced or absent.

A study done by the Timber/Fish/Wildlife Temperature Work Group (TFW, 1990)
found that "very low elevation streams (less than 100 m or 300 ft) were the most
dependent on shade, requiring significant amounts to maintain temperatures.”" The
report notes that the temperature of rivers can adjust to a new equilibrium based on
downstream shading conditions.

Thus, it is reasonable to conclude that after temperatures are increased by warming in
the slow middle reach of the Black River, riparian shading in the lower river could
maintain or reduce river water temperatures. Any significant loss of shade on the
lower river would tend to increase water temperatures over that stretch. The amount
of temperature increase caused by shade tree removal cannot be quantified without
“further study. However, temperatures are greater than the water quality criterion, and
the lack of riparian shading is contributing to that situation.

To achieve Class A standards for temperature, a strategy of best management
practices is recommended. Projects that plant riparian shade trees should be
encouraged, and existing riparian shade trees should be protected. As resources
allow, detailed monitoring and modeling could be used to prioritize areas that would
benefit the most from shade improvements. This approach would constitute a phased
approach to a TMDL for temperature in the lower Black River (RM 0 to 10.0). The
phased temperature TMDL should be revisited at five year cycles according to the
Basin Approach of Ecology’s Water Quality Program.

Page 21



s)ynsay AaAInS TAINL hm>_m_ yoe|g
salnjejadwa] jo uonnquisiq L€ ainbi4

_._ommmn_wa“ OAlH ) %mo‘o,.,méé tom\o\,.,é
e AOo wS B couen @S e @ g w2 ,m(fw% A ,mNmmo.o R
uoua) : 70

V SSe|D 70
....................................... %02 ...ua
. %0 O
0,02 | %0 m.
g ovi-iz [l %05
9 091-L'vl . %09 %
Q, 08419} %0L .W..
0,0°02-1'81 %08 o

9, 022102 | %06

o0eet U s-u Geou s0r-u 00

Page 22




3.2.1.3 pH

Most measurements in the Black River showed pH values of 6.5 to 7.5 (Figure 3.2).
However, a significant number of samples were less than pH 6.5, the water quality
criterion for minimum pH (Table 1.2). Most of the samples that were less than pH
6.5 were found in bottom waters!. A decrease in pH of 0.3 to 0.6 units from surface
to bottom was very common in the vertical profiles.

Since the Black River drains extensive wetlands, it is likely that organic acids
associated with the decay of vegetation were responsible for the low pH. The dark
tint of the river is evidence of the presence of organic acids. It is reasonable that
organic material in the sediments reduces pH near the bottom, and algal productivity
increases pH near the surface. Therefore, the low pH levels in the waters of the
Black River near the river bed appear to be a natural condition, and thus not a
violation of the water quality standards.

A few measurements of pH were greater than pH 8.5, the water quality criterion for
maximum pH (Table 1.2). These measurements were isolated to the Clearwater
Lagoon, where most likely a localized highly productive system was driving up pH.
All other pH values were less than 8.0. Measurements of pH tended to increase in
the downstream direction. High pH near the surface may be the result of
photosynthetic productivity enhanced by human nutrient inputs and reduced shading,
and where it exceeded the criteria, it would be considered a violation of the water
quality standards.

3.2.1.4 Dissolved Oxygen

Dissolved oxygen varies widely throughout the Black River. Grab measurements and
Winkler analysis of samples showed areas that ranged from anoxic to supersaturated.
Figure 3.3 shows the distribution of DO concentrations in the different areas sampled.
Figure 3.4 shows the distribution of measurements expressed as a percentage of the
DO saturation concentration.

In the upper river, no samples were found above the criterion of 8.0 mg/L and all
samples were below saturation. Most of the data fell between 5.0 and 7.5 mg/L, and
none of the samples showed DO levels below 4.0 mg/L. The influence of the

4 Because post-calibration showed a significant downward drift in pH, surface

measurements taken on July 23, 1991 showing pH values below 6.5 can be discounted -
see Appendix B and D.
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extensive wetlands in the upper basin is a likely explanation for low DO
concentrations. Researchers have noted that a high organic-matter content in the
discharge from marshlands produces low DO levels and high color content (Lee e
al., 1975). :

In the middle river, DO levels less than 8.0 mg/L were widespread. Almost one-
third of surface water samples and over three-quarters of samples from deeper waters
in this reach were less than the criterion. Some of the deeper areas showed extremely
low DO and even anoxia. In terms of percent saturation, virtually all of the deep
samples and most of the shallow samples were below saturation. However, a small
percentage of shallow samples showed supersaturation, with the greatest
supersaturation occurring in the Clearwater Lagoon®.

In the lower river, as in the middle river, DO levels were still below the criterion in -
about one-third of the measurements and below 90% saturation in one-half of the
measurements. However, supersaturated conditions were found in a greater
percentage of measurements for the lower river.

-About half of the measurements made on tributaries had DO levels less than the
criterion, but most of these measurements were either made from springs or from
locations where flow was very low. Most of the tributary streams sites with
significant flow (Waddell, Beaver, and Mima Creeks) had DO levels above the
criterion. One exception was a measurement made in Allen Creek (a tributary of

- Beaver Creek sometimes referred to as Scott Lake Creek), which had a DO of 6.0
mg/L, despite significant flow.

As this data summary shows, DO concentrations below the water quality criterion
were widespread in the mainstem Black River. Unlike pH, for which natural causes
appear to reduce levels and pollutant sources would tend to increase them, DO levels
in the Black River may be reduced by both natural causes and pollutant sources.
Natural processes include the influence of the upper and middle basin riparian

Certain characteristics of the Clearwater Lagoon are of tangential interest.
Productivity in the Lagoon was very high, as indicated by DO supersaturation and high
pH levels. The Lagoon had a thick growth of periphytic green algae, and an unusual
photosynthetic bacteria was also observed, tentatively identified as belonging to the genus
Thiopedia (Brock, 1979). This bacteria grows in brilliant purple colonies, and uses
reduced sulfur as an electron donor in photosynthesis. ‘It is generally found at the anoxic
interface where both large amounts of sulfides and ample sunlight are available, and is
potentially capable of high productivity. This unusual organism and the ecology of the
Clearwater Lagoon may be worthy of future research.
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wetlands as well as other physical processes such as reaeration, stratification and
temperature. Both point and nonpoint pollutant sources exist in the Black River basin
that may reduce DO levels below already naturally low levels. The many processes
influencing DO will be discussed throughout the rest of this report.

3.2.1.5 Stratification

One of the significant characteristics of the Black River is stratification of the water
column in the middle reach. Most rivers and streams, including the upper and lower
Black River, are isothermal -- the temperature is essentially the same at all depths.
The turbulence of the flowing water keeps the water column fully mixed. However,
during this study thermal gradients were found in the middle Black River (surface
waters were warmer than bottom waters). Differences between surface and bottom
temperatures as high as 12°C were found at some sites. Thermal stratification was
found in some locations at all the times sampled (May through October), although
stratification was strongest and most widespread in mid-August.

The significance of the vertical temperature gradients is that warmer, less dense
surface water overlaying colder, denser bottom water creates a very stable formation.
The density gradient is more stable with greater temperature differences and with
warmer water. The water column stability resists mixing and dispersion of dissolved
materials. Oxygen entering the water column from the surface moves towards the
bottom very slowly, and materials released by the sediments do not mix into the
upper waters. The result is that the bottom waters are often low in oxygen and high
in other constituents compared to surface waters.

Figures 3.5 and 3.6 demonstrate this phenomenon in the Black River. In Figure 3.5,
vertical temperature profiles are shown at three locations in the middle Black River on
six different dates in 1992, The pattern at these three sites was similar. Gradients of
1 to 3°C in June increased to a maximum gradient of between 6 and 11°C in mid
August, and then returned in September to a gradient similar to what was observed in
June.

Figure 3.6 shows vertical DO profiles at the same sites and dates. DO levels in June
were higher than later in the summer, and generally the same from top to bottom.
The exception was the site above Mima Creek, where very low oxygen was measured
in the deepest waters in June.

As the temperature gradients increased, DO in the deeper waters decreased.
Generally, DO in deeper waters reached its lowest level in late July to late August.
As the temperature gradient decayed in September, DO levels near the bottom at the
Mima Creek and Big Dock sites had recovered somewhat, although not to the levels
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observed in June. At the Canoe Club site, the lowest DO levels in deep waters were
found in September, which may be explained by a temperature gradient that was
greater at this site in September than at the other sites.

Other constituents show vertical differences associated with the observed stratification.
Conductivity tends to increase with depth, and pH tends to decrease. The vertical
pattern of chemical concentrations are discussed in Section 3.2.3, and the modeling of
stratified areas are discussed in Section 4.

The extremely low DO levels in the deep waters above Mima Creek indicate a source
of pollution near this location. It is believed that the discharge of pollutants from the
Black River Ranch, a dairy farm located north of the river near this site, through a
drainage ditch just upstream of Mima Creek (RM 12.2) was the principal factor of the
water quality degradation at this location (Pickett, 1991). The Black River Ranch
came under enforcement for poor waste handling practices between the 1991 and 1992
sampling season. Anoxic conditions were found as shallow as 3 meters in August
1991, but in 1992, despite much lower flows, the anoxia was found at 4 meters in
July and 5 meters in August. This suggests that some improvement in water quality
from 1991 to 1992 may have resulted from improvements in waste management at the
Black River Ranch. Additional evidence of pollutant loading above Mima Creek will
be presented later in the discussions of other parameters.

In general, stratification appears to be a natural phenomenon of the middle Black
River during the low flow season, due to its low gradient and velocity. However, the
existence of stratification increases the river’s sensitivity to pollutants, by providing a
mechanism to trap pollutants in deeper layers and release them as the stratification
erodes. Depressed DO and moderate pH and conductivity gradients appear likely to
occur in the middle Black River under pristine conditions. However, anoxic
conditions and extreme pH or conduct1v1ty measurements would likely indicate
impacts from pollutant loading.

3.2.2 Productivity and Diurnal Variation Field Measurements
3.2.2.1 Datasonde Measurements

DS3 measurements provide a measure of productivity through the diurnal variation in
DO and pH. Diurnal temperature and conductivity readings are also collected.
Appendix Table E.1 presents a summary of the DS3 results, with maximum,
minimum and average values and the range from maximum to minimum. Complete
results of the DS3 deployments are also provided in Appendix E..

Temperatures at each site showed diurnal variation of from 0.5°C up to 3.7°C. The
maximum diurnal range coincided with the highest maximum temperature measured
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by the Datasondes in the river. Maximum temperatures were observed during the
period of lowest flow in late August 1992, when average water temperature was
between 19 and 22°C at all stations except above the boat launch below Littlerock
(RM 15.3). The cooler temperatures at the Littlerock boat launch can be attributed to
its location at the end of a shady stretch and below the cooler inflows of Waddell and
Beaver Creeks. These observations lend support to the recommendation for a phased
TMDL for temperature (Section 3.2.1.2).

The daily range for pH tended to be fairly steady, with a maximum range of only 0.6
units. This suggests that the water is reasonably well buffered with productivity
causing only a small effect. Conductivity also showed little variation, which is not
surprising.

Percent DO saturation had diurnal variations as high as 45 percentage points, although
typically the range was between 10 and 20. The highest variations were observed
from the Big Dock site (RM 9.7) downstream in 1991. Supersaturation was present
from the site above Mima Creek (RM 11.9) downstream during the entire season,
with the highest values in June 1992.

The diurnal range of DO concentrations varied from a low value of 0.4 mg/L to a
maximum of 4.1 mg/L, which was measured at the Millpond site (RM 7.7) in 1991.
DO ranges of greater than 2.0 mg/L were observed from the Big Dock site
downstream in 1991, and DO ranges of 1.0 to 1.5 mg/L were common elsewhere.
The highest DO levels (over 12 mg/L) were observed at the site above Mima Creek
and the Big Dock site in June 1992. At the Littlerock boat launch site, the DO
concentrations and ranges varied very little between sampling periods, and little
difference was observed between that site and the two sites located farther upstream.

3.2.2.2 Other Measurements

In addition to the diurnal DS3 measurements, morning and evening DO samples were
collected at several mainstem Black River stations and analyzed using the Winkler
method. The results are shown in Table 3.4. Howanut Road (RM 1.2) showed the
largest range in DO found in the Black River, 3.0 and 4.4 mg/L in August 1992. DO
at Moon Road (RM 7.1) also showed relatively high diurnal ranges in September
1991, averaging 2.7 mg/L. The eight largest diurnal DO ranges in the mainstem
Black River, including both Datasonde and Winkler measurements, were all found at
the three sampling sites farthest downstream.

Light/dark bottle measurements were made at two locations, and the results are shown
in Table 3.5. At the Littlerock boat launch site (RM 15.3), very little productivity
was observed. This is consistent with the Datasonde observations that showed little
seasonal variation in diurnal DO ranges. At Howanut Road (RM 1.2) the bottles also
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showed low productivity. Since ambient DO measurements showed a diurnal range of
over 2 mg/L on the same date, most of the primary productivity in the area of
Howanut Road must have been benthic (i.e., a result of aquatic macrophyte and
periphyton photosynthesis).

The large diurnal range of DO in the lower river raises concerns, since minimum DO
concentrations frequently drop below the water quality criterion. The association of
-benthic primary productivity with the low morning DOs points to the need for
controls on macrophytes and periphyton to ensure that DO standards are met in the
lower river. However, the management of macrophyte and periphyton growth is not
simple and requires careful study. Benthic productivity in the lower river will be
discussed later in Section 3 and also in Section 5.2.4.

Secchi depth measurements made during a few of the survey dates (Table 3.6) showed
a pattern that occurred during four of five weeks: upstream stations had the highest
clarity, and clarity decreased in the downstream direction. The pattern of decreasing
clarity would tend to indicate increasing amounts of particulates, most likely
suspended phytoplankton, in the downstream direction. This pattern was not observed
for the early May observations, perhaps because it was early in the season and
phytoplankton biomass had not yet developed. The relatively high clarity measured at
the Millpond site (RM 7.9) in July 1991 seems to indicate that a significant amount of
particulates were being removed from the water column in the stretch of the river
upstream of that site.

3.2.3 Laboratory Sampling Results

Results for conventional parameters - conductivity, alkalinity, turbidity, total
suspended solids (TSS), total dissolved solids (TDS), fecal coliform, and five-day
biochemical oxygen demand (BOD;s) - are shown for mainstem and tributary sampling
_ sites in Appendix Tables F.1 and F.2, respectively. Results for chlorophyll a, total
organic carbon (TOC), ammonia nitrogen, nitrate and nitrite nitrogen, total persulfate
nitrogen, total phosphorus (TP), soluble reactive phosphorus (SRP), and chlorides are
presented for mainstem and tributary sampling sites in Appendix Tables F.3 and F.4,
respectively. Ultimate carbonaceous biochemical oxygen demand (UBOD) and five
day carbonaceous biochemical oxygen demand (CBOD;) results and related
parameters are summarized in Appendix Table F.5.

All laboratory analyses were performed within specified holding times. Certain data
were qualified, as indicated in the data summary tables, and should be used with
caution. A full discussion of data quality assurance and quality control can be found
in Appendix Section B.3.
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Table 3.6 Secchi Depth Measurements
(All Measurements in meters)
RM Code Site Description Date Time Secchi
141 BR @ Canoe Club 23-Jul-91 1119 2.8
13.1  BR abv Old Trestle 23-Jul-91 1140 2.5
11.9 BR abv Mima Ck 23-Jul-91 1200 1.7
11.1  BR abv Big Lagoon 23-Jul-91 1226 1.7
10.6 BR @ Swecker Dock 23-Jul-91 1245 1.5
9.7 BR abv Big Dock 23-Jul-91 1306 1.5
7.9 BR @ the Millpond 23-Jul-91 1420 2.4
141 BR @ Canoe Club 15-Aug-91 1055 2.3
13.1  BR abv Old Trestle 15-Aug-91 1135 1.9
11.1  BR abv Big Lagoon 15-Aug-91 1305 1.9
10.6 BR @ Swecker Dock 15-Aug-91 1325 1.9
9.7 BR abv Big Dock 15-Aug-91 1355 1.6
15.3 BR abv Littlerock BL 05-May-92 1240 1.6
14.7 BR biw Littlerock BL 05-May-92 1305 1.6
141 BR @ Canoe Club 05-May-92 1320 1.8
13.6  BR blw Canoe Club 05-May-92 1335 1.9
13.1  BR abv Old Trestle 05-May-92 1355 2.1
12.3  BR abv Dairy Drainage 05-May-92 1422 1.9
10.6 BR @ Swecker Dock 05-May-92 1630 1.8
9.7 BR abv Big Dock 05-May-92 1600 1.6
15.3 BR abv Littlerock BL 27-May-92 1320 2.3
141 BR @ Canoe Club 27-May-92 950 2.4
13.1 BR abv Old Trestle 27-May-92 1010 2.1
11.9 BR abv Mima Ck 27-May-92 1030 2.3
11.1  BR abv Big Lagoon 27-May-92 1100 2.0
9.7 BR abv Big Dock 27-May-92 1200 2.0
141 BR @ Canoe Club 18-Jun-92 1221 2.5
13.1  BR abv Old Trestle 18-Jun-92 1136 2.5
11.9 BR abv Mima Ck 18-Jun-92 1052 1.3
11.1  BR abv Big Lagoon 18-Jun-92 1025 1.5
10.6 BR @ Swecker Dock 18-Jun-92 1010 1.4
9.7 BR abv Big Dock 18-Jun-92 925 1.6
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3.2.3.1 Conventional Parameters

Laboratory conductivities generally followed the same trend described for the field
data -- gradually increasing downstream, higher in deeper areas, and particularly high
in the deep waters above Mima Creek in 1991. TDS levels were generally in the
range expected for the conductivities observed. However, a statistically significant
relationship between TDS and conductivity, such that TDS can be predicted from
conductivity with some accuracy, could not be established. This could be the result
of the high variability of the TDS measurements and a varying chemical make-up of
the dissolved solids.

Alkalinities were mostly just above 40 mg/L as CaCO;. Alkalinity in combination
with pH indicates the availability of carbon dioxide for photosynthetic uptake. Water
bodies with low alkalinity may be carbon limited, as well as poorly buffered. High
alkalinities are the product of the particular geology of the watershed, and generally
indicate a large buffering capacity. Cole (1979) points out that alkalinities above 40
mg/L as CaCO; indicate an adequate supply of CO, for primary productivity,
especially if phosphorus is limiting. Thus it appears that the alkalinity found in the
Black River is at a moderate level, neither low enough to indicate a carbon-limited
system or poor buffering, nor high enough to indicate extremely high buffering.

Turbidity and TSS results were generally quite low, both in the mainstem and
‘tributaries. One exception was that turbidity in the deep waters above Mima Creek in
1991 was an order of magnitude higher than the rest of the river. This result is
consistent with other evidence of a discharge of pollutants from the Black River
Ranch, discussed earlier in Section 3.2.1.5. Results in the deep waters above Mima
Creek in 1992 were much lower than 1991 levels, but still slightly higher than the rest
of the river.

Turbidity and TSS at sites below the steel trestle (RM 9.1) showed a noticeable
decrease from upstream levels. This pattern is consistent with the changes in Secchi
readings measured along this reach. Field observations indicated an extremely lush
growth of rooted aquatic macrophytes in the stretch downstream of the steel trestle
and above the Schoolland Road boat launch sampling site (RM 8.5). The
macrophytes may be serving as a natural filter, inducing a rapid settling of solids.

3.2.3.2 Fecal Coliform Bacteria

With only the exceptions noted here, all fecal coliform sampling results were less than
the 100 cfu/100 mL criteria in the Black River mainstem and tributaries. One sample
taken in July 1992 at the site above the Littlerock boat launch (RM 15.3) was above
100 cfu/100 mL. Two field replicate samples taken in August 1992 at State Route
121 near the mouth of Beaver Creek were above 200 cfu/100 mL. Samples taken on
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the same date higher in the Beaver Creek basin, from Allen Creek and from Beaver
Creek at Case Road, were well below this level, indicating that the loading source
causing the fecal coliform criteria violations at the mouth of Beaver Creek is located
on Beaver Creek between Case Road and the mouth.

These results are consistent with the elevated bacteria loading observed at these two
sites during the winter study (Coots, 1994). It is particularly unusual to find bacteria
levels over 200 cfu/100 mL during a late summer dry spell. This suggests a source
that is active even in the summer months, and raises concerns for public health, since
recreational swimming in the creek is most likely at this season. Also, as noted by
Coots, the exceedance at the Littlerock boat launch was likely the result of high
bacteria levels in Beaver Creek.

The U.S. Fish and Wildlife Service Habitat Degradation Survey (Wampler et al.,
1993) documented several areas of livestock access on Beaver Creek: a small area
one-half mile above the Route 121 bridge near the mouth; a stretch of almost a mile
from 1.6 to 2.6 miles above the mouth; and a stretch of almost one-half mile '
downstream of Case Road. In particular, the USFWS survey noted three locations of
"livestock waste input" in the one mile stretch of Beaver Creek upstream of Allen
Creek. This identified waste input location should be the first priority for
investigation in the Beaver Creek drainage.

3.2.3.3 Chlorophyll a

Chlorophyll a is one of the pigments used by algae and plants for photosynthesis, and
its concentration in the water column is an indicator of the biomass of photosynthetlc
algae. A water body that is suffering from severe eutrophication, or the
overabundance of nutrients that causes a bloom of photosynthetic algae, typically
exhibits a pea-green color from high levels of chlorophyll a. Lower levels may not
be visible, except as turbidity, but may still be measurable. Chlorophyll @ may also
be present from sources other than algae, such as detritus sloughed from rooted or
floating macrophytes.

Since it is an indicator of photosynthetic algae, chlorophyll a can be used to define
the trophic state of a lake. A lake in an oligotrophic state, such as a high alpine lake,
will exhibit great clarity and will have very low levels of chlorophyll a. A eutrophic
lake will have very high levels of chlorophyll @, and a mesotrophic lake is at the
transition from oligotrophy to eutrophy. The implications of the trophic state to a
river system may be different than for a lake, but the lake-like characteristics of the
middle reach of the Black River make the comparison appropriate.

The levels of chlorophyll a that define different trophic states have been evaluated by
a number of sources (Carlson, 1977; Welch, 1980; Schlorff, 1992; Oregon
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Administrative Rule 340-41-150), and there appears to be general agreement that
chlorophyll a concentrations below 4 ug/L indicate oligotrophic conditions and
concentrations above 15 ug/L indicate eutrophic conditions.5

Levels of chlorophyll ¢ measured in the Black River during this study ranged from
not detected to around 12 ug/L. Table 3.7 shows chlorophyll a data between RM
11.9 and RM 9.3. The values observed in the middle Black River generally fell in
the mesotrophic range during the summer, and maximum chlorophyll a values
approached eutrophic levels. This indicates that the Black River is in a transition
state between high clarity oligotrophic conditions and nutrient-enriched eutrophic
conditions.

In the lower Black River below the steel trestle (RM 9.1), chlorophyll a levels were
all below 3 ug/L, which was characteristic of oligotrophy. However, the heavy
growths of periphyton and macrophytes and the large diurnal swings in DO indicated
that the lower river was still fairly productive and some of the chlorophyll ¢ may
have been sloughed from attached growth.

Commonly, mesotrophic water bodies can easily be pushed into eutrophy by increases
in nutrient loading or other changes that enhance productivity. Eutrophic conditions
are characterized by wide daily changes in DO, with supersaturated conditions during
the day and very low DO in the early morning. Generally pH also increases and
decreases with the DO levels, due to the uptake of dissolved inorganic carbon. A
high level of productivity is also usually perceived as aesthetic degradation of water
quality, due to poor clarity and green coloration of the water. Seasonal die-off of
algal blooms may cause offensive odors and extremely low DO concentrations.
Nutrient enrichment may also cause the nuisance growth of periphyton and
macrophytes, which may become objectionable.

SWelch (1980) proposed an index of the trophic state of a lake based on the seasonal
average of epilimnetic water samples: levels of 0 to 4 ug/L indicate oligotrophy, and
levels above 10 pg/L indicate eutrophic waters. Carlson (1977) defined a lake trophic
state index, in which a chlorophyll a value of 6.4 ug/L corresponds to mesotrophic
conditions and a chlorophyll @ value of 20 ug/L corresponds to eutrophic conditions;
concentrations between these values are undefined. A literature review done as part of
the development of water quality criteria for nutrients for the state of Washington
(Schlorff, 1993) found that eutrophic conditions in North American and European lakes
were associated with chlorophyll a levels above 8 ug/L. The State of Oregon Nuisance
Phytoplankton Growth Rule (OAR 340-41- 150) sets an action level of 15 ug/L for
chlorophyll a in rivers.
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Table 3.7 Total Phosphorus to Chlorophyll a Relationship

Phosphorus in mg/L

RM119-93 Replicates averaged
0 -2 m depth Below detection set to 1/2 detection limit Chlorophyll a in pg/L
Total Chlorophyll a Chlorophyll a
Date Phosphorus Observed Predicted Error (Error)2
09/10/91 . 0.059 9.9 11.8 1.8 3.32
09/11/91 0.056 11.6 . 11.3 -0.3 0.10
07/21/92 0.005 1.2 3.9 2.7 7.50
07/21/92 0.005 4.0 3.9 -0.1 0.01
08/05/92 0.026 9.9 7.0 -2.9 8.52
07/21/92 0.01 5.6 4.7 -1.0 0.94
08/05/92 0.022 4.0 6.4 2.4 5.53
09/10/91 0.037 6.8 8.6 1.7 3.05
09/11/91 0.048 12.3 10.2 -2.1 4.41
09/12/91 0.033 10.3 8.0 -2.3 5.49
07/21/92 0.005 5.3 3.9 -1.3 1.77
08/05/92 0.016 3.0 5.5 2.6 6.51
07/21/92 0.005 6.0 3.9 -2.1 4.44
08/05/92 0.0215 5.4 6.3 1.0 0.91
MAX 0.059 12.3 RMSE 1.9
AVG 0.025 6.8 (Root Mean
MIN 0.005 1.2 Square Error)
Regression Output:
Constant 3.203
Std Err of Y Est 2.092
R Squared 0.657
No. of Observations 14
Degrees of Freedom 12
X Coefficient(s) 144.944
Std Err of Coef. _ 30.246
t 4.79
t(1,12,.001) 3.93
Chlorophyll-a levels projected from total phosphorus
Total Chlorophyll a
Phosphorus Projected -RMSE + RMSE
- 0.01 4.7 2.7 6.6
0.02 6.1 4.2 8.0
0.03 7.6 5.6 - 9.5
0.04 9.0 7.1 10.9
0.05 10.5 8.5 124
0.06 11.9 10.0 13.8
0.07 13.3 11.4 15.3
0.08 14.8 12.9 16.7
0.09 16.2 14.3 18.2
0.1 17.7 15.8 19.6
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Complaints have been voiced about the lush growth of macrophytes in the lower river
(Sharer, 1992). Concerns have also been raised by the owner of the Black River
Canoe Club about the protection of recreational resources of the Black River (Dahl,
1992). The Black River Watch was formed not only as a result of the 1989 fish kill,
but also because long-time shoreline residents have reported a decline in the water
quality of the Black River, based on their observations of increased turbidity and
aquatic vegetation (TCEH, 1991). The mesotrophic conditions indicated by the
chlorophyll g in the Black River should be viewed as a warning that the river is
threatened by further degradation from eutrophication.

3.2.3.4 Phytoplankton Identification

While chlorophyll a is an indirect assessment of phytoplankton biomass,
phytoplankton can also be directly assessed. In the Black River, samples were
collected and the algal units in the sample were counted, measured, and identified
(Sweet, 1992). Biovolume and algal density for the whole sample and for the most
common species were reported.

The algal species found in the Black River were somewhat variable. Diatoms were
common (Cymbella minuta, Achnanthes minutissima, Cocconeis placentula,
Achnanthes lanceolata, and Synedra ulna). These species are typical of low to
moderate nutrient waters and can be periphytic. Cryptophytes were also common at
times (Cryptomonas. erosa and Rhodomonas minuta). Cryptophytes are flagellate,
facultative heterotrophs. They are found in a wide range of conditions, but are
generally associated with slow-moving waters which are nutrient or organic-enriched.
In June 1992 at the Big Dock site (RM 9.7), a particularly strong bloom of algae was
observed, dominated by Chlamydomonas-like flagellate green algae. This coincided
with high DO concentrations and saturation levels, as discussed above.

Table 3.8 summarizes total algal biovolume and density, and dominant species at sites
and times sampled. Algal species composition and abundance changing seasonally,

and were also markedly different between the upstream end of the middle reach (RM
15.3), the downstream end of the middle reach (RM 9.5 and 9.7) and the lower river

(RM 7.1).

The relationship between chlorophyll ¢ measurements and algal biovolume and density
was very poor. Possible explanations for the lack of a good correlation are the large
amounts of non-algal chlorophyll—containing debris of unknown origin found in some
samples, and the poor analytical precision indicated by the high rephcate variability of
the chlorophyll a analyses.
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Table 3.8 Summary of Phytoplankton Identification Results

C = Cryptophytes
G = Green algae

ALGAL DENSITIES (#/mL) ‘ :
RM 09/10/91 06/18/92 07/21/92  08/05/92 10/01/92
1.2 525
7.1 333 678 99 67 699
9.5 80 203
9.7 6884 612 |
11.1 1597
15.3 292 50 27 135
ALGAL BIOVOLUMES (um3 x 1000 per mL)
RM 09/10/91 06/18/92 07/21/92 08/05/92 10/01/92
1.2 166
7.1 85 235 38 25 197
9.5 21 69
9.7 2067 132
11.1 605
15.3 128 26 16 39
DOMINANT SPECIES
RM 09/10/91 06/18/92 07/21/92 08/05/92 10/01/92
1.2 D '
7.1 D C D D C
9.5 D D
9.7 G C
11.1 C ,
15.3 C D D C
D = Diatoms




Sweet (1986) summarized the algal biovolume and density levels associated with lake
trophic states. Taking the average of values from RM 11.1 to RM 9.5, the mean
algal density of 1875 #/mL found in the Black River exceeded the value of 1066
#/mL associated with eutrophic conditions. The mean algal biovolume of 579
um’x1000/mL fell between the level associated with mesotrophy (329 pm3®x1000/mL)
and the level indicating eutrophic conditions (1056 um3x1000/mL). These results
support the determination from chlorophyll g data that conditions in the middle Black
River during the summer months were commonly mesotrophic but sometimes
approached eutrophy.

3.2.3.5 Biochemical Oxygen Demand

BOD measures the presence of organic pollutants that consume DO as they degrade.
The BOD;s method measures the amount of oxygen consumed over five days. BOD is
made up of carbonaceous biochemical oxygen demand (CBOD) and nitrogenous
biochemical oxygen demand (NBOD). NBOD is mostly caused by ammonia (and
organic nitrogen that converts to ammonla) being oxidized to nitrate, through the
process termed "nitrification."

BOD; values of less than 2 mg/L would be typical of relatively unimpacted stream,
while values over 3 mg/L would suggest that some source of pollutant loading exists.
BOD; values in the mainstem were mostly less than 2 mg/L, with a few values
between 2 and 3 mg/L. The highest value of 4.5 mg/L was found in the deep waters
above Mima Creek. Values in the tributaries were 3 mg/L or less.

UBOD represents the theoretical "total" amount of CBOD that would occur if the
oxygen use of a sample were monitored for an indefinite amount of time. UBOD and
CBOD; values in the mainstem indicated the same pattern observed with the standard
BOD; values: low UBOD levels in the mainstem and tributary waters, except for a
relatively high UBOD found in the deep waters above Mima Creek. Again, the
relatively high CBOD levels found above Mima Creek provide additional evidence of
a discharge from the Black River Ranch (see Section 3.2.1.5).

UBOD values in the point source effluents were generally higher than ambient levels.
However, the data suggest that some reduction in CBOD occurred in the Swecker

- discharge stream between rearing ponds and the river. Data for Global Aqua
indicated that the levels of CBOD found in the Global Aqua effluent were not seen in
the Big Rock springs, which had negligible CBOD levels.

3.2.3.6 TOC and Chloride

TOC measures the orgahic carbon concentration in the water column, and is usually
from biological or human sources. Since some portion of the TOC in the water will
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contribute to CBOD, TOC can be an indirect measure of CBOD and an indicator of
pollutant sources. Some elevation of TOC may also occur from natural sources, such
as from wetlands or autumn leaf fall.

TOC levels in the mainstem ranged from 1.5 to 4.6 mg/L. The lowest values, below
2 mg/L, were observed on August 5, 1992 throughout the mainstem. The highest
values, above 4 mg/L, were either observed in the deep waters above Mima Creek or
at all the middle reach stations on September 10, 1991.

Tributary TOC values were generally in the same range as the mainstem values. The
extremes were high values of 4.5 and 4.9 mg/L in Salmon Creek and Allen Creek
respectively, and low values of 1 mg/L or less in Waddell Creek. The Swecker
discharge stream and the Big Rock springs had low TOC levels relative to those
found farther upstream in the respective facility effluents. '

None of the TOC values observed were unusual or extreme, with one exception. A
TOC value of 10.5 mg/L was found at RM 12.2 on the north bank, where a drainage
ditch was suspected to be the source of a discharge from the Black River Ranch
(Pickett, 1991). This was the only value above 5 mg/L observed in the Black River
basin, and adds to the evidence of an active pollutant discharge occurring in 1991.

Chloride is an ion that is typically conservative in natural waters (i.e., it does not
react, degrade, or adsorb). This allows it to be used as a tracer. Chloride sources
include sea salt or common table salt, geologic sources, and also animal waste.
Modeling of chloride is discussed in Section 4.

Chloride levels in shallow Black River waters generally increased from upstream to
downstream. The lowest concentration, at the 110th Street bridge, was 3.2 mg/L,

and the highest concentration of 5.7 mg/L was found at the Howanut Road site. Deep
areas tended to be slightly higher than surface, up to a maximum of 6.4 mg/L. The
exception, again, was the deep site above Mima Creek, where chloride values were in
the range of 23.8 to 25.6 mg/L in 1991, further evidence of pollutant loading at this
location. Chloride levels in 1992 were similar to levels at other deep locations.

Lowest values of chloride in the tributaries were 2.6 mg/L in Waddell Creek and 3.4
mg/L in Mima Creek. In Beaver Creek, high values of 9.3 mg/L were found near
the mouth in 1991 and 16.3 mg/L at Case Road in 1992. Other samples in natural
tributaries were between 4 and 6 mg/L. The Swecker Salmon Farm effluent and
discharge stream had similar values of 5.7 to 6.1 mg/L, while the Global Aqua
effluent and associated ‘springs were all in the range of 7.6 to 8.4 mg/L.
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3.2.3.7 Nitrate/nitrite, Ammonia, and Organic Nitrogen

Ammonia nitrogen in the mainstem Black River, except for the deep waters above
Mima Creek, was less than 0.1 mg/L at all times and locations. This was well below
the toxicity criteria under any pH or temperature conditions likely to be found in the
Black River. Tributary ammonia nitrogen levels were mostly below 0.05 mg/L, with
many samples below the 0.01 mg/L detection level. The Global Aqua and Swecker
effluent values were somewhat higher than other tributary flows, but levels appeared
to drop in the Swecker discharge stream near the river, and were below detection in
the Big Rock springs.

Nitrate/nitrite nitrogen levels in shallow waters of the mainstem Black River appeared
to increase gradually downstream. Concentrations in the upper river downstream to
the Canoe Club (RM 14.1) were less than 0.5 mg/L, increased to a little over 1 mg/L
above Mima Creek, dropped to between 0.5 and 0.7 mg/L below Mima Creek, and
gradually increased to almost 1 mg/L near the mouth.

Deeper waters showed much higher nitrate/nitrite levels than shallow waters. Deep
samples from sites at the Canoe Club and above the steel piling (RM 14.1 and 13.1)
‘had concentrations of 2 to 5 mg/L. Downstream of Mima Creek, deeper waters were
slightly elevated compared to shallow waters, but in the range of 0.6 to 1.1 mg/L.
Again, the deep waters just above Mima Creek were exceptional, showing relatively
low nitrate/nitrite levels of between 0.01 and 0.02 mg/L in 1991, and between 0.29
and 0.3 mg/L in 1992,

Tributary nitrate/nitrite concentrations ranged from 0.1 to almost 3 mg/L. The lowest
levels, between 0.1 and 0.3 mg/L, were found .in Waddell and Mima Creeks. Beaver
Creek showed higher levels of between 0.68 and 1.82 mg/L. Effluent at Swecker
Salmon Farm was near 2.6 mg/L, and Global Aqua effluent was near 1.3 mg/L.
Nitrate/nitrite in the Swecker discharge stream and in the Big Rock springs were
about the same as the effluents they are associated with, reflecting the high mobility
of this form of nitrogen.

Comparing total nitrogen to ammonia and nitrate/nitrite nitrogen sheds some light on
the proportions of the various fractions of nitrogen in the river. At all locations

except the deep waters above Mima Creek, the largest fraction of nitrogen was
nitrate/nitrite. A significant fraction of nitrogen in the river was in an organic form,
typically in a range of roughly 0.1 to 0.3 mg/L’. Ammonia made up a small fraction
of the nitrogen, and the fraction that is ammonia decreased in the downstream direction.

"Organic nitrogen is calculated as: total persulfate nitrogen - (ammonia nitrogen +
nitrate/nitrite nitrogen). '
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In the deep waters above Mima Creek, ammonia nitrogen levels were between 28.3
and 31.1 mg/L in 1991. These were extremely high concentrations for ambient
waters, and exceeded both the acute and chronic water quality criteria for ammonia.
Levels at this location were about 0.64 mg/L in July 1992, and between 0.35 and
.0.37 mg/L in August 1992, reduced from 1991 but still much higher than anywhere
else in the mainstem Black River. The amount of organic nitrogen at this location
was also remarkably higher than elsewhere in the Black River: between 7 and 10
mg/L in 1991.

As a fraction of total nitrogen, ammonia nitrogen at this location made up the largest
fraction while nitrate/nitrite made up a relatively low fraction. This was most likely
due to the extended anoxic conditions at that site creating a reducing environment that
allowed the conversion of organic nitrogen to ammonia, but suppressed nitrification,
and may also have promoted denitrification.

The extremely high ammonia and organic nitrogen levels found in the deep waters
above Mima Creek again point to a discharge of pollutants near this location, most
likely from the Black River Ranch dairy (see section 3.2.1.5). The reduction in
organic and ammonia nitrogen that occurred from 1991 to 1992 may have been the
result of reduced pollutant loading from waste management practices at the Black
River Ranch that improved between the two sampling seasons.

Tributary total nitrogen levels indicated a large fraction of organic nitrogen in
tributary flows - generally from 25 to 75 percent. Total nitrogen in Beaver Creek
near the mouth ranged from 1 to over 2 mg/L, with concentrations in 1992 almost
twice those at locations upstream on Beaver Creek. This suggests a significant source
of nitrogen entering Beaver Creek between Case Road and the Route 121 bridge,
which follows the pattern of the observed fecal coliform levels discussed earlier in
Section 3.2.3.2.

For the aquaculture facilities, a reduction in total nitrogen was observed between the
Swecker effluent and the discharge stream near the river, and between the Global
Aqua effluent and the springs discharging to the river. This pattern reflected both a
reduction in organic and ammonia nitrogen, and an overall loss of nitrogen between
the respective effluents and the points where they enter the river. This was most
likely the result of vegetative uptake by wetlands and riparian plants and settling of
particulate nitrogen.

3.2.3.8 Total and Soluble Reactive Phosphorus
Total phosphorus (TP) in shallow waters of the mainstem Black River was generally

within the range of 0.01 to 0.05 mg/L. A few higher values, between 0.06 and 0.09
mg/L, were found in deeper waters. In the deep waters above Mima Creek, TP was

Page 45



between 8 and 9 mg/L in 1991, most likely reflecting the pollutant loading to this site
in combination with increased solubility due to anoxic conditions. TP levels in
surface waters tend to be slightly lower in the middle river above Mima Creek (RM
15.3 to 11.9) than in the upper river or from Mima Creek to the mouth.

In the tributaries, TP was lowest in Waddell and Mima Creeks, where levels ranged
from less than 0.01 to just above 0.02 mg/L. Other tributaries ranged from 0.03 to
0.06 mg/L, except for Salmon Creek with a TP of 0.121 mg/L. Effluent from the
Swecker facility had TP concentrations of 0.364 and 0.490 mg/L, but the discharge
stream near the river showed levels between 0.15 and 0.19 mg/L. The Global Aqua
effluent had TP levels that ranged from 0.088 to 0.128 mg/L. TP in the springs near
Global Aqua was only slightly lower, ranging from 0.066 to 0.084 mg/L.

Soluble reactive phosphorus (SRP) is the active form of dissolved inorganic
phosphorus (mostly orthophosphate) that is available for photosynthetic uptake. The
fraction of TP that is not SRP is usually almost entirely in the organic form. SRP
was less than 0.02 mg/L in the middle Black River, with many samples less than the
detection level of 0.01 mg/L. In the lower river, SRP was somewhat higher, ranging
as high as 0.036 mg/L in 1991, but only up to 0.022 in 1992. As a fraction of TP in
surface waters, SRP generally ranged from a negligible fraction to about half of TP.
SRP in the aquaculture effluents made up about one-half to three-quarters of TP, but
in the Swecker discharge stream and the springs near Global Aqua virtually all of the
TP was SRP.

3.2.4 Analysis of Upper Black River Loading

Data from August 18-19, 1992 were analyzed to evaluate the relative contribution of
constituent loading from Waddell Creek, Beaver Creek, the Black River above
Waddell Creek, and inputs or losses between Beaver Creek and the Littlerock boat
launch. Table 3.9 shows the outcome of this analysis.

Several patterns are of interest. Most of the loading of TOC, organic nitrogen, and
total phosphorus was coming from upstream of Waddell Creek. This organic loading
is consistent with naturally high levels that would be expected in drainage from the
wetlands in the upper basin. The high proportion of fecal coliform loading coming
from the upper basin may be from wildlife, but pollutant inputs from human activities
must also be suspected.

A comparison of the combined loading of several parameters in the upper river and
two tributaries to loading at the Littlerock boat launch shows that loading increased in
this stretch of the Black River. Increases in conductivity, chloride, and nitrate/nitrite
nitrogen would have been consistent with ground water inflows. However, increases
in turbidity, fecal coliform, and ammonia nitrogen loading were more likely from
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surface sources. Possible sources included an area of cattle access below Beaver
Creek, and the residences near the river between Waddell Creek and the Littlerock
boat launch. ‘

BOD; and, organic nitrogen loading decreased from the tributaries and headwaters to
the Littlerock boat launch. Even with loading entering the river in this stretch, this is
not unexpected, since BOD; would be degraded by natural processes, and organic
nitrogen would be transforming to ammonia and then nitrate. The decrease in organic
nitrogen loading is accompanied by a doubling of ammonia loading and a four-fold
increase in nitrate loading, consistent with nitrogen transformations in an oxygenated
aquatic environment.

Although temperature "loading" (total heat content) stayed the same between Beaver
Creek and the boat launch, this actually represents a loss of heat in this stretch.
Because flows increased and temperatures were not likely to be less than 10°C from
any sources in the summer (including ground water), a heat loss must have been
occurring. This suggests that the shady stretch above the Littlerock boat launch was
reducing water temperatures.

3.3 Comparison to Historical Data

Comparison of the data collected in this study to earlier data reveals some interesting
differences. Data were collected from the Black River on August 17 and 18, 1989 at
nine different stations as part of the Black River fish kill investigation (Ecology,
1989); monthly from November 1989 to June 1990 at three stations as a cooperative
effort with the Chehalis Tribe (Dickes, 1990); monthly from July 1990 to September
1991 at Moon Road as part of the Ecology ambient monitoring program (Ecology,
1991); and weekly from July through October 1990 and monthly from November
1990 through April 1991 at six sites by the Black River Watch citizens group (TCEH,
1991).

Patterns of DO, temperature, pH, and conductivity were similar in the earlier data
sets to those found in this study, with the exception of a few outliers. However,
laboratory data from dry season monitoring in past studies show higher levels for
some parameters.

Although only one fecal coliform sample was above 100 cfu/100 mL in the TMDL
- study, values well over 100 cfu/100 mL were seen in the other studies in June

through October 1990 and in August 1991. The pattern of high values observed in

the Black River Watch data suggests a source between the Canoe Club (RM 14.1)
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and Swecker’s Dock (RM 10.6), which was traced to the area above Mima Creek.
The Black River Watch data suggested a second source between Moon Road (RM
7.1) and Howanut Road (RM 1.2).

Black River surface ammonia nitrogen levels did not exceed 0.06 mg/L in the TMDL
study, and levels are mostly similar in earlier studies. However, the significant
exceptions were samples that had concentrations of between 0.08 and 0.11 mg/L:
August 1989 above Global Aqua (RM 9.3); June 1990 at Moon Road (RM 7.1); and
August 1990 above the steel trestle (RM 9.2).

Total phosphorus concentrations in surface waters were all below 0.06 in the TMDL
study. In August 1989, total phosphorus exceeded 0.08 from RM 11.0 downstream,
with a maximum of 0.19 at RM 9.3. Total phosphorus values above 0.08 mg/L were
also observed at RM 1.2 and 7.1 in June 1990. Excluding a single extreme outlier,
the Black River Watch found concentrations above 0.08 mg/L at Swecker’s Dock
(RM 10.6) in July and September 1990; at Johnson’s Dock (RM 9 2) in July and
September 1990; and at Moon Road in September 1990.

This evaluation of historical data identified substantially higher levels of fecal
coliform bacteria, ammonia, and total phosphorus in the Black River from Mima
Creek downstream as compared to upstream values, and also as compared with the
results of the TMDL study. In light of the discharge found above Mima Creek in
August 1991, and since no other sources have been identified on the stretch of the
river downstream of the Canoe Club, uncontrolled waste discharges from the Black
River Ranch were likely the source of the higher pollutant levels observed in the
historical record.

It appears that the discharge was no longer active in 1992, since the quality of the
Black River improved for many parameters in the Black River from Mima Creek
downstream. In the deep pool just above Mima Creek, values were lower in 1992
than in 1991 for conductivity, turbidity, ammonia nitrogen, organic nitrogen, total
phosphorus, and chloride. As a result of the formal Ecology enforcement action, the
Black River Ranch changed a number of waste management practices between the
summers of 1991 and 1992 (Harvester, 1993). It is likely that these waste
management improvements have had a beneficial effect on the river.
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4. Modeling Results
4.1 Modeling Methods

The Black River system was modeled using the WASP5 model, with its
eutrophication kinetic subroutine EUTROS (Ambrose et al., 1993). This model is
supported by EPA, and was adapted for 486 32-bit personal computer application by
ASclI Corporation of Athens, Georgia. WASPS5 allows time-dependent three-
dimensional modeling of oxygen, nutrients, BOD, phytoplankton, and conservative
parameters.

A schematic of the segment network used for the model is provided in Figure 4.1.
The model was used in a steady-state mode, with multiple vertical elements. A
single-layer segmentation with only surface water elements was used in the upper and
lower ends of the river (segments 1-5 and 19). A two-layer segmentation with both
surface and subsurface elements was used in the stratified reach of the river (segments
6-18 and 29-32). Elements were bounded on the bottom by benthic segments that
routed deep ground water movements and settled phytoplankton (segment 33-38).
"Dummy"” elements were provided on the side to route surface water withdrawals
(segment 40), and shallow ground water inputs (segment 39).

The section of the Black River selected for modeling begins just above the boat
launch south of Littlerock (RM 15.3) and extends downstream to the confluence with
the Chehalis River. The upper Black River was not modeled because of the
inaccessible area of braided channels above the boat launch, and because of the
extensive wetlands upstream of Littlerock. Because of these features, the upper Black
River was judged to be too difficult to model as part of the scope of this study.

The overall water flow balance for the Black River was estimated with a spreadsheet.
For each segment, a mass balance was calculated that included vertical and horizontal
inflows and outflows; pumping withdrawals; and ground water, point source and
tributary flows. The segments’ flows were then balanced for the whole river, and all
flows were specified in the "Flows" data group of the input file.

Tributaries were not directly modeled, but instead were treated as inputs to the
mainstem. Where tributary temperatures were less than the temperature of the river
in areas of stratification, tributary flows and loads were routed into the subsurface
layers. Ground water was routed through the benthic segments into the water column
segment above, unless data-indicated a shallow source.

WASPS allows pollutants to be input to the system either as boundary conditions or as
waste loads. Boundary conditions are concentrations which are multiplied by the flow
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across the boundary to determine the load to the segment. Waste loads are input
specifically as a loading rate (pounds per day, or equivalent), and need not be
associated with an inflow. Loading sources, tributaries, and headwaters were input in
the "Wasteload" data group, and background ground water quality was input in the
"Boundary Condition" data group.

In order to calibrate the dispersion coefficients, refine the water flow balance, and
estimate unknown loading sources, WASP5 was first run in a conservative mass-
balance mode using chloride as a tracer. The ground water flow patterns illustrated
in Figure 4.1 are based on the results of the conservative tracer modeling. After the
chloride and flow mass balance was evaluated, the full eutrophication model was run.
July 1992 and August 1992 conditions were modeled independently to calibrate the
model. September 1991 conditions were then simulated to verify the modeling
approach. Critical flow conditions were then estimated and the model applied to
evaluation of the Black River LC.

A number of challenges present themselves in modeling the Black River.
Segmentation and hydrodynamics for the model must be established that reflect the
true characteristics of the physical system. Because of the stratification of the middle
river, a model with both horizontal and vertical dimensions is more appropriate than a
one-dimensional model. However, use of a two-dimensional model increases the
complexity of the model and the data that are required.

The WASPS5 system allows for time-variable dynamic modeling. However, for
simplicity the Black River was simulated in a steady-state mode. This is a reasonable
assumption for summertime low flow, although like all assumptions, it must be
examined against the real system for validity. All input parameters were treated as
24-hour average values for the conditions observed at the time of sampling or for
design conditions.

Previous studies have shown that the Black River is characterized by significant
ground water inputs. Sinclair and Hirschey (1992) found the average seepage gain
based on measured surface flows in late August 1987 to be 2.8 cfs/mile in the middle
Black River, and 1.8 cfs/mile in the lower Black River. This estimate suggests that at
low flows, as much as one-half of the river flow enters the Black River as ground
water.

The quantification of ground water inflows in detail adequate for modeling is
therefore clearly necessary, but also difficult. Also, the springs near Global Aqua
provide an input to the river that appears to be significant, but is difficult to quantify.
Riparian wetland inputs may also exist that are distributed over a wide area when they
enter the river, that may be indistinguishable from ground water inputs. In addition
to the flow rate of ground water and other diffuse inputs, the quality of these inputs
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may significantly affect the water quality of the river. Another complication to
modeling the Black River are the presence of pumping withdrawals from the river.
An overall flow balance for the Black river may underestimate ground water and
other diffuse inputs if pumping withdrawals are not accounted for.

In general, the stratified areas in the Black River are separated from each other by
shallower, fully mixed areas. This was observed in the field and confirmed with field
and laboratory data. In addition, the observed characteristics of the stratified areas
indicate that the surface waters are relatively well-mixed, while the hypolimnetic areas
differ substantially from the surface waters. To simulate these characteristics of the
river, the model was structured so that downstream flow occurs in the surface
segments, but subsurface segments are not connected to each other. Each subsurface
segment mixes by dispersion with the surface segment above, and any ground water
or tributary inputs that are routed through the subsurface segments cause advective
flow into the surface segment above.

Each subsurface segment in stratified areas and surface segment in unstratified areas
is bounded below by a benthic segment that routes ground water into or out of the
water column segment. In the upper end of the network, for reasons discussed later,
ground water enters the surface segments directly through a bordering dummy
segment. Mima Creek and Swecker Salmon Farm discharge flows enter the system in
subsurface segments, because they are significantly cooler than the river and likely
hug the bottom upon entering the river. A dummy segment borders the entire
network to route water withdrawals out of the system. Figure 4.1 illustrates the
segmentation described here.

To estimate inputs to the Black River from ground water and other nonpoint sources,
the WASP5 model was run with a conservative tracer. Chloride data were used for
this purpose. Chloride is useful as a tracer since it is highly soluble, non-adsorbing,
chemically conservative, and easily measurable. A number of other studies have used
this ion as a tracer to estimate flows where direct measurement was difficult or
impossible (e.g., Walker et al., 1991). EUTROS, the WASPS eutrophication model,
allows conservative tracers to be run by using the ammonia system alone with all
kinetics set to zero.

Using the chloride tracer model, a refined flow balance was developed for observed
conditions. From changes in chloride loading, input loads were estimated for sources
not directly measured. The flow balance thus developed was applied to the full
EUTROS simulation. EUTROS input loads were estimated for unmeasured sources as
a proportion of chloride loads.

Page 53



EUTROS simulates eight different systems in combination: ammonia nitrogen, nitrate
nitrogen, inorganic phosphorus (orthophosphate), phytoplankton carbon, biochemical
oxygen demand, dissolved oxygen, organic nitrogen, and organic phosphorus. If the
model simulates the physical system correctly, each of the state variables for the eight
systems ought to match observed data. :

Because the Black River model simulates steady-state, daily-averaged conditions, the
diurnal variation of DO due to productivity must be separately accounted for. Model
DO results were projected to the maximum and minimum daily DO by subtracting or
adding a diurnal range factor. The diurnal range factor for calibration or verification
is calculated as one-half of the maximum observed diurnal range during the sampling
period, with interpolated values assigned to segments between sample sites. A list of
the diurnal range factors used in calibration and verification are provided in

Table 4.1. The figures that present the DO modeling results in the following sections
show the maximum and minimum DO levels calculated using the diurnal range
factors.

The overall strategy employed in modeling the Black River was to use the chloride
tracer to establish the flow balance, dispersion coefficients, and distribution of loads.
The full EUTROS was then calibrated using the two sets of data collected in July and
August 1992. The model was verified with the September 1991 data set. The flow
balance for verification was established using a mass balance of 1991 chloride data
and simple systematic adjustments to the calibrated model. Similarly, model input
data files for critical conditions were developed from the calibration flow balance
adjusted to fit critical low flow estimates.

4.2 Calibration Modeling
- 4.2.1 Chloride Tracer Modeling

For chloride tracer modeling in the Black River, ground water chloride sources were
input as boundary concentrations. Boundary concentrations for ground water were set
to levels that appeared to be typical for the region. Tributary, point source, and
headwater chloride sources were input as waste loads. Loading was calculated from
measured or estimated flows and from chloride concentrations measured during the
surveys. Where necessary to meet the chloride mass balance, additional loading was
input as a waste load to benthic segments, under the assumption that unknown sources
were reaching the river through ground water.
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Table 4.1 Diurnal Range Factors

Values added to or subtracted from model results
to estimate maximum and minimum daily DO. |

All values in mg/L.

Late July 1992

Early August 1992

Critical Conditions

RM  Seg
Code No Early Sept 1991
0.0 1 1.1
1.2 2 1.1
4.1 3 1.2
7.1 4 1.3
9.3 5 1.0
9.7 6 1.0
10.1 7 1.0
10.6 8 1.0
1.1 9 0.8
11.5 10 0.8
11.9 11 0.8
12.2 12 0.8
12.6 13 0.7
13.1 14 0.7
13.4 15 0.6
13.8 16 0.6
14.1 17 - 0.5
14.5 18 0.5
14.9 19 0.4

0.3
0.3
0.55
0.8
0.4
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

15
15
1.15
0.8
0.6
0.6
0.6
0.6
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

2.2
2.2

NI
NN

RS R W W W W W W W U WP U G G —
ecleoReReR=ReReReRe ke ke ke ke Ko Ke)
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A detailed description of the development of the model input data set is provided in
Appendix G. The chloride boundary concentrations and waste loads used in the July
and August 1992 calibration modeling are shown in Appendix Tables G.1 and G.2.

The calibration of the Black River model to a chloride tracer was an iterative process.
Different flow and chloride mass balances were modeled until a best fit was found for
both the July and August 1992 survey data. Best fit was evaluated by calculating the
root mean square error (RMSE) of the residuals between the modeled and observed
data. Mass balances were adjusted by varying pumping withdrawals as a percentage
of the water right, by varying the Global Aqua springs as a percentage of the effluent
flow, and by varying ground water flows and chloride levels within a reasonable
range suggested by other studies. Appendix Table G.3 shows both the final modeling
results compared to observed data, and the RMSE analysis results. Figure 4.2 shows
the chloride and flow calibration results for July 1992 conditions, and Figure 4.3
shows August 1992 results.

Through the simultaneous evaluation of flow and chloride mass balances for the two
data sets, a number of significant features of Black River water quality were identified
and quantified:

® The chloride mass balance indicated that a significant source of relatively pure
water was entering the river between the boat launch below Littlerock (RM 15.3)
and the Canoe Club (RM 14.1). However, ambient data from deeper areas did not
indicate such a source at that depth. The evidence of high quality ground water in
Clearwater Lagoon was discussed earlier. In addition, a local resident has noted
the presence of springs along the banks above the Canoe Club (Dahl, 1992).

Because of these considerations, a segment was added to this section of the river
that routes ground water into surface water segments. A review of data suggests
that the quality of the relatively pure water entering the river here is comparable to
the quality of streams draining the Black Hills, such as Waddell Creek, and ground
water from wells near the Black Hills. A boundary concentration was selected that
represents the lowest chloride concentrations found in Black Hills drainage.

® Relatively high chloride loads appear to be entering the Black River between the
Canoe Club (RM 14.1) and Mima Creek (RM 11.9). A chloride waste load was
introduced to the benthic segments in these reaches in addition to the background
boundary concentration. .

® A chloride loading source -appears to exist below the Swecker Dock (RM 10.6) and
above the Big Dock site (RM 9.7). Although the Swecker Salmon Farm discharge
enters the river at an identifiable location, only a fraction of the water pumped into
the facility reaches the river in this stream. As much as one-third of the facility’s
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intake flow percolates, and many small streams outside the main discharge channel
can be observed near the river. Therefore, the effluent flow reported on the
Swecker DMRs was divided evenly into the two segments above and below the
Swecker Dock. This fits the observed chloride levels better, and accounts for
some of the Swecker effluent and perhaps the Carlson Salmon Farm effluent as
well. The upper segment flows are considered the identifiable surface flow, and
the lower segment flow a ground water flow.

From RM 9.3 above Global Aqua to RM 7.2 above Moon Road, Black River
flows drop while chloride concentrations rise. The springs along the bank in this
stretch of the river have much higher chloride than the river, and the chloride
calibration allowed these flows to be estimated. At the same time, a significant
outflow of river water must be occurring. Permitted water withdrawals were
accounted for, but a ground water outflow is necessary to maintain the flow
balance. Therefore, although the Global Aqua discharge has created springs that
add flow to the river, a net loss of water from the river occurs in this stretch.
Although a quirk of the regional topography and ground water flow patterns may
cause this effect, surface withdrawals and ground water pumping in the vicinity of
this reach are a likely contributing factor.

Calibration of the model to flow and chloride mass balances improved the estimate
of surface water withdrawals. No pumps were observed above the Schoolland boat
launch at RM 8.4. Pumping rates below that location were estlmated to range
from 20% to 80% of the permitted rights.

A loading source appears to exist between Moon Road (RM 7.1) and the mouth of
the Black River. Since no surface discharges have been observed, a chloride load

has been applied to the benthic segment for this reach. This approach represents a
land use that is increasing pollutant loading through the ground water to the river,

in contrast to the concentrations typical of the region.

Although a few riverfront residences exist on this stretch of the river, the primary
land use is agricultural. A turf and berry farm is on the left bank upstream and
downstream of Moon Road, and three dairy farms are in this reach - one between
the Moon Road and Route 12 bridges, and two between the Route 12 and Howanut
- Road bridges. The U.S Fish and Wildlife Survey Habitat Degradation Survey
(Wampler et al., 1993) identified several areas of livestock bank impacts along the
Black River, mostly below the Route 12 bridge.

Calibration of chloride levels in the subsurface segments to observed chloride in
deeper waters was more difficult than for surface waters, as indicated by the
poorer RMSE. This is probably a result both of the spatial variability of the water
quality data in the deeper waters, and of the limited capacity of a "generic" model
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such as WASPS5 to model the unusual and unique conditions occurring in the Black
River. Despite the relatively poor performance in deeper waters, the fit is still
reasonably good and the overall characteristics of the river flow and chemistry are .
reproduced.

4.2.2 Eutrophication Modeling

For full eutrophication modeling, boundary conditions and waste loads must be
specified for the state variables of eight systems. The method to set the inputs for the
eight parameters was similar to the way chloride inputs were set. Boundary
conditions were set to background levels for regional ground water quality.
Tributaries and point sources were given loadings for the eight systems calculated
from measured flows and concentrations. Pollutant sources identified by the chloride
mass balance were assigned loading using several different approaches depending on
the probable source and pathway to the river (see Appendix Section G.3). Appendix
Tables G.4 and G.5 show the waste loads and boundary conditions for July and
August 1992 conditions, respectively. The parameters, constants, and time functions
required by the eutrophication model are described in Appendix G.4.

Appendix Tables G.6 and G.7 compare modeled to observed results for the July and
August 1992 simulation. These tables also show the RMSE analysis for the eight
water quality systems, separated into the lower river (segments 1 through 5), the
middle river surface segments (6 through 19) and the middle river subsurface
segments (20 through 32). The observed results were selected from either: the 24-
hour average of DS3 data, if available; an average of vertical profile values taken
from 0 to 2 meters at the surface sampling locations without DS3 data but with
multiple data points; an average of vertical profile values taken from 4 meters and
deeper at the deep sampling locations.

- As was noted for the chloride calibration, modeled and observed results for the deep
subsurface segments agreed less well than for surface segments. There are several
probable explanations for this. Stratified waters in some areas were in strongly
stratified "pockets" that are of a scale smaller than the model segments. In other
areas, the stratification is more gradual, but more widespread. In all cases,
monitoring results for deeper waters were more variable than for shallow, depending
in part on the data collection depth and the particular location. In general, the model,
with the scale of segmentation used in this study, was unable to completely reproduce
the variability of the Black River’s natural environment.

To calibrate the Black River model, various modeling parameters were adjusted to
achieve the best fit, as measured by the RMSE between the modeled and observed
results. Minimization of the RMSE was a time-consuming iterative process that
involved numerous model runs with various input parameters. In consideration of the
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variability inherent to the model, and to environmental data and ecological systems in
general, no calibration could ever exactly predict observed conditions. Nonetheless,
the model was adapted to describe the physical, chemical, and biological systems as
well as was possible.

Figure 4.4 shows the calibration results for DO, which is the target parameter for the
TMDL. Close agreement between modeled and observed oxygen concentrations was
not expected, since the field data for DO showed a great deal of diurnal and vertical
variability, while the model simulates conditions that were averaged over 24-hours
and vertically over the segment. The variation in the model results with respect to
the observed data will be taken into consideration in the evaluation of simulation
results. '

Chlorophyll @ model results were found to be very sensitive to certain model

~ parameters -- in particular, the maximum growth rate and the settling rate. Without
settling, modeled chlorophyll a levels were an order of magnitude too high.
Therefore, after reasonable values were selected for all inputs affecting phytoplankton
biomass, the settling rate was increased to produce the best fit. Since observed
results for chlorophyll ¢ had high variability, the large RMSE between modeled and
observed was deemed acceptable.

With respect to nutrients, a significant feature was that observed orthophosphate was
near or less than detection in both the surface and subsurface waters of the middle
river, but was found at higher levels in the lower river. Adjustments were made to
photosynthetic model parameters to reduce light limitation and increase productivity
so that phosphorus levels were better reproduced.

Modeled and observed levels of ammonia nitrogen matched reasonably well. Nitrate
‘nitrogen fit less well, but the overall pattern of concentrations was preserved, and the
results were thus considered acceptable. Ultimate CBOD and the organic nutrients
were of lesser concern due to the high variability of observed results at instream
concentrations. In the course of calibration, the RMSE for each of these parameters
was kept as low as possible, and the fit of the model to observed values for these
parameters was also deemed acceptable.
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4.3 Verification Modeling

4.3.1 Chloride and Flow Analysis

In the Black River model verification, unknown flows and loads were estimated by
conservative tracer modeling with chlorides. Starting with the calibration data set,
ground water flows were adjusted upward or downward globally by reach until the
RMSE was minimized between the observed and modeled flows. Then additional
chloride loading was added to minimize the RMSE of observed versus modeled
chloride concentrations in the river.

Results from the September 1991 intensive survey were used for verification. The
flow balance and chloride waste loads and boundary conditions are presented in
Appendix Table H.1. The best fits for the flow and chloride load balances were
achieved with slightly higher flows in the Global Aqua Springs and the same ground
water flows as the model calibration input. Appendix Table H.2 compares the
observed to modeled results for the chloride and flow analysis, and Figure 4.5
illustrates those results. The RMSE for the flow modeling was less than 15% of
observed flows, which is similar to the variability of the flow measurements
themselves.

For the chloride modeling, ground water boundary conditions were kept the same as
for the calibration modeling. Waste loads were either those measured during the
intensive survey, or were the loads developed in the calibration modeling. Additional
chloride loading was added to the subsurface segment above Mima Creek (segment
25) to account for the higher concentrations measured in the deep waters at that
location in 1991 compared to 1992. The RMSE for chloride was about the same as
for calibration, and only slightly higher in deeper waters, due mostly to the high
chloride values measured above Mima Creek.

4.3.2 Eutrophication Modeling

Setup of the verification run of the Black River eutrophication model was done in the
same fashion as the calibration model. Beginning with the calibration input file,
flows were changed to those derived from the verification chloride/flow analysis.
Loads were then determined either by using sampling results or by using the load-to-
chloride ratios, as described above for calibration. Boundary conditions were the
same as for calibration. The waste load and boundary conditions for the verification
modeling are presented in Appendix Table H.3. Water and air temperatures were set
to conditions observed at the time of the 1991 survey, and the time functions for light
were seasonally adjusted.
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Verification modeling results, along with observed data, are shown in Figure 4.6,
with the output data in Appendix Table H.4. The RMSEs between modeled and
observed for the eight system variables were comparable to the calibration results in
the surface segments. The fit for the subsurface segments was poorer than the fit for
the calibration results, and that error will be taken into account when interpreting
model results. However, it is encouraging that the observed DO values fall closer
within the modeled diurnal DO range.

Overall, the spatial trends and significant features of the Black River system were
reproduced fairly well by the model. Taking into consideration the model
assumptions and the variability of model results (as indicated by the RMSE), the
Black River eutrophication model can be used with confidence to evaluate alternative
loading scenarios, determine the loading capacity of the Black River, and evaluate
WLASs and LAs for a proposed TMDL. '
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5. Loading Capacity Analysis
5.1 Regulatory Issues

Ecology uses two approaches to control the discharge of pollutants to surface waters:
the technology-based approach and the water quality-based approach. The
technology-based approach requires that potential sources of pollutants be provided
with a minimum level of treatment or control, regardless of whether any impacts may
occur to the receiving water. State law states that potential sources be provided with
"all known available and reasonable methods . . . to prevent and control the pollution
of the waters of the state" (RCW 90.48.010), otherwise known at the AKART
requirement.

For point sources, the AKART requirement may be specified under federal regulation
(such as secondary treatment, or BPT/BAT/BCT), or under state regulations or
guidelines, or may be determined on a case-by-case basis through the submittal and
review of an engineering report. The technology-based AKART requirement for
nonpoint sources consists of the application of enforceable Best Management Practices
(BMPs). BMPs usually must be selected individually for each situation. However,
many efforts have been made to define a variety of possible BMP methods for
categories of sources, including Section 6217 of Coastal Zone Act Reauthorization
Amendments (CZARA), the Timber/Fish/Wildlife process, the Puget Sound
Stormwater Manual, and development of farm plans by the US Soil Conservation
Service.

The water quality-based approach aims to limit the discharge of pollutants based on
their impacts on receiving water quality. As described earlier, the Clean Water Act
requires that water bodies that do not meet water quality standards, even after the full
application of technology-based pollution controls, must be placed on the state’s
Section 303(d) list. All water bodies on the Section 303(d) list must undergo an
analysis for the maximum pollutant loading capacity (LC) of the water body that will
allow the water quality standards to be met.

Once the LC is established, the total loading is allocated to different areas or sources.
Load Allocations (LAs) are set for background/natural sources and scientific
uncertainty. If capacity remains, LAs may be set for nonpoint sources and Waste
Load Allocations (WLAs) for permitted point sources. The sum of LAs and WLAs
that will stay within the LC and allow the water quality standards to be met, and that
have been determined-through a public process, is termed the "Total Maximum Daily
Load," or TMDL. The Black River model provides the tool to analyze the LC and
possible TMDL alternatives.
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Because of the nature of ecological systems and the parameters that describe them, a
TMDL need not always be in terms of daily loading per se, but for some parameters
(temperature or turbidity, for example) and for certain site-specific situations, the
TMDL may be defined in terms of criteria or indicators other than daily loading. In
addition, if information is limited and future activities are dependent on the outcome
of initial efforts, the TMDL may be defined as a "phased TMDL." Phased TMDLs
are typically applied to situations dominated by nonpoint sources, where the results of
BMPs may be uncertain and more detailed study may be needed.

5.2 Background Conditions and Scientific Uncertainty

5.2.1 Background Conditions Analysis

As was discussed above, dissolved oxygen was frequently below criteria at almost
every station sampled. It is clear that the Black River did not meet water quality
standards. It is also likely that natural conditions were less than water quality
standards. If natural conditions did not meet criterion of the water quality standards,
then those conditions constitute the new criterion [WAC 173-201A-070(2)].
Therefore, the strategy used for application of the Black River model was to model
natural conditions by removing known anthropogenic loading under critical low flow
conditions. :

Modeling of the natural conditions that were present "before any human-caused
pollution"” is highly uncertain because the multitude of human impacts cannot be fully
discounted in any analysis. However, the Clean Water Act requires the TMDL
analysis to be conducted with the best available scientific evidence, and to proceed
despite the lack of complete information. To provide the best reasonable
approximation of natural conditions, background conditions were modeled by
removing identified loading sources and surface withdrawals.

The modeling results for background critical conditions were compared to the results
for existing critical conditions to determine the course to take for the TMDL analysis
and allocation strategy. If the model, when run under background critical conditions,
shows DO to be above the water quality standards, then the TMDL must be set to the
total loading capacity of the river (background plus additional human inputs) that just
meets the standards. If the model, when run under background critical conditions,
does not meet DO standards, then the TMDL will be the sum of the background
loading and any additional human-caused loading that the river can assimilate with no
degradation of DO levels below background conditions.
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5.2.2 Uncertainty and Diurnal Variation

Before analyzing background conditions and alternative loading scenarios, the element
. of scientific uncertainty must be considered. The target for any TMDL analysis is the
water quality standards. However, to account for the uncertainty of modeling results,
the results may need to be adjusted before comparison to target values. Uncertainty
in the Black River model comes from many sources which include several key areas: .
the inability of the model to capture temporal variability, especially diurnal; the
inability of the model to capture spatial variability, especially on a scale smaller than
the segments; and the quality of the observed data to which the model is compared.

To partially account for scientific uncertainty, conservative assumptions have been
made for modeling critical conditions. Maximum temperatures, 7Q10 low flows, and
conservative reductions in nonpoint loading and SOD all help to reduce the possibility
of underestimating the impact of pollutants on the Black River.

To account for the uncertainty introduced by the diurnal variation of DO, diurnal
range factors were added to or subtracted from the model results (see Section 5.1).
The diurnal range factors used in the TMDL analysis were calculated as one-half the
maximum observed diurnal range found during the TMDL study. Factors of 2.2 and
1.0 mg/L were applied to the lower and middle surface segments, respectively
(Table 4.1). The diurnal range factor accounts for difference between the average
DO simulated by the model and the minimum DO which is the critical condition of
interest.

In the middle river, no data were available on diurnal variations in the deep waters.
Since light penetration is poor to the lower layers and DO levels low, the diurnal
range in the subsurface segments was considered negligible. Average model results
were used for the TMDL analysis and no diurnal range factor was applied.

5.2.3 Sediment Oxygen Demand

SOD is entered into the model as a fixed parameter, but in reality it is typically a
function of loading sources and instream biomass. Although review of the literature
indicates that several attempts have been made at modeling SOD as a function of
sediment and water column physical and chemical characteristics, there are no models
of SOD widely accepted or available. Therefore, changes to SOD, either due to
changes in external loading of oxygen-demanding particulates, or due to changes in
phytoplankton biomass caused by nutrient loading changes, cannot be easily estimated
or modeled.
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As a conservative assumption for evaluating the effects of load reductions, model
input values for SOD were not changed from the calibration values for any of the
model simulations in the TMDL study. The one exception was a very high level of
SOD in the segment above Mima Creek (RM 11.9), which was most likely the result
of discharges of oxygen-demanding wastes, and probably can be treated as a local
anomaly. The SOD for this location (segment 25) was reduced to 0.8 mg/L for the
background critical conditions simulation, the same value applied to segments farther
downstream in the middle river.

5.2.4 Macrophyte Productivity

The lower Black River is dominated by macrophytes and periphyton, as anyone who
has tried to travel by boat from the steel trestle downstream during the summer can
attest to. The effect of reductions in nutrient loading on the growth of these benthic
aquatic plants and algae, and the effect of those changes on oxygen demand,
productivity and diurnal DO variation, could not be assessed with WASP5. The
-scope of the current study did not include the data collection necessary to gain a full
understanding of the ecosystem dynamics of this benthic productivity.

However, based on the literature, some observations can be made. Recent research
has found that sediments can provide a significant portion of the nutrient supply for
submerged macrophytes (Barko, 1985). Hill (1986) found that sediments provided
three-quarters or more of the nutrient supply for species of Elodea and Potomogeton
(these genera can be found in the Black River). Hill found that macrophytes
transferred a large amount of nutrients to the sediments, and at times macrophytes
could also release sediment nutrients to the water column. '

These observations are consistent with the evidence of phytoplankton removal in the
macrophyte beds. As macrophytes pull particulate and dissolved nutrients from the
water column, nutrients are cycled between the living tissue and the sediment, thus

creating a self-sustaining system.

The consequence of this is that even if nutrient levels and phytoplankton in the water
column are reduced, the plants would have a source of nutrients in the sediments, and
a reduction of macrophyte biomass would only occur very slowly, if at all. Whether
the macrophyte beds existed as a "background condition" is therefore impossible to
assess at this time, and the assumption must be made that changes in water column
nutrients will not have an effect on diurnal oxygen or SOD for the immediate future.
This study also will not make the determination on whether the macrophyte beds
constitute a "nuisance growth." Additional study would be necessary to better
understand the interactions of macrophytes, sediment, and water column, and this may
be an useful area for future research.
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5.2.5 Background Condition Model Inputs

Flows were estimated for background critical conditions by modifying the flow
balance for August 1992. Inflows to the Black River were proportionately reduced
until the flows at Howanut Road met the 7Q10 critical low flow of 30 cfs (see Section
3.1.1). Point source discharges and consumptive use pumping were then removed.
The resulting critical flow for background conditions at Howanut Road was estimated
to be about 34 cfs. Appendix Table I.1 shows the flow balance used for this analysis
of background critical conditions.

Critical conditions appear to be most common in August, when flows are lowest,
temperatures highest, and stratification still strong. Maximum water temperatures in
late August were used for the model input, with the maximum August air temperature
from either 1991 or 1992 (34°C). Light levels were also set to August conditions.

The only waste loads applied were for the model upstream boundary condition at the
Littlerock boat launch and for Mima Creek. Waste loads at the upstream boundary
were set at levels reduced from the August 1992 data proportional to flow, with the
exception of ammonia, nitrate, and organic nitrogen, which were reduced based on an
estimate of load reductions from nonpoint sources in the upper basin. This approach
to background conditions at the upstream boundary was based on the analysis of upper
Black River loading (Section 3.2.4), and on the comparison of flow and concentration
data between the 1991 and 1992 intensive surveys.

To account for source load reductions in the Mima Creek basin, loads from Mima
Creek were calculated from the critical low flow and the concentrations in Waddell
Creek. Waddell Creek sampling was done at the edge of the Black Hills above most
nonpoint sources, while the Mima Creek sampling station was downstream of a point
source discharge and several likely sources of nonpoint pollution that were identified
by USFWS. Since both creeks drain the Black Hills, concentrations would likely be
similar if pollutant sources from human activities were not present.

Boundary conditions for background conditions were held the same as in the
calibration and verification runs. A review of historical ground water data dating
from 1960 suggests that this is a reasonable assumption, since the concentrations of
parameters found in 1960 were at roughly the same level as the concentrations found
in more recent studies, despite changes in land use over the years. A summary of
waste load and boundary conditions is presented in Appendix Table I.2.
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5.2.6 Background Conditions Model Results

Appendix Table 1.3 shows the complete results of the Black River model simulation
for background critical conditions, and Figure 5.1 shows the DO modeling results.
These background conditions are based on critical flow and temperature conditions.
The maximum and minimum diurnal DO level are shown that were calculated from
the model results as described earlier (Section 5.2.2).

This analysis shows that the background condition of the Black River is of a lower
quality than the assigned criterion of 8.0 mg/L dissolved oxygen. Therefore, the DO
levels derived in this analysis constitute site-specific water quality criteria for the
Black River, and no degradation below these levels can be allowed. The analysis for
the total maximum daily load will focus on determining the amount of loading which
the river can assimilate, without degradation of DO levels.

The term "no degradation"” must be evaluated in consideration of the variability of
model results. The model is capable of calculating answers to an enormous number
of decimal places, but that level of accuracy has no significance. A model output
value slightly lower than the value for background conditions cannot immediately be-
considered a problem, since the value may only be lower due to modeling or
measurement error. Therefore, for the purposes of modeling, a level of degradation
that is significant must be defined.

Examining the accuracy of DO measurements (Appendix Section B.2), the Winkler
method has a resolution of about 0.1 mg/L, and the Hydrolab meters are + 0.2
mg/L. The RMSE for paired field verification after data correction was between 0.1
and 0.2 mg/L. Therefore, for the purposes of this TMDL modeling analysis, a
reduction of greater than 0.2 mg/L below background levels will be considered a
significant degradation.

5.3 Existing Critical Conditions

To determine whether existing point and nonpoint sources under critical conditions
have the potential to cause degradation relative to background critical conditions,
maximum design loading for existing point sources and loading from existing
nonpoint sources were evaluated for critical low flow conditions. The flow balance
- for critical flows under existing conditions is presented in Appendix Table I.4.
Loading and boundary conditions used in this analysis are presented in Appendix
Table L.5. '
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Boundary conditions and waste loads were kept the same as for August 1992
conditions, with two exceptions: point source loading was increased to approximate
design flow levels; and chlorophyll @ and DO loading for Mima Creek and the
upstream boundary were reduced proportional to flow. This approach was based on a
comparison of July 1992 data to August 1992 data at these sites, which showed that as
flows dropped, loading held fairly constant for BOD and nutrients, but concentrations
held constant for chlorophyll a and DO. Temperature and light were held to the same
values as used in the background conditions analysis.

The results of this modeling are presented in Appendix Table 1.6. Figure 5.1 shows
the DO modeling results for both background and existing critical conditions. When
compared to the results for background conditions, DO showed degradation in three
areas of the Black River: in the upper river (segments 17 through 19), in the lower
river (segments 2 and 3), and in the pool above Mima Creek. The decrease in DO in
the upper and lower river under existing conditions was less than the 0.2 mg/L
guideline established for this study, and therefore was not considered significant. On
the other hand, the pool above Mima Creek showed degradation of over 6 mg/L.

In almost all the segments, the minimum DO was still below the water quality
criterion. Although the model results indicated more DO under existing conditions
than under background conditions, this result should not be given much credence.
The model predicted increased daily average DO from increased productivity when
nutrient loading was higher, but a constant diurnal range was being used which did
not account for lower minimum DO concentrations due to respiration of the increased
biomass. :

Because of the limitations of the Black River model in predicting diurnal DO
variation, the model could not estimate the amount of DO degradation where it was
also predicting increased photosynthetic productivity due to nutrient loading.
Therefore, an alternative method was necessary to analyze the impacts of nutrient
enrichment on the Black River DO.

5.4 Total Phosphorus Loading Capacity

A large body of literature exists regarding eutrophic conditions in lakes and associated
impacts on the water body. In general, many studies have found that eutrophic
conditions cause reduced DO levels, elevated pH, and degradation of fisheries and
aesthetic values. As discussed earlier in Section 3.2.3.3, the chlorophyll g level
where eutrophication conditions begin is between 8 and 20 pug/L. Since chlorophyll a
and total phosphorus (TP) levels that produce eutrophication in rivers appear to be
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slightly higher than the levels for lakes, and also considering the Oregon standard of
15 pg/L chlorophyll a for rivers, a target value of 15 ug/L is recommended for
maximum chlorophyll a levels for the Black River.

In examining the observed data and modeling results for the Black River, several
observations can be made with respect to nutrients and productivity. Maximum
productivity occurred at the downstream end of the middle river between Mima Creek
(RM 11.9) and the beginning of the swifter lower river above Global Aqua (RM 9.3).
Orthophosphate levels in this reach were negligible, which was consistent with other
evidence of phosphorus-limited conditions. The analysis of TP and chlorophyll g
presented in Table 3.7 also indicates phosphorus limitation, since chlorophyll a levels
increased with increasing TP.

To develop a TP criterion for the Black River, the analysis presented in Table 3.7 and
the results of modeling were used. The linear regression that was developed between
TP and chlorophyll a is shown in Table 3.7 and illustrated in Figure 5.2. Taking into
consideration the error in the regression, a TP concentration of 0.06 mg/L predicted a
range of chlorophyll a of 10.0 to 13.8 ug/L. Maximum chlorophyll a values
associated with 0.07 mg/L TP are predicted to exceed 15 ug/L.

The model results for existing critical conditions can be compared to the regression
analysis for TP and chlorophyll a. In Appendix Table 1.6, the maximum level of
TP -- the sum of inorganic P (SRP) and organic P -- was 0.055 mg/L (Segment 7),
and the maximum chlorophyll a level was 15.6 ug/L (Segment 5). Although the
regression to observed data predicted that a TP below 0.7 mg/L would keep
chlorophyll a below 15 ug/L, the model results suggest a TP criterion of 0.05 mg/L
is necessary to maintain chlorophyll a below 15 ug/L. A criterion of 0.05 mg/L
would be more conservative and provide a margin of safety to account for scientific
uncertainty.

The recommended loading capacity for total phosphorus in the Black River is the load
that would result in a daily average concentration of 0.05 mg/L from May 1 through
October 31. The TP LC applies to all waters of the Black River from the surface to
two meters depth, from RM 9.6 (the location where the Black River crosses from
Range 3W into Range 4W) upstream to RM 15.1 (the location where the Black River
crosses from the north half to the south half of Section 14, Range 3W, Township

16N).

The TP LC for the Black River is intended to protect the Black River from
degradation with respect to the water quality criteria for aesthetic values, dissolved
oxygen, and pH. The goal of the TP LC is to allow the Black River to support the
beneficial uses of fisheries and recreation specified by the Class A water quality
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standards to the fullest extent possible. The area is defined to coincide with the
slowest reaches of the Black River where conditions support phytoplankton growth.
The dates bracket the season of phytoplankton growth and river stratification.

5.5 BOD Loading Capacity

Comparison of the model runs for background and existing critical conditions showed
that existing pollutant sources have produced a net increase in DO at certain locations
in the river. This raises two questions: 1) should the pollutants that reduce oxygen
through CBOD and NBOD be controlled separately from nutrients that influence DO
levels through stimulated productivity?; and 2) should the increase in average DO
above background conditions created by one discharge be interpreted as creating
capacity for other discharges that may degrade water quality back to background
conditions? '

In answer to the first question, most pollutant wastestreams will be a chemical
combination of nutrients and oxygen-demanding materials that cannot be separated
without additional treatment. The pollutants should probably be considered together,
unless a specific proposed waste treatment or management method may reduce various
pollutants at differential rates. In other words, the net effect of the combination: of
pollutants in the specific source under consideration will probably need to be
evaluated on a case-by-case basis. Restricting both degradation of DO and
eutrophication from TP inputs in combination will control the impacts of the mixture
of pollutants.

With respect to the second question, the model results that show an increase in
average DO should not be interpreted as creating capacity for more pollutants.
Although the model as currently applied appeared to show improvements in DO from
nutrient inputs, this result is inconsistent with most observations in the literature.
Typically, increased productivity increases the average DO, but reduces the minimum
DO because of the respiration of the increased biomass. The model does not predict
the diurnal minimum DO caused by the productivity and respiration of the river’s
ecological system. Also, the results of the modeling may not hold true for conditions
in the Black River that lie outside the assumptions and scope of the model. This
uncertainty argues against giving any credence to the apparent increase in capacity for
DO demanding substances.

Due to the potential for violations of the DO water quality standards in the Black
River, a TMDL is recommended for the protection of DO levels which would restrict
the input of materials that exert biochemical oxygen demand (BOD), specifically
carbonaceous BOD (CBOD), nitrogenous BOD (NBOD), and sediment oxygen
demand (SOD). CBOD is exerted by the oxidation and microbial breakdown of the
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organic carbon portion of materials. NBOD is exerted by the oxidation of organic
and ammonia nitrogen. SOD may be increased by external loads of solids and
particulate materials that exert BOD after settling to the sediments, and by the settling
of phytoplankton and decaying macrophytes whose growth is promoted by nutrient
loads.

The loading capacity for BOD (CBOD, ammonia, and materials that increase SOD) is
that pollutant load or combination of pollutant loads which causes no significant
degradation to the dissolved oxygen levels of the Black River, both compared to
natural conditions and to existing conditions. This LC will not specify a certain
loading amount, since it is dependent on several factors, including the timing and
location of the source. The total effect of each discharge or loading source must also
be considered with respect to other existing sources.

What constitutes a "significant” degradation must be determined on a case-by-case
basis. For ambient data, statistical methods may be used to determine whether
significant degradation of DO has occurred. For the purposes of modeling, a target
of 0.2 mg/L DO was chosen for the TMDL study, based on the accuracy of DO
measurement methods. This target is recommended as a guideline for future
evaluations of degradation using models or other analytical tools, although a different
measure of significance may be acceptable if based on a well-supported rationale. It
is also possible that an analysis of beneficial uses could provide a biologically-based
definition of significant DO degradation.

The LC for BOD is intended to ensure that the Black River complies with the water
quality standards, including the dissolved oxygen criteria and the antidegradation
policy. The LC should allow the Black River to meet or exceed Class A
requirements for the beneficial uses of fisheries and recreation to the fullest extent
possible. The LC for BOD applies to the entire mainstem river from its confluence
with the Chehalis River to its headwaters near Black Lake from May 1 to October 31
of every year. The entire mainstem Black River is specified because background
conditions do not meet the Class A water quality criterion of 8.0 mg/L DO over this
area. The recommended dates bracket the season when river stratification, low flows,
high water temperatures, and low DO levels have been observed.
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6. TMDL Wasteload/Load Allocations

- 6.1 Existing Conditions

To evaluate Wasteload Allocation and Load Allocation (WLA/LA) alternatives under
a recommended TMDL, several possible changes to current loading sources were
evaluated and compared to the recommended TP and BOD LCs. Beginning with the
Existing Critical Conditions simulation (Appendix Tables 1.4 and 1.5), loading sources

were categorized and removed singly to determine if the discharge caused a net
degradation. Eight cases were run, which are described in Table 6.1. Results are
discussed below, and copies of the full results can be found in Appendix Tables J.1

through J.8.
Table 6.1 Summary of Loading Simulation Cases

Case # Action Result

1 Eliminate loading from direct Improves DO in subsurface
discharge above Mima Creek and segment.
reduce SOD. TP above criterion.

2 Case 1, plus reduce ﬁpstream Improves upstream DO slightly.
boundary loading in upstream TP at criterion
segment to background levels.

3 Case 2, plus reduce Swecker No improvement in DO.
Salmon Farm loading. TP below criterion.

4 Case 2, plus remove Swecker No improvement in DO.
Salmon Farm loading and flow TP below criterion.
entirely.

5 Case 2, plus remove Global Aqua | DO in 3 segments improve, but
loading and flow entirely. not significantly. TP at criterion.

6 Case 2, plus remove ground water | No improvement in DO.
loading from lower river. TP below criterion.

7 Case 2, plus reduce Mima Creek No improvement in DO.
-loading to-background-levels. TP-below criterion.

8 Case 2, plus remove ground water | No improvement in DO.
loading in middle river. TP below criterion.
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A significant impact to the Black River comes from the uncontrolled discharge of
waste from the Black River Ranch. The pool above Mima Creek is the one area on
the Black River where DO conditions are degraded from background conditions.
Termination of that discharge should result in SOD returning to normal levels over
time, which will allow degraded DO conditions at this location to recover. Case 1
should be adopted as a necessary condition to meet the BOD LC prior to any other
load reduction options.

The point of discharge that is most sensitive to inputs is the upstream boundary of the
model. Discharges here become fully mixed with the surface waters and affect
downstream waters for a long distance. About one-half of the flow in the middle and
lower river comes from upstream, and it is the largest single source of loading.
Reductions in loading due to improved nonpoint source controls (Case 2) will help to
ensure that the TP criterion is met and will improve DO in the river.

The single largest source of phosphorus to the Black River, other than uncontrolled
discharges from the Black River Ranch, is the Swecker Salmon Farm discharge. This
source represents about one half the phosphorus loading in the Black River in the
vicinity of the discharge. The discharge appears to have a ground water component
and a surface water component. Discharge through ground water, such as occurs at
Global Aqua, appears to reduce TP loading to the river from the levels found in the
effluent. TP loading in the surface discharge is much higher.

The estimated discharge of TP from the Swecker Salmon Farm at full capacity of the
facility would result in the criterion just being met, with no further capacity for future
growth. Requiring a lower TP loading than the estimated current design level is
necessary to reduce Black River TP concentrations below criteria and allow capacity
for growth in the basin. :

Analysis of the data collected in this study indicates the loading entering the river due
to the Swecker Salmon Farm discharge is greatly reduced from the loading leaving
the facility at the rearing ponds. Comparison of the facility effluent data collected in
1991 to the river inputs used in the model suggests that the TP loading discharging
directly to the river is about 25% of the loading at the facility outflow. This is '
probably due to phosphorus attenuation as effluent percolates, and to natural processes
such as macrophyte and algal uptake, that provide some reduction of phosphorus in
the discharge channel.
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6.2 Total Phosphorus TMDL Recommendations

A total phosphorus TMDL for the Black River is recommended for the period of
May 1 through October 31 to the Black River basin between RM 9.6 and RM 15.3,
and to all sources tributary to the TP TMDL area that have the potential to increase
TP levels. The TP TMDL was calculated as 29.26 lbs/day, plus a reserve for future
growth, not to exceed the LC criterion of 0.05 mg/L TP. The TMDL should be
viewed as an overall strategy to meet the LC criterion, incorporating a numeric WLA
- for the affected point source discharger, narrative LAs for existing nonpoint sources,
and a phased approach with regard to capacity for future growth. The TMDL, LC,
and allocations are summarized in Table 6.2.

The following TP WLA/LAs are recommended as part of the TMDL.:

Wasteload Allocation: The Black River TP TMDL assumes that all point sources to
the Black River system above RM 9.6 must meet the standard for all known available
and reasonable treatment. All point source discharges currently under permit meet
this requirement.

® Black River Ranch - 0.0 pounds per day TP. Proper implementation of a farm
plan and associated BMPs under the coverage of an NPDES permit should
eliminate any discharge during the TMDL season.

® Swecker Salmon Farm - 16.0 pounds per day TP to be measured in the facility
discharge stream at the outflow of the final facility ponds. This allocation is
based on a TP loading to the river of 4.0 pounds per day, assuming that TP
loading at the river is 25% of TP loading at the monitoring location.

In 1991 Swecker Salmon Farm was discharging approximately 10 pounds per
day. Swecker Salmon Farm should be capable of meeting this allocation under

- current conditions. If the facility begins operating at a higher capacity and TP
loading increases above the WLA, changes in management practices or physical
improvements may be necessary to reduce TP loading. BMPs may be available
that reduce TP in the effluent, such as low-phosphorus feed. If necessary, a
wastewater retention pond or designed wetland could be constructed that would
reduce TP loading to the Black River by sedimentation, biological uptake and
solids adsorption.

The other currently permitted facility in the Black River basin tributary to the
TP TMDL area, Cedar Creek Corrections WTP, is relatively low in flow and
distant from the mainstem Black River. The TP loading reaching the Black
River from this facility could not be separately measured, and is likely of minor
importance. Technology-based treatment under the existing permit can be
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Table 6.2 BOD5, Ammonia, and TP Allocations, TMDL, and Loading Capacity

All loading in Ibs/day

BOD5 NH3-N TP
Wasteload Allocations
Cedar Creek WTP 25.2 0.26 Included in LA
Black River Ranch 0.0 0.00 0.00
Swecker Salmon Farm 210.3 84.13 16.00
Global Aqua/Black River 421.4 168.54
Load Allocations .
Background-Ground water 35.7 0.36 2.85
Background-Upstream 167.1 2.22 2.15
Background-Mima Creek 16.2 0.04 0.06
Existing Nonpoint Sources 53.54 7.17 8.20
Application Application Application
of BMPs to of BMPs to of BMPs to
reduce BOD reduce NH3N reduce TP
Reserve for Future Growth Unspecified Unspecified Unspecified
‘ load, not to load, not to load, not to
exceed LC exceed LC exceed LC
Total Maximum Daily Load (TMDL) 929.4 262.72 29.26
+ Reserve + Reserve + Reserve

Loading Capacity (LC)

No significant degradation
of dissolved oxygen below
background or existing

conditions.

Shall not exceed
a criterion of 0.05 mg/L.

Location

Entire mainstem Black River

Mainstem RM 9.6 to 15.3
Surface waters to 2m depth

Applicable Season

May 1 to October 31

May 1 to October 31
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considered adequate for the control of TP under this TMDL. Therefore, this
facility will not be specifically provided a WLA, but will be included in the LA
for existing loading to Mima Creek. Cedar Creek Corrections WTP may
discharge under current permit conditions with full application of all known
available reasonable treatment, but if expansion of the facility is proposed, the
impacts of increased TP loading on the mainstem Black River should be
analyzed, and a WLA may be proposed at that time.

Load Allocation for background conditions and scientific uncertainty: The LA for
background conditions is equivalent to the loading that maintains a TP concentration .
of no more 0.03 mg/L in the Black River. The exact amount of loading is a function
of the location on the river and the flows at that location. The loading used in the
background critical conditions model simulation is 2.85 Ibs/day from ground water,
2.15 1bs/day from the upstream mainstem, and 0.06 Ibs/day from Mima Creek

(Table 6.2). :

Scientific uncertainty is accounted for in the conservative assumptions used to develop
the TMDL.

Load Allocation for nonpoint sources and future growth: The remaining capacity
in the Black River for TP is available as an LA for nonpoint sources and/or future
growth. The Black River is predicted to reach TP levels of 0.043 mg/L at existing
critical conditions after the 16 Ibs/day WLA for Swecker Salmon Farm is applied.
Appendix Table J.9 shows the modeling results for this situation, which is based on
Case 1 with Swecker Salmon Farm discharging at its WLA. This indicates that some
capacity exists for an LA for current nonpoint sources and an LA for future growth.

An LA of 8.20 Ibs/day is recommended for existing nonpoint sources, based on the
input loading from the existing critical conditions simulation. A narrative LA is also
recommended which provides that existing nonpoint sources implement all known
available and reasonable BMPs that reduce or eliminate the discharge of TP during
the TMDL period. A watershed action plan for the Black River or amendments to
the Chehalis Basin Action Plan should be developed that would specify the schedule
for implementing BMPs for existing nonpoint sources and the range of available
BMPs that are reasonable for existing sources. Since the predicted TP level of 0.043
mg/L is based on current conditions, any reductions in TP loading due to improved
BMPs implemented for existing nonpoint sources should result in additional capacity
for future growth.

The narrative LA for existing nonpoint sources applies to all ‘sources that may affect
the Black River and its tributaries above RM 9.6 and are capable of providing BMPs
to limit the amount of TP that reaches the Black River. Such BMPs would include:
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limiting livestock access to the Black River and tributaries; no livestock waste
discharges to the Black River or tributaries; land application of waste and fertilizers at
agronomic rates for the uptake of phosphorus to harvestable crops; septic systems that
meet current county standards, especially for river front residences; stormwater
controls for residential and other developed areas that reduce TP loading to the
maximum extent practicable; preventing the application of silvicultural, agricultural
and residential phosphate fertilizers directly to surface waters; and because of the
important role of wetlands in the uptake of nutrients, protection of the wetlands
associated with the Black River and its tributaries to the maximum reasonable extent.

An LA is also recommended for future growth. Capacity for future growth exists to
the extent that additional loading will not increase the TP concentration in the Black
River above the maximum of 0.050 mg/L. The exact amount of that loading is
unspecified, because it is dependent on the timing and location of the new source, and
on the effectiveness of BMPs in meeting the WLA and LAs for existing sources.

Any new point source discharges and any increased loading from existing point
sources should be analyzed for whether the discharge will cause an exceedance the TP
TMDL criterion, and whether a WLA should be provided to that discharge. New
nonpoint sources should provide all known available and reasonable BMPs that reduce
or eliminate the discharge of TP during the TMDL period. Revised LAs for existing
nonpoint sources may be required that include the new source if the TP loading to the
Black River is expected to increase despite the application of the identified BMPs. A
watershed action plan for the Black River could specify the schedule for implementing
BMPs for new nonpoint sources and the range of available BMPs that are reasonable
for those new sources.

Continued residential and commercial growth is anticipated in the Olympia and Grand
Mound areas. If point and nonpoint discharges under conditions of future growth,
even with AKART and BMPs implemented, exceed the allocations available under the
TMDL and cause violations of the TP criterion, point and nonpoint sources will have
to be reviewed to determine what levels of advanced treatment and/or increased BMPs
would bring loading allocations back within TMDL levels.

The TP TMDL is recommended as a phased TMDL. The availability of capacity for
future growth is dependent on success in meeting the WLA and LAs for existing
sources. The LA for future growth should be held in reserve or allocated
conservatively until the effectiveness of BMPs and compliance with the WLA and
LAs for existing sources can be assured. '
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6.2.2 BOD TMDL Allocation Recommendations

A TMDL for BOD is recommended that would apply to the entire Black River basin
for the period May 1 through October 31. TMDL values were calculated as 929.4
Ibs/day BOD;s and 262.72 lbs/day ammonia nitrogen, plus a reserve for future growth,
with no significant degradation of DO below background or existing conditions. The
BOD TMDL should be viewed as an overall strategy to prevent the degradation of
DO in the Black River from any pollutant source or combination of sources.

The following WLA/LAs for BOD are recommended:

Wasteload Allocations: The Black River BOD TMDL assumes that all point sources
to the Black River system must meet the standard for all known available and
reasonable treatment. The three currently permitted facilities in the Black River basin
(Global Aqua/Black River, Swecker Salmon Farm, and Cedar Creek Corrections
WTP) meet this requirement, which provides sufficient pollutant controls for the
discharges to meet the requirements of the BOD TMDL. These permitted point
source discharges may all be granted WLAs for BOD, which allow these facilities to
discharge current technology-based loading with full application of all known
available reasonable treatment. The specific WLAs in pounds/day have been
calculated from effluent data (if not already in the permit), and are provided in

Table 6.2.

In addition, the Black River Ranch, which is expected in the future to be covered by a
permit, should have no discharge of CBOD or ammonia during the TMDL season
after BMPs are fully implemented. Therefore, a WLA of zero is recommended for
this facility.

Load Allocation for background conditions and scientific uncertainty:
Background conditions are considered to be critical low instream and tributary flows,
ground water baseflow, with no direct withdrawals; background ground water and
tributary quality; and no point or nonpoint source loading to the Black River or its
tributary ground or surface waters. The estimate of background conditions based on
modeling was discussed in Section 5.2; the flows, loading, ground water
concentrations and model results are shown in Appendix Tables I.1 through 1.3.
Table 6.2 provides a summation of background loads that are divided into three LAs
for the mainstem Black River at the upstream boundary of the study area, Mima
Creek, and for ground water inputs.

Scientific uncertainty includes model variability, sampling variability, and uncertainty
due to the limited scope of analysis. Scientific uncertainty was included as part of the
modeling analysis for the TMDL and WLA/LAs by the use of conservative '
assumptions. Specifying that any observed or calculated degradation must be
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determined to be significant, such as through the use in this study of a 0.2 mg/L
criteria, also factors in scientific uncertainty. Therefore, a separate LA for scientific
uncertainty is unnecessary.

Load Allocation for nonpoint sources and future growth: LAs for BOD, and
ammonia are recommended for existing nonpoint sources, based on the input loading
from the existing critical conditions simulation. These LAs are shown in Table 6.2.
A narrative LA is also recommended for existing nonpoint sources, which provides
that these sources implement all known available and reasonable BMPs, with the goal
of eliminating the discharge of oxygen-demanding materials during the TMDL period.
A watershed action plan for the Black River or amendments to the Chehalis Basin
Action Plan should be developed that would specify the schedule for implementing
BMPs for existing nonpoint sources and the range of available BMPs that are
reasonable for existing sources.

The LA for existing nonpoint sources applies to all sources that may affect the Black
River and its tributaries and are capable of providing Best Management Practices
(BMPs) to limit the amount of BOD, ammonia, and oxygen-demanding solids that
reach the Black River. Such BMPs would include: limiting livestock access to the
Black River and tributaries; no livestock waste discharges to the Black River or
tributaries; land application of waste and fertilizers at agronomic rates for the uptake
of ammonia to harvestable crops; septic systems that meet current county standards,
especially for river front residences; stormwater controls for residential and other
developed areas that reduce the loading of BOD, ammonia, and oxygen-demanding
solids to the maximum extent practicable; preventing the application of silvicultural,
agricultural and residential ammonia fertilizers directly to surface waters; and because
of the important role of wetlands in the uptake of oxygen-demanding materials,
protection of the wetlands associated with the Black River and its tributaries to the
maximum reasonable extent.

A narrative LA is also recommended for future growth. The capacity for future
growth will be dependent on the timing, location and loading of that discharge. No
discharges or combination of discharges that will cause a significant degradation of
dissolved oxygen in the mainstem Black River should be allowed. Any facility
proposing a change in an existing discharge, or any proposed facility with a new
discharge in the Black River basin, must demonstrate that the discharge will cause no
significant degradation of dissolved oxygen in the mainstem Black River, alone or in
combination with other discharges. This analysis will determine whether a WLA
should be provided to that discharge. "

New nonpoint sources should provide all known available and reasonable BMPs that
prevent the discharge of oxygen-demanding materials during the TMDL period. A
watershed action plan for the Black River could specify the schedule for implementing
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BMPs for new nonpoint sources and the range of available BMPs that are reasonable
for these new sources. New nonpoint sources that do not cause degradation of DO
may be considered for inclusion in the LA for existing nonpoint sources.

If point and nonpoint discharges under conditions of future growth, even with
AKART treatment and BMPs implemented, exceed the allocations available under the
TMDL and causes a degradation of dissolved oxygen, point and nonpoint sources
would have to be reviewed to determine what levels of advanced treatment and/or
increased BMPs that would bring loading allocations back within TMDL levels.
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7. Implementation and Monitoring

7.1 TMDL and WLA/LA Implementation

Implementation of the TP and BOD TMDLs for the Black River must be viewed as a
long-term effort that will require the support of not just the Water Quality Program at
Ecology, but also other programs at Ecology; other federal, state, and local agencies;
the Chehalis Tribe; dischargers; and citizens living in the drainage basin. A number
of activities are recommended to help implement the Black River TMDLs and
allocations:

® The TP LC criterion and the BOD LC antidegradation criterion should be reviewed
for their possible inclusion as special conditions into the Specific Classifications-
Freshwater section of the Water Quality Standards (WAC 173-201A-130).

® The Swecker Salmon Farm permit should be modified or other regulatory action
taken to implement the WLA for TP. Monitoring of the effluent for TP loading
every two weeks during the TMDL season (May through October) is
recommended. '

® Permits for the Swecker Salmon Farm, Global Aqua/Black River, and the Cedar
Creek Corrections WTP should be modified or other regulatory action taken to
implement the BOD WLAs for these facilities. Monitoring of the effluent for
ammonia nitrogen and BOD; loading every two weeks during the TMDL season is
recommended.

® Dairy farms and other livestock facilities in the Black River basin should provide
Best Management Practices to control the discharge of TP and oxygen-demanding
materials to the Black River. These BMPs should include: agronomic rates of land
application of waste for the optimal uptake of phosphorus; restricting or
eliminating the access of livestock to the Black River and tributaries; and
eliminating overland flow of waste materials or leachate to the Black River and
tributaries. The priority for working with facilities to improve BMPs should be:
1) Black River Ranch dairy; 2) facilities along Beaver Creek; 3) facilities on the
mainstem Black River above the boat launch south of Littlerock; 4) facilities along
Mima Creek; and 5) facilities downstream of RM 9.6.

The Black River Ranch should be covered by an NPDES permit that specifies
‘implementation through a farm plan of BMPs for sources of TP,-ammonia, and
BOD;, and no discharge of TP, ammonia, and CBOD during the TMDL season.
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Septic systems should be inspected at residences that border the Black River and its
tributaries, and failing or inadequate systems should be brought up to current
standards. These inspections should be made by county Health Department
personnel as time and resources allow. The priority for this effort should be:

1) systems on the mainstem Black River between RM 9.6 and RM 15.3;

2) systems on the mainstem Black River above RM 15.3; 3) systems on Beaver
Creek below Case Road; 4) systems on Mima Creek; 5) systems on the mainstem
Black River downstream of RM 9.6; and 6) systems on other tributaries of the
Black River.

Stormwater from public roads and significant development that would discharge to
the Black River and its tributaries during the period May 1 to October 31 should
be provided BMPs. The Puget Sound Stormwater Manual should be used as the
standard for this treatment. All new development should meet this standard, and
existing roads and development should phase into these standards when
improvement or expansion OCCurs.

Silvicultural, agricultural, and residential fertilization should be conducted with
methods that prevent the application of fertilizer directly to surface waters.
Fertilization should be done at agronomic rates that allow the full uptake of
nutrients and minimize leaching to ground water near the Black River or its
tributaries.

Riparian wetlands along the middle and upper Black River should be protected.
Natural wetlands should not be used as a substitute for proper stormwater controls.

Best management practices are recommended to increase shading on the mainstem
Black River. Projects that plant riparian shade trees should be encouraged, and
existing riparian shade trees should be protected. The effectiveness of tree planting
efforts should be evaluated periodically with sampling or temperature modeling,
possibly at five-year intervals in accordance with the Basin Approach of Ecology’s
Water Quality Program.

A new watershed nonpoint source action plan or a revision of the Chehalis Basin
Action Plan should be developed to specifically address the Black River TMDL.
The plan should be developed by the Chehalis River Council or by a Black River
watershed committee composed of local citizens. The plan should have specific
timetables and priorities, and should describe the available and reasonable BMPs
for existing and new nonpoint sources. Ecology should work with local agencies
and citizens to facilitate the development of a grant proposal to fund a watershed
planning process consistent with, or similar to, those specified in Chapter 400-12
WAC. '
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BMPs should be implemented through Shoreline Management Act permits for
projects within the Act’s jurisdiction. BMPs could be identified during the State
Environmental Policy Act process, or in the permits themselves. To recognize the
Black River TMDLs and specify the BMPs for inclusion in Shoreline permits,
modification of the Shoreline Master Plans that affect the Black River should be
considered. '

Flow should be monitored during the summer low flow season and appropriate
actions taken if flows are less than the minimum flows specified by regulation

(Chapter 173-522 WAC). Water rights and existing withdrawals should be
reviewed and actions taken as appropriate to maintain minimum flows.

7.2 Monitoring and Further Study

Long-term monitoring of the Black River is necessary to assess the effectiveness of

the TMDLs in protecting water quality. This monitoring could either be conducted
by Ecology or by other agencies, and data quality should be assured so that all data
are of a comparable good quality. The scope of monitoring is dependent on priorities
and available resources. A number of strategies are suggested below:

® Annual synoptic monitoring should be conducted in the Black River twice a month
in July, August, and September. If resources do not allow this intensity of
monitoring, monitoring could be less frequent, although monitoring should occur at
least once in mid-August.. An alternative to annual monitoring would be
monitoring once every five years consistent with the Basin Approach of Ecology’s
Water Quality Program. However, due to the importance of nonpoint sources in
the Black River basin, and based on the experience of the Rural Clean Water
Program (Gale et al., 1992), long-term monitoring (6-10 years) twice a month is
recommended to evaluate the trends in water quality and the effectiveness of BMP
implementation.

Key locations for this monitoring are Howanut Road (RM 1.2), above the Big
Dock at multiple depths (RM 9.7), above Mima Creek at multiple depths

(RM 11.9), above the boat launch south of Littlerock (RM 15.3), at the River
Road bridge above Waddell Creek (RM 17.4), and the near the mouths of Mima,
Beaver, and Waddell Creeks. Parameters should include temperature, pH,
conductivity, turbidity, DO, orthophosphate, total phosphorus, ammonia nitrogen,
nitrate/nitrite nitrogen, total persulfate nitrogen, BODs, chlorophyll a, and fecal
coliform bacteria.
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® A permanent station with monthly ambient monitoring should be established at the
Moon Road bridge where monitoring has been done in the past. Parameters should
include temperature, pH, conductivity, turbidity, DO, orthophosphate, total
phosphorus, ammonia nitrogen, nitrate/nitrite nitrogen, total persulfate nitrogen,
and fecal coliform bacteria. This monitoring would allow evaluation of long-term
trends in the quality of the Black River and comparison to pre-TMDL conditions
on a year-round basis. :

® Flow should be monitoring on a regular basis, at least twice a month from July
through September. Measurements at the Howanut Road bridge are recommended,
although the SR 12 bridge is also a good location. A permanent staff gage should
also be established for predictions of flows from a stage-discharge relationship.
Flow data would allow calculation of loading, evaluation of low flows to identify
critical low flow periods, and would help in the response to a spill or other water
quality emergency.

Two complex studies are suggested below for consideration in future years. The first
study would address the unresolved question of the relationship of the lower river
macrophytes to nutrients and dissolved oxygen, and to the fisheries resource in
general. The study would evaluate summertime macrophyte, periphyton and
epiphyton growth in the Black River from RM 9.6 to the mouth by measuring the
standing biomass, geographic distribution, and productivity of benthic plants and
algae. Interactions between the dissolved and particulate materials in the water
column and in the sediments, and the relationship of those systems to benthic
productivity would be assessed.

The goals of the benthic productivity study would be: to quantify the relationship of
standing biomass and productivity to upstream dissolved and particulate nutrients; to
determine the effect of changes in benthic biomass and productivity on dissolved
oxygen; to define the optimal benthic biomass that is beneficial to the fishery resource
through the combined effect of water quality, habitat, and other considerations; and to
recommend a management strategy to control macrophytes and periphyton at the
optimal level. If further loading restrictions were found to be necessary to control
macrophyte growth, these could be included in the TMDL at a future date.

The second study that is recommended is a study of the interactions of ground water
with summertime base flow in the Black River. Over one-half of the flow in the
Black River appears to come from ground water inflows. In addition, ground water
inputs in some areas appear to be of high quality, and in other areas of relatively poor
quality. The goal of the study would be to evaluate the extent to which ground water
withdrawals are reducing baseflows, and the extent to which pollutant concentrations
in ground water are affecting river water quality.

Page 91



The regional growth that the Black River basin is experiencing is likely to continue to
put pressure on the ground water resource, both from withdrawals and from pollutant
inputs. Ground water withdrawals may be reducing summertime base flows, but
whether this is occurring and to what extent is not known. Also, the effect of land
use activities on ground water pollutant levels, and ultimately on pollutant loading to
the Black River, is poorly understood. The long-term protection of the Black River
and effectiveness of the TMDLs may depend on improved understanding of the
interactions of ground water and the river, and development of effective controls on
use of the ground water resource.
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8. SUMMARY AND CONCLUSIONS

8.1 Summary of Survey Results

A review of the data developed as part of this study reveals a number of significant
details regarding the characteristics of the Black River.

‘® The upper Black River (upstream of RM 15.3) is strongly influenced by extensive
wetlands. During the study, most dissolved constituents were relatively low, DO
was depressed, organic compounds were relatively abundant, and the river had its
characteristic dark color.

® Beaver Creek appeared to have one or more pollutant loading sources in the stretch
between Case Road and Route 121. This was suggested by data for fecal coliform
bacteria, total nitrogen, and nitrate/nitrate nitrogen. U.S. Fish and Wildlife
Service survey information has identified livestock access areas and waste inputs
on Beaver Creek that are likely sources of these pollutants.

® Waddell Creek and Mima Creek had relatively high quality water. Both drain the
Black Hills, a forested area with basaltic bedrock.

® Clearwater Lagoon showed evidence that it is affected by a ground water source of
high quality; its quality was similar to Mima and Waddell Creeks, suggesting a
common source in the Black Hills.

® The lower temperatures and higher levels of some constituents in the deeper waters
of the middle Black River between RM 14.1 and 11.9 suggest ground water inputs
to these areas.

® A large body of evidence suggests that just upstream of Mima Creek a discharge of
dairy waste from the Black River Ranch to the Black River has occurred in the
past. This discharge was probably more active in wet weather, but has also
occurred in dry weather. Evidence suggests that a discharge occurred in August
1991, and probably was occurring periodically prior to that date. Improved water
quality in 1992 suggests that waste management improvements at the Black River
Ranch had reduced or eliminated this discharge.

® The Swecker Salmon Farm is the only permitted point source for which a distinct
surface discharge location can be identified. “There appeared to be a reduction in
several pollutants in the Swecker effluent between the pond outflow and discharge
point to the river.
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® The Global Aqua discharge reaches the Black River indirectly through springs in
two locations: the area immediately above the steel trestle (RM 9.1), and the area
near Big Rock roughly between RM 7.9 and 7.2. Certain pollutants showed
attenuation from the effluent to the springs.

® Based on chlorophyll a levels as an indicator of trophic state, the Black River
during the study period classified as mesotrophic, bordering on eutrophic.
Significant phytoplankton productivity was indicated, with diatoms and
cryptophytes as the dominant species. Occasional blooms of green algae occurred.
Productivity appeared to decrease from spring into summer, and increase again in
the fall. A possible explanation for this pattern is that higher light and nutrient
availability increased productivity in the spring; lower light and nutrient limitation
reduced productivity in the summer; and productivity increased in the fall due to
nutrients released from various sources, which may have included erosion of the
nutrient-rich hypolimnion, fall rainfall runoff, and seasonal leaf fall.

® Chlorophyll a, phytoplankton ID, turbidity, and TSS data all indicated that a
significant proportion of suspended phytoplankton was removed by the dense
macrophyte beds below the steel trestle.

® Dissolved oxygen concentrations below the standard of 8.0 mg/L were widespread
on the Black River.

8.2 Summary of TMDL Analysis Reéults

® Dissolved oxygen in the Black River violates the freshwater quality criterion of
8.0 mg/L throughout most of the mainstem during the summer months. An
analysis of background conditions indicates that dissolved oxygen falls below this
criterion even in the absence of anthropogenic pollutant loading. Because
background conditions are less than the criterion, background conditions define the
new standard, therefore no further degradation of dissolved oxygen can be allowed.

® The LC was established for carbonaceous biochemical oxygen demand, ammonia,
and materials that can increase sediment oxygen demand. The LC is defined as no
significant degradation of DO as compared to existing or background conditions in
the Black River that is caused by any pollutant load or combination of pollutant
loads. The BOD LC applies to all waters of the mainstem Black River from
May 1 to October 31. The total effect of each discharge or loading source shall be
considered both alone and in combination with other sources.
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"No significant degradation" was defined in this study as less than a 0.2 mg/L
reduction in DO when compared to conditions with the pollutant load absent, under
either existing conditions or background conditions. Significant degradation may
also be determined in future work by statistical methods, beneficial use-based
methods, or other rationally justified approaches.

WLASs and LAs are proposed to meet the BOD LC and protect water quality
standards. WLAs are proposed for existing permitted dischargers based on full
application of all known available reasonable treatment as currently exists at the
facilities. An LA is proposed for existing nonpoint sources, in combination with a
narrative LA that states that nonpoint loading sources be provided BMPs that
minimize the discharge of oxygen-demanding materials. The narrative LA for
future growth is that any new point or nonpoint source or changes to existing point
or nonpoint sources to the mainstem or tributaries of the Black River should cause
no significant degradation of dissolved oxygen in the Black River.

Background conditions in the middle Black River are mesotrophic, and existing
conditions appear to be nearing eutrophy. It is well established that eutrophication
of a water body is characterized by nuisance algal growth, low dissolved oxygen,
high pH, and ultimately depletion of fishery resources. Therefore, a limit on total
phosphorus is necessary to protect the Black River from the deleterious effects of
“eutrophication.

The LC was determined for total phosphorus in the Black River, defined as the
load that would result in a daily average concentration of 0.05 mg/L from May 1
through October 31. This LC would apply to all waters of the Black River from
the surface to two meters depth, from RM 9.6 (the location where the Black River
crosses from Range 3W into Range 4W) upstream to RM 15.1 (the location where
the Black River crosses from the north half to the south half of Section 14,

Range 3W, Township 16N).

WLASs and LAs are proposed to meet the TP LC. A WLA is proposed for
Swecker Salmon Farm of 16 pounds of TP per day, to be met in the effluent
stream at the outflow from the final facility ponds. The Cedar Creek Corrections
WTP will be included in the LA for Mima Creek. The LA for background
conditions is the loading that corresponds to a concentration of 0.03 mg/L TP. An
LA is recommended for existing nonpoint sources, in combination with a narrative
LA which provides that these sources implement all known available and
reasonable BMPs to reduce or eliminate the discharge of TP during the TMDL
period. An LA is also recommended as a reserve for future growth, subject to the
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future loading source not causing an exceedance of the TP LC criterion of
0.050 mg/L in the mainstem Black River. The exact amount of future allocations
within the future growth LA are dependent on the timing, location, and loading of
the proposed discharge.

® Temperatures in the Black River exceed the water quality criterion of 18°C during
the summer months. Although much of the middle and upper river is bordered by
wetlands that likely would not support significant riparian shading, the lower river
from about RM 10 downstream does appear to be capable of supporting a riparian
shade canopy. However, much of that canopy is absent due to human activities,
which has likely resulted in an increase in water temperatures in the Black River.

® A phased TMDL for temperature is recommended for the Black River. The
temperature TMDL calls for riparian shade trees to be protected and replanted to
the fullest extent possible along the lower Black River, downstream of RM 10 to
the mouth. The phased temperature TMDL will be revisited at five year cycles
according to the Basin Approach of Ecology’s Water Quality Program, when the
effectiveness of tree planting efforts will be evaluated through sampling or
temperature modeling.

® Implementation of the BOD and TP WLA/LAs will occur primarily through
regulatory action for permitted discharges and implementation of BMPs for
nonpoint sources. A new watershed action plan or amendment to the Chehalis
Basin Action Plan specific to the Black River is suggested to coordinate BMP
implementation. Use of Shoreline permits to implement BMPs is also a potential
tool. Implementation of nonpoint source controls should be coordinated with
federal, state, tribal, and local agencies, as well as with citizen’s groups.

® A long-term monitoring program is proposed to evaluate the effectiveness of the
TMDL and WLA/LAs. Additional studies are proposed to determine the effect of
macrophyte growth on Black River water quality, and to improve our
understanding of the effect of ground water resource use on Black River flow and
quality. :
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