

Texaco USA (Anacortes) Class II Inspection

March 1995

Water Body No. WA-03-0020

Publication No. 95-314 printed on recycled paper

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact the Environmental Investigations and Laboratory Services Program, Toxics Investigations Section, Joan LeTourneau at (360) 407-6764 (voice).

Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office P.O. Box 47600 Olympia, Washington 98504-7600 (360) 407-7472

Refer to Publication Number 95-314

Texaco USA (Anacortes) Class II Inspection

by Guy Hoyle-Dodson and Paul Stasch

Environmental Investigations and Laboratory Services Program Olympia, Washington 98504-7710

March 1995

Water Body No. WA-03-0020

Publication No. 95-314 printed on recycled paper

Table of Contents

Pag	<u>e</u>
List of Figures and Tables	ii
Abstract i	v
Summary	v
Flow Measurement	
Process Wastewater Treatment System Operation	
	v
	vi
	vi
	vi
·	vi
Sediments v	vi
Recommendations	ii
	ii
Process Wastewater Treatment System v	
Sediments	ii
Introduction	1
	_
Setting	2
	2
Refinery Wastewater Treatment System	3
Procedures	4
Quality Assurance / Quality Control	5
Results and Discussion	5
	5
	5
	5
	7
NDPES Permit Comparisons	

Table of Contents (cont.)

Pag	<u>e</u>
Detected Organics and Priority Pollutants	8
Bioassays	9
Split Samples	
Sediments 1	0
General Chemistry	0
Detected Organics and Priority Pollutants	0
Bioassays 1	1
erences	2
ures and Tables	4
pendices	

List of Figures and Tables

	$\underline{\mathbf{Pa}}$	<u>ge</u>
Figures		
Figure 1.	Location Map - Texaco USA Puget Sound Refinery	14
Figure 2.	Process Schematic - Texaco USA Puget Sound Refinery Industrial Wastewater Treatment System	15
Tables		
Table 1.	Ecology General Chemistry Results	16
Table 2.	Ecology General Results Percent Removal	18
Table 3.	NPDES Limits Inspection Results	19
Table 4.	Detected VOA, BNA, and Metals Scan Results	20
Table 5.	Effluent Bioassay Results	22
Table 6.	Split Sample Results Comparison	24
Table 7.	Comparison of Detected Sediment Organics to Marine Sediment Quality Standards	26
Table 8.	Sediment Bioassay Results	27

Abstract

A Class II Inspection was conducted May 9-10, 1994 at the Texaco USA Petroleum Refinery (Texaco) in Anacortes, Washington. The inspection investigated the Texaco process wastewater and stormwater treatment system. The inspection identified deficiencies in several areas of plant operation and maintenance.

General chemistry results suggest that the systems trickling filter and aeroaccelator activated sludge units were not operating efficiently, but this was offset by the performance of the aerated lagoon. Total ammonia nitrogen concentrations in the whole effluent exceeded chronic marine water quality criteria based on critical conditions of the receiving water. Refinery effluent concentrations were all within NPDES permit limits. Effluent organic and metal concentrations were generally within state and EPA water quality criteria with the exception of zinc, copper, mercury, and cadmium.

Ecology laboratory split sample analyses found some differences between Texaco and Ecology effluent samples. Bioassays found toxicity for four out of five sensitive species. Sediments analyses found that most organic and metal concentrations did not exceed the marine sediment quality standards, with the exception of Bis(2-ethylhexyl)Phthalate. Bioassays revealed no significant toxicity in the sediment.

Summary

Flow Measurement

Evaluation of the Texaco flow measurement device was not done during the inspection. Average flow recorded by the Texaco meter for the two days of the inspection was approximately 3.6 MGD. Average reported stormwater flow for the period was 1.4 MGD.

Process Wastewater Treatment System Operation

Several areas of the process wastewater treatment system appeared to be experiencing some operational and maintenance difficulties. The aeroaccelator activated sludge (AAS) units did not appear to be operating efficiently and may be undersized for the flow. Stormwater flume oil skimming appeared ineffective and oil was entering the final stabilization pond. The presence of a black residue on the banks of the final stabilization pond indicates either an accumulation of biosolids or problems with the separation of oil from the wastewater. The chlorine injection system, although ultimately effective, was inherently inefficient, and required relatively large quantities of chlorine to disinfect a relatively small volume of sanitary sewage mixed with a much larger volume of process water. The walls of the dissolved air floatation (DAF) units had cracks that were leaking an oily residue.

General Chemistry

Solids and oxygen demand parameter concentrations in the API effluent were comparable to concentrations in API effluents at typical refineries. Ammonia nitrogen is conceivably being air stripped in the DAF units. Removal efficiencies of several general chemistry parameters across the trickling filter and the south AAS unit were less than what would be typically expected for either of these units, which suggests that these components were not operating effectively. Removal efficiencies across the aerated lagoon were better than what would typically be expected, and indicates that a large part of the system's treatment was being performed by the lagoon. The addition of stormwater loading to the final stabilization pond appeared to have little impact on the final effluent concentrations of most parameters. A possible exception could be the ammonia nitrogen load which experienced an increase across the treatment plant. Total ammonia nitrogen also exceeded chronic marine water quality criteria for critical conditions of the receiving water. Although the extent of dilution by the receiving water was not determined, ammonia concentrations may be of concern.

NPDES Permit Comparisons

Refinery total effluent discharge concentrations were within NPDES permit monthly averages and daily maximum loading limits.

Detected Organics and Priority Pollutants

Volatile organic and BNA compounds were found in concentrations that did not exceed EPA water quality criteria for receiving waters. Most metals concentrations in the whole effluent did not exceed EPA or state water quality criteria with the exception of zinc, copper, mercury, and cadmium. Zinc exceeded the state acute criteria by at least a factor of six. Dilution with the receiving water will need evaluation to determine whether the discharge can ultimately meet the zinc criteria.

Split Samples

Analysis of effluent splits between Ecology and Texaco found the Texaco laboratory analysis to be comparable to the Ecology lab analysis. Ecology analysis of Ecology and Texaco composite samples found differences between the two samples for several parameters, suggesting dissimilarity in sampling protocols. Bioassays results from the two labs also differed substantially, suggesting serious differences between labs in laboratory bioassay protocols.

Bioassays

One bioassay found little toxicity, while four bioassays found moderate to high toxicity. Rainbow trout (*Oncorhynous mykiss*) 96-hour survival test displayed 93% survival at 100% effluent concentration. Fathead minnow 96-hour survival test found 5% survival at 100% effluent concentration. *Daphnia pulex* experienced acute toxicity (NOEC: < 6.25% effluent and LOEC = 6.25% effluent) with 8% survival at 100% effluent concentration. Two marine organism bioassays displayed acute toxicity, with echinoderm (*Strongylocentrotus purpuratus*) encountering significant sperm cell toxicity at 35% effluent concentration, and the pacific oyster exhibiting normal embryo survival toxicity at 4.38% effluent concentration. Possible sources of toxicity include metals, TSS, and ammonia.

Sediments

Sediment at both the outfall and background location consisted predominately of sand. TOC in the outfall sample was low compared to typical marine sediments. Several organics were detected in appreciable concentrations at the outfall, but only

Bis(2-ethylhexyl)Phthalate (2840 mg/Kg-dry wt.) exceeded the marine sediment quality standards chemical criteria. Amphipod/Rhepoxynius (*Rhepoxynius abronius*) 10-day emergence and survival bioassay detected no significant toxicity in the sediment.

Recommendations

Operation and Maintenance

- Correction of problems with overloading AAS units, oil skimming in the stormwater pond, oil separation processes, and excessive chlorination should improve treatment system performance.
- Texaco should inspect and seal DAF unit walls to prevent leakage of oil residue to the ground.
- The installation of a stormwater flowmeter would more accurately determine the stormwater's contribution to effluent concentrations.

Process Wastewater Treatment System

- The impact of effluent ammonia nitrogen concentrations on the receiving water should be evaluated.
- Sources of metal contamination in the process wastewater should be identified and corrective action taken to reduce these concentrations in the effluent.
- Review of composite sampling protocols and bioassay testing protocols is advised.
- The source of bioassay toxicity should be identified and efforts made to reduce the concentration of this toxic component in the effluent. The inclusion in the permit of bioassay test species other than salmonid should be considered.

Sediments

The source of Bis(2-ethylhexyl)Phthalate in the sediment should be identified and corrective action taken.

Introduction

A Class II Inspection was conducted at the Texaco USA Anacortes petroleum refinery on May 9-10, 1994. Paul Stasch, environmental investigator, and Guy Hoyle-Dodson, environmental engineer for the Washington State Department of Ecology (Ecology) Toxics Investigations Section, conducted the inspection. Kim Anderson, permit coordinator for Ecology's Industrial Section, provided background information. Vern Stevens, Texaco plant environmental engineer, represented Texaco. Brian Rhodes, Texaco environmental engineer, assisted on-site.

Wastewater generated at the Texaco facility is primarily process water, with smaller amounts of stormwater, ballast water, and sanitary wastewater. The treated wastewater is discharged into Fidalgo Bay. The plant discharge is regulated under NPDES permit No. WA 000294-1 issued March 1, 1990. The permit's expiration date is September 1, 1994.

The Department of Ecology initiated the inspection to assess permit compliance and to aid in Ecology's ongoing compliance strategy. The inspection was unannounced to aid compliance evaluation. Specific objectives of the inspection included:

- 1. Evaluate NPDES permit compliance
- 2. Assess wastewater toxicity with comparisons of priority pollutant scans to EPA and Washington State water quality criteria
- 3. Assess wastewater toxicity with effluent bioassays
- 4. Characterize sediment toxicity with comparisons of priority pollutant scans to Ecology marine sediment criteria
- 5. Characterize sediment toxicity with effluent bioassays
- 6. Evaluate treatment plant performance with special emphasis on solids loading
- 7. Assess permittee's self monitoring by conducting split samples
- 8. Evaluate stormwater discharge

Setting

Refinery Wastewater Generation

The Texaco refinery is located in Skagit County, near Anacortes. It is situated at March Point, which extends northwest into Fidalgo Bay and northeast into Padilla Bay. (*Figure 1*). The facility refines from 125,000 to 144,000 barrels of crude oil per day, producing gasoline, diesel fuel, and other petroleum products. Refinery processes include crude distillation and desaltation, catalytic cracking, butane deasphalting, delayed coking, hydrotreating, catalytic reforming, and sulfuric acid alkylation. Effluent limitations are based on guidelines published August 12, 1985 under 40 CFR Part 419 by the Environmental Protection Agency (EPA).

The refinery generates wastewater from four sources: process water, sanitary sewage wastewater, ship ballast wastewater, and stormwater runoff. A small amount of treated process wastewater and stormwater discharge are also accepted from the nearby General Chemical Corporation. These discharges are subject to the conditions of General Chemicals's State Waste Discharge Permit, No. 7309, issued July 12, 1990. Texaco process wastewater sources includes sour water (washing, mixing and stripper water), boiler condensate, desalter water, softener regeneration, cooling tower blowdown (precipitation of heavy metals), and lab wastewater. Typical pollutants for various refinery wastestreams have been identified by the Environmental Protection Agency (EPA, 1978). Sour wastewaters typically contain oil, phenols, sulfides, ammonia, and cyanide. Desalter water contains ammonia, phenols, sulfides, and suspended solids. Hydrotreating wastewater also contains ammonia, sulfides, and phenols. Alkylation produces spent caustic and also contains dissolved and suspended solids. Organic constituents produce high BOD and COD concentrations in the refinery wastewater. Salts, particularly the chlorides, are the major source of high dissolved solids. Most metal wastewater contaminates likely originate as natural constituents of crude oil and are concentrated in the wastewater during the refining process. It was reported by the permit manager that chromium has been used as a biocide in the cooling towers, although during the inspection this application was not noted.

Sanitary sewage and other wastewater is generated by facility employees. Stormwater flows are the result of precipitation runoff from streets, parking lots, rooftops, and work yards and is accumulated by the stormwater collection system. A separate stormwater system collects wastewater that originates from containment areas around storage tanks and process units, and this flow is not mixed with the main stormwater collection system. Ballast wastewater is pumped from the tankers that serve the facility.

Refinery Wastewater Treatment System

The refinery's wastewater treatment system consists of three main sections: a stormwater runoff system, a surge/bypass system, and a process water treatment system. (Figure 2). Stormwater collected from containment areas surrounding tanks and process units is mixed with process wastewater prior to the API separators. Sanitary sewage and ballast flows are also mixed with process water at this point. Sanitary sewage flow is continuous, while ballast wastewater addition is intermittent. Untreated stormwater from the main stormwater collection system is retained in the stormwater flume, then mixed with treated process water effluent in the final stabilization pond. The facility does have the capacity to divert main stormwater flow through the treatment system, but during the inspection this was not observed. Surges are directed to oily water surge tanks or to containment basins. Surges can then be diverted to the process water trickling filter, stormwater flume, or a skim line. The final discharge is largely treated process water with small amounts of treated sanitary sewage, and intermittent additions of treated ballast wastewater and primarily treated stormwater. Total discharge ranges from three to eight MGD.

The process water treatment system (PWTS) consists of API separator, rapid mixer with polymer injection, dissolved air flotation devices, equalization tank, trickling filter, aeroaccelator activated sludge units, aerated primary lagoons, final stabilization pond, and chlorine injector. Flows are recorded by final pond effluent totalizer, in the discharge pipe.

Screened oily water influent enters the API separator, where oil forms a layer on top of the water phase and is then skimmed. Wastewater from the API separator flows through a rapid mixer, and injected with a polymer that complexes with the oil residue. The oilpolymer floc is aggregated in a flocculation tank, then separated from the wastewater in two dissolve air flotation (DAF) units operated in parallel. Wastewater flows through an equalization tank into a trickling filter.

Trickling filter effluent receives additional biological treatment in a pair of aeroaccelator activated sludge (AAS) units operated in parallel. The AAS units also act as secondary clarifiers with sludge returned to the trickling filter. Effluent from the AAS units flows to aerated lagoons, where further biological treatment and sedimentation occur. Sludge from the lagoons is periodically dredged and land farmed on site. Treated process wastewater is pumped to the final stabilization pond and mixed with stormwater runoff. Effluent from the final pond is injected with chlorine and pumped through a 5,000 ft, 20 inch diameter pipe. Pipe travel time is estimated at over 20 minutes and is believed to act as a contact chamber. Final effluent is discharged into Fidalgo Bay, approximately 5,000 ft from the shore to the north/northwest.

Procedures

Ecology set up compositors and collected composite samples from Texaco's process wastewater treatment system at three locations: the equalization tank effluent pipe into the trickling filter (TIF-IN), the south AAS unit effluent overflow (AIROUT), and the final stabilization pond effluent discharge just before the outfall line (TEXEFF). An additional composite sample was taken from the main stormwater collection system's stormwater flume effluent (STORM-IN), prior to the final stabilization pond (Figure 2 & Appendix A). AAS unit effluent and trickling filter samples were collected using Ecology ISCO composite samplers with equal volumes of the sample collected every 30 minutes over a 24-hour period. Equal volumes of the final stabilization pond sample were collected every 30 minutes over an eight-hour period.

Pairs of grab samples were collected at the same locations as the composite samples. The first of the grab pairs were collected in the evening of May 9 and the second grabs the next morning. A single grab sample was taken from a stormwater flow on the east side of the refinery. Two sediment samples were collected, one on April 18 at the outfall and an ambient sample taken April 6 approximately one mile east southeast of the outfall. The background location was selected to maximize similarity to outfall ambient conditions, but to minimize contamination from outfall deposition. Sediment samples were collected from a boat using a power winch and a van Veen dredge.

Texaco personnel collected one composite sample using their own compositor from the final stabilization pond effluent. Texaco's effluent sample location was approximately the same as Ecology's effluent sample location, although the Texaco sampling period was slightly longer. Ecology's and Texaco's composite samples were each split between Ecology and Texaco for analysis by each respective laboratory. One Ecology effluent grab sample was also split with Texaco for analysis of oil & grease. Parameters analyzed, samples collected, and schedules appear in Appendix B.

Samples designated for Ecology analysis were delivered to personnel from the Ecology's Manchester Laboratory. Chain-of-custody procedures were observed throughout the inspection. Analytical procedures and laboratories performing the analyses are summarized in Appendix C.

Quality Assurance / Quality Control

Sampling quality assurance included ultra cleaning (priority pollutant cleaning) of sampling equipment to remove trace priority pollutant contaminates (*Appendix D*). Sampling in the field followed all protocols for holding times, preservation, and chain-of-custody set forth in the Manchester Lab Laboratory Users Manual (Ecology, 1991).

Laboratory QA/QC including applicable holding times, procedural blanks, spike and duplicate spike sample analyses, surrogate recoveries, and check standards were, with several exceptions, within acceptable limits. For bioassays the conduct of testing, responses to positive and negative controls, and water quality data were all appropriate. Qualifiers are included in the data table where appropriate. Specific QA/QC concerns are included in Appendix D.

Results and Discussion

Process and Sanitary Wastewater Treatment System

Flow Measurement

Independent verification of wastewater flow measurement was not performed during the inspection. An orifice plate with a pressure transducer measures differential pressure in the effluent line, from which totalized flow is calculated and recorded on an analog chart. The average effluent flow for the two days of the inspection was 3.618 MGD. Stormwater flow for the same period was reported as 1.418 MGD. To estimate stormwater flow Texaco subtracts daily total effluent flow results from a previously determined average dry weather effluent flow. This estimated stormwater flow can be independent from both actual stormwater flow to the final detention pond and measured precipitation. It should be noted that during and five days previous to the inspection the National Weather Service reported no precipitation for the region (National Weather Service, 1994). To more accurately determine the actual daily stormwater contributions, it is recommended that Texaco install a flow metering device at the stormwater flume effluent.

General Chemistry

Ecology analysis results are shown in Table 1. Although an equalization tank and dissolved air flotation units lie between the API separator outfall and the trickling filter

influent sample location, comparison of trickling filter influent to typical API separator effluent characteristics is useful. The Texaco API separator appears to be functioning with normal efficiency. BOD₅, TSS, and COD trickling filter influent concentrations were all close to the mean for characteristic concentrations found in the API separator effluents typical of Washington refineries (EPA, 1978).

Trickling filter influent ammonia nitrogen concentration was less than 10% of such a typical mean concentration. Although pH (9.2) is not optimal for air stripping (Metcalf & Eddy), ammonia may be being volatilized in the DAF units. At a pH of 9.2 and a temperature of 30°C the amount of ammonia in the free volatile form approaches 75% (WPCF, 1977). In conjunction with the addition of air and the increased agitation of the wastewater, the DAF units produce conditions that could remove appreciable amounts of ammonia.

Ecology BOD₅, COD, and TOC concentrations were reduced across the trickling filter and south AAS unit by 49%, 48%, and 54% respectively (*Table 2*). BOD₅ reduction is an estimate based on the laboratory low detection limit for the AAS effluent result, but this reduction would be expected to be commensurate with COD and TOC reductions. TSS and ammonia removal efficiencies were less than 25%. BOD₅, COD, TSS, and ammonia removal efficiencies were generally low compared with performance of similar treatment systems found in typical Washington State oil refineries (*EPA*, 1978). This would indicate that the trickling filter and the south AAS unit were not functioning effectively during the inspection. Reduction in pH was substantial. Although the north AAS unit effluent was not sampled, it would be expected that its performance efficiency would be comparable to the south unit.

In contrast, the estimated removal efficiencies for BOD₅, COD, and TSS across the aerated lagoons were relatively high (Table 2). These results indicate that the majority of TSS removal and a good portion of biological treatment occurred across the aerated lagoons. BOD₅ and TSS removal was equal to or better than the performance of typical refinery aerated lagoon treatment processes (*EPA*, 1978). Lagoon effluent concentrations were also generally lower than the concentrations that would be expected in effluents from typical refinery aerated lagoon treatment processes (*EPA*, 1978).

An exception to the general high level of treatment in the lagoon was ammonia nitrogen removal efficiency. Ammonia appeared to increase by 62% across the lagoon. It is possible that this apparent increased load could be a function of overestimating stormwater flows, but additional loading of ammonia by the stormwater cannot be discounted. Conceivable ammonia could be formed from nitrogen ions provided by constituents in the process water, but the magnitude of total nitrogen concentration in the process water is unknown. The concentration of ammonia in the stormwater is also unknown, and testing of the stormwater would be needed to resolve the question of ammonia contamination.

Reductions in concentrations across the entire wastewater treatment system with stormwater loading was 79% for TSS, 87% for BOD₅, 66% for COD, and 54% for TOC (Table 2). Percent of effluent load for each of these parameters attributed to process wastewater alone was 95%, 97%, 98%, and 94% respectively, indicating little contribution from the stormwater for these constituents.

Total ammonia concentration in the final effluent (9.51 mg/L) exceeded a State chronic marine water quality criteria of 2.2 mg/L (Ecology, 1994). This criteria is based upon May 3, 1994 ambient results from an Ecology sampling station located in Fidalgo Bay just east of the outfall, which reported temperatures exceeding 10° C, pH exceeding 8.00, and salinity approaching 30 g/Kg (Eisner, 1995). Ambient results for other months at the same station produce criteria approaching 1.6 mg/L. Although the three-year excursion characteristics of the receiving water at the outfall have not been determined and dilution would undoubtedly play a role in mitigating effluent toxicity, ammonia toxicity may be of concern. The question of ammonia concentration's impact on the receiving water should be resolved. In particular, effluent toxicity in relation to dilutions during tidal cycles should be investigated.

Plant Operation and Maintenance

Several operational deficiencies were observed. Some components of the treatment system appeared to lack proper maintenance. Operational difficulties include:

- 1. The relatively low reduction in organics across the Aeroaccelator Activated Sludge (AAS) unit suggests that it was overloaded. Wastewater flow in the clarifier portion of both units appeared turbulent and a large amount of suspended solid material escaped through the perimeter weir. As a result further treatment of AAS effluent has been required by the addition of aeration to what had formally been retention ponds. Also, an uneven distribution of flow across the two AAS units was noted.
- 2. An oil sheen was present on the surface of the stormwater flume. Skimming of the oil appeared ineffective and some oil was observed flowing into the final stabilization pond.
- 3. The presence of a black residue on the banks of the final stabilization pond indicate either a buildup of biosolids or problems with oil separation and removal by the system.
- 4. The addition of sanitary sewage to the process water treatment system requires the chlorination of a large volume of effluent. Separate treatment and chlorination of sanitary sewage wastewater would decrease the amount of

chlorine needed, reducing the potential for creating chlorinated organic compounds.

Maintenance difficulties include:

• During the inspection a small amount of seepage was observed through cracks in the concrete walls of the API separator and the DAF units. Some of this residue appeared to be leaking to the ground. Subsequent communication with the permit manager disclosed that the interior of the API separator had been recently sealed by Texaco (Anderson, 1994)

Correcting the items noted above should improve plant performance and may improve effluent quality. Sealing cracks in the walls of DAF units would preclude potential contamination of the ground due to leaking oily residue.

NPDES Permit Comparisons

Ecology effluent loading results for BOD₅ (241 lbs/day), COD (2139 lbs/day), ammonia nitrogen (287 lbs/day), and TSS (211 lbs/day) were well within both the permit monthly average and daily maximum loading limits (*Table 3*). Ecology results for permit parameters -- oil and grease, phenolic compounds, total and hexavalent chromium, pH, fecal coliform, and salmonid bioassay -- were also within permit limits. These limitations are stipulated in the permit as based upon a plant production of three consecutive months at 116,600 bbls per day or higher, and does not include ballast and stormwater allocations.

Detected Organics and Priority Pollutants

Table 4 summarizes concentrations of organics detected with priority pollutant scans, and also summarizes priority pollutant metals. Appendix E contains results of all targeted organic compounds and metals results. Tentatively identified compounds are presented in appendix F.

VOAs, BNAs, and metals were detected in the Texaco effluent (*Table 4*). One VOA and three BNAs were detected in the plant effluent. None exceeded water quality criteria for receiving waters. Eight metals were detected in the effluent. The Ecology analysis effluent zinc result ($546 \mu g/L$) exceeded the EPA and State acute water quality criteria by more than a factor of six and the chronic criteria by a factor of seven (Ecology, 1992; EPA, 1986). The Texaco analysis effluent zinc result ($15 \mu g/L$) was far lower, introducing some ambiguity to the findings. The copper effluent concentration ($5.8 \mu g/L$) exceeded the acute marine water quality criteria. Concentrations of mercury ($0.14 \mu g/L$) and cadmium ($22.7 \mu g/L$) exceeded the chronic marine water quality criteria. A partial contributor to effluent copper concentrations appeared to be the stormwater flow, which exhibited a concentration of $8.5 \mu g/L$. Zinc, copper, and mercury concentrations were

also higher than water quality criteria in the east side stormwater flow, although this flow is not a direct discharge to Fidalgo Bay and the comparison is only advisory. The effluent selenium concentration (42.8 μ g/L), although not exceeding water quality criteria, was also relatively high. The selenium concentration exceeded the concentration at which the EPA recommends that the status of fish communities in salt water should be monitored (Ecology, 1992).

The effluent metals concentrations, particularly for zinc, may be highly toxic to marine organisms. Mitigation of toxicity by receiving water dilution may occur; but the excessive effluent concentrations are still of concern, particularly in the light of bioassay results. It is recommended that metal sources in the process water be identified and efforts made to reduce their concentration in the effluent.

Bioassays

Effluent bioassays detected toxicity in two out of three acute tests (Table 5). Rainbow trout (*Oncorhynchus mykiss*) 96-hour survival test exhibit only 7% mortality at both 65% and 100% effluent concentration. The fathead minnow 96-hour survival test produced significant mortality (55% survival at 100% effluent), with an NOEC, LOEC, and LC50 of 25%, 50%, and 58% effluent concentration respectively. *Daphnia pulex* 48-hour survival test demonstrated a more severe toxicity (8% survival at 100% effluent), with an NOEC less than 6.25% effluent concentration and an LOEC equal to 6.25% effluent concentration. The LC50 for *Daphnia pulex* was greater than 100% effluent concentration.

Additional acute toxicity was evidenced by the two marine organism bioassays. The echinoderm (*Strongylocentrotus purpuratus*) sperm cell toxicity (normal fertilizations) test determined an NOEC, LOEC, and EC50 of 17.5%, 35%, and 51% effluent concentration respectively. The pacific oyster embryo 48-hour survival (normal embryo survival) test produced an NOEC less than 4.38% effluent concentration and an LOEC and EC50 equal to 4.38% and 27% effluent concentration respectively.

Although rainbow trout was the only bioassay species identified in the permit, bioassay results for other species indicate serious effluent toxicity. To be fully protective of the receiving water, the inclusion in the permit of tests for other bioassay species should be considered. Based upon effluent data, metal concentrations may be the source of the bioassay toxicity. Zinc and copper exceeded the acute criteria. Cadmium and mercury concentrations exceeded the chronic criteria, and may contribute an additive effect to acute toxicity. The selenium concentration may also contribute an additive effect. Finally, the ammonia concentration may, under certain receiving water conditions, also promote bioassay toxicity. Due to observed toxic effects at low concentrations, it cannot be assumed that dilution by the receiving water will have an adequate mitigating effect. Dilution zone studies may clarify this issue. Regardless, the source of bioassay toxicity in

the wastestream and necessary corrective action to reduce the concentrations of these toxics should be investigated.

Split Samples

A Wilcoxon nonparametric signed ranks test was performed on Ecology lab results for Texaco and Ecology effluent samples (Table 6). The test found significant difference between the two sample sets at a critical level of 0.05, but relative percent differences between the paired data were generally less than the variation in interlaboratory precision estimated for those laboratory procedures (Ecology, 1991 - B). Notable exceptions were zinc and cadmium results, which were well outside the range for precision variation. The discrepancy could reflect some form of contamination, but it may also result from problems with Texaco's sampling procedure. It is suggested that Texaco review sampling procedures, especially concerning zinc and cadmium concentrations. A Wilcoxon test of Ecology lab results versus Texaco lab results found no significant difference between labs. These analyses are interpreted as indicating that Texaco's and Ecology's laboratories are generally comparable, and that composite sampling techniques may differ for some parameters.

Texaco bioassay results also differed substantially from Ecology results. This could be interpreted as differences in the bioassay protocols used at the two labs. Review of Texaco bioassay protocols is strongly encouraged.

Sediments

General Chemistry

Sediment samples were collected at the effluent outfall and at a background location east of the shipping pier. Grain size analysis found the sediment at the outfall to consist predominately of sand (Table 1). The background sample contained slightly finer material. Percent solids at the outfall was 72.4% with percent volatiles 2% of the total. TOC comprised somewhat less than 1% of the total dry weight. This is less than what might be expected for typical marine sediments (Norton, 1994), but not extreme considering the sediment's sandy composition.

Detected Organics and Priority Pollutants

Eight organic compounds were detected in the effluent outfall sediment sample (Table 7). The concentrations of all but one were well within the State marine sediment quality standards chemical criteria (Ecology, 1991). Bis(2-ethylhexyl)phthalate concentration (2840 mg/Kg-dry wt., normalized to fractional percent TOC: 996 mg/Kg TOC-dry wt.) exceeded the chemical criteria by more than a factor of twenty. Bis(2-ethylhexyl)phthalate

is a prevalent environmental contaminate, used as a plasticizer in a variety of plastic products (EPA, 1981) and is employed extensively as a lubricant in vacuum pumps (Verschueren, 1983). Its ubiquity also raises the possibility of laboratory contamination, although comparison to laboratory blanks indicate that contamination in such a high concentration is unlikely. Despite its pervasiveness, the high concentration and close proximity to the effluent outfall suggests that the Texaco facility could be the source. It is recommended that this source be identified and, if determined to have originated from the Texaco facility, steps taken to eliminate the discharge.

Bioassays

Bioassays with the Amphipod/Rhepoxynius (Rhepoxynius abronius) 10-day emergence and survival test produced a 90% and 93% average percent survival in the effluent outfall sediment and the background sediment respectively (Table 8). Average percent survival was within the marine sediment quality minimum biological effects criteria (WAC-173-204-320) and the marine sediment cleanup screening levels and minimum cleanup biological criteria (WAC-173-204-520).

References

Anderson, 1994. Communication with Kim Anderson, Industrial Section Permit Manager, Washington State Department of Ecology, 1994.

APHA, AWWA, WPCF. 1989. <u>Standard Methods for the Examination of Water and Wastewater</u>, 17th edition. American Public Health Association. Washington DC.

Ecology, 1991. <u>Sediment Management Standards</u>. Washington State Department of Ecology, 1991. Chapter 173-204 WAC.

Ecology, 1991 - B. <u>Guidelines and Specifications for Preparing Quality Assurance</u>

<u>Project Plans.</u> Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program (E.I.L.S.) Quality Assurance Section. May, 1991.

Ecology, 1994. <u>Manchester Environmental Laboratory Users Manual, Third Revision.</u> Washington State Department of Ecology, 1994.

Ecology, 1992. Water Quality Standards for Surface Waters of the State of Washington, Chapter 173-201A WAC. Washington State Administrative Code, 1992. WAC, 173-201A, 1992.

Eisner, 1995. Communication with Lisa Eisner, Environmental Specialist, Ambient Monitoring Section, E.I.L.S., Washington State Department of Ecology, 1994.

EPA, 1978. <u>Washington State Refineries: Petroleum, Petroleum Derivatives, and Wastewater Effluent Characteristics</u>. EPA-600/7-78-040, March, 1978.

EPA, 1981. <u>Production History of Di-(2-ethylhexyl)phthalate as a Plasticizer and Material Balance for Its Non-plasticizer Uses</u>. Draft Report Submitted to the U.S. Environmental Protection Agency by: Versar Inc., Contract No. 68-01-6271. May, 1981.

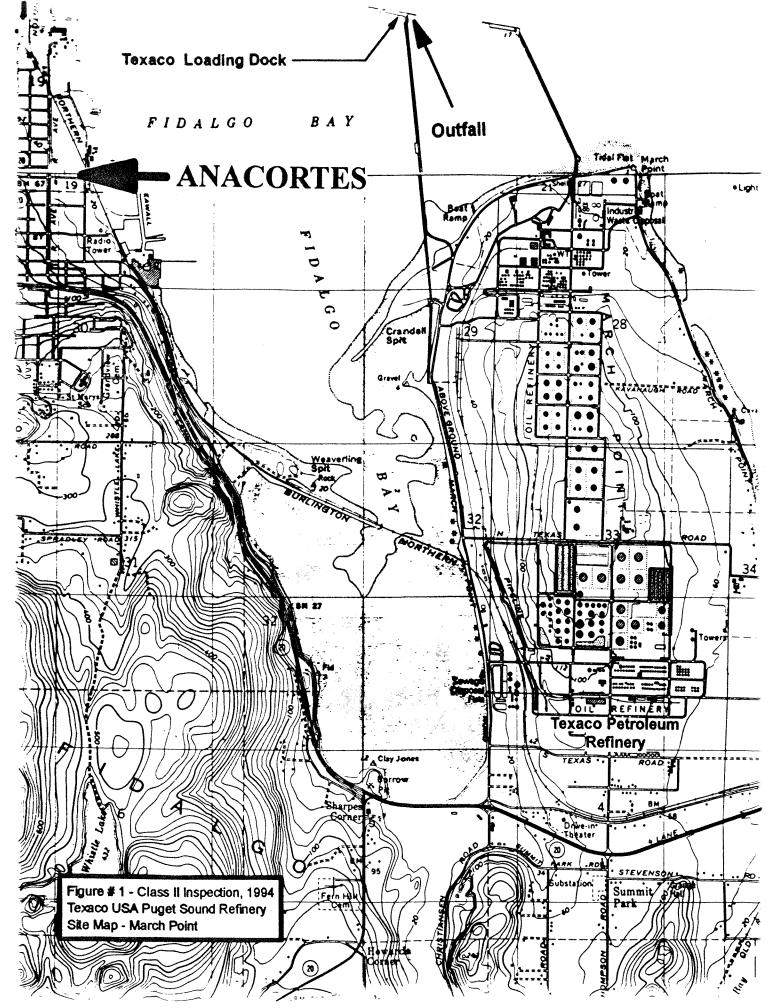
EPA, 1984. Ambient Water Quality Criteria for Cyanide. EPA 440/5-84-028.

EPA. 1986. Quality Criteria for Water. EPA 440/5-86-001.

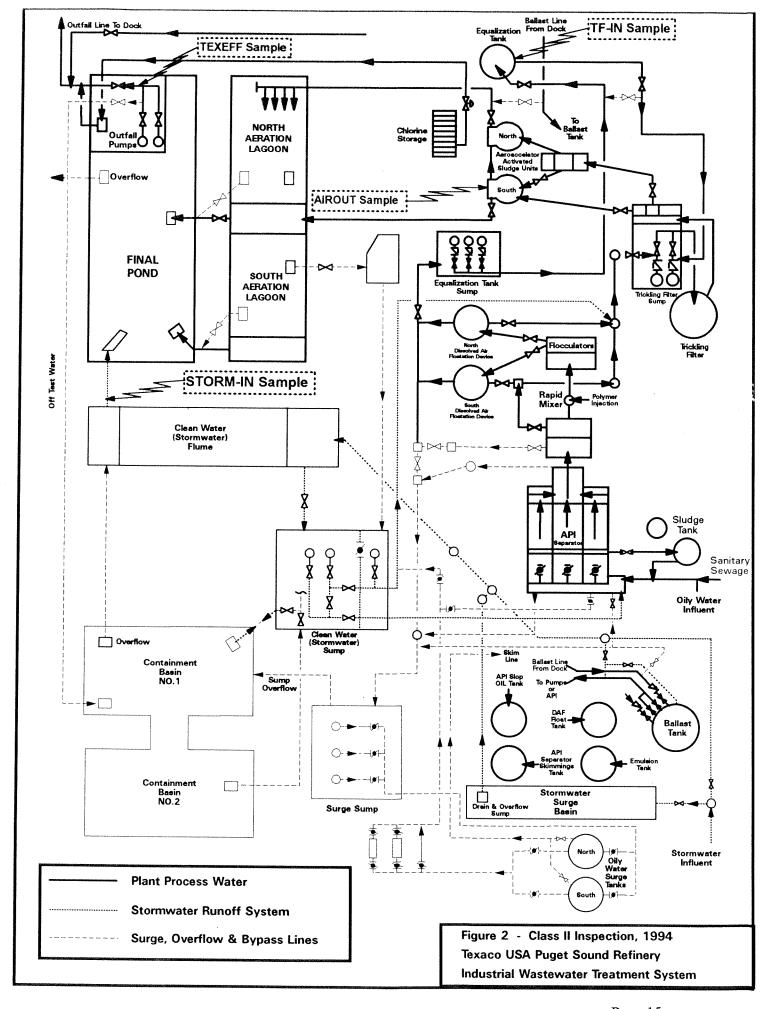
EPA. 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluent and Receiving Waters to Freshwater Organisms, 2nd edition, U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/4-89/001.

EPA. 1991. <u>Methods for Measuring the Acute Toxicity of Effluent and Receiving waters to Freshwater and Marine Organisms</u>. Weber, C.I. (ed.), U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, Ohio, 4th Edition, EPA/600/4-90/027.

Metcalf and Eddy. 1991. Wastewater Engineering Treatment Disposal Reuse, Third Edition. McGraw-Hill. New York.


National Weather Service, 1994. Communication with staff from the National Weather Service Region Headquarters in Seattle reporting unpublished rainfall data for Berlington, Sedro Woolley, and Olga, Washington. Oct. and Dec., 1994.

Norton, 1994. Communication with Dale Norton, Sediment Contamination Specialist, Toxics Investigation, E.I.L.S., Washington State Department of Ecology, 1994.


Verschueren, 1983. Verschueren, Carl. <u>Handbook of Environmental Data on Organic Chemicals, 2nd Edition.</u> Van Nostrand Reinhold Company, New York, 1983.

WAC, 173-220, 1992. <u>National Pollutant Discharge Elimination System Permit Program Chapter 173-220 WAC.</u> Washington State Administrative Code, 1992.

WPCF, 1977. Wastewater Treatment Plant Design, WPCF Manual of Practice No. 36, Second Edition. Water Pollution Control Federation, Washington D.C., 1977.

Page 14

Table 1 - Ecology General Chemistry Results - Tex	emistry Resu		aco Oil Refinery, May 1994	nery, May	1994.				ă.	Page 1
Parameter	Location: Type: Date: Time:	TF-IN-1 grab 05/09 2005 198501	TF-IN-2 grab 05/10 0938 198502	TF-IN E-com 05/10 @1	AIR-OUT1 grab 05/09 2015 198511	AIR-OUT2 grab 05/10 1050	AIR-OUT E-comp 05/10 @2	STORM-IN-1 grab 05/09 2025 198571	STORM-IN-2 grab 05/10 1115	STORM-IN E-comp 05/10 @3
General Chemistry Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Grain Size (Fractional %) Gravel (>4750-850 microns) Sand (850-106 microns) Fine Sand (106-31.2 microns) Silt (31.2-3.9 microns) Clay (3.9-<0.9 microns) Other (Balance)	microns) icrons) icrons) icrons)			1540			112	7000-		1238
Solids TS (mg/L) TNS (mg/L) TNSS (mg/L) TNVSS (mg/L) TNVSS (mg/L) % Solids % Volatile Solids Oxygen Demand Parameters BOD5 (mg/L) COD (mg/L) TOC (water mg/L) TOC (soil/sed mg/Kg-dry wt.) Nutrients	ଥ	29	29	1070 853 52 98 339 55	₽	92	967 862 40 2 2 50 U 175 25.1	5.1	5.1	753 656 4 2 2 4 U 9.3 5.1
NH3-N (mg/L) NO2+NO3-N (mg/L) NO2+NO3-N (mg/L) Total-P (mg/L) Miscellaneous Oil and Grease (mg/L) F-Coliform MF (#/100mL) Cyanide total (ug/L) Cyanide total (ug/L) Cyanide (wk & dis ug/L) Phenol (mg/L) Field Observations Temperature (C) Temp-cooled (C)*+ pH Conductivity (umhos/cm)		31.6 31.6 31.6 31.6	31.8 31.8 31.8	11.6 0.027 0.478 5.5 9.2 1632	9.39 0.012 0.364 28.3 7.3	10.8 0.024 0.422 29.1 7.5	9.68 0.02 0.475 6.2 6.2 7.5	1 UJ 28.3 1222	1.03 1.03 1.130	0.04 UJ 5.2 9.8 1297
TF-IN Ecology Trickling Filter infl AIR-OUT Ecology Aeroaccelator Act STORM-IN Ecology Cleanwater (storm grab Ecology grab sample E-comp Ecology composite sample *+ Refrigerated sample	Ecology Trickling Filter influent sample. Ecology Aeroaccelator Activated Sludge Unit effluent sample. Ecology Cleanwater (stormwater) Flume effluent sample into Final Pond Ecology grab sample Ecology composite sample Refrigerated sample	Unit effluent sempl	sample. le into Final Pond		(a) Compos (a) Compos (a) Compos (b) The ana (c) The ana	Composite sample period: 0900 - 5/9 to 0900 - 5/10 Composite sample period: 0940 - 5/9 to 0940 - 5/10 Composite sample period: 1005 - 5/9 to 1005 - 5/10 The analyte was not detected at or above the reported result. The analyte was not detected at or above the reported estimated result.	1. 5/9 to 0900 - 5 1. 5/9 to 0940 - 5 1. 5/9 to 1005 - 5 at or above the re	710 710 ported result. ported estimated resu		

Table 1 · Ecology General Ch	l Chemistry Results	Results - Texa	· Texaco Oil Refinery, May 1994	finery, M	ау 1994.		&	Page 2
Parameter	Location: Type: Date: Time:	S-1 grab 05/09 1900 198550	TEXEFF1 grab 05/09 1920 198531	TEXEFF2 grab 05/10 0920 198532	2 TEXEFF E-comp 05/10 @4 198530	EFFLUENT T-comp 05/10 @5 198540	TEXOUT1 grab 04/18 1100 168233	SEDBACK grab 04/06 1400 148230
GENERAL CHEMISTRY Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Grain Size (Fractional %)	_				1360 107	1350 107 71.6		
Sand	(*************************************	(S					83 4 E 3 4 B	42 42 31 15 10
SOLIDS TS (mg/L)		431 287 6 3	œ	83	806 734 7	788 724 5 1 U	72.4	56.6 3.4
OXYGEN DEMAND PARAM BOD5 (mg/L) COD (mg/L) TOC (water mg/L) TOC (soil/sed mg/Kg-dry wt.	NATERS (wt.)	8 42 16.3	16.2	16.8	8 70.9 16.4	7 63.9 16.3	2850	8100
			9.21	10.1 5 J	9.51 0.049 0.626	9.64		
		0.04 UJ	3 U 24.5	3 U	0.032 .3 0.004 UJ 0.094 .3	0.043 J 0.027 J 0.04 UJ		
. <u>'S</u>	CCM) 644 1429 Ecology Stormwater sample from east side of refinery Ecology effluent sample from final pond. Texaco effluent sample from final pond Ecology grab sample Ecology composite sample Texaco composite sample Texaco composite sample	644 e from east side of rom final pond. m final pond	# _	7.5 1406 TEXOUT1 EC SEDBACK EC @9 FC @9 Te J Th	5.9 11.8 1426 1399 Ecology sediment sample taken at outfall. Ecology background sediment sample taken east of shipping pier. Ecology Composite sample period. 1910 - 5j9 to 0400 - 5j10 Texaco Composite sample period slightly exceeded Ecology sample period. The analyte was positively identified. The associated numerical result is an estimate.	11.8 1399 aken at outfall. ent sample taken east operiod 1910 - 5/9 to 00 period slightly exceeded identified. The associal taken at or ahove the ren	of shipping pier. 400 - 5/10 I Ecology sample pe ted numerical	riod.
				-				-

Table 2 · General Chemistry Results Percent Removal · Texaco Oil Refinery, May 1994.

		111111111111111111111111111111111111111		-			4	F				And help to the second control of the second
רמו מוו הוה	9			loval	NI-MA-IN		IRAOI	Ecology		EFFLUENT	l exaco	lexaco
	i ype:		E-comp		E-comp	<u>α</u> .		rercent Kemovai	Finai	l-comp	Percent Kemoval	Percent of Final
	Date:	05/10	05/10	er	05/10	05/10	Aerated Lagoons	Across	Load	05/10	Across	Load
	Time:	<u>@</u>	@5	And South	@ 3	@	from South	Plant	Attributed To	64	Plant	Attributed To
	Lab Log #:	198500	198510	Aereoaccelator	198520	198530 /	Aereoaccelator		Process Wastewater*	198540		Process Wastewater*
General Chemistry	hemistry						-					
Conductiv	Conductivity (umhos.cm)	1540	1510	2%	1230	1360	3%	4%	9699	1350	5%	66%
Alkalinity	Alkalinity (mg/L CaCO3)	124	112	10%		107				107		
Solids												
TS (mg/L)		1070	296	10%	753	800	%6	15%	69%	788	17%	9669
TNVS (mg/L	y/L)	853	862	-1%	959	734	%9	5%	67%	724	7%	67%
TSS (mg/L)	~	52	40	23%	44	۲	73%	796%	92%	S	85%	%625
Oxygen D	Oxygen Demand Parameters	ters										
BOD5 (mg/L)	\$L)	86	20 U	49% #	4 U	8	75%#	87% #	97%	7	89%#	9%86
COD (mg/L)	L)	339	175	48%	9.3	70.9	36%	%99	%86	63.9	70%	%86
TOC (water mg/L)	umgl)	55	25.1	54%	5.1	16.4	** %5	\$4%	94%	16.3	54%	94%
Nutrients												
NH3-N (mg/L)	æ(T)	11.6	89.6	17%		9.51	### %29-	-35% ###	100%	9.64	-35%	100%
NO2+NO3	NO2+NO3-N (mg/L)	0.027	0.02	76% **		0.049						
Total-P (mg.L)	(£1)	0.478	0.475	1% **		0.626						
Field Mea	Field Measurements											
Hd		61.6	7.45	## %61	9.76	7.83	16% ##	## %81		8.05	16% ##	
Conductivi	Conductivity (umhos/cm)	1632	1590	3%	1297	1426	3%	5%	96%	1399	7%	67%
TF-IN	Ecology Trickling Filter influent sample.	Filter influent	sample.					9	Composite sample period: 0900 - 5/9 to 0900 - 5/10	1900 - 5/9 to 09	900 - 5/10	
AIR-OUT	Ecology Aeroaccelator Activated Sludge Unit effluent sample.	lator Activate	d Sludge Un	it effluent sample.				(M2)	Composite sample period: 0940 - 5/9 to 0940 - 5/10	1940 - 5/9 to 09	940 - 5/10	
STORM-IN	Ecology Cleanwat	er (stormwat	er) Flume efflı	Ecology Cleanwater (stormwater) Flume effluent sample into Final Pond	puo _c			(<u>@</u> 3	Composite sample period: 1005 - 5/9 to 1005 - 5/10	1005 - 5/9 to 10	005 - 5/10	
E-comp	Ecology composite sample	e sample						(04	Composite sample period: 1910 - 5/9 to 0400 - 5/10	1910 - 5/9 to 04	400 - 5/10	
T-comp	Texaco composite sample	samble						` ⊃	The analyte was not detected at or above the reported result	d at or above the	he reported result.	
*	Assumes steady-s	state flow and	d uniform rem	Assumes steady-state flow and uniform removal through the final retention ponds.	tention ponds.			п	Assumes that north aereoaccelator produces approximately the same effluent quality	scelator produc	es approximately the sa	ame effluent quality
*	Difference in resul	Its is less tha	n the variation	Difference in results is less than the variation in the precision of the laboratory		procedure		,,,	as the south aereoaccelator.			
**	Based upon the low detect concentration	ow detect cor	ncentration					Ecology	Ecology sample			
#_	This is percent ch	ange in pH,	a logrithmic re	This is percent change in pH, a logrithmic representation of active ion concentration. Assuming no buffering	on concentratic	ın. Assumin	g no buffering	Texaco	Texaco sample			
	capacity, a linear	decrease in t	he number of	capacity, a linear decrease in the number of moles hydroxide ions/day approaches 5400% across the trickling	tay approaches	; 5400% acro	ss the trickling					
	filter and AAS uni	ts, 3300% ac	ross the aera	filter and AAS units, 3300% across the aerated lagoons, and 4600% across the plant	% across the p.	lant.						
##	Assumes zero concentration in the stormwater.	ncentration ir	the stormwa	ıter.								

	NPDES Permit			เทรอ	ection Re	esults	
	Effluent Limits*		Ecology	Texaco		Ecology	
Parameter			Composite	Composite		Grab	and have you have been been
		Location: Type:	TEXEFF E-comp	EFFLUENT T-comp	TEXEFF-1 grab	TEXEFF-2 grab	TEXEFFB grab-comp
	Monthly Daily	Date:	05/10	05/10	05/09	05/10	05/10
	Average Maximum	Time:	@4	@5	1920	0920	@6
		Lab Log #:	198530	198540	198531	198532	198530B
Effluent BOD5 Concentration (mg/L) Loading(lbs/day)	710 1290		8 241	7 211			-
Chemical Oxygen Demar	nd						
Concentration (mg/L) Loading(lbs/day)	4940 9540		70.9 2,139	63.9 1,928			
Effluent TSS							
Concentration (mg/L) Loading(lbs/day)	570 900		7 211	5 161			
Dil & Grease Concentration (mg/L) Loading(lbs/day)	210 380				5 J 151	5 J 151	
Phenolic Compounds Concentration (mg/L) Loading(lbs/day)	4.6 9.6		0.04 1.2	0.04 1.2			
Ammonia Nitrogen Concentration (mg/L) Loading(lbs/day)	480 1040		9.51 28 7	9.64 291	9.21 278	10.10 3 05	
Fotal Chromium Concentration (mg/L) Loading(lbs/day)	8.9 19.5		5 U 0.15	5 U 0.15			
Lexavalent Chromium Concentration (mg/L) Loading(lbs/day)	0.7 1.5		3.1 P 0.09	2.1 P 0.06			
Effluent pH (8.U.)	6.0 < pH < 9.0		7.83	8.05	7.44	7.52	
Effluent Fecal coliform (#/100 mL)	200 400				3 U	3 U	
almonid Acute Bioassay (%) Survival	80% Survival at 65% Concentration						93
TEXEFF Ecology effluent	sample from final pond.	*	Doord up-s #hu	arondina conces	to months of the de-	ation avassiss	
•.	sample from final pond. sample from final pond	•		preceding consecutive	•	•	
grab Ecology grab sai	•	J	•	and the absence of i ositively identified.	•	•	to
T-comp Texaco composi	·			osmively identified. etected above the ir			ıe.
E-comp Ecology composi	•	r	•	etecteu above the h hed minimum quanti		ımını, vul	
grab-comp Grap composite	•	U		ot detected at or ab		eult	
	y grab-composite	@4	•	sample period: 191	•		
Entident biod330	1 9. an comboure	@5	• • •	sample period is slig			ind
B Lab Log # same	as TEXEFF	_	-	t half taken during o			ou.

1994.
Texaco,
Results
Scan Re
Metals
and
BNA
I VOA, BI
4 - Detected
Table 4

Page 1

- ocation	STORM-IN-	STORM-IN-2	TEXEF	TEXEFE			witer Outlier) inality		
- Foodallon	20 C	7 11 11 10 10 2	ī	الديريا - 2 «يېل			Lr A Water	*uality		
i ype:	grab	grab		grab			Criteria Summary	nmary		
Date:	60/90	05/10		05/10			Acute	Chronic		
Time:	2025	1115	1920	0920			Marine	Marine		
<u>.</u>	1,20081	77061	180081	780327					WHEN WOLLD STREET	
VOA Compound (Group)	μg/L	/ng/L	/JB/L	µg/L			(//g/L)	(/J/6///)		
Chloroform a	0.87.3	B7.J	B24.J	023.1			13000 *(s)	RATIO *(a)		
	1.6	.3					5100 *	* 200Z		
loluene	5	6.7 J					• 9300 ·	2000 •		
Ethylbenzene	0.33 J						430 *			
III P-A TEENT	1.2.1	0.51 J								
O-XYLENE Total Xulanas	0.77 J	0.32 J								
1 of Trimothythonion		C 44 C								
1,5,5-1 mechyberzene	ე.18 ქ	÷ C								
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				and a second of the second or second				1
Location:		STORM-IN		S-1	TEXEFF	EFFLUENT	EPA Water Quality	Quality	TEXOUT1	SEDBACK
Type:		E-comp		grab	E-comp	T-comp	Criteria Summary	mmary	grab	grab
Date:		05/10		60/90	05/10	05/10	Acute	Chronic	04/18	04/06
Time:		93		1900	<u>@</u>	@5	Marine	Marine	1100	1400
Lab Log#:		98520		198550		198540			168233	148230
BNA Compounds	(Group)	ηgη		µg/L	T/Brl	µg/L	(µg/L)	(µg/L)	µg/Kg	µg/Kg
1,3-Dichlorobenzene	l l								5.8.3	
1,4-Dichlorobenzene	£						1970 *(h)		5.0 J	
1,2-Urchioropenzene	.						1970 *(h)		5,1,3	
2-Methylpheno		0.08 J			Yellow Common Co					000000000000000000000000000000000000000
soprofone		0.2			0.46		12900 *			
[2,4-Dimethylphenol		0.13 J								1
Naphthalene	=						2350 *			20.8
Z-Methylnaphthalene								300000000000000000000000000000000000000		15.9 J
Z,4,5-1 richiorophenoi				2,6						
Acenaphthylene	=						300 *(n)			16.0 J
Dibenzofuran									,	7.8 1
Phenanthrene	=			(M) (C) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M			300 *(n)		27.4 J	100 J
Anthracene	=						300 *(n)	,	f. 7.7.3	24.5 .1
Fluoranmene	=		***************************************	::::::::::::::::::::::::::::::::::::::	**************************************		40 °	10 °	23.3	111
	=			7 CO'D	U.55	73 23 23	oto Tinj		e one	1 6 2 C
Retaile		7 600					3.044 *63	2.4 *C.		J C.07
Chrysene		0.17		0.13 11	0.23	0 34	99	(*)	12 9 T	52 1 T
Bis(2-Ethylhexyl)Phthalate	= •-	0.11		CFO	i i	-	3333	3.4 *(i)	2840	; i
Benzo(a)Pyrené									19.0 J	
Indeno(1,2,3-cd)Pyrene	u									22.5 J
Benzo(g,h,i)Perylene	u						300 *(n)		28.7 J	
	ater (stormwater) F	Ecology Cleanwater (stormwater) Flume effluent sample into Final Pond	Pond E-comp	ШЬ	sample					
TEX-EFF Ecology effluent	Ecology effluent sample from final pond.	oond.			sample citivalv identified	The accordated	exaco composite sample he analyte was nostively identified. The associated numerical result is an estimate	actimate		
	Ecology Stormwater sample from east : Tevaco efflient sample from final pond	ast side of refinery		- 1-	silivery identified t detected at or a	i. The associated above the reported	result.	resultingto.		
	Ecology sediment sample taken at outfall.	outfall.	,	UJ The analyte was no	t detected at or a	he analyte was not detected at or above the reported estimated result.	estimated result.			
	ound sediment sam	Ecology background sediment sample taken east of shipping pier.		_	Ø	•				
	Composite sample period: 1005 - 5/9 to 1005 - 5/10	/9 to 1005 - 5/10			sues		* Insufficient	Insufficient data to develop criteria. Value presented is the	riteria. Value pre	esented is the
@4 Ecology compos	site sample period:	Ecology composite sample period: 1910 - 5/9 to 0400 - 5/10		i Total Phthalate Esters	ers	1		LOEL - Lowest Observed Effect Level.	fect Level.	
	ite sample period s	Texaco composite sample period slightly greater than Ecology sample	pie period.	n lotal Polynuciear Aromatic Hydrocarbons	romatic Hydroca	Indons	grap Ecology gra	Ecology grab sample		

Table 4 - Detected VOA, BNA, and Metals Scan Results - Texaco, 1994.

COLUMN TO THE PARTY OF THE PART																							ceed a				
																						the average.	ns should not ex				
EPA & State Water Quality	Criteria Summary	Chronic	Marine		(µg/L)	36 d,cc	р 8	P 05		5.8 d	0.025 d	71 d,x	76.6 d				s an estimate.					very three years on	nbient concentratior				
EPA & State	Criteria	Acute	Marine		(µg/L)	o 69	37.2 c	1100 c,1	2.5 c	151.1 c	2.1 c	300 c	84.6 c				d numerical result is	limit, but		d result.	d estimated result.	d more than once e	rherever practical an		ed whenever the	ter.	
EFFLUENT		05/10	@5	198540	µg/L	2.0 P		2.1 P	5.3 P	1.2 P	0.14 P	33.1 J	14 P				d. The associate	e instrumentation	antitation limit.	above the reporte	above the reporte	not to be exceede	been noted, and w	:1 µg/L.	hould be monitore	5 µg/L in salt wa	
TEXEFF	E-comp	05/10	@4	198530	µg/L	2.0 P	22.7 P	3.1 P	5.8 P	1.6 P	0.14 P	42.8 J	546	ample	ample		itively identifie	ected above th	d minimum qu	detected at or	detected at or	concentration	fiatoms have t	entrations of 2	community s	nium exceeds	
S-1	grab	60/90	1900	198550	ηgη	15 P	2.22		14 P	5.3 P	0.13 P		111	Ecology composite sample	Texaco composite sample	Ecology grab sample	The analyte was positively identified. The associated numerical result is an estimate,	The analyte was detected above the instrumentation limit, but	below the established minimum quantitation limit	The analyte was not detected at or above the reported result	The analyte was not detected at or above the reported estimated result.	The 1-hour average concentration not to be exceeded more than once every three years on the average.	Nonlethal effects to diatoms have been noted, and wherever practical ambient concentrations should not exceed a	chronic marine concentrations of 21 µg/L.	The status of the fish community should be monitored whenever the	concentration of selenium exceeds 5 µg/L in salt water.	Exceeds criteria
														E-comp	T-comp	grab	7	α.		<u> </u>	3	O	9		×		
STORM-IN	E-comp	05/10	@ 3	198520	μg/L				8.5 P				15 P	Ecology Cleanwater (stormwater) Flume effluent sample into Final Pond	pond.	east side of refinery	puod	outfall.	ple taken east of shipping pier.	1005 - 5/9 to 1005 - 5/10	1910 - 5/9 to 0400 - 5/10	Texaco composite sample period slightly exceeded Ecology's sample period.	A 4-day average conc. not to be exceeded once every three years on average.	Salinity dependent effects. At low salinity the 1-hour average may not be			
Location:	Type:	Date:	Time:	Lab Log#:	Metals (Total Recoverable)			exavalent)						Ecology Cleanwater (stormwater) F	Ecology effluent sample from final pond.	Ecology Stormwater sample from east side of refinery	Texaco effluent sample from final pond	Ecology sediment sample taken at outfall.	Ecology background sediment sample taken east of shipping pier.	Ecology composite sample period: 1005 - 5/9 to 1005 - 5/10	Ecology composite sample period: 1910 - 5/9 to 0400 - 5/10	Texaco composite sample period s	A 4-day average conc. not to be ex	Salinity dependent effects. At low:	sufficiently protective.		
					Metals (Total	Arsenic	Cadmium	Chromium (Hexavalent)	Copper	Lead	Mercury	Selenium	Zinc	STORM-IN	TEX-EFF	S-1	EFFLUENT	TEXOUT1	SEDBACK	@	9	(0)5)	_			

NOTE: all tests were run on the effluent (TEXEFFB sample) - lab log # 198530B

Daphnia pulex - 48 hour survival test

(Daphnia pulex)

Sample	Number Tested	Percent Survival
Control	20	100
6.25 % Eff	20	75
12.5 % Eff	20	85
25 % Eff	20	85
50 % Eff	20	65
100 % Effluent	20	55

(Survival)

LC50 > 100% effluent

LOEC = 6.25 % effluent

NOEC < 6.25% effluent

Four replicates of five organisms

Fathead Minnow - 96-hour Survival Test

(Pimephales promelas)

Sample	Number	Percent
	Tested	Survival
Control	40	100%
6.25 % Effluent	40	85%
12.5 % Effluent	40	93%
25 % Effluent	40	93%
50 % Effluent	40	68%
100 % Effluent	40	8%

(Survival)

LC50 = 58% effluent

LOEC = 50 % effluent

NOEC = 25% effluent

Four replicates of ten organisms

Rainbow Trout - 96-hour Screening-level Survival Test

(Oncorhynchus mykiss)

Sample	Number	Percent
	Tested	Survival
Control	30	97
65% Effluent	30	93
100% Effluent	30	93

NOEC - no observable effects concentration

LOEC - lowest observable effects concentration

LC50 - lethal concentration for 50% of the organisms

EC50 - effect concentration for 50% of the organisms

TEX-EFFB

Effluent bioassay grab-composite Lab Log # same as TEXEFF

NOTE: all tests were run on the effluent (TEXEFF sample) - lab log # 198530

Echinoderm Sperm Cell Toxicity Test

(Strongylocentrotus purpuratus)

Sample	Number of	Number of	Mean %
	Normal Fertilizations	Abnormal Fertilizations	Unfertilized
Control (Brine Solution)	375	25	6
Natural Seawater Control	363	37	9
04.38 % Effluent	363	3 7	9
8.25 % Effluent	358	42	11
17.5 % Effluent	358	42	11
35 % Effluent	310	90	23
70 % Effluent	68	332	83

(Fertilization)

EC50 = 51 % effluent

LOEC = 35 % effluent

NOEC = 17.5 % effluent

4 replicates of 100 eggs

Pacific Oyster Embryo 48-hour Survival Test

(Crassostrea gigas)

Sample	Total Number of Embroys	Total Survival	Normal Embroys	Abnormal Embroys	Mean % Survival	Mean % Abnormal
Centrol (Brine Solution)	828	807	768	43	97.5	5.3
Natural Seawater Control	843	624	576	49	74	2.3
04.38 % Effluent	846	643	584	59	76	4.1
8.25 % Effluent	845	625	573	52	74	2.8
17.5 % Effluent	837	720	632	88	86	6.7
35 % Effluent	838	620	10	610	74	93.0
70 % Effluent	843	632	10	632	75	93.1

(Normal Survival)

EC50 = 27 % effluent

LOEC = 4.38 % effluent

NOEC < 4.38 % effluent

4 replicates of 150-300 embroys

NOEC - no observable effects concentration

LOEC - lowest observable effects concentration

LC50 - lethal concentration for 50% of the organisms

EC50 - effect concentration for 50% of the organisms

(mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology Texaco Ecology	TEXEFF E-comp 05/10 @4 198530 8 14 7 9 70.9 38 16.4 14.0	EFFLUENT T-comp 05/10 @5 198540 7 5 63.9 38 16.3 14.0	TEXEFF1 grab 05/09 1920 198531	TEXEFF2 grab 05/10 0920 198532
Effluent BOD5 (mg/L) Effluent TSS (mg/L) Chemical Oxygen Dem (mg/L) TOC (mg/L) Oil & Grease (mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Cadmium (µg/L) Lead (µg/L) Lead (µg/L) Nickel (µg/L) Selenium (µg/L)	Laboratory Ecology Texaco Ecology Texaco an Ecology Texaco Ecology Texaco Ecology Texaco Ecology Texaco Ecology	8 14 7 9 70.9 38 16.4 14.0	5 63.9 38 16.3	5 J	
(mg/L) Effluent TSS (mg/L) Chemical Oxygen Dem (mg/L) TOC (mg/L) Oil & Grease (mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100mi) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Ecology Texaco Ecology Texaco an Ecology Texaco Ecology Texaco Ecology Texaco Ecology Texaco Ecology Texaco	14 7 9 70.9 38 16.4 14.0	5 63.9 38 16.3		
(mg/L) Effluent TSS (mg/L) Chemical Oxygen Dem (mg/L) TOC (mg/L) Oil & Grease (mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100mi) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology Texaco an Ecology Texaco Ecology Texaco Ecology Texaco Ecology Texaco Ecology	14 7 9 70.9 38 16.4 14.0	5 63.9 38 16.3		
(mg/L) Chemical Oxygen Dem (mg/L) TOC (mg/L) Oil & Grease (mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Texaco Texaco Ecology Texaco Ecology Texaco Ecology Texaco Ecology Texaco Ecology	9 70.9 38 16.4 14.0	63.9 38 16.3		
(mg/L) TOC (mg/L) Oil & Grease (mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology Texaco Ecology Texaco Ecology	38 16.4 14.0	38 16.3		
(mg/L) Oil & Grease (mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100mi) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Cadmium (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology Texaco Ecology	14.0			
(mg/L) Phenolic Compounds (mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology Texaco Ecology	0.04			
(mg/L) Ammonia Nitrogen (mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology	nna i		2.8	5 J
(mg/L) Total Chromium (mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Cadmium (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)		0.04 J 0.005 U	0.04 UJ		
(mg/L) Hexavalent Chromium (mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Arsenic (µg/L) Beryllium (µg/L) Cadmium (µg/L) Capper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	rexaco	9.51	9.64		
(mg/L) Effluent Fecal coliform (#/100ml) pH Metals Antimony (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Ecology Texaco	0.005 U ND	0.005 U ND		
(#/100ml) pH Metals Antimony (µg/L) Arsenic (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Ecology Texaco	0.003 P 0.03	0.0021 P		
pH Metals Antimony (µg/L) Arsenic (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Ecology Texaco	3 U	3 U		
Antimony (µg/L) Arsenic (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Ecology Texaco	7.83 7.6	8.05		
Arsenic (µg/L) Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)		7.0			
Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Ecology	30 U	30 U		
Beryllium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco Ecology	ND 2.0 P	ND 2.0 P		
Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L)	Texaco	4.0	5.0		
Copper (µg/L) Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L) Silver (µg/L)	Ecology Texaco	1 U ND	1 U ND		
Lead (µg/L) Mercury (µg/L) Nickel (µg/L) Selenium (µg/L) Silver (µg/L)	Ecology Texaco	22.7 13	0,1 U ND		
Mercury (µg/L) Nickel (µg/L) Selenium (µg/L) Silver (µg/L)	Ecology Texaco	5.8 P	6.3 P		
Nickel (µg/L) Selenium (µg/L) Silver (µg/L)	Ecology	ND 1.6 P	9 1.2 P		
Nickel (µg/L) Selenium (µg/L) Silver (µg/L)	Texaco Ecology	ND 0.14 P	ND 0.14 P		
Selenium (µg/L) Silver (µg/L)	Texaco Ecology	10	20		
Silver (µg/L)	Texaco	10 U 4	10 U 3		
	Ecology Texaco	42.9 J 48	33.1 J 40		
Thattinas treatin	Ecology Texaco	0.50 UJ	0.05 UJ		
Thallium (µg/L)	Ecology	ND 25 UJ	ND 2,5 UJ		
Zinc (μg/L)	Texaco Ecology Texaco	1 5 46 480	ND 14 P ND		
•••	r sample	J The analy	te was positively identi		ed numerical result is an estima
T Texaco grab grab sai	-		te was detected above established minimum		on limit, but
Comp Compos	site sample	U The analy	te was not detected at	or above the repor	
EFFLUENT Texaco TEX-EFF Ecology	effluent sample from final pond	•	rte was not detected at composite sample perio		

Table 6 (cont.) - Split Sample Result Comparison - Texaco,1994

Page 2

NOTE: all Ecology and Texaco tests were run on the effluent (TEXEFFB sample) - lab log # 198530B

BIOASSAY DATA

Daphnia pulex - 48 hour survival test

(Daphnia pulex)

	Ecology Results	Texaco Results
Sample	Percent Survival	Percent Survival
Control 6.25 % Effluent	100 75	100
12.5 % Effluent 25 % Effluent	85	100
50 % Effluent	85 65	100 1 00
100 % Effluent	55	100

Rainbow Trout - 96-hour Screening-level Survival Test

(Oncorhynchus mykiss)

	Ecology Results	Texaco Results
Sample	Percent	Percent
·	Survival	Percent Survival
Control	97	
65% Effluent	93	100
100% Effluent	93	65

Fathead Minnow - 96-hour Survival Test

(Pimephales promelas)

Percent	Percent
Survival	Survival
100%	
8%	40%
00000	100%

Table 7 - Comparison of Detected Sediment Organics to Marine Sediment Quality Standards - Texaco, 1994 **Quality Standards** Chemical Criteria Marine Sediment mg/Kg TOC ·dry wt.* 1000 110 160 3.1 66 r H **4 5** 31 Ecology background sediment sample taken east of shipping pier. mg/Kg TOC ·dry wt.* SEDBACK 148230 grab 04/06 1400 96.0 13.70 12.35 6.43 Ecology sediment sample taken at outfall. Normalized to fractional percent TOC Exceeds sediment quality standard mg/Kg TOC -dry wt.* TEX0UT1 168233 04/18 ю. Н 10.6 4.5 д . 8.7 10.1 966 1100 grab Ecology grab sample Турв: Date: Time: Location: Lab Log#: Bis(2-Ethylhexyl)Phthalate ndeno(1,2,3-c,d)Pyrene 1,2-Dichlorobenzene Benzo(g,h,i)Perylene 1,4-Dichlorobenzene Organic Compounds grab TEX00T1 SEDBACK Benzo(a)Pyrene Dibenzofuran Fluoranthene Chrysene Pyrene

Table 8 - Sediment Bioassay Results - Texaco, 1994.	ssay Result	ts · Texaco, 1	994.		
Amphipod/Rhepoxynius - 10 day Emergence and Survival Test (Rhepoxynius abronius)	lay Emergence	and Survival	lest		
Parameter	Control	Location Type: Date: Time: Lab Log #:	TEXOUT1 grab 04/18 1100 168233	SEDBACK grab 04/06 1400	
Average Percent Survival*	94-97%		%06	93%	
Exceeded Marine Sediment Quality Minimum Biological Effects Criteria (WAC-173-204-320)			No	No	
Exceeds Marine Sediment Cleanup Screening Levels and Minimum Cleanup Biological Criteria (WAC-173-204-520)			No	No	
* 5 replicates c TEXOUT1 Ecology sedir SEDBACK Ecology sedir grab Grab sample	5 replicates of 10 organisms Ecology sediment sample taken at outfall . Ecology sediment sample sample taken ea: Grab sample	5 replicates of 10 organisms Ecology sediment sample taken at outfall . Ecology sediment sample sample taken east of shipping pier. Grab sample	ing pier.		

Appendices

Appendix A - Sampling Stations Descriptions - Texaco, 1994

TF-IN-#	Grab sample of wastewater collected from the flow out of the equalization tank upstream of the trickling filter - collected in both A.M. and P.M
TF-IN	Ecology 24-hour composite sample of wastewater collected from the flow out of the equalization tank upstream of the trickling filter.
AIR-OUT-#	Grab sample of wastewater collected below the weir from the south Aeroaccelator Activated Sludge unit overflow - collected in both A.M. and P.M.
AIR-OUT	Ecology 24-hour composite sample of wastewater collected above the weir at the south Aeroaccelator Activated Sludge unit.
STORM-IN-#	Grab sample of stormwater collected from the effluent at the Clean Water (Stormwater) Flume before it flows into the Final Pond - collected in both A.M. and P.M.
STORM-IN	Ecology 24-hour composite sample of stormwater collected from the effluent at the Clean Water (Stormwater) Flume before it flows into the Final Pond.
S-1	Grab sample of stormwater collected from a channel on the east side of the refinery before flow is discharged to the ground.
TEXEFF-#	Grab sample of disinfected effluent collected from the overflow at the Final pond - collected in both A.M. and P.M.
TEXEFF	Ecology 8-hour composite sample of disinfected effluent collected from overflow at the Final Pond.
TEXEFFB	Ecology bioassay composite grab sample of disinfected effluent collected from overflow at the Final Pond.
EFFLUENT	Texaco 24-hour composite sample of disinfected effluent collected from the overflow at the Final Pond
TEXOUT1	Sediment sample collected at the loading dock outfall location (Lat: 48° 30′ 40′ N; Lang: 122° 34′ 35′ W)
SEDBACK	Background sediment sample collected northeast of the loading dock. (Lat: 48°- 30′- 40′ N; Long: 122°- 33′- 20′ W)

Appendix B - Texac	Texaco Oil Refinery Sampling Schedule, May	mpling Sched	ule, May 1994.							Page 1
Parameter	Location:	TF-IN-1	TF-IN-2	H	AIR-0UT1	AIR-OUT2	AIR-OUT	STORM-IN-1	STORM-IN-2	STORM:IN
	Type: Date:	grab 05/09	grab 05/10	E-comp 05/10	grab 05/09	grab 05/10	E-comp 05/10	grab 05/09	grab 05/10	E-comp 05/10
	lime: Lab Log #:	2005 198501	0938 198502	ල් 1 198500	2015 198511	1050 198512	@2 198510	2025 198521	1115 198522	@3 198520
GENERAL CHEMISTRY Conductivity				Œ			ロ			Á
Alkalinity Hardness				Œ			Ħ			
Grain Size SOLIDS Solide d				L			ţ.			Ŀ
		ы	Ħ	l	Ħ	Ħ	I	Ħ	Ħ	1
% Volatile Solids OXYGEN DEMAND PARAMETERS PODS	<u>IMETERS</u>			D			ļ			¢.
Bfer!				I EA EA			田田田	æ	ω	I EI EI
il/sed) ENTS		1	1	I	1	#	#			
Nepara No2+No3-N TotakP		4 M B4	4 M B	4 EA EA	4 M H4	4 in 14	đ 121 5 4			
EOUS (**atet)								ы	M	
33336										
Cyanide (wk & dis) ORGANICS With Characteristics								Œ	ŭ	
										ω
BNAs (soil/sed) Phenofica: Total/water)										•
METALS PP Metals (water)										时
Total chromium Haxavalent chromumn										ন ম
3333										
Fathead Minnow (chronic) Echinoderm sperm cell										
Rhepoxinius (solid acute) FIELD OBSERVATIONS Tambératura	æ	¥	n		M	Ħ		鱼	ш	
+	DO C	MG	1911	ымы		ta la	H M F			মে মে ম
TF-IN	Ecology Trickling Filter influent sample.	uent sample.	olumes sumple		(e)	Composite sample period: 0900 - 5/9 to 0900 - 5/10 Composite sample period: 0940 - 5/9 to 0940 - 5/10	riod: 0900 - 5/9 to 0			are and the state of the state
	ccoopy Aeroaccelaur Activateu Siouge Onic entrent Sample. Ecology Cleanwater (stormwater) Flume effluent sample into Final Pond	water) Flume efflu	ant sample into Final P	puo,		Composite sample pe	ariod: 1005 - 5/9 to 1	012 - 5/10 005 - 5/10		
	Ecology grab sample Ecology composite sample				A [-	Ecology laboratory analysis. Texaco laboratory analysis.	nalysis. nalysis.			
* * *	Refrigerated sample Refrigerated sample									

Appendix B - Texe	Texaco Oil Refinery Sampling S	ng Schedule	chedule, May 1994.						Page 2
Parameters	Location2:		TEXEFF1	TEXEFF2	TEXEFF	TEXEFFB	EFFLUENT	TEXOUT1	SEDBACK
	Type: Date: Time:	grab c 05/09 c 1900 c 198550	grab 05/09 1920 198531	grab 05/10 0920 198532	E-comp 05/10 @4 198530	grab-comp 05/9·10 1900&0920 198530R	Т-comp 05/10 @5 198540	grab 04/18 1100 168233	grab 04/06 1400 148230
GENERAL CHEMISTRY Cenductivity (umbosicm) Alkalinity (mgl. CaCO3) Hardness (mgl. CaCO3) Grain Size (% ohi size)					ET		120 田121	[E	E
SOLIDS Solids 4 TSS (mg/L) % Solids		M	ш	н	B H		EI	ı Mi	ı 🛍
% Volatile Solids OXYGEN DEMAND PARAMETERS BODG-frag(L) TOC frag(L) TOC frag(L) TOC frag(L) TOC solidsed)	** Volatile Solids OXYGEN DEMAND PARAMETERS BRODE fing[L] TGC (watter mg/L) TGC (watter mg/L)	MMM	Œ	æ	ET ET		E ET	떠 떠	FI FI
			5 4 I	ta i	전 전 전 64		E		
UH BIRD CKBBSC HIBITAL F-Coliform MF (#/100mL) Cyshide total (tugital Cyanide (Wk & dis ugital)			d 14	ů D	EE		ii e		
ORGANICS YOC (waterugit) VOC (soil-ugikg) BNAs (waterugit) BNAs (soil-ugikg) Phenolics Totaliwaterugit)	ORGANICS YOC (waterugit) VOC (soil-ugikg) Binks (waterugit) BNAs (soil-ugikg)	e e	Œ	H	ET		E w	14	E E
METALS PP Merisis Total chromium (ug/L) Chrome 6 (ug/L)		ĦĦĦ			RT ET		ET ET		
BIOASSAYS Selmond (scure 100%) Selmond (scure 100%) Daphate sp. (schronic) Fathead Minnow (chronic) Echinalism seam cell						超四超四路			
െട്ട് ് ് ട	35 5555C 5556C	M M C	E4 E4 E	M M M	B B	MM M	19 19 13	M	Ħ
S-1 Ecolor TEX-EFF Ecolor EFFLUENT Texas grab Ecolor E-comp Ecolor T-comp Texas	Ecology Stormwater sample from east side of Ecology effluent sample from final pond. Texaco effluent sample from final pond Ecology grab sample Ecology composite sample Texaco composite sample Refrigerated sample	refiner			TEXOUT1 Ecolog SEDBACK Ecolog @4 Compo @5 Texacc E Ecolog	Ecology sediment sample taken at outfall. Ecology background sediment sample taken east of shipping pier. Composite sample period: 1910 · 5/9 to 0400 · 5/10 Texaco composite sample period slightly exceeded Ecology's sample period. Ecology laboratory analysis. Texaco laboratory analysis.	at outfall. sample taken east of: 5-5/9 to 0400 - 5/10 id slightly exceeded E	shipping pier. cology's sample perio	-

PARAMETER	MANCHESTER METHODS	LAB USED
GENERAL CHEMISTRY		
Conductivity (umhos/cm)	EPA, Revised 1983: 120.1	Ecology
Alkalinity (mg/L CaCO3)	EPA, Revised 1983: 310.1	Ecology
Hardness (mg/L CaCO3)	EPA, Revised 1983: 130.2	Ecology
Grain Size (% phi size)	Tetra Tech, 1986:TC-3991-04	Soil Technology, Inc.
SOLIDS	,	• • • • • • • • • • • • • • • • • • • •
Solids 4	EPA, Revised 1983: 160.2&3	Ecology
TSS (mg/L)	EPA, Revised 1983: 160.2	Ecology
% Solids	APHA-AWWA-WPCF 1989; 2540G.	Ecology
% Volatile Solids	EPA, Revised 1983: 160.4	Ecology
OXYGEN DEMAND PARAMET		
BOD5 (mg/L)	EPA, Revised 1983: 405.1	Ecology
COD (mg/L)	EPA, Revised 1983: 410.1	Analytical Resources Incorportated
TOC (water mg/L)	EPA, Revised 1983; 415.1	Ecology
TOC (soil/sed)	EPA, Revised 1983: 415.1	Sound Analytical Services, Inc.
NUTRIENTS	LIA, Novidou 1000. 410.1	ound Analytical Coll Mood, Inc.
NH3-N (mg/L)	EPA, Revised 1983; 350.1	Ecology
NO2+NO3-N (mg/L)	EPA, Revised 1983: 353.2	Ecology
Total P (mg/L)	EPA, Revised 1983; 365.3	Ecology
MISCELLANEOUS	LI A, Heriseu 1000, 000.0	radio#}
Oil and Grease (mg/L)	EPA, Revised 1983; 413.1	Ecology
F-Coliform MF (#/100mL)	APHA-AWWA-WPCF 1989: 9222D.	Ecology
Cyanide total (ug/L)	EPA, Revised 1983: 335.2	Analytical Resources Incorportated
Cyanide (wk & dis ug/L)	APHA-AWWA-WPCF 1989: 4500-CNI.	Analytical Resources Incorportated
ORGANICS	AFRA-AWWA-WFUF 1909; 4500-UNI.	Analytical nesources incorportateu
VOC (water-ug/L)	EDA 1000, 0200	Ecology
VOC (soil-ug/kg)	EPA, 1986: 8260	
	EPA, 1986: 8240	Ecology
BNAs (water-ug/L)	EPA, 1986: 8270	Ecology
BNAs (soil-ug/kg)	EPA, 1986: 8270	Ecology
Phenolics Total(water-mg/L)	EPA, Revised 1983: 420.2	Analytical Resources Incorportated
<u>METALS</u>	FR4 8 1200 500 500	
PP Metals	EPA, Revised 1983; 200-299	Ecology
Total chromium (ug/L)	EPA, Revised 1983: 218.3	Ecology
Chrome 6 (ug/L)	EPA, Revised 1983: 218.5	Ecology
<u>BIOASSAYS</u>		<u></u>
Salmonid (acute 100%)	Ecology, 1981.	Parametrix, Inc.
Bivalve Larvae (acute)	ASTM, 1989:E724	Parametrix, Inc.
Daphnia pulex (chronic)	EPA, 1993	Parametrix, Inc.
Fathead Minnow (chronic)	EPA 1989:1000	Parametrix, Inc.
Echinoderm sperm cell	Dinnel, 1987	Parametrix, Inc.
Rhepoxinius (solid acute)	ASTM, 1990: E1367	Parametrix, Inc.
APHA-AWWA-WPCF, 1989.	Standard Methods for the Examination of Water and Wastew	
ASTM, 1989: E724.	Standard Guide for Conducting Static Acute Toxicity	- · · · · · · · · · · · · · · · · · · ·
	Species of Saltwater Bivalve Molluses. In: Annual Be Environmental Technology. American Society for Te	
ASTM, 1990: E1367.	Guide for Conducting Sediment Toxicity Tests of Est	
	Book of ASTM Standards, Water and Environmental	Technology. American Society of
	Testing and Materials, Philadelphia, Pa.	
Dinnel,1987.	Improved Methodology for a Sea Urchin Sperm Cell	-
Ecology, 1981.	et.al, 1987. Arch. Environ. Contam. Toxicol., 16, 23 Static Acute Fish Toxicity Test, WDOE 80-12, revise	
EPA, Revised 1983.	Methods for Chemical Analysis of Water and Waster	•
EPA, 1986.	Test Methods for Evaluating Solid Waste Physical/Cl	
EPA, 1989.	*	city of Effluents and Receiving waters to Freshwater Organisms.
EPA, 1993.	•	nts to Freshwater and Marine Organisms. EPA/600/4-90/027F
Tetra Tech, 1986.	Recommended Protocols for Measuring Selected Env Prepared for Puget Sound Estuary Program.	vironmental Variables in Puget Sound,

Prepared for Puget Sound Estuary Program.

Appendix D - Priority Pollutant Cleaning Procedures and QA/QC Concerns - Texaco USA (Anacotes), 1994.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent
- 2. Rinse several times with tap water
- 3. Rinse with 10% HNO3 solution
- 4. Rinse three (3) times with distilled/deionized water
- 5. Rinse with high purity methylene chloride
- 6. Rinse with high purity acetone
- 7. Allow to dry and seal with aluminum foil

SPECIFIC LABORATORY QA/QC CONCERNS

- 1. Low levels of the volatile compounds acetone and methylene chloride were detected in laboratory blanks for both water and sediment matrices. Several volatile and semivolatile compound were detected in sediment laboratory blanks. The EPA 5 times rule was applied, where compounds are considered real and not the result of contamination if the levels in the sample were greater than or equal to five times the amount of compounds in the associated method blank.
- Matrix spike recoveries and Relative Percent Differences (RPD) were not acceptable for a number of compounds found in both water and sediment matrices. The "J" qualifier was added to the results for those compounds in the sample.
- 3. Phenol distillation check standard, which typically exhibits low recoveries, was outside the QC limits. Positive Phenol results have been qualified with the "J" and non-detect Phenol results have been qualified with the "UJ" to indicate a possible low bias.
- 4. The samples analyzed for Phenols and CN were received unpreserved. Phenols were already qualified due to low recoveries. All positive CN results have been qualified with a "J" and all CN non-detects with a "UJ"
- 5. Spike recoveries for thallium were outside the CLP acceptance limits. Silver was not spiked (lab error) and no spike or spike duplicate data are available. Silver results were qualified with a "J", denoting estimates. Thallium was qualified with a "J", denoting estimated values due to poor precision.

Page 1

	Location	OTODII IN 1	C MI MOOTO	HIS AND	-	Trvere4	CLINIT		in the second						
	Typo.	STUDIN-IN-1	S I UNIVI-IN-Z			IEAEFFI	IEAEFF2						i EXUU I	=	SEUBACK
	l ype: Dafe:	grab 05/09	grab 05/10			grab OF/09	grab OF/10						grab		grab
	Time:	2025	1115			1920	0920						1100		1400
	Lab Log#:	198521	198522			198531	198532						168233	23	148230
VOA Compounds		μg/L	J/B/J			/ng/L	∏B/I						µg/Kg-dry wt		ug/Kg-dry wt.
Dichlorodifluoromethane		1.0 U	1.0 U			1.0 U	1.0 U						13	m	1.5 UJ
Chloromethane		1.0 U	1.0 U			1.0 U	1.0 U		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		1.3	3	1.5 UJ
Vinyi taneries		1) 			n :	n :: 0 0						 (3 :	W):
Dromomethane Chtoroothane		0 0.7 3 0 11	0 0.7			0.7 3 o ti	0 0.7						 	-	
Trichloroflincomathana		=====				101	101								88 T
# 1-Dictionations		<u> </u>) II II I)) 						- -	3=	- 333
Aratona	200000000000000000000000000000000000000	25 II.I	3.7 11.1	000000000000000000000000000000000000000		- - - - -	42 !!!) / 	> =	(i)
Carbon Disufficia		100	100			7 60	27 68 D							3 🚍	2000
Methylene Chloride		1.0 UJ	1.0 UJ	000000000000000000000000000000000000000		1.8 UJ	1.0 UJ				000000000000000000000000000000000000000		7		8
frans 1.2 (Hehlornethens		1011	1011			101	100								3330
1.1-Dichloroethane		1.0 U	1.0 U			1.0 U	1.0 U	X					13		15 11.
2.2-Dichloreprepare		10.01	10 DT			1.0 U	10.01							3 =	3333
cis-1,2-Dichloroethene		1.0 U	1.0 U			1.0 U	1.0 U							n	2
2-Butanone (MEK)		1.0 UJ	100			1.0 UJ	1.0 UJ						13	ij	
Bromochloromethane		1.0 U	1.0 U			1.0 U	1.0 U						1.3	n	1.5 UJ
Chloratorm		0.87 J	07.1			0.24 J	- 629 - 629						£.	3	
1,1,1.Trichloroethane		1.0 U	1.0 U			1.0 U	1.0 U						1.3	_	
1,1-Dichteroproperie		100	101			101	10 01						133	_	
Carbon Tetrachloride		1.0 U	1.0 U			1.0 U	1.0 U						1.3	n	
Веплеле		91	1.3			1.0 U.1	1.0 U.J						1,3	m	
1,2-Dichloroethane		1.0 U	1.0 U			1.0 U	1.0 U						1.3	=	
Trichlomethens		11 11 11	10.0			10.0	100						13	Ð	
1.2.Dichloropropane		1.0 U	1.0 U			1.0 U	1.0 U						<u></u>	_	
(Titrumomethane		100	10.0			1.0 U	1.0 U						13	-	
Bromodichloromethane		1.0 U	1.0 U			1.0 U	1.0 U						 		
cis 1 3-Dicimiraniana		0.53 U	0.53 U			0.53 U	0.53 U						690	_	0.82 UJ
4-Methyl-2-Pentanone (MIBK)	Ç	1.0 U	1.0 U			1.0 U	1.0 U						2.6		9
Toluene		1.9	B.7.J			170 071	1.0 U						13	=	
trans-1,3-Dichloropropene		0.47 U	0.47 U			0.47 U	0.47 U						0.61	3	. 2
1,1,2.Trichloroethane		n 0'1	1.0 U			n 01	0 i						£.	.	388
Tetrachloroethene		1.0 U) 			1.0 U).0 U						ان. د	-	
1,3 Licmoropropane) - -) 			100) - 							> =	88
Othernockinemethane		0 0 0 E				10 II	9 00						13	, E	
1,2.Dibromoethane (EDB)		1.0 U	1.0 U			1.0 U	1.0 U						1.3	_	1.5 UJ
Chlorebenzene		1.0 U	1.0 U			T 0 T	1:0 U						£1.3	3	****
1,1,1,2.Tetrachloroethane		1.0 U	1.0 U		000000000000000000000000000000000000000	1.0 U	1.0 U	200000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000			- 33
Ethylbenzene		0.33 J	. 10 UJ			0 0°1	70 0T						Σ	3 :	rn c'.
mpXYLENE		1.2 J	0.51 J			2.0 U	7.0 U						ر. د	3 =	
Urattent Tetal Vulgano		2 C C	- YOU) - -) = - - -							3 =	
Frhanvillenzane (Stvrane)			10.0			0 0.5 1 0 0	101						1.3	3 =	1.5 43
Constitution and a second															
STORM-IN Ecology	Cleanwater (stori	Ecology Cleanwater (stormwater) Flume effluent sample into Final	int sample into Fina	al Pond		grab Ec	Ecology grab sample	ple							
	Ecology effluent sample from final pond.	rom final pond.				<u>_</u>	The analyte was positively identified. The associated numerical result is an estimate.	ositively ident	ified. The as	ssociated nu	merical resu	ılt is an estiı	mate.		
	Ecology sediment sample taken at outfall.	taken at outfall.					The analyte was not detected	not detected at	at or above the reported result	e reported r	esult.				
SEDBACK Ecology	background sedir	Ecology background sediment sample taken east of shipping pier.	ast of shipping pier			3	The analyte was not detected at or above the reported estimated result	not detected at	t or above th	e reported e	stimated res	sult.			

1994.
Texaco,
Results
l Scan
l Meta
IA, and
· VOA, BNA, ar
ıt'd) · V
E (con
Appendix

Page 2

	location.	CTORM IN 1	CTUBM IN 2	TCVCCC1	TEVEEE				TTVOIT 1	7010
		o i univiriivi i grah	2. IUNIVIII C	IEAEFFI	IEAEFF.2				IEXUUII	SEUBACK
		gran 05/09	9180 05/10	91 au 05/09	grau 05/10				grad	grad
		2025	1115	1920	0920				1100	1400
VOA Compounds	ran roß#.	J/B/L	190322 µg/L	Hg/L	190332				188233 44/Kq-dry wt.	148230 ua/Kg-drv wt.
1		11 011	101							
Isopropylbanzana		0.077 U	1.0 U	1.0 U	1.0 U				1.3 U	1.5 UJ
1,1,2,2 Tetrachloroethans		n 0 1			0 0 1				1.3 U	
Bromobenzene		1.0 U	1.0 U	1.0 U	1.0 U				1.3 U	1212
Pronvillanzana) 	10 =	101	101				1.3 =	1.3 to 1.
2. Chierotoluana		1.0 U			10.1				- 333	333
1,3,5-Trimethylbenzene		0.18 J	1.0 U	1.0 U	1.0 U			700000000000000000000000000000000000000	9	÷
4-Chierotoluene				1.0 U	1.0 U				1.3 U	
tert-Butylbenzene		1.0 U	1. <u>0</u> U	1.0 U	1.0 U	000000000000000000000000000000000000000			- 2	
1,2,4 Trimathylbenzene		n : 6:	02.	190	n e ;				rn er	330 T
sec:Butylbenzene) 0.1	0.1 *****	O 0:1) o c				1.3 U	
E.S.UICHOTODORZENE		: : :	101	3 = 5 -	D = C				3	888
p-isopropyitoluene		0 0.1 # 0 11	0.01	0 0.1 1 0 t	1.0.1				0 6.1 1	3.1
1 2. Nichlorohonzono) -	- C	-	100				12 = 1	15 US
1,2-Diciliol Obstication			181) 	141				13.11	9999
1 2-Dihromo:3-Chloropropana (DRCP)	(DBCP)	101	10 [101	101	300000000000000000000000000000000000000	***************************************	000000000000000000000000000000000000000		15 []
1.2.4.Trichlorobanzana	(1000)	1.0 0	101	0 01	0 0 T					3.1 43
Hexachlorobutadiene		1.0 U	1.0 U	1.0 U	1.0 U					
Naphthatene		1.3 UJ	1.0 UJ	1.0 UJ	311				78 nn	7.7 tJ
1,2,3-Trichlorobenzene		1.0 UJ	1.0 U	1.0 UJ	1.0 UJ				6.5 UJ	7.7 UJ
	location.	THE CHANGE AND THE CH	STORM:IN		A THE PERSONAL PROPERTY OF THE PERSON OF THE	S.1	TEXEFF	EFFI UEN	T TEXOUT1	SEDBACK
	Tyne.		From			orab	E-comp	T-comp		arab
	Date:		05/10			02/00	05/10	05/10	04/18	04/06
	Time:		(g)			1900	94	ලා		1400
	Lab Log#:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	198520			198550	198530	198540		148230
BNA Compounds			/ng/L			/mg/L	/ng/L	J/B/L	µg/Kg-dry wt.	µg/Kg-dry wt.
Dimethylnitrosamine			Q.17 U			0.13 U	0.29 U	0.28 U	126 UJ	174 U
Pyridine						0.13 U	0.29 U	0.28 U	I 126 UJ	174 U
Amline			0,17 U			0,13 U		0.28 U	62.8 U	174 11
Phenol			0.17 0			0.13 U	0.29	0.28 U		1/4 U
DISIZ-UMMOBENIAHETIMI n-Chioronhano			0.17 U				0.29 U	0.28 U	62.8 UJ	174 U
1,3 Dichiorobenzane			0.17 U			0.13 U	0.29	6,28 U		
1,4-Dichlorobenzene			0.17 U	200000000000000000000000000000000000000		0.13 U				174 U
1,2 Dichterebenzene			B 23 C			n :	⊐ = R2:5	n 82'5		174 10
Benzy Alcohol			U / I .0 1.976.1			0.13 13.5 13.5	0 67:0 11 00:0	0.82.U		
Z-Weinylphenel Ris/2.Chloroisonrony Ether			0,070 J			0.13 =	0.79 II	0.28		174 U
STORM-IN Ecology	Cleanwater (sto	rmwater) Flume	Ecology Cleanwater (stormwater) Flume effluent sample into Final Pond	grab	Ecology grab sample	1	1	Composite sample period: 1005	period: 1005 - 5/9 to 1005 -	1005 - 5/10
۲.	Ecology effluent sample from final pond	from final pond.			Ecology composite sample	umple		Composite sample period: 1910	period: 1910 - 5/9 to (- 5/9 to 0400 - 5/10
	· Stormwater san	Ecology Stormwater sample from east side of refinery	e of refinery		Texaco composite sample	mple		•	•	
EFFLUENT Texaco	Texaco effluent sample from final pond	from final pond		[-	The analyte was positively identified.	tively identifi-	ed. The associa	ted numerical r	The associated numerical result is an estimate.	
	sediment sample	Ecology sediment sample taken at outfall.		•	The analyte was not detected at or above the reported result	detected at or	above the repor	ted result.		
SEDBACK Ecology	background sed	liment sample tak	Ecology background sediment sample taken east of shipping pier.		The analyte was not detected at or above the reported estimated result	detected at or	above the repor	ted estimated re	sult.	
				(@2	I exaco composite sample period slightly exceeded Ecology's sample period	s poued eldu	lightly exceeded	t Ecology's sam,	ole period.	

1994.
Texaco,
Results .
l Scan
id Meta
BNA, ai
. VOA.
(cont'd)
di Xip

	Location: STC	STOBM:N	6.1		TEYEEE	CEELIENT	TEVOLIT1	SEDDACK
		u u	- 4025	-	LALII	Tooms	I LYDD I	SCUDACA
	Date: 05/10		yrab O5/09		E-CUIIII 05/10	1-comp 05/10	grab	grap
		2	1900		@4	92	1100	1400
· · · · · · · · · · · · · · · · · · ·		198520	198550		198530	198540	168233	148230
BNA Compounds	l/gu/	-	µg/L		/ng/L	/J/B//	µg/Kg-dry wt.	µg/Kg·dry wt.
N-Nitraso-di-m-Propylamine		7.0	0,13	П	0.29 U	0,28 U	62.8 U	174 U
4-Methylpheno Havachtornathana	0.1	7 U 3 m 1	0.13	⊃ =	0.29 U	0.28 U	62.8 U	174 U
Nitrohanzana	0.17	88	0.13	> =	6.23 U	0.00 U	FD 070	174 U
Isophorone	20 20	. cz	6.13 6.13	- - -	0.23 U	0.28 0.28 U	0 0.20 67.8 U	174 U
2-Nitrophenol	0,33	3 U	0.26	D:	0.58 U	0.57 U	62.8 U	348 U
2,4-Unitatiny iphenel Ris(2,Chloroethoxy) Methane	##33 113	7 ==	E 13	-	T 62 0	T 92 T	1 8 7 8 C	174 11
Benzaie Acid		7 m	0.13 5.3	- F	0.23 U 11.6 UJ	0.28 11.3 UJ	62.8 U 48.0 U.I	F960 11.1
2,4-Dichlorophenol		7 U	0.13		0.29 U	0.28 U	62.8 U	174 U
1,2,4-Trichlorobanzena	6.1	7 U 7 II	6.13		0.239 U	0.28 U	628 UJ	174 U
4-Chiorpaniime	######################################	7 B	0.13 6.13	- m	0.23 0.23 U	0 87:0 6 28 11	0 8.79 67.8 U.I	L 8.07
Hexachlorobutadiene		7 U	0.13	_ 	0.29 U	0.28 U	62.8 U	174 U
4-Chloro-3-Methylphenol		<u></u>	g.13	-	n 620	028 U	628 U	174 U
2-Methylnaphthalene	G	1,17 U 3,3 H.I	0.13	_ 	0.29 U	0.28 U €3 14	62.8 U	15.9 J
2.4 6. Trichloronhand		7	0.13	2 =	0.70 II	128 II	62 8 II	174
2,4,5-Trichlorophanot	210	9 / 2 n	2.6	.	0.29 U	0.28 0.28	0 8:29 0 8:39	174 10
2-Chloronaphthalene	7.0	7 U	0.13	_	0.29 U	0.28 U	62.8 U	174 U
2 Nitroanilina	0.33		0.26		0 88 U	0.67 U	0.829	348 #
Dimethyl Phthalate	0.17	7 U	0.13	_ ⊃:	0.29 U	0.28 U	62.8 U	174 U 174 H
Z.o-Dinitrotatuene	(G. 17)	38 .	G. 13) =	0.20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	0.28	62 B ==	16.0
3-Nitroantine	0.33	3 n	6.26	,=	0.58 U	0.52 U	126 U	348 113
Acenaphthene	0.17	7 U	0.13	n a	0.29 U	0.28 U	68.2 UJ	
Z.4-Umitrophenel	3	0.7 UJ 3.3 II	5.3 7.6	2 =	1.0 5.8 UJ	#1.3 UJ 5.7 II	514 UJ 628	3480 II
Cibenzofuran		2 n	ET 0		0.620	0.28 U	05.8 0.8.0	7.8 J
2,4-Dinitrotoluene	0.33	33 U 23 H1	0.26 6.28	_ 	0.58 U	0.57 U 6.28 H	62.8 U	384 U 174 H
Fluorene			0.13		0.29 U	0.28 U	62.8 U	174 Ü
4-Chlorophanyi Phanylathar	ther 0.17	7 U 2 II	0,13 0 66	= =	829 n 14 n	0,28 U 1.4 H	62.8 U 126 II	174 U
4,6 Dinitro-2 Methylphanol		3.3 UJ	2.6	, 3	5.8 UJ	5.7 UJ	fn \$18	3480 tu
N-Nitrosodiphenylamine	0.17	23	0.13	-	0.29 U	0.28 U	62.8 U	174 U
1,7.Uphenylhydrazine 4.Bromophenyl Phenylether		/ U 7 U	#.13 0.13	-	0.29 U	0.28 U 0.28 U	62.8 U 62.8 U	174 U 174 U
Hexachiorebenzene		7 U	0.13	-	0.29 U	0.28 U	62.8 U	174 U
Pentachlorophenol	7.1 1.17	7 U 7 H	0.13	⊃ ≡	2.9 U n.20 II	2.8 U n 28 H	126 U ≫7.4 i	1740 UJ 100 i
Z.	effluent sample into	Pond	Ecology grab sample	Ø		Composite sample period	i: 1005 - 5/9 to 1005	5 - 5/10
Fu	Ecology effluent sample from final pond.	E-comp	Ecology composite sample	(a)	@4 Compo	Composite sample period: 1910 -	1; 1910 - 5/9 to 0400 - 5/10	00 - 5/10
S-1 EC	Ecology Stormwater sample from east side of relinery Texaco effluent sample from final nond	I -comp	The analyte was positively identified.	lentified. The	ne associated	The associated numerical result is an estimate	s an estimate.	
	Ecology sediment sample taken at outfall.	ņ	The analyte was not detected at or above the reported result	at or above	the reported	ı result.		
SEDBACK EC	Ecology background sediment sample taken east of shipping pier.	5 6	The analyte was not detected at or above the reported estimated result. Tames comments amind stightly avoided England, countly natived	at or above	the reported	l estimated result.	.f .c	
		(33)	l exaco composne sampre pe	nou sugmy	exceenen tr	cology's sample per	1100.	

1994.
exaco,
·
Results
Scan
Metal
and
BNA,
VOA,
÷
(cont'
ш
Appendix

Appendix E (cont	Appendix E (cont'd) · VOA, BNA, and Metal Scan Results · Texaco,	1994.					Page 4
	Location:	STORM-IN	S-1	TEXEFF	EFFLUENT	TEXOUT1	SEDBACK
	l ype: Date:	E-comp 05/10	grab 05/09	E-comp 05/10	T-comp 05/10	grab 04/18	grab 04/06
	Time:	@3 198520	1900 198660	@4 100520	(d5)	1100	1400
BNA Compounds	Lav Loyar	Joseph Majl.	ug/L	Light Light	1)807 1/B//	ug/Kg-dry wt.	ug/Kg·dry wt.
Anthracene		0.17 U	0.13 U	0.29 U	0.28 U	1.7 J	24.3 .1
Carbazole		- 88	0.13 U	0.29 U	0.28 U	62.8 U	174 U
Fluoranthene		0.17 0.17	6.35 UJ 113	1 82 1 1 92 0	U 28 U	FR 8739	174 U
Benzidine			13 13	111 64	0 87.0 28 El	25.50 J	17.40 ti
Pyrene		0.17 U	0.049	0.33	0.29	30.3 J	100 J
Retane		G17 U	0.13 U	0.29 U	0.28 U		28.3 J
Butylbenzyl Phthalate	œ	333	0.66 U	1.4 U	1.4 U	62.8 U	870 U
2 3'. Dichlorohonzidine		0.33 H	# ### D U	n 67 n	# 73 O	126 1	11 1 17 11
Chrysane	B	- 300	0.22 0.13 H	0.30 0.33	0 /G:0 834	1 66t 0 071	348 U 571 I
Bis(2-Ethylhexyl)Phthalate	ala) .	0.2 UJ	0.29 UJ	0.28 UJ	2840	174 UJ
Di-Dctyl Phthalate		G17 U	0.13 U	0.82.0	0.28 U	62.8 U	174 U
Benzo(b)Fluoranthene		0.17 U	0.13 U	0.29 U	0.28 U	62.8 U	174 U
Denzo(k)rtuorammene		017 H	######################################	0 50 C	n = 22 c	n - 00;	174 U
Indeno(1 2 3-cd)Pvrs	Delitoriajr yrenie Indenni 17 Accil Pyrene	2000	0,13 U	0 67.0 0 54 11	0.82.U 0.38.11	19.0 J	1/4 U 22.5 ±
Dibenzo(a.h)Anthracene	THE STATE OF THE S	0.17 U	0.13 U	0.29 U	0.28 U	62.8 U	174 []
Benzaig, h. il Perytens		222	0.13 U	0.29 U	0.28 U	28.7 J	80.6 UJ
·	Location:	STORM:IN	S-1	TEXEFF	EFFLUENT		
	Type:	E-comp	grab	Е-сотр	T-comp		
	Date:	05/10	02/09	05/10	02/10		
	Time:	向 3 1005.20	1900	(04 100E20	回5 100EA0		
	Lad Log#:	070001	00000	00000	190940		
Metals		//g/L	/lg/r	/JB/L	//g/L		
Antimony		n 88	⊐ 8 8	n &	⊐ 88		
	000000000000000000000000000000000000000	1.5 U	1.5 P	2.0 P	2.0 P		
Beryflium			n - : -	n - :	= :		
Cadmium			2.22	22.7	0.1 1.0		
Chromium (Loxalialor)	141	2 0) = c	21 D	2 1 C		
Crumer	(III	(X)	0 4 #1	- d. 85	53 p		
Lead			5.3 P	1.6 P	1.2 P		
Marcury			0.13 P	0.14 P	Q.14 P		
Nickel G.1.	Nickel 8.1. ::	10 U) oc	⊃ - ⊃ - • • •) - 1 ec		
Zilver		# T	2.0 UJ 0 50 II.I	77 0 TO 11 1	0.50 II.		
Thallim	Silvel Tasifilm		75 83	25,00	75 11.1		
Zinc			111	546	14 P		
STORM-IN TEX-EFF	Ecology Cleanwater (stormwater) Flume effluent sample into Ecology effluent sample from final pond.	Final Pond @3 (@3 (@4 (Composite sample period: 1005 - 5/9 to 1005 - 5/10 Composite sample period: 1910 - 5/9 to 0400 - 5/10	/9 to 1005 - 5/10		grab Ecolo	Ecology grab sample
S-1	Ecology Stormwater sample from east side of refinery		Exaco composite sample period slightly exceeded Ecology's sample period. The analyte use positively identified. The associated minerical result is an	ghtly exceeded E	htly exceeded Ecology's sample period. The associated numerical result is an estimate	period.	
TEXOUTI	Ecology sediment sample taken at outfall.	. A	The analyte was detected above the instrumentation limit, but	instrumentation	limit, but	r is an estimate.	
SEDBACK	Ecology background sediment sample taken east of shipping	pier. I	ed minimum q t detected at or	uantitation limit.	l result		
E-comp	Ecology composite sample	III The analyte v	t detected at or	bove the reported	i resuit. I estimated result		
dura.	Load Vongresser sunger			· ·· va da v arm a con			-

Sample Location: STORM-IN-1 Type: grab Date: 05/09 Time: 2025 Sample ID: 198521 Volatile Organics: Compound Name Estimated Concentration (µg/L) Qualifier 1. Methylcyclohexane 2.8 NJ 2. 1-Ethyl-3-Methylbenzene 4.5 NJ 3. Methyl(1-methylethyl)Benzene 3.2 NJ Sample Location: TEXEFF-1 Type: grab Date: 05/09 Time: 1920 Sample ID: 198531 Volatile Organics: Estimated Concentration (µg/L) Compound Name Qualifier 1. 2-methoxy-2-methylpropane 2.2 NJ Sample Location: TEXEFF2 Type: grab Date: 05/09 Time: 0929 Sample ID: 198532 Volatile Organics: Compound Name Estimated Concentration (µg/L) Qualifier 1. 2,3-dimethyl-2-Butanol 2.1 NJ Sample Location: TEXOUT1 Type: grab Date: 04/18 Time: 1100 Sample ID: 168233 Volatile Organics: Compound Name Estimated Concentration (µg/Kg) Qualifier 1. Methane, Thiobis 1.6 NJ

Sample Location: STORM-IN
Type: E-comp
Date: 05/10
Time: @3
Sample ID: 198520

Compound Name	Estimated Concentration (µg/L)	Qualifier
1. 7-Oxabiocyclo[4.1.0]Heptane	0.99	NJ
2. 2-Cyclohexen-1-Ol	0.51	NJ
3. 2-(2-Butoxyethoxy)Ethanol	4.0	NJ
4. Unknown Hydrocarbon 1	0.38	J
5. 2-(2-Butoxyethoxy)Ethanol	9.2	NJ
6. Unknown Hydrocarbon 2	0.68	J
7. Unknown Hydrocarbon 3	0.53	J
8. Unknown Hydrocarbon 4	0.60	J
9. 1H-Indol-5-)Ol	3.8	NJ
10. Unknown Hydrocarbon 5	0.82	J
11. Unknown Hydrocarbon 6	0.72	J
12. Unknown Hydrocarbon 7	1.0	J
13. Unknown Hydrocarbon 8	1.4	J
14. 4-Methyl-Dibenzofurane	0.26	NJ
15. Unknown Hydrocarbon 9	0.37	J
16. Unknown Hydrocarbon 10	0.97	J
17. Unknown Hydrocarbon 11	0.86	J
18. Hexanedioic Acid, Bis(2-Ethy+	3.0	NJ
19. Unknown Hydrocarbon 12	0.43	J
20. Unknown Hydrocarbon 12	0.44	J
•		

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

J The analyte was positively identified. The associated numerical result is an estimate.

Sample Location:	TEXEFF
Type:	E-comp
Date:	05/10
Time:	@4
Sample ID:	198530

Compound Name	Estimated Concentration (µg/L)	Qualifier
1. Unknown Compound 1	21.7	J
2. Unknown Compound 2	13.9	J
3. Unknown Compound 3	3.6	J
4. Unknown Compound 4	7.9	J
5. 1-Ethyl-2-Methyl Aziridine	3.8	NJ
6. Unknown Compound 5	3.1	J
7. Unknown Compound 6	2.7	J
8. Aziridine, 2-(1,1-dimethyle+	2.5	NJ
9. 2,6-Piperazinedione, monoox+	8.2	NJ
10. Unknown Compound 7	5.8	J
11. 1-Piperidineethanamine	5.1	NJ
12. Unknown Compound 8	2.2	J
13. Unknown Compound 9	3.1	J
14. Unknown Compound 10	10.1	J
15. Unknown Compound 11	3.1	J
16. Unknown Compound 12	2.6	J
17. Benzene, (methylsulfinyl)+	11.8	NJ
18. 2-(2-Butoxyethoxy)-Ethanol	14.8	NJ
19. Unknown Compound 13	6.2	J
20. Pyrrolidine, 1-(1-pentenyl)+	8.1	NJ

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

J The analyte was positively identified. The associated numerical result is an estimate.

Sample Location:

EFFLUENT

Type:

E-comp

Date:

05/10

Time: Sample ID:

*@*5 198540

Cor	npound Name	Estimated Concentration (µg/L)	Qualifier
1.	2-Butanol, 2,3-dimethyl+	4.1	NJ
2.	Benzenemethanamine, N,N-dim+	2.2	NJ
3.	Unknown Compound 1	20.4	J
4.	Unknown Compound 2	4.5	J
5.	Unknown Compound 3	8.2	J
7.	Piperidine, 1-ethyl-2methyl	4.6	NJ
8.	Unknown Compound 4	5.2	J
9.	Aziridine, 1-ethyl-2-methyl+	4.6	NJ
9.	Unknown Compound 5	3.6	J
10.	Unknown Compound 6	5.1	J
11.	Unknown Compound 7	4.0	J
12	Aziridine, 2-(1,1-dimethyle+	3.6	NJ
13.	2,6-piperazinedione, monoox	9.5	NJ
14.	Unknown Compound 8	2.2	J
15.	1-Piperidineethanamine	4.5	NJ
16.	Unknown Compound 9	2.1	J
17.	Unknown Compound 10	4.0	J
18.	Benzene, 1-methoxy-3-(methy+	3.0	NJ
19.	Unknown Compound 11	2.8	J
20.	Unknown Compound 12	2.1	J
21.	Benzene, (methylsulfinyl)+	5.7	NJ
22.	Unknown Compound 13	5.1	J
23.	Cyclohexane,1,1'-(1-methyl+	6.8	NJ
24.	Pyrrolidine, 1-(1-pentenyl+	7.2	NJ
	1H-Indol-5-ol	20.7	NJ

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

J The analyte was positively identified. The associated numerical result is an estimate.

Sample Location: S-1
Type: grab
Date: 05/09
Time: 1900
Sample ID: 198550

Cor	npound Name	Estimated Concentration (µg/L)	Qualifier
1.	4-Hydroxy-4-Methylpendtan-2-o	37.5	NJ
2.	7-Oxabicyclo [4.1.0]Heptane	0.64	NJ
3.	2-Cyclohexen-1-ol	0.53	NJ
4.	2-methyl-2, 4-Pentanediol+	45.7	NJ
5.	3,4-Dichlorophenyl Isocyanat+	0.86	NJ
6.	Tetradecanoic Acid	0.44	NJ
7.	1H-Indole-3-Carboxaldehyde	1.1	NJ
8.	Unknown Compound 1	0.59	NJ
9.	Unknown Compound 2	0.49	NJ
10.	9-Hexadecenoic Acid	3.2	NJ
11.	Hexadecanoic Acid	2.8	NJ
12.	Bromacil	2.6	NJ
13.	Unknown Compound 3	1.6	J
14.	Unknown Compound 4	5.6	J
15.	Unknown Compound 5	0.85	J
16.	Unknown Compound 6	8.6	J
17.	Cholestrol	1.5	NJ
18.	Ergosta-7, 22-dien-3-ol, (3.+	1.3	NJ
19.	Stigasterol	1.3	NJ

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

J The analyte was positively identified. The associated numerical result is an estimate.

Sample Location:

TEXOUT1

Type:

grab

Date: Time: 04/18 11:00

Sample ID:

168233

Estimated Concentration (µg/Kg)	Qualifier
58.3	NJ
789	NJ
751	J
45.4	J
50.1	NJ
49.3	J
66.8 J	
36.3	J
98.1	J
136	J
79.5	J
44.2	J
43.2	J
64.1	J
	58.3 789 751 45.4 50.1 49.3 66.8 J 36.3 98.1 136 79.5 44.2 43.2

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

J The analyte was positively identified. The associated numerical result is an estimate.

Sample Location:

SEDBACK

Type:

grab

Date:

04/o6 14:00

Time: Sample ID:

148230

Compound Name	Estimated Concentration (µg/Kg)	Qualifier
1. IntStd: o,p'-DDE	480	NJ
2. Hexadecanoic Acid	1910	NJ
3. Olic Acid	687	NJ
4. Tetradecanoic Acid	404	NJ
5. 9-Hexadecenoic Acid	2510	NJ
6. Unknown Hydrocarbon 1	336	J
7. Unknown Hydrocarbon 2	442	J
8. Unknown Hydrocarbon 3	449	J
9. Unknown Compound 1	6580	J
10. Unknown Compound 2	2610	J
11. Unknown Compound 3	5380	J
12. Unknown Compound 4	591	J
13. Unknown Compound 5	560	J
14. Unknown Compound 6	509	J
15. Unknown Compound 7	728	J
16. Unknown Compound 8	369	J
17. Unknown Compound 9	1650	J
18. Unknown Compound 10	1720	J

NJ There is evidence that the analyte is present. The associated numerical result is an estimate.

J The analyte was positively identified. The associated numerical result is an estimate.

Appendix G - GLOSSARY

AAS Aeroaccelator Activated Sludge
BNA Base-neutral acids, semivolatiles
BOD Biological Oxygen Demand
CLP Contract Laboratory Program
COD Chemical Oxygen Demand
CVAA Cold Vapor Atomic Absorption

DAF Dissolved Air Floatation

EPA Environmental Protection Agency

kg kilogram (1 X 10³ grams) L Liter (1 X 10³ milliliters)

LC50 Concentration which is lethal to 50% of the test organisms

LOD Limit of Detection

LOEC Lowest Observable Effect Concentration

m³ Cubic meter (1 X 10³ liters)

MF Membrane Filter

mg milligram (1 X 10⁻³ grams) mL Milliliter (1 X 10⁻³ liters)

NH₃ Ammonia

MPN Most Probable Number

NOEC No Observable Effect Concentration

NPDES National Pollution Discharge Elimination System

PCB Polychlorinated Biphenyl pH Hydrogen Ion Concentration

PP Priority Pollutant

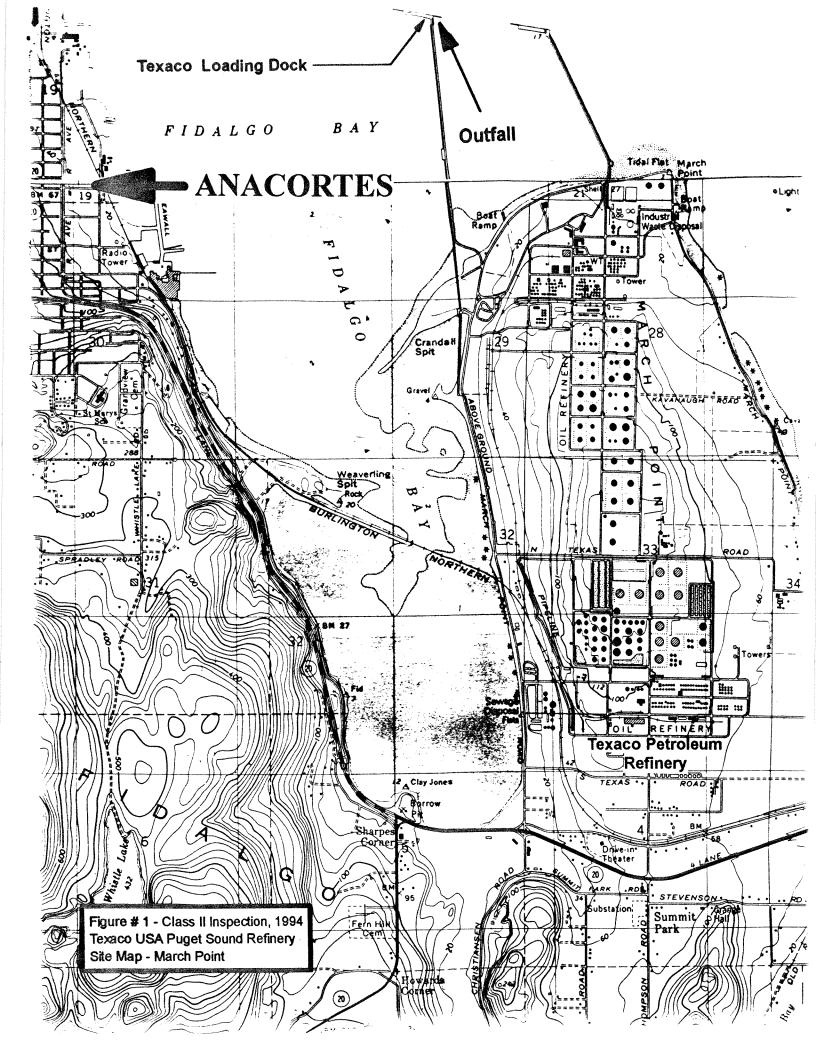
ppm Parts per million (1 X 10⁻⁶ ug/L or ug/kg) ppt Parts per thousand (1 X 10⁻³ ug/L or ug/kg)

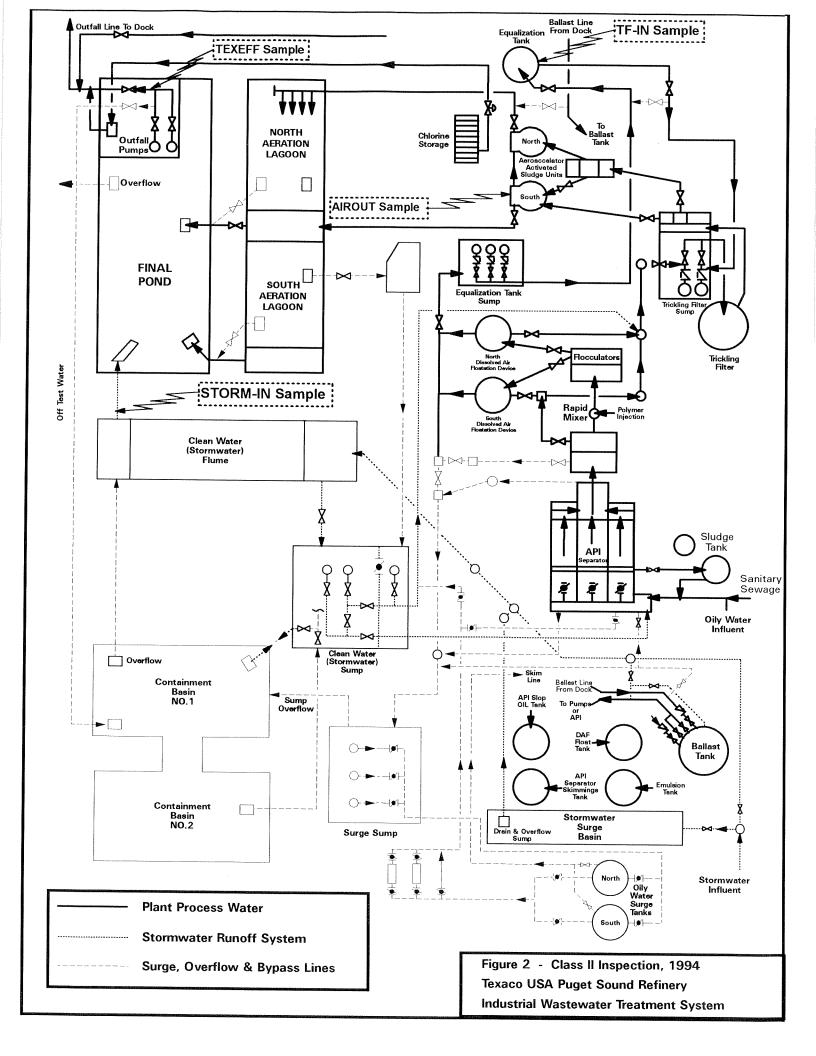
PWTS Process Water Treatment System
QA/QC Quality Assurance/Quality Control

TIC Total Inorganic Carbon or for GCMS Tentatively Identified Compound

TNVS Total Non-Volatile Solids

TNVSS Total Non-Volatile Suspended Solids


TOC Total Organic Carbon
TP Total Phosphorous


TPH Total Petroleum Hydrocarbons

TS Total Solids

TSS Total Suspended Solids
TVS Total Volatile Solids

ug Microgram (1 X 10⁻⁶ grams) ug/m³ Microgram per cubic meter VOA Volatile Organic Analysis VOC Volatile Organic Carbon

