

PENDLETON WOOLEN MILLS CLASS II INSPECTION, APRIL 1993

October 1994

Water Body No. WA-CR-1010 Publication No. 94-162 printed on recycled paper

The Department of Ecology is an Equal Opportunity and Affirmative Action employer and shall not discriminate on the basis of race, creed, color, national origin, sex, marital status, sexual orientation, age, religion, or disability as defined by applicable state and/or federal regulations or statutes.

If you have special accommodation needs, please contact the Environmental Investigations and Laboratory Services Program, Toxics Investigations Section, Kelly Carruth at (206) 407-6764 (voice). Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (206) 407-6006.

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office at P.O. Box 47600 Olympia, Washington 98504-7600 (206) 407-7472 Refer to Publication Number 94-162

Pendleton Woolen Mills Class II Inspection, April 1993

by Marc Heffner

Environmental Investigations and Laboratory Services Program Olympia, Washington 98504-7710

October 1994

Water Body No. WA-CR-1010 Publication No. 94-162 printed on recycled paper

Table of Contents

List of Figures and Tables

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Page

.. iii

Abstract
Summary
Outfall 001
NPDES Permit Comparison
General Chemistry Results
Flow Measurement
Priority Pollutant Organic Scans
Metals
Bioassays
Split Sample Results
Outfalls 004, 005, and 006
Sludge and Sprayfield Runoff vi
Sediments
Recommendations
General Chemistry Results
Flow Measurement
Priority Pollutant Organic Scans
Split Sample Results vii
Sludge and Sprayfield Runoff vii
Introduction
Objectives
Setting
Procedures
Analytical Quality Assurance/Quality Control (QA/QC)

Table of Contents (Cont.)

Page

Results and Discussion
Outfall 001
NPDES Permit Comparison
General Chemistry Results
Flow Measurement
Priority Pollutant Organic Scans 4
Metals
Bioassays
Split Sample Results
Outfalls 004, 005, and 006
Sludge and Sprayfield Runoff
Sediments
References

•

List of Figures and Tables

Figures

Figure 1.	Flow Scheme - Pendleton, April 1993 8
Figure 2.	Sprayfield - Pendleton, April 1993 9
Tables	
Table 1.	Inspection Results/NPDES Permit Limits Comparison - Pendleton, April 1993
Table 2.	Ecology Laboratory General Chemistry Results - Pendleton, April 1993 11
Table 3.	VOA, BNA, Pesticide/PCB and Metals Scan analytes Detected - Pendleton, April 1993
Table 4.	Effluent Bioassay Results - Pendleton, April 1993
Table 5.	Split Sample Results Comparison - Pendleton, April 1993 17
Table 6.	Sludge Metals/EPA Municipal Land Application Regulations Comparison - Pendleton, April 1993
Table 7.	Effluent/Runoff Comparison - Pendleton, April 1993
Table 8.	Sediment Bioassay Results - Pendleton, April 1993

Abstract

A Class II Inspection was conducted at the Pendleton Woolen Mills Washougal Facility (Pendleton) on April 19-21, 1993. The facility treats process wastewater using an activated sludge process and discharges treated effluent to the Columbia River. Waste activated sludge is spray irrigated on site. Inspection results were within the daily maximum NPDES permit limits and were also less than the daily average limits. Concentrations of the four priority pollutant organic scan compounds detected in the effluent were less than applicable water quality criteria. Effluent copper, zinc, lead, and mercury concentrations exceeded acute and/or chronic water quality criteria. Bioassays found no toxicity due to the effluent. Sludge metals concentrations were less than the guidelines above which land application of municipal sludge is restricted. Sediment composition and chemistry near the Pendleton outfall indicated minimal impact due to the discharge.

Summary

Outfall 001

NPDES Permit Comparison

Inspection results fell within the daily maximum limits and were also less than the daily average limits.

General Chemistry Results

The wastewater treatment process adequately reduced BOD_5 , COD, and TSS concentrations. Color was also reduced through the treatment system. Nitrogen concentrations were low in the plant influent and effluent.

High fecal coliform concentrations were detected in the two effluent grab samples.

Flow Measurement

Accuracy of the Pendleton flow meter was not checked during the inspection.

Priority Pollutant Organic Scans

Acetone was the target compound detected in the influent scans at the highest concentration (300-350 μ g/L). Several other VOA and BNA target compounds were also detected in the influent. The endrin concentration in the influent was relatively high (estimated concentration 1.1 μ g/L).

Only one VOA and three BNA target compounds were detected in the effluent. No pesticides were detected in the effluent. Concentrations of compounds detected were less than applicable water quality criteria.

Concentrations of TICs detected in the influent were greatly reduced by the wastewater treatment process.

Metals

Effluent copper and zinc concentrations exceeded both acute and chronic water quality criteria. Lead and mercury concentrations exceeded the chronic criteria.

Bioassays

Rainbow trout, *Daphnia pulex*, microtox, and fathead minnow bioassays found no toxicity due to the effluent. *Ceriodaphnia dubia* results were inconclusive due to problems with the test.

Split Sample Results

Ecology and Pendleton laboratory results for split samples compare favorably.

The Pendleton and Ecology effluent samples were similar suggesting appropriate sample collection. Several differences were noted between the Ecology and Pendleton influent samples.

Outfalls 004, 005, and 006

Outfall 004 was not flowing and only a small trickle was observed at outfall 005. Neither outfall was sampled.

The 006 discharge was clear with low TSS, TOC, and COD concentrations. The discharge was within permit limits.

Sludge and Sprayfield Runoff

The sludge and runoff samples were collected to assess potential surface water effects due to the sludge. A total of four organics were detected with VOA and BNA scans. Bis(2-ethyl-hexyl)phthalate was detected at the highest concentration (152 μ g/L). Dieldrin was detected with the pesticide scan (0.84 μ g/L-estimated). Metals detected were at concentrations less than the guidelines for land application of municipal sludge.

The west and north borders were wet with some puddled/ponded areas. The east border was dry, with no evidence of any overland flow from the sprayfield to Gibbons Creek. The ponded runoff sample showed similarities as well as differences when compared to the effluent.

Sediments

Sediment composition and chemistry near the Pendleton outfall indicated minimal impact due to the discharge. *Hyallela azteca* and Microtox bioassays found no toxicity.

Recommendations

General Chemistry Results

- Plant nitrogen concentrations should occasionally be monitored to assure treatment is not inhibited.
- Effluent fecal coliforms should be monitored to determine if high counts are common and corrective action is necessary.

Flow Measurement

• Maintenance records should be checked to assure the meter is routinely calibrated and measuring accurately.

Priority Pollutant Organic Scans

• Endrin should be considered as a candidate for inclusion as a target compound when doing required pesticide monitoring.

Split Sample Results

- Pendleton oil & grease analyses for permit monitoring should be done on grab samples as specified in the permit. Grab samples for sulfide analysis should also be considered.
- Pendleton should inspect their influent sampler and sampler line to assure microbial growth is not affecting the sample.
- The Pendleton influent and effluent composite sample temperatures should be checked to assure the proper temperature is maintained.

Sludge and Sprayfield Runoff

• Potential odor problems should be addressed if sprayfield ponding persists into the warmer weather months.

Introduction

A Class II Inspection was conducted at the Pendleton Woolen Mills Washougal Facility (Pendleton) on April 19-21, 1993. The inspection was conducted by Dennis Ritter of the Ecology Southwest Regional Office and Marc Heffner of the Toxics Investigations Section. Jim Underwood, Environmental Manager, represented Pendleton and provided onsite assistance. Also assisting were Jim Nail and Chris Rafn, the wastewater treatment plant (WWTP) operators. In conjunction with the inspection, sediments were collected near the plant outfall on April 23, 1993. Bernie Strong and Marc Heffner collected the sediments.

The Pendleton facility is a textile mill which receives scoured wool and processes the material using mixing, carding, spinning, weaving, dyeing, carbonizing, and fulling operations. Process wastewater is treated using an activated sludge process and discharged to the Columbia River via outfall 001 (Figure 1). Waste sludge from the activated sludge process is spray irrigated on site (Figure 2). Stormwater runoff is routed to Gibbons Creek via unnamed small tributaries at discharge locations 004,005, and 006. All domestic wastewaters are routed to the local municipal wastewater treatment plant. Wastewater discharge is regulated by NPDES Permit No. WA-000023-0. The permit was issued on August 23, 1991, and expires on August 23, 1996.

Objectives

- 1. Determine compliance with NPDES permit limits during wet weather conditions.
- 2. Assess plant self-monitoring program.
- 3. Evaluate wastewater treatment plant performance.
- 4. Characterize effluent toxicity with chemical scans and with bioassays.
- 5. Evaluate the appropriateness of effluent limits and permit conditions.
- 6. Assess receiving water sediment contamination and toxicity with chemical scans and with bioassays.

Setting

Jim Underwood indicated the primary sources of wastes to the treatment facility were dye residuals and detergents/soaps from washing. The new dye house was still under construction. The computer control available in the new facility should minimize dye wasted to the WWTP.

The wastewater treatment facility was recently upgraded (Figure 1). Flow passes through a roto-screen into a wet well. The roto-screen removes most of the wool fibers from the wastewater. The operator estimated screenings volume to be less than one dumpster per month. Wet well contents are pumped to an equalization (EQ) tank. The wastewater level in the EQ tank varies through the week. The level is raised during the week and is highest on Fridays. The level drops over the weekend as wastewater is fed to the WWTP while little wastewater is being generated in the mill. The EQ tank level is computer controlled.

Waste treatment units include an aeration basin followed by a secondary clarifier. The aeration basin is operated in the extended aeration mode with a mean cell residence time (MCRT) of approximately 40 days. The operator reported a dissolved oxygen (D.O.) concentration of approximately 6 mg/L is maintained in the basin. The sludge recycle rate was approximately 75%, although at the time of the inspection the RAS flow meter was not operating and the flow could only be estimated. Equipment was on hand to repair the meter but repairs had not yet been made.

The secondary clarifier had a "submerged tube" type outlet channel. Flow entered the tube through a series of holes along the top of the tube. The sludge blanket in the clarifier was higher than desired. At least five feet of clearwater were targeted in the ten feet deep clarifier. On April 20 the clearwater depth was only three feet. Jim Nail suspected the RAS pumping rate may have been too low and increased it slightly during the inspection.

Waste activated sludge (WAS) is irrigated on a field next to the WWTP (Figure 2). Sludge is wasted to the field 15 minutes every hour for nine hours on weekdays and 30 minutes every hour for nine hours on weekend days. The grass grown is harvested occasionally by a local farmer for livestock feed. A holding basin for WAS was being planned so sprayfield application will occur only during the dry season.

Procedures

Ecology collected composite and grab samples. Isco composite samplers collected equal volumes of sample every 30 minutes for 24 hours. Pendleton also collected grab and composite samples. The Pendleton composite samples were time proportional. Sample locations are summarized in Figure 1 and Appendix A. Ecology and Pendleton samples were split for analysis by both the Ecology and Pendleton labs.

Receiving water sediments were collected at three stations (Appendix A). Sediment sampling procedures are included in Appendix B.

Samples collected, sampling times, and parameters analyzed are summarized in Appendix C.

Samples for Ecology analysis were placed on ice and delivered to the Ecology Manchester Laboratory. Analytical procedures and the laboratories doing the analyses are summarized in Appendix D.

Analytical Quality Assurance/ Quality Control (QA/QC)

Sampling and laboratory QA/QC procedures were followed. Sampling QA/QC procedures are summarized in Appendix B.

Laboratory QA/QC measures were generally acceptable. Holding times, method blanks, surrogates, matrix and matrix spike duplicate recoveries, dilutions, controls, and instrument calibration were evaluated as appropriate for the particular test. Data are acceptable as qualified in the data tables. Specific QA/QC concerns are noted in Appendix B.

Results and Discussion

Outfall 001

NPDES Permit Comparison

Inspection results were within the daily maximum limits and were also less than the daily average limits (Table 1).

General Chemistry Results

Pendleton wastewater quality was characterized by a moderate BOD_5 (Ecology sample 212 mg/L) and low TSS (Ecology sample 46 mg/L) concentrations (Table 2). The wastewater treatment process adequately reduced BOD_5 , COD, and TSS concentrations. NH_3 -N and $NO_2 + NO_3$ -N concentrations were 0.23 mg/L or less in both the influent and effluent. The nitrogen concentration could inhibit treatment if it becomes too low.

Color in the influent was conspicuous and was quantified at 470 APHA units. The effluent was also colored (200 APHA units). The treatment process removed slightly more than half the color.

High fecal coliform concentrations were detected in the two effluent grab samples (Table 2). Estimated concentrations were 17,000/100mL and 19,000/100mL. Class A state water quality standards for freshwater include a geometric mean of not more than 100 colonies/100 mL

(Ecology, 1992). Dilution of roughly 200:1 would be necessary to meet the fecal coliform standard in the receiving water near the outfall. Fecal coliforms should be monitored to determine if high counts are common and corrective action is necessary.

Flow Measurement

Accuracy of the Pendleton flow meter was not checked during the inspection. Maintenance records should be checked to assure the meter is routinely calibrated and measuring accurately.

Priority Pollutant Organic Scans

Acetone was detected in the influent at the highest concentrations $(300 \ \mu g/L \text{ and } 350 \ \mu g/L \text{ -} \text{Table 3})$. The other VOA compounds detected were at concentrations of $3.2 \ \mu g/L$ or less. Acetone was the only VOA scan target compound detected in the effluent. The estimated concentrations were $5.0 \ \mu g/L$ and $4.1 \ \mu g/L$ in the two effluent grab samples collected. No water quality criteria exist for acetone.

Several target compounds were detected in the influent BNA scan. Di-n-butyl phthalate was detected at the highest concentration (53.6 μ g/L). Only three target compounds were detected in the effluent. Concentrations were 2.4 μ g/L or less. All compounds detected were at concentrations less than water quality criteria.

Three pesticides were detected in the influent while none were detected in the effluent. The endrin concentration in the influent was relatively high (estimated concentration 1.1 μ g/L). Endrin should be considered as a candidate for inclusion as a target compound when doing required pesticide monitoring.

A complete listing of target compounds and analytical results is included in Appendix E.

Tentatively identified compounds (TICs) were detected by the influent VOA scan and the influent and effluent BNA scans (Appendix F). Maximum estimated concentrations were 5,780 μ g/L in the influent and 21.6 μ g/L in the effluent. Several of the acid compounds detected at higher concentrations are likely associated with the wetting agents, soaps, and dyes used in the process (Sax and Lewis, 1987). Concentrations were greatly reduced by the wastewater treatment process.

Metals

Several metals were detected in the influent (Table 3). Of these, four were found in the effluent at concentrations exceeding water quality criteria (Ecology, 1992). Copper and zinc

concentrations exceeded both acute and chronic criteria. The lead and mercury concentrations exceeded chronic criteria.

Bioassays

Rainbow trout, *Daphnia pulex*, and fathead minnow tests found no acute toxicity due to the effluent (Table 4). The microtox test also found no toxic effects.

The fathead minnow chronic test found no toxicity due to the effluent. The *Ceriodaphnia dubia* chronic test found no toxicity in the reproduction portion of the test. The survival portion of the test was inconclusive due to problems with the test.

Split Sample Results

Ecology and Pendleton laboratory results for split samples compare favorably (Table 5). Discrepancies with several individual analyses were noted, but overall comparability was acceptable. The Pendleton laboratory is accredited for BOD, COD, oil and grease, pH, phenolics, TSS and sulfide.

The Pendleton and Ecology effluent composite samples were similar, suggesting appropriate sample collection. The Ecology influent composite sample had a lower TSS concentration than the Pendleton influent composite sample. Ecology analysis also suggest the Ecology sample had a higher BOD_5 and COD concentration than the Pendleton sample. Pendleton should inspect their influent sampler and sampler line to assure microbial growth is not affecting the sample.

The Pendleton influent and effluent composite sample temperatures were higher than the recommended $4^{\circ}C$ (Table 2). The problem was pointed out and future inspections should assure it has been corrected.

The Pendleton oil & grease analysis was being done on the composite sample. The test should be run on a grab sample as specified in the permit. Due to preservation requirements and the need to avoid aeration when sampling, changing the required sulfide sample type from a composite to a grab should be considered.

Outfalls 004, 005, and 006

Outfall 004 was not flowing during the inspection. A small trickle was observed at outfall 005. Neither outfall was sampled.

The 006 discharge was sampled but the flow rate was not quantified. Pendleton personnel suspected the flow was cooling water. The discharge was clear and TSS, TOC, and COD concentrations were low; supporting the cooling water theory (Table 2). The discharge was within both permit limits; oil and grease, and pH (Table 1).

Sludge and Sprayfield Runoff

The sludge and runoff samples were collected to assess potential surface water effects due to the sludge. The sludge sample VOA scan detected two compounds at low concentrations; 2.1 μ g/L or less (Table 3). Two BNA target compounds were detected; aniline at an estimated concentration of 3.8 μ g/L, and bis(2-ethylhexyl)phthalate at a concentration of 152 μ g/L. Dieldrin was also detected at an estimated concentration of 0.84 μ g/L.

Several metals were also detected in the sludge. Specific criteria for land application of the sludge were not found, so concentrations were compared to municipal land application guidelines (Table 6 - EPA, 1993). All concentrations in the Pendleton sludge were less than the guidelines above which land application is restricted.

The west, east, and north perimeters of the sprayfield were inspected during sample collection (Figure 2). The west and north borders were wet with some puddled/ponded areas. Flowing runoff was not observed. The east border was dry, with no evidence of any overland flow from the sprayfield to Gibbons Creek. Odor problems should be addressed if sprayfield ponding persists into the summer.

The ponded runoff sample showed similarities as well as differences when compared to the effluent. Runoff:effluent parameter concentration ratios ranged from 0.18-4.63 (Table 7). The variability suggests contributions from off site runoff and/or vegetation growth and decay are influencing water quality on the sprayfield.

Sediments

Sediments near the Pendleton outfall indicated an area of minimal deposition. The grain size all three sediments was 100% sand (Table 2). TOC sediments near and below the outfall (0.152% and 0.170%, respectively) were two times the concentration of the above discharge sample (0.070%).

A low concentration of acetone in one of the samples was the only organic detected in the sediments (Table 3). Metals concentrations were similar at all three sampling stations. A complete list of analytes and detection limits is included in Appendix E.

Hyallela azteca and Microtox bioassays indicate no toxicity due to the sediments (Table 8).

References

- Ecology, 1992. Water Quality Standards for Surface Waters of the State of Washington, Chapter 173-201A WAC, November 25, 1992.
- EPA, 1986. Quality Criteria for Water 1986, EPA 440/5-86-001, May 1, 1986.
- EPA, 1993. Federal Register, Vol. 58, No. 32, Part 503, February 19, 1993.
- Sax, N.L. and Lewis R.J., 1987. Hawley's Condensed Chemical Dictionary, Eleventh Edition.

Table 1 – Inspection Results/NPDES Permit Limits Comparison – Pendleton, April 1993.

001 OUTFALL				Location: Type:	Ef-1	Ef-2	Ef-E	Ef-P P-comp
		NPDES Pe	ermit Limits	Type. Date:	grab 4/20	grab 4/20	E–comp 4/20–21	4/20-21
	-	Daily	Daily	Time:	1040	1630	0800-0800	0800-0800
Parameter	Units	Average	Maximum	Lab Log #:	178284	178285	178286	178287
Flow	MGD	1.0	1.25					0.550**
TSS	lbs/D	321	642				92	60
BOD5	lbs/D	204	409				50	23
COD	lbs/D	1487	2975				463	416
Oil and Grease	mg/L	10	15		1UJ	1UJ		
Phenolics Total	lbs/D	1.3	2.6				0.02J	0.02
Temperature	С	+	+		15.4	16.0		
рН		within range	e of 6.0 – 9.0		7.2	7.0		
Sulfide	lbs/D	2.6	5.1		*			
Total chromium +	lbs/D	1.3	2.6				0.22P	0.22P
Dieldrin	ug/L	0.038	0.10				0.10U	

006 OUTFA	<u>\LL * * *</u>		-	Location: Type:	006 grab	
•		NPDES Pe	rmit Limits	Date:	4/20	
	-	Daily	Daily	Time:	1230	
Parameter	Units	Average	Maximum	Lab Log #:	178301	

J The analyte was positively identified. The associated numerical result is and estimate.

U The analyte was not detected at or above the reported result.

UJ The analyte was not detected at or above the reported estimated result.

P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.

Ef wastewater treatment plant effluent (001)

E-comp Ecology composite sample

P-comp Pendleton composite sample

* background color in sample interfered with test

** flow rate provided by Pendleton

*** outfalls 004 and 005 have the same limits, but were not flowing during the inspection

+ total recoverable analysis

++ receiving water temperature less than 20 C at edge of dilution zone

	Type: Date: Time:	Inf1 grab 4/20 0935	Int-2 grab 4/20 1700	Inf-E E-comp 4/20-21 0800-0800	Inf-P P-comp 4/20-21 0800-0800	Ef-1 grab 4/20 1040	Ef-2 grab 4/20 1630	Ef–3 grab 4/21 1100	Ef–4 grab 4/21 1200	Ef-E E-comp 4/20-21 0800-0800	Ef-P P-comp 4/20-21 0800-0800	Ef-GC *** 4/20	MLSS-1 grab 4/20 1110	MLSS-2 grab 4/20 1650
Parameter L	Lab Log #:	178280	178281	. 178282	178283	178284	178285	178304	178305	178286	178287	178288	178289	178290
GENERAL CHEMISTRY Conductivity (umbos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Chloride (mg/L) Chloride (mg/L) Grain Size (%)				892 65 470 8.3	914 6822 3695 360 8.0		•			989 76.2 45.2J 200 10.6	985 76.7 43.3J 190 10.4	1000 75.8 46.2J		
gravel (+10 mesh) sand (20-230 mesh) silt (4-8 phi) clay (9+ phi)	ssh) mesh)													
TS (mg/L) TNVS (mg/L)		v	ç	951 527 35	817 608	Ę	5			755 644	905 678	6		
TNVSS (mg/L)		D	8	0 4	ğ	Ś	.			85	2 <u>5</u>	3	10025	4200J
% Solids BOD5 (mg/L)		(† († († († († († († († († († († († († (002	212	143	T CO	č			Ξ	i a			
TOC (mg/L)		156	508 138	093 152	4/1 111	89.4 33.4	32.4			29.8	90.7 28.2			
Total Kjeldahl N(TKN) (mg/L)	<u> </u> 3/Г)													
NH3-N (mg/L) NO2+NO3-N (mg/L)				0.225E	0.043E 0.01UE					0.030E 0.053E	0.033E 0.01UE			
I Otal-r (mg/L) Oil and Grease (mg/L)		16.)	16J	U./84	2.	1UJ	10.1			60.1	0.982			
E–Coliform MF (#/100mL) Cvanida total (uo/L)				ott	110		***	190001X XL00001	17000JX	c	011			
Phenolics Total(ug/L)				23.4	15.0					5.4J	0 0 0 0			
FIELD OBSERVATIONS Temperature (C)		24.0	25.9			15.4	16.0							
Temp-cooled (C) nH		с Ч	c v	4 4 0 1	7.2	с <u>т</u>	0 <u>7</u>			0,0 4 0	11.0			
Conductivity (umhos/cm) Sulfide (mg/L)		1058 *	1019	994 **	** 625 625	, r 835 *	839			1052	n 68 - 68			
		he analyte he analyte	was positiv was not de	vely identified. Itected at or ab	The analyte was positively identified. The associated numerical result is and estimate. The analyte was not detected at or above the renorted result	ad numerice	al result is a	nd estimat	ai	Inf Ef	wastewater treatment plant influent wastewater treatment plant effluent (001)	atment plar	nt influent of effluent /0	(1)
		he analyte	was not de	stected at or at	The analyte was not detected at or above the reported estimated result.	ed estimate	id result.				aeration basin solids	solids	וו מוווממווו (מ	1
		he analyte an estimate he analyte he analyte uue to a hig	sult is an e was not de because (was positiv th backgro	Reported result is an estimate becau: The analyte was not detected at or at an estimate because of the presenci The analyte was positively identified. due to a high background count.	Reported result is an estimate because of the presence of an interference. The analyte was not detected at or above the reported result. The reported result is an estimate because of the presence of an interference. The analyte was positively identified. The associated numerical result is an estimate due to a high background count.	nce of an ir ed result. 1 ence. od numerica	nterference. The reportec al result is au	d result is n estimate		Sludge Runoff Sed 006 Comp	sludge sent to sprayfield runoff near sprayfield river sediment 006 discharge Ecology composite sample	sprayfield ayfield ssite sample		
	ਸ ਨੇ ਲੋ ਹੋ × * *	High background count. background color in sample inter sulfide odor detected. Test atten but background color interfered.	ound cour color in sa detected. und color in		nple interfered with test est attempted on sample 178282 terfered.	78282				P-comp	Pendleton composite sample	iposite sam	ple	

Table 2 - Ecology Laboratory General Chemistry Results - Pendleton, April 1993.

1993.
April
- Pendleton,
(cont'd)
ו ס
Table

Location: Sludge Hundri-1 006 Seci-1 Seci-3 Parameter Lab Log #: 178291 178293 1781293 17			-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Location: Type:	Siudge grab	Hunott-1 grab	006 grab	Sed-1 grab	Sed-2 grab	Sed-3 drab	
Time: 1155 1130 1230 1145-1205 1233-1325 1345-1 HEMISTRY Lab Log #: 178291 178292 178297 178 JL CacCo3 g/L CacCo3 21.6J 178297 178 g/L CacCo3 g/L CacCo3 21.6J 100 100 nints) 2.8 0 0 0 0 nints) 2.8 0 140 100 100 nave(+10 mesh) 2.8 0 0 0 0 0 nave(14.0 mesh) 2.140 100 100 0<		Date:	4/20	4/20	4/20	4/23	4/23	4/23	
Lab Log #: 178291 178292 178291 178295 17829 17		Time:	1155	1130	1230	1145-1205	1235-1325	1345-1400	
HEMISTRY 221 (umhos/cm) 221 (units) 2160 (1) (CaCO3) 21160 (1) (CaCO3) 2180 (1) (CaCO3) 2180 (1) (20-230 mesh) 2.8 (1) (20-230 mesh) 2.8 (100 000 (1) (100 000 (100 000 (1) (100 000 (100 0000 (100 000 (100 000 (100 0000 (100 0000 (100 0000 (100 0000 (100 0000 (100 0000 (100 00000 (100 0000 (100 0000 (100 0000 (100 0000 (100 0000 (100 00	Parameter	Lab Log #:	178291	178292	178301	178296	178297	178298	
(umbos(cm) 221 gl/CacO3) 21.6J units) 2.8 units) 2.8 units) 2.8 (10 ave(1+10 mesh) 2.8 (10 b) 2.8 (10 b) 75.1 73.2 10 10 10 10 10 10 10 10 10 10	ENERAL CHEMIST	RY							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	onductivity (umhos/ kalinity /md/l_CaC((cm)		221					
units) 140 (1) 2.8 (1) 2.8 (1) 2.8 (1) 2.1 (1) 2.1 (1) 2.3 (1) 2.1 (1) 100 (1) 100 (1) 10	ardness (mg/L CaC	ŝ		21.6J					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	olor (APHA units)			140					
	Grain Size (%)			, 1					
(14 - 25) (mest) 0 10 10 10 <td>gravel (+1)</td> <td>0 mesh)</td> <td></td> <td></td> <td></td> <td>000</td> <td>0,</td> <td>0.,</td> <td></td>	gravel (+1)	0 mesh)				000	0,	0.,	
ay (9+ phi) 6430 211 0 0 1940 132 1940 132 1940 132 132 132 1 1400 10 10 1 1400 10 75.1 73.2 1 84.7 5U 75.1 73.2 M 2.45 27.9 1.6 0.170 M 0.082 1.0 0.033 1.0 L 0.032 0.032 0.033 1.0 M 100 1.5.3 2.8 1.0 L 100 1.5.3 2.8 tal(ug/L) 15.3 2.8 1.0 A 100 1.5.3 1.0 A 15.0 15.8 1.0 L 10.1 15.3 1.6 M 1.11.4 1.11.4	sand (zu silt (4–8 pl	zao mesn) hi)				0	001	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(iu	0073	110		0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s (mg/L)		1940	132					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SS (mg/L)		5900	10	5				
M) 84.7 50 M) 2.45 27.9 1.6 N (TKN) (mg/L) 78.8 0.170 0.152 L) 78.8 0.032 1.0 L) 0.032 1.0 0.152 L) 0.033 1.0 1.0 L) 0.033 0.033 1.0 L) 0.033 0.033 1.0 L) 1.0 1.0 1.0 L 1.0 1.0 1.0 L 1.0 1.0 1.0 L 1.0 1.0 1.0 L 1.5.3 2.8 REVATIONS 15.0 15.8 J(C) 15.3 15.0 J(C) 6.5 6.7 (umbos/cm) 194 111.4	NV55 (mg/L) Solids		14003	2		75 1	73.2	75.0	
wt 34.7 50 wt 2.45 27.9 1.6 I N(TKN) (mg/L) 78.8 0.170 0.152 (mg/L) 78.8 0.082 0.033 L) 0.033 0.033 0.103 L) 0.033 0.033 0.033 L(mg/L) 5.6 $2.000X$ 1.01 feld(ug/L) 15.3 2.8 $1.11.4$ feld(ug/L) 15.3 15.6 6.7 d(mhos/cm) 15.4 111.4 1.04 $1.11.4$	BOD5 (mg/L)								
wt) 2:45 0.170 0.152 I N(TKN) (mg/L) 78.8 0.170 0.152 L) 0.082 0.082 0.033 L) 0.033 0.033 0.033 L) 0.033 0.033 0.033 L) 0.033 1UJ 1UJ KF (#/100mL) 5.05 1UJ 1UJ KF (#/100mL) 5.05 2.8 1UJ Ad(Ug/L) 15.3J 2.8 2.8 RFVATIONS 15.0 15.8 111.4 (C) 15.0 15.8 111.4 J(C) 6.5 6.7 111.4 J 194 111.4 111.4	0D (mg/L) DC (mg/L)			84.7 27.9	50 1.6				
1/L) 78.8 0.082 6.033 5.05 5.03 1 UJ 1 UJ 15.3 15.3 15.0 15.0 15.0	TOC (% dry wt)		2.45	1	2	0.170	0.152	0.070	
5000 5.05 5.000 1.01 15.3J 15.0 15.0 15.0 15.0 15.0	otal Kjeldahl N(TKN) (mg/L)	78.8	0000					
5.05 1UU 2000X 5E 15.3J 15.0 15.0 15.0	02+NO3-N (mg/L)			0.033					
15.0 15.3 15.3 15.0 15.0 1945	otal-P (mg/L)			5.05					
5E 15.3J 2.8 15.0 194	II and Grease (mg/L -Coliform MF (#/100	UmC)		2000X	3				
TIONS 15.0	Cyanide total (ug/L)		5E 15 2	a c					
TIONS 15.0 (6.5 (194	ISTICITOS I COM (USI	_	00.01	1					
6.5 10s/cm) 194	ELD OBSERVATIO emperature (C) emp-cooled (C)	SN		15.0	15.8				
	pH Conductivity (umhos/ Sulfide (mg/L)	cm)		6.5 194	6.7 111.4				
		× ×*	an estima The analyte due to a h High backe	te because e was positi iigh backgro ground cour	of the prese vely identifi bund count. nt.	ed. The assoc	rference. ciated numeric	al result is an e	stimate
-		* * *	sulfide odo but backgr equal volur	r detected. ound color j nes collecte	Test attem Interfered.	pted on sample and Ef-2 ara	e 178282 b samples		
			-						

Inf wa Ef wa MLSS ae Sludge slu	Inf wastewater treatment plant influent Ef wastewater treatment plant effluent (001) MLSS aeration basin solids Sludge sludge sent to spravfield
;	

- Runoff runoff naar sprayfield Sed river sediment 006 006 discharge E-comp Ecology composite sample P-comp Pendleton composite sample

Table 3 – VOA, BNA, Pesticide/PCB and Metals Scan Analytes Detected – Pendleton, April 1993.

Location: Type:	lnf–1 grab	lnf–2 grab	Ef–1 grab	Ef–2 grab	Runoff–1 grab	Sludge grab -	Water Qi	uality Criteria **	
Date: Time: Lab Log#:	4/20 0935 178280	4/20 1700 178281	4/20 1040 178284	4/20 1630 178285	4/20 1130 178292	4/20 1155 178291	Acute <u>Fresh</u>	Chronic <u>Fresh</u>	
VOA Compounds	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	(ug/L)	(ug/L)	
Acetone	350	300	5.0 J	4.1 J		5.0 U			
Carbon Disulfide	1.0 U	1.0 U	1.0 U	1.0 U		2.1			
1,1,1-Trichloroethane	1.1	0.9 J	1.0 U	1.0 U		1.0 U	18,000		
Tetrachloroethene Toluene	1.3 3.2	1.0 U 1.2	1.0 U 1.0 U	1.0 U 1.0 U	1993 - 1993 - 1993]]	1.0 U 1.5	5,280 17,500		
Location:	Inf-E	Inf-P	Ef-E	Ef-P	Runoff-1	Sludge			
Type:	E-comp	P-comp	E-comp	P-comp	grab	grab			
Date: Time:	4/20-21 0800-0800 (4/20–21 800–0800	4/20-21 0800-0800	4/20-21 0800-0800	4/20 1130	4/20 1155			
Lab Log#:	178282	178283	178286	178287	178292	178291			
BNA Compounds	ug/L		ug/L		ug/L	ug/L			
Aniline	2.8 J		1.1 U		0.73 U [3.8 J			
Benzoic Acid	35.1	F	1.1 U		0.73 U	7.5 U			
Diethyl Phthalate	7.1 U		0.22 J		0.73 U	7.5 U	940		*(i)
Di-n-Butyl Phthalate	53.6		1.1 U		0.73 U	7.5 U	940	*(i) 3	*(i)
2-Methylphenol	1.7 J	r	1.1 U		0.73 U	7.5 U		* •	
o-Chlorophenol Benzyl Alcohol	7.1 U	L	1.8 1.1 U		0.73 U	7.5 U	4,380	* 2,000	-
Phenol	5.9 J 5.9 J		1.1 U 1.1 U		0.73 U 0.73 U	7.5 U 7.5 U	10,200	* 2,560	*
Bis(2-Ethylhexyl)Phthalate	34.3	[2.4		0.73 U 0.74 U	152	10,200 940		*(i)
Pesticide/PCB Compounds	ug/L	in a constant a constant de la const	ug/L		ug/L	ug/L			· · · · · · · · · · · · · · · · · · ·
ıp) gamma–BHC (Lindane)	0.064		0.05 U		0.05 U	0.05 UJ	2.0	0.08	
Dieldrin	0.10 U		0.10 U		0.10 U [0.84 J	2.5	0.0019	
Endrin	1.1 NJ		0.10 U		0.10 U	0.10 UJ	0.18	(t) 0.0023	(t)
Endrin Ketone	0.038 J		0.10 U		0.10 U	0.10 UJ	0.18	(t) 0.0023	(t)
Metals ***	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
Arsenic Pentavalent	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U [9.5 P	050		
Trivalent							850 360	* 48 190	
Beryllium	1 U	1 U	1 U	1 U	1 U	1 U	130		*
Cadmium	0.16 P	0.21 P	0.10 U [0.10 P	0.30 P	3.6 P	1.4		
Chromium	123	116	49 P	49 P	30 P	1190			
Hexavalent	10 U	10 U	10 U	10 U	l		16	11	
Trivalent							903	+ 108	+
Copper	23 P	56.3	23 P	29 P	16 P	98.8	7	+ 5	+
Lead	2.3 J	6.1 J	1.0 J	1.2 J	8.2 J	122	20	+ 0.8	+
· · · · · · · · · · · · · · · · · · ·					0.05 U	1.43 N	2.4	0.012	
					10 U	19 P	686		+
	and the second		2. C. C. Martin and Apple Department of the second se Second second s		en e	and a second			
Copper Lead Mercury Nickel Selenium Zinc + Hardness dependent criteria c Total Trichloroethanes i Total Phthalate Esters q Total BHCs t Endrin compound/metal detected effluent or runoff concentratio * Insufficient data to develop c	2.3 J 0.24 J 10 U 2.0 UN 231 (45 mg/L used)	6.1 J 0.13 J 10 U 2.0 UN 406	1.0 J 0.068 J 10 U 2.0 UN 80.6 ronic water q he LOEL – Lo npound criter	1.2 J 0.068 J 10 U 2.0 UN 111 uality criteria owest Observe	8.2 J 0.05 U 10 U 2.0 UN 65.5 Ed Effect Levenay not agree	122 1.43 N 19 P 10 P 3630 Inf waste Ef waste Sludge sludg Sudge sludg Sed river E-comp Ecolo P-comp Pend el.	7 20 2.4 686 260 53 ewater trea ewater trea evater trea esent to s f near spra sediment ogy composi leton comp	+ 5 + 0.8 0.012 + 76 35 + 48 tment plant influer tment plant effluer prayfield tyfield site sample posite sample	

Table 3 - (cont'd) - Pendleton, April 1993.

	Location:	Sed-1	Sed-2	Sed-3
	Type:	grab	grab	grab
	Date:	4/23	4/23	4/23
	Time: Lab Log#:	1145–1205 178296	1235–1325 178297	1345–1400 178298
~	VOA Compounds	ug/Kg dry	ug/Kg dry	ug/Kg dry
Gro	up) Acetone	6.3 U 🗌	8.5	6.3 U
	Carbon Disulfide	1.3 U	1,3 U	0.3 U 1.3 U
с	1,1,1–Trichloroethane	1.3 U	1.3 U	1.3 U
	Tetrachloroethene	1.3 U	1.3 U	1.3 U
	Toluene	1.3 U	1.3 U	1.3 U
		1.0 0	1.0 0	1.0 0
	Location:	Sed-1	Sed-2	Sed-3
	Type: Date:	grab 4/23	grab 4/23	grab 4/23
	Time:	1145-1205	1235-1325	1345-1400
	Lab Log#:	178296	178297	178298
Gro	BNA Compounds	ug/Kg dry	ug/Kg dry	ug/Kg dry
	Aniline	328 U	335 U	370 U
	Benzoic Acid	820 U	837 U	926 UJ
1	Diethyl Phthalate	328 U	335 U	370 U
i	Di-n-Butyl Phthalate	328 U	335 U	370 U
·	2-Methylphenol	328 U	335 U	370 U
	o-Chlorophenol	328 U	335 U	370 U
	Benzyl Alcohol	328 U	335 U	370 U
	Phenol	328 U	335 U	370 U
i.	Bis(2-Ethylhexyl)Phthalate	328 U	335 U	370 U
Crai	Pesticide/PCB Compounds	ug/Kg dry	ug/Kg dry	ug/Kg dry
Grou q	up) gamma–BHC (Lindane)	4.0 U	3.2 U	4.0 U
ч 	Dieldrin	4.0 U 8.0 U	6.4 U	4.0 U
t	Endrin	8.0 U	6.4 U	8.0 U
t	Endrin Ketone	8.0 U	6.4 U	8.0 U
-	Metals ***	mg/Kg dry	mg/Kg dry	mg/Kg dry
	Arsenic	1.86	1.91	1.64
	Pentavalent	1		
	Trivalent			
	Beryllium	0.15 P	0.15 P	0.11 P
	Cadmium	0.25 P	0.51 P	0.32 P
	Chromium	11	10.9	16.8
	Hexavalent	L	l	
	Trivalent			
	Copper	6.59 B	6.75 B	6.63 B
	Lead	6.8 P	6.6 P	6.1 P
	Mercury	0.019 P	0.022 P	0.012 P
	Nickel	12.9	13.3	13.9
	Selenium	0.40 U	0.40 U	0.40 U
	Zinc	72.9	71.1	68

Table 4 – Effluent Bioassay Results – Pendleton, April, 1993.

Daphnia pulex - 4 (I	8 hour survival Daphnia pulex)	test	
Sample	# Tested*	Percent Survival	
Control	20	90	
6.25 % Effluent	20	95	
12.5 % Effluent	20	95	
25 % Effluent	20	90	
50 % Effluent	20	80	
100 % Effluent	20	95	
		Acute	
	LC50 =	= >100 % efflu	uent
	NOEC	= 100 % efflu	Jent
* fc	our replicates of	five organism	IS
-			

NOTE: all tests were run on the effluent (Ef-GC sample) - lab log # 178288

Ceriodaphnia dubia - 7 day survival and reproduction test (Ceriodaphnia dubia)

Sample	# Tested*	Percent Survival	Mean # Young per Original Female
Control	10	80	16.75
6.25 % Effluent	10	80	13.43
12.5 % Effluent	10	50	13.60
25 % Effluent	10	30	18.67
50 % Effluent	10	70	33.33
100 % Effluent	10	60	24.67
		Survival NOEC * *	Reproduction NOEC = 100 % effluent

ten replicates of one organism The effluent does not appear to be toxic. Statistically significant mortality was noted in the 25% effluent test, but problems were found with the dilution water. Lack of statistically * * significant toxicity in the higher effluent concentrations suggests the effluent was not toxic.

Fathead Minnow - (/	- 96 hour surviv Pimephales proi	
Sample	# Tested*	Percent Survival
Control 6.25 % Effluent 12.5 % Effluent 25 % Effluent 50 % Effluent 100 % Effluent	40 40 40 40 40	93 100 100 100 100 100
* four repli		<u>Acute</u> = >100 % effluent = 100 % effluent anisms

4	(Pimephales pror	nelas)	
Sample	# Tested*	Percent Survival	Mean Dry Weight per Fish (mg)
Control 6.25 % Effluent 12.5 % Effluent 25 % Effluent 50 % Effluent	40 40 40 40	83 88 98 88 85	0.235 0.285 0.273 0.268 0.238
100 % Effluent	NOEC	90 Survival >100 % effluent = 100 % effluent	0.253 <u>Growth</u> NOEC = 100 % effluent
* four rep	licates of ten org	anisms	
Rainbow Trout -	96 hour survival (Oncorhynchus n		
Sample	# Tested*	Percent Survival	
Control 6.25 % Effluent 12.5 % Effluent 25 % Effluent 50 % Effluent 100 % Effluent	30 30 30 30 30 30	100 97 93 97 97 100	
		Acute = >100 % effluent = 100 % effluent	
*	three replicates of	f ten organisms	
Microtox			
_	EC50 (% effluent)		
15 minutes	++		
++	high number of n low toxicity. EC5	egative gammas in 0 >45% effluent (th	statistical analysis – usually indicative of highest effluent concentration tested)
:	LOE LC50 -	EC - lowest observa - lethal concentratio	e effects concentration ble effects concentration on for 50% of the organisms which there is a 50% effect

Table 4 - (cont'd) - Pendleton, April, 1993.

	Location:	Inf-E	Inf-P	Ef-1	Ef-2	Ef-E	Ef-P
	Type:	E-comp	P-comp	grab	grab	E-comp	P-comp
	Date:	4/2021	4/2021	4/20	4/20	4/20-21	4/20-21
	Time:	08000800	0800-0800	1040	1630	0800-0800	0800-0800
a	Lab Log #:	178282	178283	178284	178285	178286	178287
	Laboratory						
TSS (mg/L)	Ecology	46	88	32	31	20	13
	Pendleton	47	87			24.5	22
BOD5 (mg/L)	Ecology	212	143			11	5
	Pendleton	173	173			13.5	6
COD (mg/L)	Ecology Pendleton	593 595	471 528	89.4	101	101 111	90.7 94
Oil and Grease (mg/L)	Ecology Pendleton			1UJ	1UJ		3.2
Phenolics Total (ug/L)	Ecology Pendleton	23.4	15.0			5.4J	3.9 10
Sulfide (mg/L)	Ecology Pendleton			* *			0.1
рН (S.U.)	Ecology Pendleton *			7.2 7.4	7.0 7.4		

Table 5 – Split Sample Results Comparison – Pendleton, April 1993.

J The analyte was positively identified. The associated numerical result is and estimate.

U The analyte was not detected at or above the reported result.

UJ The analyte was not detected at or above the reported estimated result.

* Pendleton reading taken from continuous pH monitor.

** field test - background color in sample interfered with test

Inf wastewater treatment plant influent

Ef wastewater treatment plant effluent (001)

E-comp Ecology composite sample

P-comp Pendleton composite sample

	Location:		Sludge		Munici	pal Sludge
	Type:		grab		Land A	pplication
	Date:		4/20		Regulation	is (EPA, 1993)
	Time:		1155		Ceiling *	Pollutant **
	Lab Log#:		178291		Concentrations	Concentrations
Metals (total)		(ug/l	_) (mg	/Kg dry wt)	(mg/Kg dry wt)	(mg/Kg dry wt)
Arsenic		9.5	P	1.5 P	75	41
Beryllium		1	U	0.2 U		
Cadmium		3.6	Р	0.6 P	85	39
Chromium		1190		186	3000	1200
Copper		98.8		15	4300	1500
Lead		122		19	840	300
Mercury		1.43	N	0.2 N	57	17
Nickel		19	P	3.0 P	420	420
Selenium		10	P	1.6 P	100	36
Zinc		3630		567	7500	2800

Table 6 – Sludge Metals/EPA Municipal Land Application Regulations Comparison – Pendleton, April 1993.

U The analyte was not detected at or above the reported result.

P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.

N The spike sample recovery was not within control limits.

* sludge is not suitable for land application if any ceiling concentration is exceeded

** sludge is suitable for land application with minimal restrictions if no pollutant concentrations are exceeded

	Location:	Ef-E		Runoff-1		
	Type:	E-comp		grab		
	Date:	4/20-21		4/20		
	Time:	0800-0800		1130		RATIO:
Parameter	Lab Log #:	178286		178292		Runoff / Ef
Conductivity (u	umhos/cm)	989		221		0.22
Hardness (mg/	/L CaCO3)	45.2	J	21.6	J	0.48
Color (APHA u	nits)	200		140		0.70
Chloride (mg/L	_)	10.6		2.8		0.26
TS (mg/L)		755		211		0.28
TNVS (mg/L)		644		132		0.20
TSS (mg/L)		20		10		0.50
TNVSS (mg/L)	I	1	U	1	U	1.00
COD (mg/L)		101		84.7		0.84
TOC (mg/L)		29.8		27.9		0.94
NH3-N (mg/L)		0.03	Е	0.082		2.73
NO2+NO3-N ((mg/L)	0.053	Е	0.033		0.62
Total-P (mg/L))	1.09		5.05		4.63
Phenolics Tota	al(ug/L)	5.4	J	2.8		0.52
FIELD OBSER	VATIONS					
pН		7.9		6.5		0.83
Conductivity (u	umhos/cm)	1052		194		0.18

Table 7 - Effluent / Runoff Comparison - Pendleton, April 1993.

Ef wastewater treatment plant effluent (001)

Runoff runoff near sprayfield

E-comp Ecology composite sample

- J The analyte was positively identified. The associated numerical result is and estimate.
- U The analyte was not detected at or above the reported result.
 E Reported result is an estimate because of the presence of an interference.

Table 8 – Sediment Bioassay Results – Pendleton, April 1993.

		Hvalel	la azteca	Microtox
		#	Percent	
<u>Sample</u>	Lab Log #	Tested*	Survival**	EC50
Control		50	92	
Sed-1	178296	50	94	NSR
Sed-2	178297	50	94	NSR
000 2	1,020,	00	04	Nort
Sed-3	178298	50	92	NSR

* five replicates of ten organisms

** no statistically significant responses relative to control responses

NSR data not suitable for reduction indicating low toxicity

EC50 concentration at which there is a 50% effect

Appendices

Appendix A - Sampling Station Locations - Pendleton, April 1993.

Inf - wastewater treatment plant influent

Pendleton sample - collected from a tap in the line between the equalization tank and the aeration basin.

Ecology samples - collected from the line just upstream of the aeration basin.

Ef - wastewater treatment plant effluent (001 discharge)

Pendleton sample - collected in the effluent weir pipe just upstream of the outlet from the weir pipe. The sampler intake was split to collect sample from flow coming in both directions.

Ecology samples - composite and bioassay samples were collected from the effluent weir pipe. The sampler intake was stationed to the east side of the outlet from the weir pipe. Bioassay samples were pumped from the pipe using the composite sample pump. Grab samples were collected from the clarifier just outside the outlet weir near the composite sampling station.

- MLSS Aeration Basin Solids Samples collected from the west side of the basin approximately 10 feet from the edge.
- Sludge sludge sent to spray irrigation Sample collected from the tap near the sludge pump.
- Runoff-1 runoff/ponding at the edge of the sludge sprayfield Sample collected from ponded water just north of the fence bordering Highway 14.
- 006 Discharge 006

Sample collected just downstream of the discharge pipe.

Sed-1

Sediment sample collected just downstream of the Pendleton 001 outfall (Lat 45-34-24; Long 122-21-04). Water depth was 21 feet during sampling.

Sed-2

Sediment sample collected approximately 300 feet downstream from the outfall, the same distance from shore as the outfall (Lat 45-34-26; Long 122-21-08). Water depth was 22 feet during sampling.

Sed-3

Sediment sample collected approximately 0.4 mile upstream of the outfall, the same distance from shore as the outfall (Lat 45-34-15; Long 122-20-55). Water depth was 22 feet during sampling.

Appendix B - Sampling Procedures and QA/QC - Pendleton, April 1993.

Sediment Sampling Procedures

Receiving water sediments were collected with a 0.1 m2 van Veen grab sampler. At each station, the top two centimeters of sample from successive grab samples were collected. A VOA bottle was filled from the first grab. The remainder of the first grab and successive grabs were put in a stainless steel bucket. After an adequate volume was collected, the contents of the bucket were homogenized and put in appropriate containers.

Sampling QA/QC

Chain-of-custody procedures were followed during the inspection. Composite samplers and water sampling equipment were cleaned to sample for priority pollutants using the procedure outlined below.

Sediment sampling equipment, with the exception of the van Veen sampler, was cleaned using the procedure noted below. Caution was used to collect only sediment not in direct contact with the van Veen sampler.

Equipment Cleaning Procedures for Priority Pollutant Sampling

- 1. Wash with laboratory detergent
- 2. Rinse several times with tap water
- 3. Rinse with 10% HNO3 solution
- 4. Rinse three (3) times with distilled/deionized water
- 5. Rinse with high purity methylene chloride
- 6. Rinse with high purity acetone
- 7. Allow to dry and seal with aluminum foil

Specific Analytical QA/QC Concerns

Hexavalent chromium analyses were performed two days after sample collection - the USEPA method holding time is 24 hours.

Color analyses were performed three days after sample collection - the USEPA method holding time is 48 hours.

Appendix B - (cont'd) - Pendleton, April 1993.

Spike and spike duplicate recoveries were low for arsenic, selenium, and mercury in water samples. Results affected by the low spike recoveries are qualified "N". Affected results close to detection limits are qualified "J". Also, the relative percent difference (RPD) between arsenic spike and spike duplicate results was outside the CLP acceptance limits. Affected arsenic results are qualified "J".

Spike recoveries were outside CLP acceptance limits for lead and antimony in sediments, and silver and mercury in the sludge. Analytes are qualified "N" or "J" based on the severity of interference. Also, copper was detected in the sediment laboratory procedural blank: sediment copper data are qualified "B".

Water semivolatile (BNA) scan matrix spike recoveries and RPDs for the three dichlorobenzenes, hexachloroethane, 1,2,4-trichlorobenzene, hexachlorobutadiene, and 2-methylnapthalene were outside acceptable limits. These compounds are qualified with a "J" for sample 178286.

Sediment semivolatile (BNA) scan matrix spike recoveries and RPDs for benzoic acid, 4-chloroaniline, hezachlorocyclopentadiene, and 4-nitroaniline were outside acceptable limits. These compounds are qualified with a "J" for sample 178298.

Water pesticide/PCB scan surrogate recovery of decachlorobiphenyl (DCBP) was low in samples 178282 and 178291. Target analytes similar to DCBP are qualified "J" if detected and "UJ" if non-detected in both samples. Water pesticide/PCB scan surrogate recovery of tetrachlorometaxylate (TCMX) was low in sample 178291. Target analytes similar to TCMX are qualified "J" if detected and "UJ" if non-detected in sample 178291.

-	НЩ	Conductivity Alkalinity Hardness Color	Chloríde Grain Size	TS TNVS TSS	TNVSS % Solids	BODS COD TOC	Total Kjeldahl N NH3-N NO2+NO3-N	otal-F Oil and Grease F-Coliform MF Cyanide (total)	Sulfide	vuu BNAs Pest/PCB	Phenolics Total METALS	PP metals Hexavalent chromium BIOASSAYS	Salmonid (acute series) Microtox (acute)	Uaphnia pulex (acute) Ceriodaphnia (chronic)	Fathead Minnow (acute) Fathead Minnow (chronic) Hvallela (solid acute)	Microtox (solid acute)	Temperature	lemp-cooled pH Conductivity
Location: Type: Date: Time:	Lab Log #: AISTRY											mi	eries)	ute) onic)	acute) chronic) teì	ute) -IONS		
Inf-1 grab 4/20 0935	1/8280			L	1	шш		ш	L	U							ш	шш
Inf-2 grab 4/20 1700	1/8281			Ц	1	шш		ш	L	L							ш	шш
Inf-E E-comp 4/20-21 0800-0800	1/8282 1		_	աան		66 W												
080	1/828	0 M M M N M M M N M M M M		mmð		6 6 W	шш шш			шш		n m n						nnn nnn
Ef-1 grab 4/20 1040	1/8284			Ц		шш		ш	Ĺ	u							ш	ш С Ш
Ef-2 grab 4/20 1630	1/8285			u	1	шш		ш	ι	U.							ш	с.Ш Ш
Ef-3 grab 4/21 1100	1/8304							ш										
Ef-4 grab 4/21 1200	1/8305							ш										
Ef-E E-comp 4/20-21 0800-0800	1/8286	пштт	ιw	шша Ц		<u>а</u> е ш	шшц	ЦШ		шш	LU L	цш					L	ппп
Ef-P P-comp 4/20-21 0800-0800	1/828/ r	пшт	I LLE	ωωα		<u>с</u> с ш	шшц	υс. Ш(n.		ш Г	ЦШ					I	ηшη
Ef-GC *** 4/20	1/8288	пшт		L	1								шші	шшι	пш			
MLSS-1 grab 4/20 1110	1/8289			u)Ш													
MLSS-2 grab 4/20 1650	178290			Ц	ш													

Appendix C - Samples Collected and Parameters Analyzed - Pendleton, April 1993.

April 1993.
Pendleton,
(cont'd) –
ppendix C – j
0

	Type: Type: Date: Time:	siudge grab 4/20 1155	Hunoff-1 grab 4/20 1130	006 grab 4/20 1230	Sed-1 grab 4/23 1145-1205	Sed-2 grab 4/23 1235-1325	5eu-3 grab 4/23 1345-1400
Parameter	Lab Log #:	178291	178292	178301	178296	178297	178298
GENERAL CHEMISTRY Conductivity	MISTRY		Ш				
Alkalinity Hardness			ш				
Color			ши				
Grain Size			Ц		ш	ш	ш
TS		ши	ши				
TSS		υш	υш	ш			
TNVSS		ш	ш			l	1
% Solids					ш	ш	Ш
30			ш	ш			
TOC		шı	ш	ш	ш	ш	W
i otal Njelgani N NH3-N		IJ	Ц				
NO2+NO3-N			ш				
Total-P			Ш				
Oil and Grease			uj u	ш			
Cyanide (total)		ш					
Sulfide							
ORGANICS		u			Ľ	<u>u</u>	<u>u</u>
BNAs		ш	ш		ıш	ıш	1 W
Pest/PCB		ıω	ш		ш	ш	ш
Phenolics Total		ш	ш				
METALS PP Metals		ш	ш		ш	Ш	ш
Hexavalent chromium	mium						
BIOASSAYS Salmonid (acute series)	sarias)						
Microtox (acute)	621122						
Daphnia pulex (acute) Cariodanhnia (chronic)	acute) hronic)						
Fathead Minnow (acute)	/ (acute)						
Fathead Minnow (chronic)	/ (chronic)				Ц	u	ц
Microtox (solid acute)	cute)				1 W	1111	ш
FIELD OBSERVATIONS	ATIONS		i	ı			
l emperature Temn-cooled			ш	ц			
Hd			шı	ш			
Conductivity			ш	ш			

- equal volumes collected with Ef-1 and Ef-2 grab samples Inf wastewater treatment plant influent Ef wastewater treatment plant effluent (001) MLSS aeration basin solids Sludge sludge sent to sprayfield Runoff runoff near sprayfield Runoff runoff near sprayfield E-comp Ecology composite sample Pecology laboratory analysis
 Pendleton laboratory analysis
| PARAMETER | ECOLOGY METHOD | LABORATORY |
|--|---|--|
| GENERAL CHEMISTRY | | |
| Conductivity | EPA, Revised 1983: 120.1 | Ecology |
| Alkalinity | EPA, Revised 1983: 310.1 | Ecology |
| Hardness | EPA, Revised 1983: 130.2 | Ecology |
| Color | NCASI | Weyerhaeuser |
| Chloride | EPA, Revised 1983: 330.0 | Ecology |
| Grain Size | Tetra Tech, 1986 | Soil Technology, Inc. |
| TS | EPA, Revised 1983: 160.3 | Ecology |
| TNVS | EPA, Revised 1983: 160.3 | Ecology |
| TSS | EPA, Revised 1983: 160.2 | Ecology |
| TNVSS | EPA, Revised 1983: 160.2 | Ecology |
| % Solids | APHA, 1989: 2540G. | Analytical Resources Inc. |
| BOD5 | EPA, Revised 1983: 405.1 | Ecology |
| COD | EPA, Revised 1983: 410.4 | Analytical Resources Inc. |
| TOC (water) | EPA, Revised 1983: 415.1 | Ecology |
| TOC (soil/sed) | Tetra Tech, 1986 | Analytical Resources Inc. |
| Total Kjeldahl N | EPA, Revised 1983: 351.4 | Analytical Resources Inc. |
| NH3-N | EPA, Revised 1983: 350.1 | Ecology |
| NO2+NO3-N | EPA, Revised 1983: 353.2 | Ecology |
| Total-P | EPA, Revised 1983: 365.3 | Ecology |
| Oil and Grease (water) | EPA, Revised 1983: 413.1 | Ecology |
| F-Coliform MF | APHA, 1989: 9222D. | Ecology |
| Cyanide (total) | EPA, Revised 1983: 335.2 | Ecology |
| ORGANICS | | ; |
| VOC (water) | EPA, 1986: 8260 | Analytical Resources Inc. |
| VOC (soil/sed) | EPA, 1986: 8240 | Analytical Resources Inc. |
| BNAs (water) | EPA, 1986; 8270 | Ecology |
| BNAs (soil/sed) | EPA, 1986: 8270 | Ecology |
| Pest/PCB (water) | EPA, 1986: 8080 | Analytical Resources Inc. |
| Pest/PCB (soil/sed) | EPA, 1986: 8080 | Analytical Resources Inc. |
| Phenolics Total(water) | EPA, Revised 1983: 420.2 | Ecology |
| METALS | | |
| PP Metals (water) | EPA, Revised 1983: 200 series | Ecology |
| PP Metals (soil/sed) | EPA, Revised 1983: 200 series | Ecology |
| Hexavalent chromium | EPA, 1986: 7196 | Laucks Testing Laboratories, Inc. |
| BIOASSAYS | , | , |
| Salmonid (acute series) | EPA, 1991 | Parametrix, Inc. |
| Microtox (acute) | Beckman, 1982 | Parametrix, Inc. |
| Daphnia pulex (acute) | EPA, 1991 | Parametrix, Inc. |
| Ceriodaphnia (chronic) | EPA, 1989 | Parametrix, Inc. |
| Fathead Minnow (acute) | EPA, 1991 | Parametrix, Inc. |
| Fathead Minnow (chronic) | | Parametrix, Inc. |
| Hyallela (solid acute) | ASTM, 1992 | Parametrix, Inc. |
| Microtox (solid acute) | Tetra Tech, 1986/Ecology modified | Parametrix, Inc. |
| ಲ್ಲಿ ಪ್ರಾಯಕ್ರಿಯ ಪ್ರಯಾಣದ ಪ್ರಾಯಕ್ರಿಯ ಪ್ರಾಯಕ್ರಿಯ ಪ್ರಾಯಕ್ರಿಯ ಸಂಕರ್ಷ (೧೯೯೯)
ಕೆ. ಸಿಲ್ಲಿಯ ಸ್ಥಾನವರ್ಷ ಸಂಕರ್ಣನ್ನು ಸಂಕರ್ಣನ್ನು ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ
ಕೆ. ಸಿಲ್ಲಿಯ ಸ್ಥೀತ್ರಿಯ ಸ್ಥಾನವರ್ಷ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನ್ ಸಂಕರ್ಣನೆ ಸಂಕರ್ಣನೆ ಸಂಕರ್ಣನೆ ಸಂಕರ್ಣನೆ ಸಂಕರ್ಣನ | e en el la completent de contra con contra Cala 🗟 🕇 2017 2017 2017 2017 2017 2017 2017 2017 | en en energene statione dans soldte en de bij de generale for op de generale for de generale de soldte pour en |

Appendix D - Ecology Methods and Laboratories - Pendleton, April 1993.

METHOD BIBLIOGRAPHY

APHA-AWWA-WPCF, 1989. Standard Methods for the Examination of Water and Wastewater, 17th Edition.
 ASTM, 1992. ASTM Standard Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates. American Society for Testing and Materials (ASTM) Guideline Number E 1383-92.
 Beckman Instruments, Inc., 1982. Microtox System Operating Manual.
 EPA, Revised 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (Rev. March, 1983).
 EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd. ed., November, 1986.
 EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms. Second edition. EPA/600/4-89/001.
 EPA, 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth edition. EPA/600/4-90/027.
 NCASI, Bulletin 253. National Council of Paper Industry for Air and Stream Improvement Inc., New York, N.Y.
 Tetra Tech, 1986. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound, Prepared for Puget Sound Estuary Program.

Appendix E – VOA, BNA, Pesticide/PCB and Metals Scan Results – Pendleton, April 1993.

(Group) Construction		Location: Type: Date: Time: Lab Log#: VOA Compounds	Inf-1 grab 4/20 0935 178280 ug/L	Inf–2 grab 4/20 1700 178281 ug/L	Ef–1 grab 4/20 1040 178284 ug/L	Ef–2 grab 4/20 1630 178285 ug/L	Runoff–1 grab 4/20 1130 178292 ug/L	Sludge grab 4/20 1155 178291 ug/L	Sed-1 grab 4/23 1145-1205 178296 ug/Kg dry	Sed-2 grab 4/23 1235-1325 178297 ug/Kg dry	Sed-3 grab 4/23 1345-1400 178298 ug/Kg dry
a Chloromethane 2.0 U 2.5	(Gro		ug/L	ug/L	ug/L	ugri	ug/L	uyrc	ug/itg ury	ugnigury	ug/Ng ur y
a Bromomethane 2.0 U 2.5	× .		2011	2011	2011	2011		2011	25 11	25 11	25 11
Vinyl Chloide 2.0 U 2.5 U 2.5 <thu< th=""> 2.5 U</thu<>											
Ch/oroethane 2.0 U 2.5 U	a										
a Methylene Chloride 20 U 20 U 20 U 25 U 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Acetone 350 300 50 J 4.1 J 50 U 6.3 U 8.5 6.3 Carbon Disulfide 1.0 U 1.0 U 1.0 U 1.0 U 1.1 I,1-Dichloroethane 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U 1.3 U 1.3 b trans-1,2-Dichloroethane 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U 1.3 <thu< th=""> 1.3 <thu< th=""> 1.3</thu<></thu<>											
Carbon Disulfide 1.0 U	a										
b 1,1-Dichloroethane 10 U 10 U 10 U 10 U 10 U 13 U 13 </td <td></td>											
1.1-Dichloroethane 1.0 U											
b trans-1.2-Dichloroethene 1.0 U 1.	a										
b cis-1,2-Dichloroethene 1.0 U 1.3 U 1.3 U 1.3 1,2-Dichloroethane 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U 1.3 U 1.3 2-Butanone (MEK) 5.0 U 5.0 U 5.0 U 5.0 U 1.3 U 1.3 U 1.3 a Carbon Tetrachloride 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U <											
a Chloroform 1.0 U 1.3 U											
1,2-Dichloroethane 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U 1											
2-Butanone (MEK) 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 6.3 U 6.4 U 6.3 c 1,1,1-Trichloroethane 1.1 0.9 J 1.0 U	а										
c 1,1,1-Trichloroethane 1.1 0.9 J 1.0 U 1.3 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.3 U</td></t<>											1.3 U
a Carbon Tetrachloride 1.0 U 1.3 U 1.3 <td< td=""><td></td><td></td><td>5,0 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.3 U</td></td<>			5,0 U								6.3 U
Vinyl Acetate 1.0 U 1.3 U	C										1.3 U
a Bromodichloromethane 1.0 U 1.0 <td< td=""><td>а</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.3 U</td></td<>	а										1.3 U
d 1,2-Dichloropropane 1.0 U 1.3			1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.3 U	1.3 U	1.3 U
e cis-1,3-Dichloropropene 1.0 U 1.0	а	Bromodichloromethane	1.0 U	1.0 U	1.0 U			1.0 U	1.3 U	1.3 U	1.3 U
Trichloroethene 1.0 U 1.3 U	d	1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.3 U	1.3 U	1.3 U
a Dibromochloromethane 1.0 U 1.3 U 1.3 <td< td=""><td>е</td><td>cis-1,3-Dichloropropene</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td></td><td>1.0 U</td><td>1.3 U</td><td>1.3 U</td><td>1.3 U</td></td<>	е	cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.3 U	1.3 U	1.3 U
c 1,1,2-Trichloroethane 1.0 U 1.3 U 1.3 <t< td=""><td></td><td>Trichloroethene</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td></td><td>1.0 U</td><td>1.3 U</td><td>1.3 U</td><td>1.3 U</td></t<>		Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.3 U	1.3 U	1.3 U
c 1,1,2-Trichloroethane 1.0 U 1.3 U 1.3 <t< td=""><td>а</td><td>Dibromochloromethane</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td></td><td>1.0 U</td><td>1.3 U</td><td>1.3 U</td><td>1.3 U</td></t<>	а	Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.3 U	1.3 U	1.3 U
Benzene 1.0 U 1.3 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.3 U</td></t<>											1.3 U
e trans-1,3-Dichloropropene 1.0 U 1.3	-										1.3 Ū
j 2-Chloroethylvinyl Ether 1.0 U 1.3	e										1.3 Ŭ
a Bromoform 1.0 U 1.3 U	ĭ										1.3 Ŭ
4-Methyl-2-Pentanone (MIBK) 5.0 U 5.0 U 5.0 U 5.0 U 6.4 U 6.3 2-Hexanone 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 6.4 U 6.3 Tetrachloroethene 1.3 1.0 U 1.0 U 1.0 U 1.3 U 1.3 <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.3 Ŭ</td></td<>	1										1.3 Ŭ
2-Hexanone 5.0 U 5.0 U 5.0 U 5.0 U 6.4 U 6.3 Tetrachloroethene 1.3 1.0 U 1.0 U 1.0 U 1.3 U 1.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Tetrachloroethene 1.3 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U 1.3 <td></td>											
f 1,1,2,2-Tetrachloroethane 1.0 U 1.3											
Toluene 3.2 1.2 1.0 U 1.0 U 1.5 1.3 U 1.3 U 1.3 g Chlorobenzene 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U 1.3 </td <td>.</td> <td></td>	.										
g Chlorobenzene 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.3											
Ethylbenzene 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U											
Styrene 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.3 U <t< td=""><td>g</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	g										
Total Xylenes 2.0 U											
Trichlorofluoromethane 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.5 U 2											
1 1 2 - Frichlorotritiuoroethane 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11											
1,1,2 - monoroamacroanane 2.0 0 2.0		1,1,2-Trichlorotrifluoroethane	2.0 U	2.0 U	2.0 U	2.0 U		2.0 U	2,5 U	2,5 U	2,5 U

Appendix E (cont'd) – Pendleton, April 1993.

	Location: Type: Date: Time: Lab Log#: BNA Compounds	Inf-E E-comp 4/20-21 0800-0800 178282 ug/L	Ef-E E-comp 4/20-21 0800-0800 178286 ug/L	Runoff–1 grab 4/20 1130 178292 ug/L	Sludge grab 4/20 1155 178291 ug/L	Sed-1 grab 4/23 1145-1205 178296 ug/Kg dry	Sed-2 grab 4/23 1235-1325 178297 ug/Kg dry	Sed-3 grab 4/23 1345-1400 178298 ug/Kg dry
(Gro	up)¹ Benzo(a)Pyrene	7.1 U	e en de la settat de Uela inte da la	0.73 U	7.5 U	328 U	335 U	370 U
1	2,4–Dinitrophenol	142 U	22.2 U	14.7 U	151 U	3280 U	3350 U	3700 U
n	Dibenzo(a,h)Anthracene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n	Benzo(a)Anthracene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	4-Chloro-3-Methylphenol	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	Aniline	2.8 J	1.1 U	0.73 U	3.8 J	328 U	335 U	370 U
	Dimethylnitrosamine Benzoic Acid	7.1 U 35.1	1.1 U 1.1 U	0.73 U 0.73 U	7.5 U 7.5 U	820 U	837 U	926 UJ
	Hexachloroethane	7.1 U	1.1 U 1.1 UJ	0.73 U 0.73 U	7.5 U	328 U	837 U 335 U	370 U
	Hexachlorocyclopentadiene	70.8 UJ	NAR	7.3 UJ	75.5 UJ	1640 U	1670 U	1850 UJ
	Isophorone	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n	Acenaphthene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
i	Diethyl Phthalate	7.1 U	0.22 J	0.73 U	7.5 U	328 U	335 U	370 U
Ì	Di-n-Butyl Phthalate	53.6	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
ņ	Phenanthrene Putulhangul Dhthalata	7.1 U 7.1 U	1.1 U 1.1 U	0.73 U	7.5 U 7.5 U	328 U 328 U	335 U 335 U	370 U 370 U
k	Butylbenzyl Phthalate N-Nitrosodiphenylamine	7.1 U 7.1 U	1.1 U 1.1 U	0.73 U 0.73 U	7.5 U 7.5 U	328 U 328 U	335 U 335 U	370 U 370 U
n	Fluorene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	Carbazole	7.1 Ū	1.1.U	0.73 U	7.5 U	328 U	335 U	370 U
	Hexachlorobutadiene	7.1 U	1.1 UJ	0.73 U	7.5 U	328 U	335 U	370 U
	Pentachlorophenol	35.4 U	5.6 U	3.7 U	37.7 U	328 U	335 U	370 U
	2,4,6-Trichlorophenol	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
1	2-Nitroaniline 2-Nitrophenol	7.1 U 17.7 U	1.1 U 2.8 U	0.73 U 1.8 U	7.5 U 18.9 U	328 U 820 U	335 U 837 U	370 U 926 U
- 200.12	1-Methylnaphthalene	7.1 U	2.0 U 1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n	Naphthalene	7.1 Ŭ	1.1 Ŭ	0.73 U	7.5 U	328 U	335 U	370 U
	2-Methylnaphthalene	7.1 Ū	1.1 UJ	0.73 U	7.5 U	328 U	335 U	370 U
m	2-Chloronaphthalene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	3,3'–Dichlorobenzidine	14.2 U	2.2 U	1.5 U	15.1 U	656 U	670 U	740 U
	Benzidine	14.2 U	2.2 U	1.5 U	15.1 U	656 U	670 U	740 U
L	2-Methylphenol	1.7 J 7.1 U	1.1 U 1.1 UJ	0.73 U 0.73 U	7.5 U 7.5 U	328 U 328 U	335 U 335 U	370 U 370 U
h	1,2-Dichlorobenzene o-Chlorophenol	7.1 U 7.1 U	1.1 UJ 1.8	0.73 U	7.5 U	328 U 328 U	335 U 335 U	370 U
	2,4,5-Trichlorophenol	7.1 U	1.0 1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	Nitrobenzene	7.1 Ŭ	1.1 Ŭ	0.73 U	7.5 U	328 U	335 U	370 U
	3-Nitroaniline	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	4-Nitroaniline	7.1 U	1.1 U	0.73 U	7.5 U	820 U	837 U	926 U
1	4-Nitrophenol	17.7 U	2.8 U	1.8 U	18.9 U	820 U	837 U	926 UJ
	Benzyl Alcohol	5.9 J 7.1 U	1.1 U 1.1 U	0.73 U 0.73 U	7.5 U 7.5 U	328 U 328 U	335 U 335 U	370 U 370 U
р	4–Bromophenyl Phenylether 2,4–Dimethylphenol	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U 370 U
	4–Methylphenol	28.0 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
h	1,4-Dichlorobenzene	7.1 U	1.1 UJ	0.73 U	7.5 U	328 U	335 U	370 U
	4–Chloroaniline	7,1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 UJ
	Phenol	5.9 J	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
:	Pyridine Big(2, Chloraethud)Ether	14.2 U 7.1 U	2.2 U	1.5 U	15.1 U	000 11	005 (1	070 11
ļ	Bis(2–Chloroethyl)Ether Bis(2–Chloroethoxy)Methane	7.1 U 7.1 U	1.1 U 1.1 U	0.73 U 0.73 U	7.5 U 7.5 U	328 U 328 U	335 U 335 U	370 U 370 U
	Bis(2–Ethylhexyl)Phthalate	34.3	2.4	0.73 U 0.74 U	152	328 U	335 U	370 U
i i	Di-n-Octyl Phthalate	7.1 U	ī.i U	0.73 U	7.5 U	820 Ŭ	837 U	926 U
g	Hexachlorobenzene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n	Anthracene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
g	1,2,4-Trichlorobenzene	7.1 U	1.1 UJ	0.73 U	7.5 U	328 U	335 U	370 U
	2,4-Dichlorophenol 2,4-Dinitrotoluene	7.1 U 17.7 U	1.1 U	0.73 U 1.8 U	7.5 U	328 U	335 U	370 U
o n	Pyrene	7.1 U	2.8 U 1.1 U	0.73 U	18.9 U 7.5 U	820 U 328 U	837 U 335 U	926 U 370 U
- ii	Dimethyl Phthalate	7.1 U	i.i Ŭ	0.73 U	7.5 U	328 U	335 U	370 U
	Dibenzofuran	7.1 Ū	1.1 Ŭ	0.73 U	7.5 U	328 U	335 U	370 U
n	Benzo(g,h,i)Perylene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n	Indeno(1,2,3-cd)Pyrene	7.1 U	1.1 U	0.73 U	7.5 U	820 U	837 U	926 U
n	Benzo(b)Fluoranthene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n	Fluoranthene	7.1 U 7.1 U	1.1 U 1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
n n	Benzo(k)Fluoranthene Acenaphthylene	7.1 U 7.1 U	1.1 U 1.1 U	0.73 U 0.73 U	7.5 U 7.5 U	328 U 328 U	335 U 335 U	370 U 370 U
n	Chrysene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
	Retene	7.1 U	1.1 U	0.73 U	7.5 U	328 U	335 U	370 U
- 1.0	4,6-Dinitro-2-Methylphenol	70.8 U		7.3 U	75.5 U	820 U	837 U	926 U
h	1,3-Dichlorobenzene	7.1 U	1.1 UJ	0.73 U	7.5 U	328 U	335 U	370 U
0	2,6-Dinitrotoluene	17.7 U	2.8 U	1.8 U	18.9 U	820 U	837 U	926 U
k	N-Nitroso-di-n-Propylamine	7.1 U	101 U	0.73 U	7.5 U	328 U	335 U	370 U
р	4–Chlorophenyl Phenylether 1,2–Diphenylhydrazine	7.1 U 14.2 U	1.1 U 2.2 U	0.73 U 1.5 U	7.5 U 15.1 U	328 U 656 U	335 U 670 U	370 U 740 U
		14 2 0	/ U	1.0 0	10.1 0	000 U	0/U U	74457 63

Appendix E (cont'd) - Pendleton, April 1993.

	Location: Type: Date: Time: Lab Log#:	Inf E–cor 4/20– 0800–08 1782	21 00	Inf P-co 4/20- 0800-08 1782	-21 300	E-coi 4/20- 0800-08 1782	-21 100 186	E P-co 4/20- 0800-08 1783	-21 300	4	rab 1/20 130	4	rab /20 155		rab /23 205		rab /23 325	g	
	Pesticide/PCB Compounds	uç	g/L			uç	g/L			u	ıg/L	u	g/L	ug/Kg	dry	ug/Kg	dry	ug/Kg	dry
(Gro																			
q q	alpha–BHC beta–BHC	0.05 0.05	U			0.05 0.05	U			0.05 0.05	U	0.05 0.05	ÛĴ	4.0 4.0	Ũ	3.2 3.2		4.0 4.0	
q	delta-BHC		U			0.05				0.05		0.07		4.0			U		
q	gamma–BHC (Lindane)	0.064					U			0.05		0.05		4.0		3.2		4.0	
r	Heptachlor	0.05				0.05				0.05		0.05	UJ	4.0			U	4.0	U
	Aldrin		U				U			0.05		0.05	UJ		U		U	4.0	U
r	Heptachlor Epoxide	0.05				0.05				0.05		0.05			U	3.2			
S	Endosulfan I		U			0.05				0.05		0.05		4.0	U		U	4.0	U
	Dieldrin		U				U			0.10		0.84	J		U		U	8.0	U
u	4,4'-DDE		U				U			0.10		0.15			U		U	8.0	U
t	Endrin Endosulfan II		NJ			0.10				0.10		0.10		8.0	U	6.4	U	8.0	U
S	4.4'-DDD		UJ UJ				U			0.10	-	0.10			U		U	8.0	U
u s	Endosulfan Sulfate		01			0.10				0.10		0.10	03	1	U	6.4	1 The second		
u u	4,4'-DDT		03			0.10 0.10				0.10 0.10		0.10 0.10		8.0	U	6.4	U	8.0	U
ч	Methoxychlor	0.10				0.10				0.10		0.10		8.0 40	U	6.4 32	U	8.0 40	U U
t	Endrin Ketone		J				U			0.50		0.50	03		U		U		-
ť	Endrin Aldehyde		ÛJ J				Ŭ			0.10		0.10	03		U	6.4 6.4	-	8.0 8.0	U U
ν.	gamma-Chlordane		U			0.10				0.05		0.10	03		Ŭ				ິ <u>ປ</u> ີ
v	alpha-Chlordane		Ŭ				U			0.05		0.05	03		Ŭ	3.2 3.2	Ŭ	4.0 4.0	Ŭ
	Toxaphene		Ŭ				Ŭ			5.0		5.0	03	400		3.2			
	Aroclor-1242/1016		Ŭ				Ŭ			1.0		1.0	UJ	400		64		400	Ŭ
w	Aroclor-1248		Ŭ				Ŭ			1.0		1.0	UJ	80		64 64		80	Ŭ
w	Aroclor-1254		ŭ				ŭ			1.0		1.0	UJ	80		64 64	_	80	Ŭ
w	Aroclor-1260		Ŭ				Ŭ			1.0		1.0	UJ	80		64 64	_	80	ິບ
w	Aroclor-1221		Ŭ			2.0				2.0		4.0		160		128			
W	Aroclor-1232		ŭ			2.0 1.0				1.0		4.0 1.5		80		64		80	
		enganat• y e	U.			1.0	U			1.0	U	1.0	00	οu	0	04	U	ov	U
	Metals ***	ug	I/L	uį	g/L	uç	g/L	u	g/L	u	g/L	u	g/L	mg/Kg	dry	mg/Kg	dry	mg/Kg	dry
	Antimony	30	U	30	U	30		30		30	U	30	U	3	UJ	3	UJ	3	UJ
	Arsenic	1.5	U	1.5	U	1.5	U	1.5	U	1.5	Ų	9.5	Ρ	1.86		1.91		1.64	
	Pentavalent Trivalent						333 												
	Beryllium		U	1			U	1	U	1	U	1			Р	0.15		0.11	
	Cadmium	0.16	Р	0.21	P	0.10		0.10	Р	0.30		3.6	Р	0.25	Р	0.51	Ρ	0.32	Р
	Chromium Hexavalent	123 10	U	116 10	U		P U	49 10	P U	30	Ρ	1190		11		10.9		16.8	
	Trivalent		_				_				_				_			483333	
	Copper	23		56.3			P	29	P	16		98.8		6.59		6.75		6.63	
	Lead		J	6.1			ì	1.2	J	8.2		122		6.8	Ρ	6.6		6.1	Р
	Mercury		J	0.13			J	0.068	J	0.05		1.43		0.019	Ρ	0.022	Р	0.012	Р
	Nickel Selenium		U UN	10			U	10	UUN	10	U	19	P	12.9	.,	13.3	.,	13.9	
	Selenium Silver		UNU	2.0		2.0	UNU	2.0			UN			0.40		0.40		0.40	
	Thallium		U	0.50 5.0			Ŭ	0.50 5.0	U U	0.50 5.0	UUU		UJ U	0.3		0.3		0.3	U
	Zinc	231	U	5.0 406	0	5.0 80.6	U	5.0	U	5.0 65.5	U		U	0.50	U	0.50	U		U
	£110	201		400		0.00		111		00.0		3630		72.9		71.1		68	

NOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS.
REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION.
U The analyte was not detected at or above the reported result.
UJ The analyte was not detected at or above the reported estimated result.
J The analyte was positively identified. The associated numerical result is an estimate.
B Analyte was found in the analytical method blank, indicating the sample may have been contaminated.
N For metals analytes analytes are the apply exponent of the ported within a control limit.

For metals analytes - the spike sample recovery is not within control limits. N

There is evidence the analyte is present. The associated numerical result is an estimate. N.J

UN The analyte was not detected at or above the reported result and spike recovery was not within control limits.

The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.

NAR no analytical result

Insufficient data to develop criteria. Value presented is the LOEL – Lowest Observed Effect Level. pH dependent criteria (7.8 pH used). * *

metals results are total recoverable for log # 178282, 178283, 178286, 178287, & 178292 except for Hg – which is total. metals results are total for log # 178291, 179296, 178297, and 178298. Hardness dependent criteria (45 mg/L used). Total Halomethanes m Total Chlorin ated Naphthalenes * * *

+

а

Total Dichloroethenes h

Total Trichloroethanes С

d **Total Dichloropropanes**

Total Dichloropropenes е

Total Tetrachloroethanes f

Total Chlorinated Benzenes (excluding Dichlorobenze g

Total Dichlorobenzenes Total Phthalate Esters ň

Total Chloroalkyl Ethers

Total Nitrosamines k

- 1
- **Total Nitrophenols**

- n Total Polynuclear Aromatic Hydrocarbons
- 0 **Total Dinitrotoluenes**
- **Total Haloethers** р
- **Total BHCs** q
- Heptachlor r
- s Endosulfan
- t Endrin
- u DDT plus metabolites
- **Total Chlordane** v
- w Total Aroclors (PCBs)

Appendix F - Tentatively Identified Compounds (TICs) - Pendleton, April 1993.

TICs are noted on the attached lab data sheets. The sample numbers on the data sheets correspond to the lab log numbers noted below.

Location:	Inf-1	Inf-2	Inf-E	Ef-E	Runoff-1	Sludge
Type:	grab	grab	E-comp	E-comp	grab	grab
Date:	4/20	4/20	4/20-21	4/20-21	4/20	4/20
Time:	0935	1700	0800-0800	0800-0800	1130	1155
Lab Log#:	178280	178281	178282	178286	178292	178291

J The analyte was positively identified. The associated numerical result is an estimate. NJ There is evidence the analyte is present. The associated numerical result is an estimate.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 178280

Lab ID: D606A Matrix: Water

Data Release Authorized: Dom Blatter Report: 05/13/93-MAC:GaT

QC Report No: D606-WDOE Project No: Pendelton Class II

Date Received: 04/23/93

	CAS			Scan	Estimated]
	Number	Compound Name	Fraction	Number	Concentration	
					(µg/L)	
1		Unknown (bp m/e 44)		210	3.18	KF
2	-	Unknown (bp m/e 45)	H	290	21 J	1
3		Silane isomer (bp m/o 281)		899	9 JB	KF
4	-	Unknown (bp m/e 57)	•	1039	120 J	
5 _		Silano isomor (bp m/o 73)	*	1078	12.JB-	KF
6						
7						
8						
9						
10			1			E
111 -		*****				
12						
13 -						
14						
15 -						
16						
17 -						
18 -						
19 -	-					
20 -						
21						
22						
23						
24						
25						
26 -						
27 -						
28 -						
29 -						
30 -						
<u> </u>	l				L	

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 178281

28 29 30

Lab ID: D606B Matrix: Water

Data Release Authorized: Report: 05/07/93-MAC:GaT

QC Report No: D606-WDOE Project No: Pendelton Class II

Date Received: 04/23/93

CAS			Scan	Estimated
Number	Compound Name	Fraction	Number	Concentration
				(µg/L)
	Silane isomer (bp m/o 281)	VOA	800	3.18-
	Unknown (bp m/e 57)	*	1039	140 J
	Silane isomor (bp m/o 73)		1078	7.18
)				
′ 				
<u></u>				
3				
5				
ò				
·				
3			L	
)				
1				
2				
3				
4				
5				
5				
7				
/			<u>+</u>	

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

<pre>F FC10gY, MacCharter FC10gY, MacCharter 1) 1 1213 Description INF E Bogin Dates) 3/34/31 Fc1 Fc1 Fc1 Fc1 Fc1 Fc1 Fc1 Fc</pre>					OLLICEF	C X E	
Description: INF E Begin Date: 3/04/31 Realt: Unit: Total Tank Total	Ecology,	chester					
Begin Date: 93/04/21 : Begin Date: 93/04/21 : Water-Total : : Water-Total : : Result Units : : Totu Ug/1 : : : Totu Ug/1 : : : : Totu Ug/1 : <td< th=""><th>ample No: 93 17828</th><th>Descriptio</th><th>INF :</th><th></th><th></th><th>ndustríal</th><th>ant Wat</th></td<>	ample No: 93 17828	Descriptio	INF :			ndustríal	ant Wat
Water-Total Tent Ident - B/M/Aci Water-Total 7:10 Ug/1 •••• Continued •••• Continued 7:10 Ug/1 Ug/1 0 7:10 Ug/1 0 11.440' Ug/1 7:10 Ug/1 0 11.440' Ug/1 7:10 Ug/1 0 11.440' Ug/1 7:11 Ug/1 0 11.440' Ug/1 7:10 Ug/1 0 11.440' Ug/1 7:11 Ug/1<		Begin Dat	: 93/04/21				
7.1U ug/1 ocTANOIC ACLD 7.1U ug/1 becanoic Acid, bi 7.1U ug/1 becanoic Acid, bi 7.1U ug/1 becanoic Acid, bi 7.1U ug/1 becanoic Acid, bi 9.8NJ° ug/1 7.1U ug/1 becanoic Acid, bi 1.12NJ° ug/1 7.1U ug/1 becanoic Acid, bi 7.1U ug/1 becanoic Acid, bi 7.10 ug/1 becanoic Acid, bi 7	nal	Water-Total *** Result Units	Tent Ident - B	Water-Total ** Result Uni	+		
7.1U ug/l becanoic Acid, Di. 7.1U ug/l Heptacecanoic Acid, Di. 7.1U ug/l becanoic Acid, Tetra- 7.1U ug/l UNKNOWN HYDROCARBON 1 177NJ 7.1U ug/l UNKNOWN HYDROCARBON 2 274NJ ug/l 7.1U ug/l UNKNOWN COMPOUND 1 177NJ ug/l 7.1U ug/l UNKNOWN COMPOUND 3 93.6NJ ug/l 7.1U ug/l I UNKNOWN COMPOUND 3 93.6NJ ug/l 7.1U ug/l I I D Chromatography Mater-Filter 7.1U ug/l I I D Chromatography Water-Filter 7.1U ug/l I I D Chromatography Water-Filter 7.1U ug/l I I I D Chromatography V Mater-Filter 7.1U ug/l I I I I I I I I I I I I I I I I I I I	, , , ,	1/bn 01.7	· •	4NJ* UQ	+		
7.1U ug/l Heptadecanoic acid 90.5NJ* ug/l 7.1U ug/l 17.7U ug/l Heptadecanoic acid 90.5NJ* ug/l 7.1U ug/l 07.1U ug/l 06.400000000000000000000000000000000000	HEXACHLOROBENZENE		c Acid,	59NJ* ug			
7.10 ug/l Default 2.12 ug/l 7.10 ug/l Ug/l Ug/l ug/l ug/l 7.10 ug/l UKKNOWN HYDROCARBON 1 127WJ ug/l 7.10 ug/l UNKNOWN HYDROCARBON 2 274MJ ug/l 7.10 ug/l UNKNOWN HYDROCARBON 2 274MJ ug/l 7.10 ug/l UNKNOWN HYDROCARBON 2 274MJ ug/l 7.10 ug/l UNKNOWN COMPOUND 1 127NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 2 295.6NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 2 295.6NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 2 198NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 2 198NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 4 9.5NJ ug/l	Anthracene · · · · · · · · · · · · · · · · · · ·	10	canoic a	* DNS - 6			
<pre>17.70 ug/1 7.10 ug/1 1 7.10 ug/1</pre>	1,2,4 - If Ichiorobenzene 2.4 - Dichlorobhenol	01.	2 ACIG, TECTA- 2-[(2-mthv]he	• 17 N 0			
7.10 ug/l UNKNOWN HYDROCARBON 1 127NJ* ug/l 7.10 ug/l UNKNOWN HYDROCARBON 2 274NJ* ug/l 7.10 ug/l UNKNOWN HYDROCARBON 2 274NJ* ug/l 7.10 ug/l UNKNOWN HYDROCARBON 2 274NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 2 116NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 3 95.3NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 3 95.3NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 4 95.3NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 7 116NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 7 15NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 7 95.3NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 7 15NJ* ug/l 7.10 ug/l UNKNOWN COMPOUND 7 615NJ* ug/l 7.11 ug/l UNKNOWN COMPOUND 7 615NJ* ug/l 7.11 ug/l UNKNOWN COMPOUND 7 615NJ* ug/l 7.11 ug/l I I I 7.11 ug/l I I I	2,4 - Dinitrotoluene	U 7 . 7 U	SCENOIC ACID				
7.10 ug/l UNKNOWN HYDRCCARBON 2 274M3 ug/l 7.10 ug/l UNKNOWN COMPOUND 1 17.1NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 2 116NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 3 95.3NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 3 95.3NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 3 95.3NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 4 9.5.3NJ ug/l 7.10 ug/l UNKNOWN COMPOUND 5 1160/l ug/l ug/l 7.10 ug/l UNKNOWN COMPOUND 5 128NJ ug/l ug/l 7.10 ug/l UNKNOWN COMPOUND 5 128NJ ug/l ug/l 7.10 ug/l UNKNOWN COMPOUND 5	Pyrene	. 10	HYDROCARBON				
7.10 ug/1 UNKNOWN COMPOUND 1 17.1NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 1 17.1NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 1 17.1NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 2 93.6NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 5 116NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 5 93.6NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 5 93.6NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 5 93.6NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 1 119NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 1 110NK ug/1 7.10 ug/1 UNKNOWN COMPOUND 1 128NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 1 100 100 101 7.10 ug/1 UNKNOWN COMPOUND 1 11 11 11 7.10 ug/1 UNKNOWN COMPOUND 1 615NJ* 101 7.10 ug/1 100 101 101	Dimethylphthalate	D	HYDROCARBON				
7.10 ug/1 UNKNOWN COMPOUND 2 95.5NU* ug/1 7.10 ug/1 UNKNOWN COMPOUND 5 95.5NU* ug/1 7.10 ug/1 UNKNOWN COMPOUND 6 95.5NU* ug/1 7.10 ug/1 INKNOWN COMPOUND 6 95.5NU* ug/1 7.10 ug/1 INKNOWN COMPOUND 6 9.3 7.1	Ulbenzoturan Banzo (dhi) barv) ana		HYDROCARBON	*DN622			
7.10 ug/1 UNKNOWN COMPOUND 3 93.6NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 3 95.8NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615NJ* ug/1 7.10 ug/1 Ion Chromatography Water-Filter 7.10 ug/1 Ion U/1 Io	Indeno (1.2.3.5d) ovrene						
7.10 ug/1 UNKNOWN COMPOUND 4 95.3NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 7 128NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615NJ* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615NJ* ug/1 17.10 ug/1 +	ranthene	. 1 U	COMPOUND	2.6NJ* UQ			
7.10 ug/1 UNKNOWN COMPOUND 5 1499/J* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615N/J* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615N/J* ug/1 7.10 ug/1 UNKNOWN COMPOUND 10 615N/J* ug/1 7.10 ug/1 +	Fluoranthene	. 10	COMPOUND	5.3NJ* ug/			
7.10 ug/l UNKNOWN COMPOUND 7 7.10 ug/l UNKNOWN COMPOUND 6 7.10 ug/l UNKNOWN COMPOUND 10 7.10 ug/l + 17.10 ug/l + 17.10 ug/l + 17.10 ug/l + 17.10 ug/l + 14.20 ug/l + 14.20 ug/l + 14.20 ug/l + 14.20 ug/l + 17.10 ug/l + 14.20 ug/l + 14.20 ug/l + 14.20 ug/l + 14.20 ug/l + 14.20 ug/l + 17.10 ug/l + 14.20 ug/l + 17.10 ug/l + 14.20 ug/l + 14.20 ug/l + 14.20 ug/l + 15.300 + 10.7 * Recov 10.7 * Recov 10.1 * Recov 1	Benzo(k)fluoranthene	. 10	COMPOUND	/5n *LN911			
7.1U ug/l UNKNOWN COMPOUND 6 515NJ* ug/l 7.1U ug/l 515NJ* ug/l 615NJ* ug/l 7.1U ug/l 1 010 Chromatography Water-Filter 7.1U ug/l 1 010 Chromatography Water-Filter 7.1U ug/l 6.3 * mg/l 6.3 * mg/l 7.1U ug/l 6.3 * mg/l 8.3 * mg/l 7.1U ug/l	Acenaphthylene	. 10	KNOWN COMPOUND	28NJ* ug/			
7.10 ug/l UNKNOWN COMPOUND 10 615NJ* ug/l 7.10 ug/l +	Chrysene	. 10	KNOWN COMPOUND 8	9.8NJ* ug/			
<pre>7:10 ug/1 17:10 ug/1 7:10 ug/1 8:3 * mg/1 8:3 * mg/1 8:4 * m</pre>	Ketene ninitro		COMPOUND 1	15NJ* ug/			
17.70 ug/l Ion Chromatography Water-Filter 7.10 ug/l Ion Chromatography Reault Unit 7.10 ug/l ************************************	4, 0 - DINICIO - Z - MECAYIPA+ 1 3 - Dichlorobenzene						
7.1U ug/l 7.1U ug/l 14.2U ug/l 7.1U ug/l 8.3 mg/l 8.3 mg/l 8.4 mg/l 8.5 mg/l 8	2,6-Dinitrotoluene		Ion Chromatograph	ater-Pilter	•		
7.10 ug/l 14.20 ug/l 7.10 ug/l 8.3 mg/ 87 % Recov 107 % Recov 107 % Recov 108 % Recov 101 % Recov 101 % Recov 101 % Recov 101 % Recov 101 % Recov 101 % Recov 103 % Recov 101 % Recov 100 % Recov 10	N-Nitroso-di-n-Propyla+			esult Unit			
14.2U ug/l 7.1U ug/l 87.1U ug/l 86 % Recov 107 % Recov 107 % Recov 101 % Reco	- Chlorophenyl - phenyl				- +		
7.10 ug/l 87 % Recov 107 % Recov 107 % Recov NAF % Recov 86 % Recov 101 % Recov 101 % Recov 93 % Recov 94 % Recov 94 % Recov 94 % Recov 94 % Recov 94 % Recov 95 % Recov 95 % Recov 96 % Recov 96 % Recov 96 % Recov 97 % Recov 96 % Recov 96 % Recov 96 % Recov 97 % Recov 96 % Recov 96 % Recov 97 % Recov 96	1,2 - Diphenylhydrazine	14.20	orid	.3 • mg/			
87 87 86 86 86 89 89 89 89 86 86 86 86 86 86 86 86 86 86	BIS (20CHLOROISOPROPYL) +	7.1U ug					
86 \$ Recov 107 \$ Recov NAF \$ Recov 89 \$ Recov 101 \$ Recov 101 \$ Recov 101 \$ Recov 93 \$ Recov 94 \$ Recov 9	Surrog: 2-Fluorobiphen+	87 \$					
107 * Recov 89 * Recov 86 * Recov 101 * Recov 79 * Recov 93 * Recov 94 *	2 - Fluorophenol	86					
89 * Recov NAF * Recov 101 * Recov 79 * Recov 93 * Recov 94 * Recov 93 * Recov 93 * Recov 94 * Reco	Surrog: 2,4,6-Tribromo+	107 \$					
B: D4 NAF K Recov B: D4 B6 F Recov 79 F Recov 71 F Recov 71 F Recov 72 10/1 72 10/1 73 14 74 14 75 10/1 70 14 71 12	Terphenyl-d14	86 1 1 1 1					
<pre>BF-U4 80 8 8 86 COV DIZEDE 101 8 86 COV (SS) 93 8 86 COV (SS) 93 8 86 COV Aci Water-Total Aci Result Units </pre>	Pyrene-alu	÷.					
nzene 101 * Recov (SS) 93 * Recov (SS) 93 * Recov Aci Water-Total Aci Water-Total Aci Nater-Total	, 2 - DICHLOROBENZENE - D4	800 800					
<pre>(SS)</pre>	urrog: US-Nicrobenzen						
Aci Water Total Aci Water Total Result Units 	D4-2-CHLOROPHENOL (SS)						
Aci Water-Total Result Unite 2920NJ* ug/l 280NJ* ug/l - 725NJ* ug/l XYET+ 144NJ* ug/l XYET+ 5780NJ* ug/l							
Result Units Result Units Result Units Result Units Result Units Result Ug/l Result Ug/l Result Ug/l D (2+ 5780N* ug/l D (2+ 5780N* ug/l	lent - B/N/Aci	rotal					
a. 2920NJ* 1280NJ* 725NJ* * 423NJ* XYET+ 144NJ* D (Z+ 5780NJ*	, , , , , , , , , , , , , , , , , , ,	Units					
1280NJ* 725NJ* 423NJ* XYET+ 144NJ* D (Z+ 5780NJ*		J* ug/l					
- 725NJ* *23NJ* XYET+ 144NJ* D (2+ 5700NJ*	OCTADECANOIC ACID	*					
423NJ* XYET+ 144NJ* D (2+ 5760NJ*	1-Hexanol, 2-Ethyl-						
D (2+ 5780NJ* UG							
	D (Z	144NJ* UG 780NJ* UG					

Page

Washington State Department of Ecology Sample/Project Analysis Results

56-NUC-11

17-JUN-93 12:12:31

Washington State Department of Ecology Sample/Project Analysis Results

Page 10

Officer: MRH

Account: D3800

Laboratory: Ecology, Manchester

Project: DOE-714Y PENDELTON

Sample No: 93 178286

Description: EP-E

Source: Industrial Effluent

+ -

+

+ ---- +

Begin Date: 93/04/21

••

<pre>*** Continued *** Matrix Spike #2 Matrix *2 Matrix *2</pre>	<pre>*** Continued #*** Continued Matrix Spike #2 *** Continued *** Continued *** Continued *** Chickon Content Content *** Chickon Content Content *** Chickon Content Content *** Chickon Content *** Chicko</pre>	жее 3 8 7 9 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
 с с с с с с с с с с с с с с с с с с с	- + + + + + + +	3.36 3.36 3.36 3.37 3.47 3.47 3.47 3.47 3.47 3.47 3.47
1 1	+ +	36 # Recov 79 # Recov 80 # Recov NAF # Recov 70 # Recov 70 # Recov 70 # Recov
	+ +	79 * Recov 77 * Recov NAF * Recov 70 * Recov 70 * Recov 75 * Recov 96 * Recov
- Collot - C	+ +	77 * Recov 80 * Recov 70 * Recov 70 * Recov 75 * Recov 96 * Recov
н при	+ +	80 80 87 80 80 80 80 80 80 80 80 80 80
 	+ +	NAF & Recov 70 & Recov 75 & Recov 96 & Recov
 	+ +	70 # Recov 75 # Recov 96 # Recov
 	D4-2-CHL surrog: +	75 # Recov
 □ □<	surrog: + Tent Id	96 Recov
 	Tent Ident	
Н H H </td <td>Tent Ident</td> <td></td>	Tent Ident	
н н н н н н н н н н н н н н	Tent Ident -	
р р р р р р р р р р р р р р	;	
ранска с с с с с с с с с с с с с с с с с с с	+	Result Units
 		
 н 		
С С </td <td></td> <td>9.7NJ* ug/l</td>		9.7NJ* ug/l
Y () () () () () () () () () () () () ()	-	
р р р р р р р р р р р р р р	ETHANOL,	3.0NJ* ug/l
н е е с е е и и и и и и и и и и и и и и и		1.8NJ* ug/l
р р р р р р р р р р р р р р	Decanoic	
н с с с с с с с с с с с с с	tecov 9-HEXADECENOIC ACID	13.9NJ* ug/l
н е е се е и и й п п н е е е е е е е е е е е е е е е	LECOV UNKNOWN COMPOUND 1	0.67NJ* ug/l
й п п и й п п и й п п и е е е е е е е	Lecov UNKNOWN COMPOUND 2	2.0NJ* ug/l
но в ка но в ка на на но в ка на на но в ка но в	UNKNOWN COMPOUND 3	0.77NJ* ug/l
й в й к й в й к в й в й к в й в и к в и в и в и	UNKNOWN COMPOUND 4	
й р р с с с с с с с с с с с с с с с с с	UNKNOMN	
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UNKNOWN	2.6NJ* ug/l
 на сказа на сказа	UNKNOWN	6.6NJ* ug/l
<pre>i)perylene</pre>	Butane, 1	
 , 2, 3 - cd) pyrene 90 % R fluoranthene 92 % R fluoranthene 84 % R hylene 75 % R fluorobiphen+ 60 % R phenol 69 % R 	<pre>lecov Ethanol, 1-(2-Butoxyet+</pre>	18.3NJ* ug/l
riuorantnene 92 4 R hene 94 4 R fluoranthene 94 8 R hylene 75 4 R 2-Fluorobiphen+ 60 4 R phenol 69 4 R	COV	
filuoranthene 64 7 7 filuoranthene 75 7 8 8 hylene 86 7 8 2-Fluorobiphen+ 60 7 8 phenol 69 7 8	· · ·	
hylene 75 k R 86 k R 2-Fluorobiphen+ 60 k R phenol 69 k R	recov ton unromatography	Mater-Filtere Beenit nuite
2 - Fluorobiphen+ 60 % R phenol 69 % R		
2-Fluorobiphen+ 60 % R phenol 69 % R	Chlor	10 5 5 50 / 1
69 * R		,
NAF		
.6-Dinitro-2-methylph+ 64 % R		
30 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	ecov	
98 4 8	Lecov	
N-Nitroso-di-n-Propyla+ 75 & Recov	COV	
Terphenyl-d14 81 % Recov	COV	
NAF & R	COV	

(Sample Complete)

+ ---- +

17-JUN-93 12:12:31

Washington State Department of Ecology Sample/Project Analysis Results

Page 18

Account: D3800

Officer: MRH

Sample No: 93 178292

Project: DOE-714Y PENDELTON Laboratory: Ecology, Manchester Description: RUNOFF-1

Source: Water (General)

••
93/04/20
Date:
Begin

	Water-Total	otal		Water-Total
*** Continued	*** 0]t		*** Continued	•
	Kesult.			Result Units
2 - Chloronaphthalene	0.730	ug/1	1,2-Diphenylhydrazine	1.5U uq/l
3, 3' - Dichlorobenzidine	1.50	ug/l	BIS (20CHLOROISOPROPYL) +	
Benzidine	1.50	ug/l	Surrog: 2-Fluorobiphen+	
2 - Methylphenol	0.730	ug/1	2 - Fluorophenol	62 % Recov
1,2-Dichlorobenzene	0.730	ug/1	Surrog: 2,4,6-Tribromo+	94 % Recov
o-Chlorophenol (2-Chlo+	0.73U	ug/l	Terphenyl - d14	71 % Recov
2,4,5-Trichlorophenol	0.73U	ug/1	Pyrene-d10	NAF & Recov
Nitrobenzene		ug/l		-
3-Nitroaniline	0.73U	ug/l	Surrog: D5-Nitrobenzene	-
4 - Nitroaniline	0.730	ug/l		*
4 - Nitrophenol	1.80	ug/1	D4-2-CHLOROPHENOL (SS)	71 & Recov
Benzyl Alcohol	0.730	ug/l		
4 - Bromophenyl - phenylet +	0.73U	ug/l		* * * * * * * * * * * * * * * * * *
2,4-Dimethylphenol	0.730	ug/l	Tent Ident - B/N/Aci	Water-Total
4 - Methylphenol	0.73U	ug/1		Result Units
1,4 - Dichlorobenzene	0.730	ug/l		• • • • • • • • • • • • • • • • • • • •
4 - Chloroaniline	0.730	ug/1	Decanoic Acid, Hexa-	5.0NJ* ug/l
Phenol	0.730	1/bn	OCTADECANOIC ACID	1.4NJ* ug/l
Pyridine	1.50	1/gu	Decanoic Acid, Tetra-	1.2NJ* ug/1
bis(2-Chloroethyl)Ether	0.730	ug/l	9 - HEXADECENOIC ACID	2.3NJ* ug/l
bis(2-Chloroethoxy)Met+	0.730	ug/1	UNKNOWN HYDROCARBON 1	
BIS(2-ETHYLHEXYL) PHTH+	0.740	ug/l	UNKNOWN HYDROCARBON 2	
Di-n-Octyl Phthalate	0.730	ug/l		
HEXACHLOROBENZENE	0.730	ug/1	UNKNOWN COMPOUND 3	
Anthracene	0.730	1/bn	UNKNOWN COMPOUND 4	
1,2,4-Trichlorobenzene	U E L . 0	ug/1	UNKNOWN COMPOUND 5	
2,4-Dichlorophenol	U E L . 0	1/5n	UNKNOWN COMPOUND 6	
2,4-Dinitrotoluene	1.80	ug/1	UNKNOWN COMPOUND 7	* DN 6
Pyrene	U E L . 0	ug/l	UNKNOWN COMPOUND 8	
Dimethylphthalate	0.730	ug/l	UNKNOWN COMPOUND 9	+ 5N 0
Dibenzofuran	UE7.0	ug/1	UNKNOWN COMPOUND 10	
Benzo(ghi)perylene	0.730	ug/l	UNKNOWN COMPOUND 11	
Indeno (1,2,3-cd) pyrene	0.730	ug/1		
Benzo(b)fluoranthene	0.730	ug/l		* • • • • • • • • • • • • • • •
Fluoranthene	0.73U	ug/l	Ion Chromatography	Water-Filtere
Benzo(k)fluoranthene	0.730	ug/l		Result Units
Acenaphthylene	0.73U	ug/l		- + + + + + + + + + + + + + + + + + + +
Chrysene	0.73U	ug/l	Chloride	2.6 * mg/l
	0.730	r/bn		
4, 6 - Dinitro - 2 - methylph+	7.30	ng/1		
1, 3 - Dichlorobenzene	0.730	ug/1		
2,6-Dinitrotoluene	-	ug/1		
N-NIEroso-di-n-Propyla+	0.730	1/5n		
4 - Chiorophenyi - phenyie+	0.730	ug/1		

(Sample Complete)

17-JUN-93 12:12:31

Project: DOE-714Y PENDELTON Laboratory: Scology, Manchester

Washington State Department of Ecology Sample/Project Analysis Results

Officer: MRH

Account: D3800

Source: Sludge (General)

5 -

Description: SLUDGE

Sample No: 93 178291

*** Continued	***			nater-local led ttt	
	-	Units		Resul	
2 - Methylnaphthalene	7.50	ug/1	+ +	e+ 7.5U	U ug/l
- Chloronaphthalene	7.50	ug/1	1,2-Diphenylhydrazine	-	
3, 3' - Dichlorobenzidine	15.10	ug/1	BIS (20CHLOROISOPROPYL)	+	
Benzidine	15.10	ug/1	Surrog: 2-Fluorobiphen+	•	
2 - Methylphenol	7.50	1/bn	2 - Fluorophenol		* Recov
1,2 - Dichlorobenzene	•	l/pu	Surrog: 2.4.6-Tribromo+		r Recov
- Chlorophenol (2-Chlo+	•	uq/l	Terphenyl-d14	•	
2,4,5-Trichlorophenol	ŝ	ug/1	Pvrene-d10	AVN	
i trobenzene	<u>ې</u>	uq/1	1.2.DICHLOROBENZENE-D	4 65	
3-Nitroaniline	7.50	1/00	Surrog: D5-Nitrobenzen	•	
4-Nitroaniline	7.50	uq/1	Surrog: Phenol D5		
4 - Nitrophenol	6.	1/07	D4-2-CHLOROPHRNOL (SS	- Y	4 0
enzyl Alcohol	•	uq/1			
4 - Bromophenyl - phenylet +	ŝ.	uq/l		•	
2,4 Dimethylphenol	7.50	1/bn	Ident - B/N/Ac	<u>د</u>	Total
4 - Methylphenol	•	ug/1		Result	Units
1,4-Dichlorobenzene	7.50	l/pu			
4 - Chloroaniline		1/Ju	c Acid, Hexa	512NJ*	
Phenol	7.50	1/bn		+ UN + L	207
Pyridine	15.10	1/1n	Decanoic Acid, Tetra-	62.1NJ*	
bis (2 - Chloroethyl) Bther	7.50	ug/1		27.4NJ+	01
bis (2 - Chloroethoxy) Met+	7.50	1/5n		842NJ*	101
(S(2-ЕТНҮЦНЕХҮЦ) РИТН+	152 *	ug/l	TETRADECANOIC ACID. 12	4	
Di-n-Octyl Phthalate	7.50	ug/1	enzofuran, 2-ethenv		
HEXACHLOROBENZENE	7.50	uq/l	NKNOWN COMP	* LNO. 9	
Anthracene	7.50	ug/1		•	
1,2,4-Trichlorobenzene	7.50	ug/l	COMPOUND	16.8NJ*	1 2
2,4-Dichlorophenol	7.50	ug/l	UNKNOWN COMPOUND 3	8.2NJ*	
4 - Dinitrotoluene	o.	ug/l	COMPOUND	7.1NJ	
Pyrene	ŝ	ug/l	UNKNOWN COMPOUND 5	16.1NJ*	Бn
imethylphthalate	ŝ	ug/l	KNOWN COMPOUND	72.6NJ*	6n
Dibenzofuran	~	ug/l	UNKNOWN COMPOUND B	28.7NJ	
	ŝ	ug/l	UNKNOWN COMPOUND 9	60900NJ	* ug
Indeno(1,2,3-cd)pyrene	ŝ	ug/l			
Benzo(b)fluoranthene		ug/l			
Fluoranthene	ŝ	ug/l			
enzo(k)fluoranthene	ŝ	ug/1			
cenaphthylene	٠	ug/1			
Chrysene	7.50	ug/l			
Retene	•	ug/1			
4,6-Dinitro-2-methylph+	75.50	ug/l			
1, 3 - Dichlorobenzene	7.50	ug/1			
, 6 - Dinitrotoluene	18.9U	ug/1			
N - Nitroso - di - n - Dronvla -	7.511	1/ 1/1			

16 Page

Appendix G - GLOSSARY

ABN	Acid base-neutral, semivolatile organics, see BNA
AED	Atomic Emission Detector
BNA	Base-neutral acids, semivolatiles, see ABN
BOD	Biological Oxygen Demand
CLP	Contract Laboratory Program
COD	Chemical Oxygen Demand
co-elutants	When two or more compounds have the same chromatographic retention time
CVAA	Cold Vapor Atomic Absorption
d-deuterium	An isotope of hydrogen
DL	Detection Limit
DOC	Dissolved Organic Carbon
DW	Dangerous Waste
ECD	Electron Capture Detector-Sensitive to halogen compounds - use: halogenated
	hydrocarbons
EHW	Extremely Hazardous Waste
ELD	Electrolytic Detector - Hall
EP TOX	Extraction Procedure Toxicity
Fatty Acid	Monobasic organic acids derived from hydrocarbons; include both saturated
	and unsaturated acids
FID	Flame Ionization Detector-Sensitive to carbon compounds, used in the
	determination of hydrocarbons
Flash Point	Minimum temperature that will enable combustion or explosions to take place
FTIR	Fourier Transform Infra-Red
GC	Gas Chromatography
GCMS	Gas Chromatography Mass Spectrometry, also GC/MS
HC	Hydrocarbon
HDPE	High Density Polyethylene
HH	Halogenated Hydrocarbon
HPLC	High Performance Liquid Chromatography
HSD	Halogen-Specific Detector - use: halogenated hydrocarbons
HW	Hazardous Waste
HWPAH	Hazardous Waste Polynuclear Aromatic Hydrocarbon
ICP	Inductively Coupled Plasma
ICP/MS	Inductively Coupled Plasma/Mass Spectrometry
IDL	Instrument Detection Limit
isomer	One of two or more substances which have the same elementary composition
	but differ in structure and hence in properties
isotope	One of two or more nuclides having the same atomic number, but differing in mass number

1

Appendix G - (continued)

Isotopically labelled	The substitution of one or more isotopes for elements in a compound
kg	kilogram (1 X 10 ³ grams)
L	Liter (1 X 10^3 milliliters)
LC50	Concentration which is lethal to 50% of the test organisms
LOD	Limit of Detection
LOEC	Lowest Observable Effect Concentration
m^3	Cubic meter (1 X 10^3 liters)
MBAS	Methylene Blue Active substances
metalloids	Elements that exhibit transitional characteristics between metals and non-
	metals, examples include silver, selenium, antimony
MF	Membrane Filter
mg	milligram (1 X 10 ⁻³ grams)
mĽ	Milliliter (1 X 10^{-3} liters)
MPN	Most Probable Number
ng	Nanogram (1 X 10 ⁻⁹ grams)
nm	Nanometer (1 X 10 ⁻⁹ meters)
NOEC	No Observable Effect Concentration
NPDES	National Pollution Discharge Elimination System
NPOC	Non-Purgeable Organic Carbon
NTU	Nephelometric Turbidity Unit
OSHA	Occupation Safety and Health Administration
OSW	Office of Solid Waste
PCB	Polychlorinated Biphenyl
PE	Polyethylene
pg	Picogram (1 X 10 ⁻¹² grams)
pН	Hydrogen Ion Concentration
PID	Photoionization Detector - use: aromatic hydrocarbons
PLM	Polarized Light Microscopy
POC	Purgeable Organic Carbon
Polyvalent	Capable of having more than one valance state
PP	Priority Pollutant
ppb	Parts per billion (1 X 10 ⁻⁹ ug/L or ug/kg)
ppm	Parts per million (1 X 10 ⁻⁶ ug/L or ug/kg)
ppt	Parts per thousand (1 X 10^{-3} ug/L or ug/kg)
PQL	Practical Quantitation Limit
PUF	Polyurethane Foam
SDWA	State Drinking Water Act
SOW	Statement of Work
SW	Solid Waste

Appendix G - (continued)

TC	Target Compounds or Total Carbon
TCD	Thermal Conductivity Detector
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TDS	Total Dissolved Solids
TIC	Total Inorganic Carbon or for GCMS Tentatively Identified Compound
TNVS	Total Non-Volatile Solids
TNVSS	Total Non-Volatile Suspended Solids
TOC	Total Organic Carbon
TP	Total Phosphorous
TPH	Total Petroleum Hydrocarbons
TS	Total Solids
TSS	Total Suspended Solids
TVS	Total Volatile Solids
ug	Microgram (1 X 10 ⁻⁶ grams)
ug/m ³	Microgram per cubic meter
VOA	Volatile Organic Analysis
VOC	Volatile Organic Carbon
ZHE	Zero Headspace Extractor