Department of Ecology Report

Endicott School Soil Gas Survey Endicott, Washington **August 1993**

Introduction

This technical report documents the results of the soil gas survey and ground water sampling conducted August 1993 at the Endicott School, located in southeast Washington in Whitman County (Figure 1). These results have already been transmitted informally to Ecology's Eastern Regional Office (ERO). Since the completion of the field work, the project status has changed. The site is now considered an independent cleanup and Ecology is no longer an active participant.

Soil and ground water contamination were discovered on the school property when an underground leaded gasoline tank was removed in 1989. From 1989 to 1991 eleven monitoring wells were installed and tested. Free product was encountered in the area of the tank excavation. High concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) were detected in the ground water over a large portion of the site. To remediate the soil and ground water contamination a vapor extraction system (VES) and a free product recovery system were installed between August 1991 and September 1992. To date, no free product has been recovered.

The primary objective of the soil gas survey was to determine the configuration of the contaminant plume. Secondary objectives were to evaluate why free product was not being recovered and to assess the cause of the mounded water table in the central portion of the site. A total of 25 soil gas samples and six ground water samples from on-site monitoring wells were collected and tested. Soil gas samples were analyzed in the field using a portable gas chromatograph.

Results

Table 1 presents a summary of the soil gas survey results. Concentrations of compounds that were not identified by the gas chromatograph library are summed in the "Unknown" column of Table 1. Table 2 presents a summary of the ground water results from the

by Pamela B. Marti Waterbody No. WA 01-0002-GW 34-1010 June 1995

Ecology Report #95-325

samples collected from the on-site monitoring wells. Sample locations are shown in Figure 2 and sample methods are discussed in Appendix A. Soil gas sample chromatograms are included in Appendix B. The Quality assurance review and laboratory reporting sheets for the ground water results are presented in Appendix C. The distribution of the identified compounds is discussed below.

Soil Gas

Due to site characteristics very little contamination was detected in the soil gas samples. The site is located in the Palouse region which is characterized by Pleistocene loess, alluvial and lacustrine deposits. Borings at the site penetrated up to 24 feet of the Palouse Formation silts and clays along with associated soils. Based on observations during the soil gas sampling, a hard clay layer was encountered at a depth of six feet beneath portions of the site. The hard clay layer was underlain by wet soils. A large capillary fringe is typical of fine grained soils (Testa and Paczkowski, 1989). Also, saturated soil was encountered at shallow depths on the south half of the study area, probably due to a leaking swimming pool and lawn watering. Due to the high moisture content we were not able to collect soil gas samples below five feet. Clay layers and wet soil in the vadose zone retard the upward migration of volatile contaminants. Some primary gasoline compounds (benzene, toluene, and xylenes) were identified in a few of the soil gas samples, but at very low concentrations (less than 1 ppm).

Depth profile soil gas samples were collected at the first station, END1, at three, six, and nine feet below ground surface (bgs). Although this station was near a well with floating product, only very low concentrations of contaminants were detected in the soil gas samples. A second profile sample was collected at station END2 at six and at eight and one-half feet bgs. Although little was detected at six feet bgs, high concentrations of several contaminants were detected at eight and one-half feet (See chromatograph #13). Because of the clay layers and wet soil, most samples were collected from three to six feet bgs.

Ground Water

Field Observations

Depth-to-water measurements, water level elevations, purge volume, stabilized pH, specific conductance, and temperature results are listed in Table 2. Depth to water was measured in all of the monitoring wells and ranged from 8.95 to 13.45 feet. Water table elevations ranged from 1695.26 to 1696.01 mean sea level (MSL). Based on these water levels, ground water flow direction was toward the northwest. During sampling, well MW5 was purged dry. This well recharged at a rate that allowed sampling to continue within ten minutes. Stabilized field measurements for pH, specific conductance, and

temperature ranged as follows: pH from 8.2 to 9.7 standard units, specific conductance from 680 to 1000 umhos/cm, and temperature from 13.4 to 14.3 °C. During this survey product was measured in wells: 1MW(0.08'), 2MW (0.3'), 4MW (0.33'), MW1 (0.25') and MW2 (0.45').

Analytical Results

Six of the eleven monitoring wells (MW5, MW7, MW4, MW3, MW6, and 3MW) were sampled and analyzed for benzene, toluene, ethylbenzene and xylene (BTEX), total petroleum hydrocarbons as gasoline (TPH-G), and general chemistry parameters. The other five monitoring wells contained product and were not sampled. High concentrations of benzene were detected in three monitoring wells: MW3 (585 μ g/L), 3MW (500 μ g/L), and MW6 (370 μ g/L). These wells are to the west of the former tank area. High concentrations of benzene in these wells coincide with analytical results from 1991 (SAIC, 1991a). Toluene, ethylbenzene, and xylene were also detected in these wells, but at low concentrations. TPH-G was detected in MW3 and 3MW, also at low concentrations.

General chemistry samples were collected and analyzed to assess the cause of the mounded water table in the central portion of the site. It was suspected that the mounding may be caused by a leaking storm or sewer line beneath the bus barn, since the mounding appeared to decrease in the summer when school was not in session (Gregory, 1991). Samples were analyzed for chloride, sulfate, total organic carbon (TOC), total dissolved solids (TDS), nitrate + nitrite as nitrogen (NO3/NO2-N), ammonia-N (NH3-N), and total phosphorous. In previous ground water sampling it was reported that "gray" water was encountered in wells MW5, 3MW, and 4MW (Leinart, 1994). Relative to concentrations in MW7 (considered background) elevated concentrations of chloride, sulfate, TDS, and nitrate/nitrite were detected in wells 3MW, MW3, and MW4. Concentrations for these parameters ranged as follows: chloride from 21.6 to 39.5 mg/L; sulfate from 67.8 to 160 mg/L; TDS from 679 to 900 mg/L; and nitrate/nitrite from 5.57 to 6.94 mg/L. These wells showed low concentrations of ammonia and total phosphorous which is inconsistent with wastewater discharge. Ammonia and total phosphorous concentrations are expected to be higher near wastewater discharge areas. However, this sampling was conducted in August, which is a low use time of the school facilities. No "gray" water was observed in any of the wells we sampled.

Discussion

Soil Gas

Because of the clayey and wet soils, the soil gas results were not useful for delineating the floating product plume. The high clay and moisture content of the site soils retarded the vertical diffusion of volatile contaminants (ASTM, 1994; NGWA, 1987).

Ground Water

A secondary objective of this study was to determine why floating product had not been recovered. Primary factors which affect product recovery are the actual product thickness, the products properties, and the hydraulic characteristics of the formation (Testa and Paczkowski, 1989). After reviewing the wells and hydrogeologic data, the poor product recovery is, in my opinion, probably due to one or a combination of three factors. First, the apparent product thickness in monitoring wells is probably much greater than the actual product thickness on the aquifer. Second, ground water flow direction is highly variable, and during part of the year the recovery trench may not be located downgradient of the plume. And third, the effective radius of influence of the recovery trench is limited due to the clayey soils. All three of these factors are either the result of, or are exacerbated by, the fine-grained soil (silty clay) in the vadose zone and the aquifer. These factors are discussed briefly below.

Floating Product Thickness

Floating product has been observed in five of the monitoring wells. Water level measurements and product thickness have been recorded in wells 2MW and 4MW since 1991. Product appeared in wells MW1 and MW2 after the installation of the product recovery trench. Overall, product thickness has reflected the seasonal changes in the water table. The measured product thickness increased as the water level in the monitoring wells declined, and it decreased as the water level rose. This pattern is consistent with floating product behavior in fine grained materials (Testa and Paczkowski, 1989). Since 1991 product thickness in the wells has ranged from 0.08 to 1.5 feet. During this survey, product measurements ranged from 0.08 feet in 1MW to 0.45 feet in MW2.

It is commonly accepted that the measured product thickness in monitoring wells will be greater than the actual product thickness in the formation (Testa and Paczkowski, 1989; Lenhard and Parker, 1990). The movement of free product into a monitoring well can be a complex process affected by numerous variables. Hall, *et al* (1984) showed that the difference between the measured and actual product thickness increased with decreasing grain size. This is largely a function of the height of the capillary fringe. The larger the capillary fringe, the more pronounced the error between the measured and actual product thickness (Testa and Paczkowski, 1989). Based on observations during the soil gas sampling, the height of the capillary fringe was about five feet. In this case it appears that the floating product has spread to form a thin, widely dispersed layer, which makes product recovery more difficult.

Ground Water Flow Direction

In a water table aquifer with a low hydraulic conductivity due to the fine-grained soil, ground water flow direction will be especially sensitive to spatial and temporal variations in recharge. Lawn watering, leakage from the swimming pool, uneven infiltration from precipitation due to variations in surface cover, and leakage from a storm drain or sewer could have a pronounced effect on the ground water flow direction. Based on water levels obtained since 1991, the ground water flow direction has ranged from southwestward to southeastward. During the August 1993 survey, ground water flow water flow direction seem to have compounded the dispersion of the floating product and complicated the proper placement of the recovery trench. Variations in the ground water flow direction indicate that the recovery trench may not be downgradient of the plume during portions of the year.

Effective Radius of Influence of the Recovery Trench

The radius of influence from a trench can be estimated using a steady-state, analytical method described by McWhorter and Sunada (1977). With this method the radius of influence is a function of hydraulic conductivity, recharge rate, and height of the water table above the trench. In a soil with low hydraulic conductivity a trench has a limited radius of influence. The method is described in more detail in Appendix D. Using extreme site conditions I estimate the trench's radius of influence to be between 10 and 100 feet. For more average site conditions the radius of influence would probably be less than 50 feet. Based on this estimate only portions of the plume would be influenced by the trench and could help to explain the poor product recovery.

References

APHA (American Public Health Association), 1985. <u>Standard Methods for the</u> Examination of Water and Wastewater, 16th Edition.

ASTM (American Society for Testing and Materials), 1994. <u>ASTM Standards on Ground</u> <u>Water and Vadose Zone Investigations</u>, 2nd Edition. Publication No. 03-418094-38.

Ecology, 1994. <u>Washington State Department of Ecology, Manchester Environmental</u> <u>Laboratory - Laboratory Users Manual</u>. Edited by D. Huntamer and J. Hyre.

Gregory, G., 1991. Memo to Phil Leinart regarding free product recovery system at Endicott School, December 27, 1991.

Gruszczenski, T.S., 1987. Determination of a Realistic Estimate of the Actual Formation Product Thickness Using Monitoring Wells: A Field Bailout Test. Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration, November 17-19, 1987. Houston, TX

Hall, R., S.B. Blake, and S.C. Champlin Jr., 1984. Determination of hydrocarbon thickness in sediments using borehole data. Fourth National Symposium on Aquifer Restoration and Ground Water Monitoring, NWWA, Columbia, OH.

Hermanson, R., 1992. Data base in support of Chemical Movement Through Layered Soil Model. Washington State University Cooperative Extension. Daily precipitation 1970 through 1984.

McWhorter, D.B. and D.K. Sunada, 1977. "Ground-water Hydrogeology and Hydraulics". Water Resources Publications, 290 p.

Lenhard, R.J. and J.C. Parker, 1990. Estimation of Free Hydrocarbon Volume from Fluid Levels in Monitoring Wells. Ground Water Journal - January-February 1990. Volume 28, Number 1, pp. 57-67.

NGWA (National Ground Water Association), 1987. Soil Gas Sensing for Detection and Mapping of Volatile Organics.

Science Applications International Co., 1991a. <u>Results of Field Investigations at the</u> <u>Garfield, Endicott, and Cusick School Lust Sites</u>. April 1991. Science Applications International Co., 1991b. <u>Field Evaluation of Vapor Extraction</u> <u>System (VES) at the Endicott School - Leaking Underground Storage Tank (LUST) Site</u> <u>Endicott, Washington</u>. October 1991.

Sunrise Environmental Services, Inc., 1990. <u>Site Characterization Report Endicott</u> <u>School</u>.

Testa, S.M. and M.T. Paczkowski, 1989. Volume Determination and Recoverability of Free Hydrocarbon. Ground Water Monitoring Review - Winter 1989. pp. 120-128.

U.S. Environmental Protection Agency, 1986. <u>Test Methods for Evaluating Solid Waste</u>, <u>SW-846</u>. Office of Emergency Response, Washington D.C.

Contacts

Pam Marti

Washington State Department of Ecology Environmental Investigations and Laboratory Services Toxics Investigations Section (360) 407-6768

For additional copies of this publication, please contact Ecology's Publications Distribution Office at (360) 407-7472 and refer to publication number 95-325

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact Joan LeTourneau at (360) 407-6764 (voice) or (360) 407-6006 (TDD).

Figure 2: Endicott School Ground Water and Soil Gas Sample Locations

Table 1: Summary of Soil-Gas Results collected August, 1993 from the Endicott School, WA

Results were determined using a Sentex portable gas chromatograph. Analytes are considered tentatively identified and concentrations are estimates. NOTE:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Benzer	cene	Toluene	ene	Xylenes	nes	Unknowns	SUMO
(END-) (red) Time (ppm) Time (ppm) Time (ppm) 10 6 - - - 580-702 0.05 92-742 10 6 - - - 580-702 0.05 92-742 20 6 - - - 580-702 0.05 92-742 21 9 -	Trace	Sample	Depth	Retention	Conc.	Retention	Conc.	Retention	Conc.	Retention	Total Conc.
(END-) (seconds) (#	Ū.	(feet)	Time	(mqq)	Time	(mdd)	Time	(udd)	Time (Range)	(mdd)
		(END-)		(seconds)	(estimate)	(seconds)	(estimate)	(seconds)	(estimate)	(seconds)	(estimate)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	19	ო	1	1	I	ł	580-702	0.05	92742	0.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	q	Q	1	ł	****	1	I	I	I	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~	10	ი	1	I	I	I	I	J	***	ł
2c 8.5 - - 360 0.03 566 1.3 97-1124 3 6 - - 364 0.01 - - 118-701 5 5 - - 364 0.01 - - 21-1020 5 6 - - - - - - 21-1020 6 5 - - - - - - 21-1020 8 6 - - - - - - 21-1020 8 6 - - - - - - - - 9 4 - - - - - - 125-1204 11 6 - - - - - 125-1204 112 4.3 - - - - 125-1204 112 4.3 - - <	10	20	ပ	ŧ		357	0.03	559-589	0.02	116-801	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	20	8.5	I	1	360	0.03	566	1.3	97-1124	118.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>8</u>	ო	9	I	1	364	0.01	1	I	118-701	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	4	ŋ	I	1	1	1	I	1	211-1020	0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	IJ	თ	I	I	I	I	I	I		I
8 6 -	32	2	9	I		*****	I	744	0.003	341-1216	0.03
	33	œ	Q	1	1	1	,I	1	ł	F	ľ
9 4 - - - - 125-557 10 6 - - 460 0.001 - - 125-557 11 6 - - - 460 0.001 - - 125-1204 12 4.3 - - - - - - - 55-1033 12 4.3 - - - - - - - 55-1034 13 5 - - - - - - - 55-1034 14 4.8 - - - - - - - - 55-1034 15 6 -	34	9	IJ	308	0.001	1	1	715	0.003	104-519	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	б	4	1	1	I	I		ł	125-557	0.05
11 6 - - - - - 55-1053 12 4.3 - - - - - - 55-1053 13 5 - - - - - - 55-1053 14 4.8 - - - 439 0.005 710 0.006 122-989 15 6 - - - - - - - - - 16 6 - - - - - 126-1045 - - - 187-1113 17 4.5 - - - - - - - - 187-1113 17 4.5 -	39	10	Q	I	ł	460	0.001	I	I	125-1204	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47		Q	I	I	I	I	1	1	55-1053	0.07
13 5 - - 439 0.005 710 0.006 122-989 14 4.8 - - - 439 0.005 637 0.001 90-1069 15 6 - - - - 122-989 16 6 - - - 137 0.001 90-1069 17 4.5 - - - - 187-1113 18 4.3 - - - - 187-1113 19 6.3 - - - - - 485 20 6 - - - - - 485 21 4.5 - - - - - - - 21 4.5 - <td< td=""><td>50</td><td>5</td><td>4.3</td><td>1</td><td>1</td><td>ı</td><td>I</td><td>ł</td><td>I</td><td>ł</td><td>I</td></td<>	50	5	4.3	1	1	ı	I	ł	I	ł	I
14 4.8 - - - 637 0.001 90-1069 15 6 - - - - 126-1045 16 6 - - - - 126-1045 17 4.5 - - - 187-1113 17 4.5 - - - 187-1113 18 4.3 - - - - 187-1113 19 6.3 - - - - - 485 20 6 -	<u>.</u>	13 13	S	1	1	439	0.005	710	0.006	122–989	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55	14	4.8	1	I	I	I	637	0.001	90-1069	0.03
16 6 - - - - 187-1113 17 4.5 - - - - 187-1113 18 4.5 - - - - - 187-1113 18 4.5 - - - - - 485 19 6.3 - - - - 485 20 6 - - - - 485 21 4.5 - - - - - - 21 4.5 - <td< td=""><td>56</td><td>τΩ.</td><td>Q</td><td>1</td><td>1</td><td>I</td><td>I</td><td>I.</td><td>I</td><td>126-1045</td><td>0.03</td></td<>	56	τΩ.	Q	1	1	I	I	I.	I	126-1045	0.03
17 4.5 - - - - - 68-1084 18 4.3 - - - - 485 19 6.3 - - - 485 20 6 - - - 485 21 4.5 - - - 485 21 4.5 - - - - 485 22 6 - - 431 0.002 850-861 0.001 71-901 22 6 -	57	16	9	I	I	ŀ	ł	1	I	187-1113	0.03
18 4.3 - - - - 485 19 6.3 - - - - 485 20 6 - - 426 0.002 850-861 0.004 162-1118 21 4.5 - - 426 0.002 850-861 0.001 71-901 21 4.5 - - - 431 0.008 678 0.001 71-901 22 6 - <td>62</td> <td>17</td> <td>4.5</td> <td>I</td> <td>1</td> <td></td> <td>1</td> <td>I</td> <td>I</td> <td>68-1084</td> <td>0.03</td>	62	17	4.5	I	1		1	I	I	68-1084	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63	6	4.3	I	I	1	I	ľ	I	485	0.003
20 6 - - 426 0.002 850-861 0.004 162-1118 21 4.5 - - 431 0.003 678 0.001 71-901 22 6 - - - 431 0.008 678 0.001 71-901 22 6 - - - - 431 0.008 678 0.001 71-901 23 3 - - - - - - - - 23 3 - - - - - - - - 25 4.6 - - - - - - - - 24 6 300 0.002 446 0.24 - - 182-1117	64	19	6.3	ł	ł		1	ı	I	ı	1
21 4.5 - - 431 0.008 678 0.001 71-901 22 6 - - - 431 0.008 678 0.001 71-901 22 6 -	99	20	9	t	l	426	0.002	850-861	0.004	162-1118	0.03
22 6 - - - - - - 23 3 - - - - - - - 23 3 - - - - - - - 25 4.6 - - - - - - - 24 6 300 0.002 446 0.24 - 182-1117	67	5	4.S	-	1	431	0.008	678	0.001	71-901	0.03
23 3 - - - - - - 25 4.6 - - - 680-902 0.01 112-819 24 6 300 0.002 446 0.24 - 182-1117	73	22	Q	ł	1	I	I	1	1	1	
25 4.6 - - - - 680-902 0.01 112-819 24 6 300 0.002 446 0.24 - 182-1117	74	23	ო	ł	I	****	ł	1	1	-	I
24 6 300 0.002 446 0.24 - 182-1117	84	52	4.6	ł	1	ł	1	680-902	0.01	112819	0.03
	85	24	9	300	0.002	446	0.24	ŀ	I	182-1117	0.01

Table 2: Summary of Ground Water Results from Samples collected August 11-12, 1993 at the Endicott School

Well Identification		MW5	MW7*	MW4	MW3	MW6	MW6a	3MW	Transfer	Transport
Laboratory Number		338030	338031	338032	338033	338034	338035	338036	338037	338038
							(Duplicate)			-
Depth to Water	(feet)	13.45	10.86	11.58	11.16	8.95		11.72		
Water Level Elevation	(msl)	1695.60	1696.01	1695.38	1695.26	1695.57	ļ	1695.38	ļ	
РЧ	(st. units)	8.25	9.39	9.72	MN	MN		ΣZ		
Temperature	<u></u>	14.3	13.9	20.9	23.2	23.8	ł	13.4		
Specific Conductance	(mhos/cm)	680	740	1000	970	730		860		
Purge Volume	(gallons)	20	Q	25	28	33		4.5		1
WTPH-G	(ng/L)	Q	g	Q	57	QN	Q	480	QN	Q
Benzene	(ng/L)	Q	Q	17	585	370	333	500	Q	QN
Toluene	(ng/L)	Q	Q	1.1B	2.8	0.26B	0.28B	2.4	0.32	0.28
Ethylbenzene	(ng/L)	Q	Q	Q	1.3	0.24	0.22	1.3	Q	QN
Total Xylenes	(ng/L)	2	Q	2	3.2	0.88	0.84	12.5	9	Q
Chloride	(mg/L)	11.3	7.6	21.6	39.5	19.7	19.5	28.5	Ł	μ
Sulfate	(mg/L)	20.7	30.8	67.8	160	32.2	32.3	97.3	NT	NT
TOC	(mg/L)	1.8	4.4	2.5	2.9	3.4	3.4	2.8	μ	μ
TDS	(mg/L)	443	511	679	006	638	618	763	NT	ΗN
NH3-N	(mg/L)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	Ϋ́	μ
NO3/NO2-N	(mg/L)	3.78	3.50	6.68	6.94	2.26	2.48	5.57	NT	FN
ТР	(mg/L)	0.31		0.26	0.15	0.16	0.16	0.25	Ł	ŁN
						•				

msl = Mean Sea Level

NM = Not Measured due to probe failure

ND = Not Detected NT = Not Tested B = Analyte was de

= Analyte was detected in the field blanks indicating the sample may have been contaminated.

* = Considered background for purposes of this study.

APPENDIX A

Endicott School Soil Gas Survey Sampling Procedures August 1993

APPENDIX A

METHODS

Sample Collection

Twenty-five soil gas and six ground water (monitoring well) samples were collected and tested. Sample locations are shown in Figure 2. Soil gas samples were collected every 50 feet from a grid along four east-west transects and six north-south transects. Six of the eleven monitoring wells (MW5, MW7, MW4, MW3, MW6, and 3MW) were sampled and analyzed for benzene, toluene, ethylbenzene and xylene (BTEX), total petroleum hydrocarbons as gasoline (TPH-G), and general chemistry parameters. The other five monitoring wells contained free product and were not sampled.

Pam Marti, Denis Erickson, Marc Heffner and Phil Leinart collected soil gas samples on August 8-12, 1993. Ground water samples were collected on August 11 and 12, 1993. Weather conditions for all sampling was warm and sunny.

Soil Gas Sampling

Soil gas samples were obtained using portable sampling equipment. Sample stations in paved areas were drilled with an electric percussion drill equipped with a 1½-inch asphalt bit. A pilot hole was advanced to the required depth by driving a 1/2-inch diameter, solid steel rod. After removing the pilot hole rod, a stainless steel retractable soil gas sampling tip (Retract-a-Tip) was driven into the pilot hole. The retractable tip was then pulled back about 2 inches to expose the sampling screen. A bentonite plug was installed at the surface to prevent air flow from the atmosphere to the sample area. The sample line was purged using a hand pump prior to sampling. Soil gas samples were withdrawn using a suction pump through 3/16-inch ID teflon tubing and collected under vacuum pressure in 1-liter Tedlar bags. Test holes were plugged using hydrated bentonite. Overlying fill and asphalt cover (cold mix) were placed as necessary.

Depth profile sampling was conducted at sample stations END1 and END2, to determine an appropriate sample depth. Soil gas samples were collected at three-foot intervals to a depth of nine feet at station END1, and at three and eight and one-half feet at station END2. Due to wet soils and the presence of a clayey layers, sample depth was selected from three to six feet. Sample depth was adjusted to accommodate obstructions in the subsurface and wet soil conditions.

Soil gas samples were analyzed in the field using a portable gas chromatograph (Sentex Scentograph Plus), equipped with an Argon Ionization Detector (AID) and a 12-foot, 10% SP-1000 (80/100 mesh) packed column. Prior to sample analysis, the gas chromatograph was calibrated using a mixture of 1.0 ppm benzene, 1.3 ppm toluene and 1.5 ppm m-xylene. An industrial solvents chemical compound library (Sentex) was used to identify other gasoline constituents. Operating parameters such as sample time, temperature, and chart duration were adjusted to maximize results. Copies of soil gas analyses, as well as operating parameter information are included in Appendix B. All non-disposable down-hole equipment was decontaminated between test holes using sequential washes of tap water with Liquinox® detergent, deionized water, and laboratory grade methanol. Retractable tips were completely disassembled for cleaning. Teflon® tubing was discarded between test holes.

Ground Water Sampling

Ground water samples were collected from six of the on-site monitoring wells for benzene, toluene, ethylbenzene and xylene (BTEX), total petroleum hydrocarbons as gasoline (TPH-G) and general chemistry parameters of total organic carbon (TOC), total phosphorus, nitrate + nitrite as nitrogen, ammonia-N, chloride, sulfate, and total dissolved solids (TDS). Prior to sample collection, static water level and product thickness measurements were obtained from all 11 on-site wells using an interface probe. The probe was washed with Liquinox® and tap water, rinsed with deionized water and wiped clean between measurements. Monitoring wells without free product were sampled which included: 3MW, MW3, MW4, MW5, MW6, and MW7. Monitoring wells that were sampled were purged with a centrifugal pump until pH, temperature, and specific conductance readings stabilized, and a minimum of three well volumes had been removed. Monitoring well samples were collected using decontaminated, bottom-emptying teflon bailers.

After sample collection and proper labeling, ground water samples were stored on ice in an ice chest and transported to the laboratory within the required holding time. Chain-of-custody was maintained on all samples using Manchester Laboratory protocols (Ecology, 1994).

APPENDIX B

Endicott School Soil Gas Survey Select Soil Gas Chromatograms August 1993

TRACE #2 DATE: Mon Aug 09 15:36:28 1993

NAME:ENDIACHART DURATION:20COLUMN:10%SP1000DETECTOR:AIDCOLUMN PRESSURE:30SAMPLE TIME:2TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREA

1	-UNKNOWN			78282+125-2PH	173m
2	UNKNOWN	92	9364	0.083 PPM	
3	HIGOOGTAN UNK	102	5948	0.053 PPM	PBM
4	HIDOD LINK	119	2429	0.022 PPM	PBM
5	HOIRD DO LINK	127	584	0.005 PPM	PBM
6	UNKNOWN	137	3595	0.032 PPM	
7	UNKNOWN	153	1224	0.011 PPM	
8		-	26805	0.330 PPH	PBM
9	- Point English				Pem
10	- CHRNOUN-				PBM
11	XYLENE	580	4127	0.020 PPM	
12	UNKNOWN	657	8866	0.079 PPM	
13	#O-XYLENE	702	3865	0.034 PPM	
14	UNKNOWN	742	3147	0.028 PPM	

UPPER TRACE #1 100.00% Aug 09,93 15:36

COLUMN: 10/SP1000 COLUMN PRESSURE: 30 TEMPERATURE:100-100, 0 Secs SAMPLE TIME:2 GAIN: 1.000 DURATION: 20 Minutes

TRACE #6 DATE: Mon Aug 09 16:30:01 1993

NAME:END1b-2CHART DURATION:20COLUMN:10%SP1000DETECTOR:AIDCOLUMN PRESSURE:30SAMPLE TIME:5TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREACONCENTRATION

1			<u></u>		PBM
2	UNKNOWN	136	2589	0.011 PPB	
3					PBM
4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ĸŷĢ<u>ŷ</u>~~~			PBM
5	-				PBM
			7500		

UPPER TRACE #5 100.00%

COLUMN: 10/SP1000 COLUMN: PRESSURE: 30 TEMPERATURE: 100-100, 0 Secs SAMPLE TIME: 5 CAIN: 20 Minutes

TRACE #7 DATE: Mon Aug 09 16:42:01 1993

NAME:ENDICCHART DURATION:20COLUMN:10%SP1000DETECTOR:AIDCOLUMN PRESSURE:30SAMPLE TIME:5TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREACONCENTRATION

 1
 UNKNOWN
 94
 265
 0.001 BBB
 PGm

 2
 UNKNOWN
 375
 51529
 0.001 BBB
 PGm

 3
 UNKNOWN
 405
 18030
 0.001 BBB
 PBB
 PGm

TRACE PRINTOUT

TRACE #10 DATE: Mon Aug 09 17:22:36 1993 CHART DURATION: 20 END2 NAME : COLUMN: 10%SP1000 DETECTOR: AID - 5 SAMPLE TIME: COLUMN PRESSURE: 30 30 INHIBIT TIME: TEMPERATURE: 100 RT AREA CONCENTRATION PEAK# NAME

1	-	<u></u>		A PBM
2	HIDOD UNK	116	5243	0.004 PPM PBM
3	UNKNOWN	133	3452	0.003 PPM
4	HOBPOND UNK	146	7006	0.005 PPM PBM
5	UNKNOWN	202	7280	0.006 PPM
6				PGM
7	++++++2++CFF	agigidaa a		PBM
8	TOLUENE	357	47193	0.031 PPM
9	#P-XYLENE	559	16073	0.012 PPM
10	#M-XYLENE	589	6732	0.005 PPM
11	UNKNOWN	645	8352	0.006 PPM
12	UNKNOWN	759	7487	0.006 PPM
13	UNKNOWN	788	1837	0.001 PPM
14	UNKNOWN	801	4123	0.003 PPM
	N			

antis Cartering and the state of the second se

UPPER TRACE #9 100:00% Aug 09,93 17:22

#13	NAME: COLUMN:		CHART D DETECTO	URATION: R: AID	20
	COLUMN F	RESSURE: 30	SAMPLE	TIME:	5
	TEMPERAT	URE: 100	INHIBIT	TIME:	30
	PEAK#	NAME	RT	AREA	CONCENTRATION
	1	UNKNOWN	97	95280436	72.761 PPM
	2	#11005 Wik	118	42384528	32.367 PPM PBM
	3	UNKNOWN	138	5257999	4.015 PPM
	4	HACEBONG WIK	149	2151278	1.643 PPM PBM
	5	UNKNOWN	173	3743875	2.859 PPM
	6	UNKNOWN	201	1742626	1.331 PPM
	7	UNKNOWN	217	1720078	1.314 PPM
-	8	UNKNOWN	232	1560915	1.192 PPM
	9	UNKNOWN	259	256170	0.196 PPM
	10	HPOD UNK	275	52388	0.040 PPM PBM
	11	#GEORDORIA UNI	د 290	7522	0.006 PPM PBM
	12	#112290 h	~922	<u>-111252</u>	PBM PBM
	13	TOLUENE	360	47807	0.031 PPM
	14	#ETHBENZ	529	209503	0.160 PPM
	15	#P-XYLENE	566	1682331	1.285 PPM
	16	UNKNOWN	699	267961	0.205 PPM
	17	UNKNOWN	772	20479	0.016 PPM
	18	UNKNOWN	837	293242	0.224 PPM
	19	UNKNOWN	922	16242	0.012 PPM
	20	UNKNOWN	1115	28687	0.022 PPM
	21	UNKNOWN	1124	2260	0.002 PPM
· ·					

<u>acationthermissession</u>

UPPER TRACE #13 END-3 LOWER TRACE #9 100.00% Aug 09,93 17:57 COLUMN: PRESSUR THACE #9 100.00% DETECTOR: PRESSUR SAMPLE TIME:5 DURATION: 20

LIMN: 102SP1000 LIMN PRESSURE: 30 PERATURE:100-100, 0 Secs PLE TIME:5 IN: 1,000 RATION: 20 Minutes

TRACE #18 DATE: Mon Aug 09 18:56:51 1993

NAME: END3	CHART DURATION:	20
COLUMN: 10%SP1000	DETECTOR: AID	
COLUMN PRESSURE: 30	SAMPLE TIME:	5
TEMPERATURE: 100	INHIBIT TIME:	30
PEAK# NAME	RT AREA	CONCENTRATION

1	-	-94	<u>∷₩ŷġ₩</u> ₽≈≈∞	ŢĘ Ţ <u>Ţ</u>	PBM
2				Alifetter	PBM
3	HARDER WIK	118	7961	0.006 PPM	PBM
4	HAR UNK	276	9714	0.007 PPM	PBM ·
5	UNKNOWN	312	155	0.000 PPM	•
6			22 4670		PBM
7	#TOLUENE	364	17283	0.013 PPM	anda a
8	UNKNOWN	701	4358	0.003 PPM	****

UPPER TRACE #18 END3 LOWER TRACE #9 100.00% Aug 09,93 18:56

TRACE #25 DATE: Tue Aug 10 11:09:10 1993

NAME: END4-2	CHART DURATION:	20
COLUMN: 10%SP1000	DETECTOR: AID	
COLUMN PRESSURE: 25	SAMPLE TIME:	10
TEMPERATURE: 100	INHIBIT TIME:	30
PEAK# NAME	RT AREA	CONCENTRATION

1	UNKNOWN	211	9623	0.002 PPM	
2					PBM
3		entr@s@unse			PBM
4		<u>anijanje Presen</u>			pBm
5	UNKNOWN	518	8240	0.002 PPM	
6	UNKNOWN	553	2232	0.000 PPM	
7	UNKNOWN	749	3996	0.001 PPM	
8	UNKNOWN	923	14370	0.003 PPM	
9	UNKNOWN	1020	4056	0.001 PPM	
			200 00		

TRACE #28 DATE: Tue Aug 10 11:54:53 1993

20 CHART DURATION: NAME: END5-2 DETECTOR: AID COLUMN: 10%SP1000 5 COLUMN PRESSURE: 25 SAMPLE TIME: INHIBIT TIME: 30 100 TEMPERATURE: CONCENTRATION RT AREA PEAK NAME

1	ŧ ŤĠ ŎĸĸĸĸĸŎŶŶŔġġĸĸĸĔŧġŶŧĸŧġĔŎĸĸĔĬ ĔŀĬĸ	PBM
2	<u> </u>	PBM
3		PBM
4	HE CONTRACTOR	PBM
	 Bear to an and a far to Balance	

UPPER TRACE #28 10.99% Aug 10,93 11:54 LOWER TRACE #29 100:00% COLUMN: PRESSURE: 25 DETECTOB TEMPERATURE: 100-100, 0 Secs SAMPLE TIME: 5 DURATION: 20 Minutes

TRACE #32 DATE: Tue Aug 10 12:42:06 1993

NAME: END7	CHART DURATION:	20
COLUMN: 10%SP1000	DETECTOR: AID	
COLUMN PRESSURE: 25	SAMPLE TIME:	5
TEMPERATURE: 100	INHIBIT TIME:	30
PEAK# NAME	RT AREA	CONCENTRATION
		,

1	UNKNOWN	341	9570	0.005 PPM	
2	4	significant	27452	man de la competition	PBM
3	UNKNOWN	555	10341	0.006 PPM	
4	#M-XYLENE	744	4627	0.003 PPM	
5	UNKNOWN	753	1187	0.001 PPM	
6	UNKNOWN	818	5632	0.003 PPM	
7	UNKNOWN	861	3175	0.002 PPM	
8	UNKNOWN	1027	6229	0.004 PPM	
9	UNKNOWN	1216	9573	0.005 PPM	
			<u>araite</u>		

UPPER TRACE #32 1.14% Aug 10,93 12:42 LOWER TRACE #27 100.00%

SAMPLE AT VALUE	1025P1000 SURE: 25		
TEMPERATURE SAMPLE TIME	500-100,	0	Secs
DURATION:		5	

TRACE #33 DATE: Tue Aug 10 13:03:11 1993

NAME: END8		CHART DUR	ATION:	20
COLUMN: 10%SP100	0	DETECTOR:	AID	
COLUMN PRESSURE:	25	SAMPLE TI	ME:	5
TEMPERATURE:	100	INHIBIT T	IME:	30
PEAK# NAME		RT	AREA	CONCENTRATION

PBM 1

UPPER TRACE #33 1.37% Aug 10,93 13:03 LOWER TRACE #27 100.00%

P1000 25 -100, 0 Secs 1.000 20 Minutes ON:

TRACE #34 DATE: Tue Aug 10 13:18:42 1993

NAME: END6-2	CHART DURATION:	20
COLUMN: 10%SP1000	DETECTOR: AID	
COLUMN PRESSURE: 25	SAMPLE TIME:	5
TEMPERATURE: 100	INHIBIT TIME:	30
DEAK# NAME	RT AREA	CONCENTRATION

1				PBM PBM
2	UNKNOWN	104	3701	0.002 PPM
3	HOMRE BO UNK	157	7281	0.004 PPM PBM
4	UNKNOWN	183	6143	0.003 PPM
5	HISTONE UNK	192	2626	0.001 PPM PBM
6	UNKNOWN	241	6156	0.003 PPM
7	BENZENE	308	2462	0.001 PPM
8	HIPPOPOD UNK	405	11443	0.006 PPM PBM
9		-		O CAS DEM POM
10	UNKNOWN	519	7290	0.004 PPM
11	#P-XYLENE	715	5205	0.003 PPM

UPPER TRACE #24 100.00% Aug 10,93 13:18

COLUMN: PRESSURE: 25 DETECTOR: 102/SP1000 TEMPERATURE: 100-100, 0 Secs SAMPLE TIME: 5 CAIN: 20 Minutes

TRACE #37 DATE: Tue Aug 10 13:58:21 1993

20 NAME : END9 CHART DURATION: COLUMN: 10%SP1000 DETECTOR: AID 5 COLUMN PRESSURE: 25 SAMPLE TIME: INHIBIT TIME: 30 100 TEMPERATURE: CONCENTRATION RT AREA PEAK# NAME 125 25905 0.015 PPM 1 UNKNOWN 0.024 PPM PBM 2 410000Th 134 41161 0.007 PPM 3 UNKNOWN 149 11317 PBM PBM 4 PBM 5 orolo or pom 6 TOLUEND 0.002 PPM 7 557 3535 UNKNOWN

NAME: END9 UPPER TRACE #37 2.78% Aug 10,93 13:58 LOWER TRACE #36 100.00%

TRACE #39 DATE: Tue Aug 10 14:29:12 1993

NAME :	END10	CH	ART DU	JRATION	20		
COLUMN:	10%SP1000	DE	TECTO	R: AID			
			MPLE '		5		
TEMPERA	TURE: 10	DO IN	HIBIT	TIME:	30		
PEAK#	NAME		RT	AREA	CONCENTE	RATION	
· · · · · · · · · · · · · · · · · · ·							
1	UNKNOWN		125	6565	0.004	PPM	
2		UNK	364	6983	0.004	PPM PBM).
3	#}}??? @ } =		-			pour pon	<u>)</u>
4	TOLUENE		460	2197	0.001	PPM	
5	UNKNOWN		646	2254	0.001	PPM	
-			775	2727	0 002	PPM	

3727 0.002 PPM UNKNOWN 773 6 0.003 PPM 841 6054 7 UNKNOWN 0.003 PPM 4424 952 8 UNKNOWN 0.002 PPM 3024 UNKNOWN 966 9 0.002 PPM 3404 1051 10 UNKNOWN 0.002 PPM 3775 1204 11 UNKNOWN

NAME: END10 UPPER TRACE #39 1.55% Aug 10,93 14:29 LOWER TRACE #36 100.00% COLUMN: 10%SP1000 COLUMN PRESSURE: 25 DETECTOR: ALD TEMPERATURE: 100-100, 0 Secs SAMPLE TIME: 5 CAIN: 1,000 DURATION: 20 Minutes

DATE: Tue Aug 10 16:10:01 1993 TRACE #47

NAME :	ENDII	CHART DU	RATION:	20	
COLUMN:	10%SP1000	DETECTOR	AID		
COLUMN	PRESSURE: 23	SAMPLE. T	IME:	5	
TEMPERA	TURE: 100	INHIBIT	TIME:	30	
PEAK#	NAME	RT	AREA	CONCENTR	RATION
1	UNKNOWN	55	6229	0.004	PPM
2	UNKNOWN	119	16048	0.009	PPM
3	HIGOOGTH UN	K 130	25222	0.015	PPM PBM
4	UNKNOWN	141	9148	0.005	PPM
5	UNKNOWN	189	10945	0.006	PPM
6	UNKNOWN	214	4766	0.003	PPM
7		÷	<u></u>	₩₩₩₩₩₩₩₩₩	PBM PBM
8	UNKNOWN -	305	8600	0.005	PPM
9	UNKNOWN	351	5163	0.003	PPM
10	<u>#*********</u>	a a a a a a a a a a a a a a a a a a a			PBM PBM
11	UNKNOWN	420	2263	0.001	PPM
12		-			PDM PBM
13	UNKNOWN	794	12990	0.008	PPM
14	UNKNOWN	941	13210	0.008	PPM
15	UNKNOWN	1053	7840	0.005	PPM
	•				

UPPER TRACE #46 100:00% Aug 10,93 16:10

TRACE #50 DATE: Tue Aug 10 17:15:23 1993

NAME: END12		CHART DURATION:	20
COLUMN: 10%SP1000		DETECTOR: AID	
COLUMN PRESSURE: 2	23	SAMPLE TIME:	5
TEMPERATURE: 10	00	INHIBIT TIME:	30
PEAK# NAME		RT AREA	CONCENTRATION

1 **HINGSON HOGH PARA**

NAME: END12 UPPER TRACE #50 1.25% Aug 10,93 17:15 LOWER TRACE #46 100.00% COLUMN: PRESSURE: 23 COLUMN: PRESSURE: 23 DETECTOR: ALD TEMPERATURE: 100-100, 0 Secs SAMPLE TIME: 5 CALM DURATION: 20 Minutes

1	NAME: END13		CHART DURATION:	20
•	COLUMN: 10%SP	1000	DETECTOR: AID	
	COLUMN PRESSU	RE: 23	SAMPLE TIME:	5
	TEMPERATURE:	100	INHIBIT TIME:	30
	PEAK# NAME		RT AREA	CONCENTRATION
				•

1		303 -	<u></u>		prism	
2	UNKNOWN	122	9325	0.005 PPM		
3	HOME OF LINK	156	5222	0.003 PPM	PBm-	
4	HAGINGHIN UNK	179	10780	0:006 PPM	PBM	
5	UNKNOWN	209	25477	0.015 PPM		
6	UNKNOWN	308	3930	, 0.002 PPM		
7	UNKNOWN	317	2429	0.001 PPM		
8	UNKNOWN	329	13246	0.008 PPM		
9	-	-	279272		PBM	
10	UNKNOWN	423	11373	0.007 PPM		
11	TOLUENE	439	8273	0.005 PPM		
12	UNKNOWN	460	6956	0.004 PPM		
13	UNKNOWN	485	4554	0.003 PPM	•	
14	UNKNOWN	499	6607	0.004 PPM		
15	UNKNOWN	548	2543	0.001 PPM		
16	UNKNOWN	558	25944	0.015 PPM		
17	#M-XYLENE	710	9934	0.006 PPM		
18	UNKNOWN	765	15165	0.009 PPM		
19	UNKNOWN	853	18328	0.011 PPM		
20	UNKNOWN	979	1685	0.001 PPM		
21	UNKNOWN	989	11218	0.007 PPM		
alle Called a la company and a la company and a company						

NAME: END13 UPPER TRACE #51 5.25% Aug 10,93 17:42 LOWER TRACE #46 100.00%

TRACE #55 DATE: Tue Aug 10 18:29:48 1993

NAME: ENDI4	CHART DURATION:	20
COLUMN: 10%SP1000	DETECTOR: AID	
COLUMN PRESSURE: 23	SAMPLE TIME:	5
TEMPERATURE: 100	INHIBIT TIME:	30
DRAKE NAME	RT AREA	CONCENTRATION

1	withowi	-		♀́́げ₽₽_ヽ ŵŷ <u></u> }	<u>Sibie</u>	PBM
2	UNKNOWN	90	3357	0.002	PPM	
3	UNKNOWN	118	6449	0.004	PPM	
4	UNKNOWN	204	5845	0.004	PPM	
5		~~ ~	-16461		DDM	PBM .
6	#1122784	094			D.C.M.	PBM
7	TOLUINI	ut a faith a fa			DDM.	PBM
8	UNKNOWN	579	2016	0.001	PPM	
9	XYLENE	637	2394	0.001	PPM	
10	UNKNOWN	812	7512	0.005	PPM	
11	UNKNOWN	900	5806	0.004	PPM	
12	UNKNOWN	1029	1621	0.001	PPM	
13	UNKNOWN	1069	7142	0.004	PPM	

NAME: END14 UPPER TRACE #55 2.40% Aug 10,93 18:29 LOWER TRACE #54 100.00%

-1---1 1

TRACE #56 DATE: Tue Aug 10 18:48:56 1993

NAME: END15		CHART DURATION:	20
COLUMN: 10%SP1000		DETECTOR: AID	
COLUMN PRESSURE:	23	SAMPLE TIME:	5
	00	INHIBIT TIME:	30
PEAK# NAME	·	RT AREA	CONCENTRATION

1.	-	ŚŚŚ				
- 2	HARRING UNK	126	8624	0.005 PPM	PBM	
3	UNIL UNIL	222	6450	0.004 PPM	PBM	
4		<u> </u>		<u> </u>	• PBM	
5	****	<u>agagagam</u>	<u>enfestation</u>	Q.Q.Q.D.D.D. D.D.M	PBM	
6		app Same			- pom	
7	UNKNOWN	723	8177	0.005 PPM		
8	-	826	4444	0.003 PPM	1 Alberton	
9	UNKNOWN	1045	12104	0.008 PPM	l se	
8 9	UNKNOWN	_				

.

TRACE #57 DATE: Tue Aug 10 19:11:33 1993

NAME:END16CHART DURATION:20COLUMN:10%SP1000DETECTOR:AIDCOLUMN PRESSURE:23SAMPLE TIME:5TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREACONCENTRATION

1	-CHARLONN	1999		<u></u>	pBm
2	UNKNOWN	187	6163	0.004 PPM	
3	#112290m	0992	<u>165312</u>		pem
4	UNKNOWN	752	17029	0.011 PPM	
5	UNKNOWN	826	1203	0.001 PPM	
6	UNKNOWN	999	8737	0.005 PPM	. ,
7	UNKNOWN	1113	9443	0.006 PPM	

UPPER TRACE #57 5.02% Aug 10,93 19:11 LOWER TRACE #54 100,00%

TRACE #62 DATE: Wed Aug 11 10:41:35 1993

NAME: END17	CHART DURATION:	20
COLUMN: 10%SP1000	DETECTOR: AID	
COLUMN PRESSURE: 23	SAMPLE TIME:	5
TEMPERATURE: 100	INHIBIT TIME:	30
PEAK# NAME	RT AREA	CONCENTRATION

1				@@@#\} @ 6 ~	- -	PBM
2	UNKNOWN	68	3536	0.002	PPM	
3	UNKNOWN	161	10900	0.006	PPM	. *
4	drobtond	176	2208	0.001	PPM	pam
5	UNKNOWN	269	8391	0.005	PPM	
6		@@ @@				PBM
7	*****	00			D.D.M.	PBM
8		420	<u> </u>) }	PBM
9	UNKNOWN	523	8064	0.004	PPM	•
10	UNKNOWN	750	3603	0.002	PPM	
11	UNKNOWN	766	3651	0.002	PPM	
12	UNKNOWN	871	3702	0.002	PPM	
13	UNKNOWN	944	4722	0.003	PPM	
14	UNKNOWN	1020	2435	0.001	PPM	
15	UNKNOWN	1084	4652	0.003	PPM	
			ş. gadağı Şar			

UPPER TRACE #61 100.00% Aug 11,93 10:41

TRACE #63 DATE: Wed Aug 11 11:00:27 1993

NAME:END18CHART DURATION:20COLUMN:10%SP1000DETECTOR:AIDCOLUMN PRESSURE:23SAMPLE TIME:5TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREACONCENTRATION

1	+1122TCA	- 998-6	<u> </u>	······· @067 PDM	PBM
2	UNKNOWN	485	4968	0.003 PPM	

UPPER TRACE #61 100:00% Aug 11,93 11:00

COLUMN: 102SP1000 COLUMN PRESSURE: 23 DETECTOR: 100-100, 0 Secs SAMPLE TIME: 5 CALN: 1,000 DURATION: 20 Minutes

TRACE #64 DATE: Wed Aug 11 11:19:09 1993

NAME:END19CHART DURATION:20COLUMN:10%SP1000DETECTOR: AIDCOLUMN PRESSURE:23SAMPLE TIME:5TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREACONCENTRATION

1 #1122707 000 100056 PCM

UPPER TRACE #64 1.47% Aug 11,93 11:19 LOWER TRACE #61 100:00% COLUMN: PRESSURE: 23 DETECTOR: 100-100, 0 Secs SAMPLE TIME: 5 DURATION: 20 Minutes

DATE: Wed Aug 11 11:48:52 1993 TRACE #66

NAME: END20		CHART DURATION:	20
COLUMN: 10%SP1000)	DETECTOR: AID	
COLUMN PRESSURE:	23	SAMPLE TIME:	5
TEMPERATURE:	100	INHIBIT TIME:	30
PEAK# NAME		RT AREA	CONCENTRATION

1	-OMMONIA	-		<u> </u>	PBM PBM
2	UNKNOWN	162	7897	0.004	PPM
3	UNKNOWN	171	2832	0.002	PPM
4	-	<u> </u>			PBM PBM
5	TOLUENE	426	3181	0.002	PPM
6	UNKNOWN	494	5651	0.003	PPM
7	UNKNOWN	739	10753	0.006	PPM
8	UNKNOWN	786	3181	0.002	PPM
9	UNKNOWN	825	1698	0.001	PPM
10	#O-XYLENE	850	4297	0.002	PPM
11	#O-XYLENE	861	4203	0.002	PPM
12	UNKNOWN	× 968	7125	0.004	PPM
13	UNKNOWN	983	1966	0.001	PPM
14	UNKNOWN	1065	7180	0.004	PPM
15	UNKNOWN	1118	4237	0.002	PPM
			<u>}-6-0-],-9-</u>		

UPPER TRACE #61 100.00% Aug 11,93 11:48

TRACE #67 DATE: Wed Aug 11 12:10:37 1993

NAME: COLUMN:	END21 10%SP1000	CHART DUE		20	
	PRESSURE: 23	SAMPLE T		5	
TEMPERAT		INHIBIT !	rime:	30	
PEAK#	NAME	RT	AREA	CONCENTR	ATION
				·	
1	UNKNOWN	71	1142	0.001	PPM
2	UNKNOWN	108	5473	0,003	PPM
3	HISOOCTAN UNI	ر 122	3363	0.002	PPM PBM
4	UNKNOWN	187	7959	0.004	PPM
5	- CANKANO CANAN		170712		PBM PBM
6	#TOLUENE	431	14204	0.008	PPM
7	UNKNOWN	459	6156	0.003	PPM
8	UNKNOWN	473	4521	0.002	PPM
9	UNKNOWN	540	3771	0.002	PPM
10	UNKNOWN	578	7511	0.004	PPM
11	UNKNOWN	598	1804	0.001	PPM
12	#M-XYLENE	678	2255	0.001	PPM
13	UNKNOWN	871	4803	0.003	PPM
14	UNKNOWN	901	7075	0.004	PPM

ŊŎŴŶŶĊĸŶŶŶŶŶŶŢŶŶŶĊĿŶŎŎŎ

UPPER TRACE #61 100:00% Aug 11,93 12:10

COLUMN: 102SP1000 COLUMN: PRESSURE: 23 DETECTOR: ALD TEMPERATURE:100-100, 0 Secs SAMPLE TIME:5 CAIN: 20 Minutes

TRACE PRINTOUT TRACE #73 DATE: Wed Aug 11 13:32:23 1993 20 CHART DURATION: END22 NAME: DETECTOR: AID COLUMN: 10%SP1000 COLUMN PRESSURE: 23 SAMPLE TIME: 5 30 INHIBIT TIME: TEMPERATURE: 100 CONCENTRATION AREA RT PEAK# NAME PBM PBM 1 PBM 2 PBM PBM 3. $\frac{1000}{23}$ UPPER TRACE #73 1.92% Aug 11,93 13:32 LOWER TRACE #72 100.00% 00, 0 Secs 1.000 20 Minutes ON:

TRACE #74 DATE: Wed Aug 11 13:53:15 1993

NAME:END23CHART DURATION:20COLUMN:10%SP1000DETECTOR: AIDCOLUMN PRESSURE:23SAMPLE TIME:5TEMPERATURE:100INHIBIT TIME:30PEAK#NAMERTAREACONCENTRATION

HPPER TRACE #74 END23 .61% Aug 11,93 13:53 LOWER TRACE #72 100:00% COLUMN: PRESSURE: 23 PETECTOR: AUX TEMPERATURE: 100-100, 0 Secs CAIN: 1.000 DURATION: 20 Minutes

TRACE #84 DATE: Wed Aug 11 15:48:59 1993

NAME: END25		CHART DURATION:	20
COLUMN: 10%SP1000		DETECTOR: AID	
COLUMN PRESSURE:	23	SAMPLE TIME:	5
TEMPERATURE:]	L00	INHIBIT TIME:	30
PEAK# NAME		RT AREA	CONCENTRATION

1	• ••••••••••••••••••••••••••••••••••••	ŶQ]	<u>0050</u>	esner661 PPM PBM	prsm
2	UNKNOWN	112	9103	0.005 PPM	
3	HIBHI OF UNK	258	5491	0.003 PPM PBM	2BM
4	BENZENE	297	869	0.000 PPM	
5	WTT22TOR	atoje@aaa	<u> </u>	erection of the promised of the promised of the providence of the	PBM
6	UNKNOWN	519	18909	0.010 PPM	
7	UNKNOWN	534	3880	0.002 PPM	
8	XYLENE	680	6135	0.003 PPM	
9	#M-XYLENE	714	2960	0.002 PPM	
10	UNKNOWN	778	5164	0.003 PPM	
11	UNKNOWN	819	5772	0.003 PPM	
12	#O-XYLENE	889	6690	0.004 PPM	
13	#O-XYLENE	902	3095	0.002 PPM	

UPPER TRACE #?? 100.00% Aug 11,93 15:48

COLUMN: PRESSURE: 23 PETECTOB: AID TEMPERATURE: 100-100, 0 Secs CAIN: 1.000 DURATION: 20 Minutes

TRACE #85 DATE: Wed Aug 11 16:09:50 1993

CHART DURATION: 20 END24-2 NAME : DETECTOR: AID COLUMN: 10%SP1000 5 COLUMN PRESSURE: 23 SAMPLE TIME: 30 100 INHIBIT TIME: TEMPERATURE: CONCENTRATION PEAK# NAME RT AREA 0.002 PPM PBM UHK 182 4120 1 **ALCEPONE** 0.002 PPM 3200 300 2 BENZENE 0.259 PPH PBM 663043 -3 0.237 PPM 452856 446 TOLUENE 4 0.003 PPM 6177 767 UNKNOWN 5 0.007 PPM 12510 1117 UNKNOWN 6

againe area iterioos

UPPER TRACE #77 100:00%

COLUMN: 10%SP1000 COLUMN PRESSURE: 23 DETECTOR: ALD TEMPERATURE:100-100, 0 Secs SAMPLE TIME:5 CALN: 20 Minutes

APPENDIX C

Endicott School Soil Gas Survey Ground Water Sample Quality Assurance and Results August 1993

APPENDIX C

Quality Assurance Samples

Soil Gas

Due to site conditions very little contamination was detected in the soil gas samples. Site conditions consisted of high clay and moisture content in the vadose zone which retards the vertical flow of volatile contaminants. Given the site conditions, soil gas was not an appropriate investigative tool.

Because sample results were determined using a portable gas chromatograph all reported analytes are considered tentatively identified and concentrations are estimates. Soil gas quality assurance samples consisted of calibration, duplicates, and blanks. The gas chromatograph was calibrated at least once every five analytical runs with a standard pressurized mixture of 1.0 ppm benzene, 1.3 ppm toluene and 1.5 ppm m-xylene. Duplicate samples (repeat analyses of the same sample) were analyzed for at least 10% of all soil gas samples. Duplicate results were considered qualitative and within expected ranges. Blank samples of ambient air were run frequently to ensure that equipment contamination had not occurred.

Soil and Water Samples

Dickey Huntamer and David Thomson of the Manchester Laboratory evaluated laboratory quality assurance results. The quality of all the results are good. Toluene was detected near the quantitation limit in the transfer and transport blanks. The toluene is attributed to laboratory equipment contamination.

Duplicate samples collected at MW6 provide an estimate of combined sampling and laboratory precision. The numeric comparison of duplicate results is expressed as the relative percent difference or RPD. RPDs are the ratio of the difference and the mean of the duplicate results expressed as a percentage. The RPDs for the duplicate samples were: benzene, 10%; toluene, 7%; ethylbenzene, 9%; xylene, 5%; chloride, 1%; sulfate, 0.3%; total organic carbon, 0%; total dissolved solids, 3%; ammonia, 0%; nitrite-nitrate, 9%; and total phosphorus, 0%. Spike recoveries were within acceptable limits of 75-125%. Relative percent difference (%RPD) for the spike and spike duplicates were within $\pm 20\%$.

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

August 30, 1993

Subject: Endicott School

Samples: 93 - 338030 to -338038

Case No. DOE-837Y

Officer: Pam Marti

By:

Dickey D. Huntamer (20) Organics Analysis Unit

WTPH-G ANALYSIS

ANALYTICAL METHODS:

The samples were analyzed for total gasoline using Total Petroleum Hydrocarbon Analytical Methods-WTPH-G, September 27, 1991.

HOLDING TIMES:

The samples were analyzed within the recommended holding times.

BLANKS:

No gasoline was detected in the laboratory blank.

DUPLICATES:

Sample -338033 was analyzed in duplicate. The Relative Percent Difference (RPD) was 3.4%. No RPD criteria have been established for this method.

ANALYTICAL COMMENTS:

No problems were encountered in the analysis of these samples. The data is acceptable to use without additional qualifiers.

Page 2 Endicott School - WTPH-G

DATA QUALIFIER CODES:

U	-	The analyte was not detected at or above the reported value.
J	-	The analyte was positively identified. The associated numerical value is an estimate.
UJ į	-	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are <u>unusable</u> for all purposes.
EXP		The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example $3EXP6$ equals 3×10^6 .
NAF	-	Not analyzed for.
N	-	For organic analytes there is evidence the analyte is present in this sample.
NJ	-	There is evidence that the analyte is present. The associated numerical result is an estimate.
Е	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range.
*	-	The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

CN_ENDI4.DOC - 3

6-AUG-93		State Department of Lab Analysis Report		Page	l
	: 08260701 S -837Y) ENDICOT	(WE)	Organics - General Ecology, Manchester D3E20	Lab PZM	
	100064 S) WTPH				
Method:	(WTPH-G (JRF) Ratmeye () Unspecif	rkin-Elmer PID/FID) Washington Total P r Folkerts, J. DO Ho ed tal D		-Gas	
Line Sample	# Result	Sample Location/Des	cription	#Days to	Anl
1 93 33803 2 93 33803 3 93 33803 4 93 33803 5 93 33803 5 93 33803 6 93 33803 7 93 33803 8 93 33803 9 93 33803	1 0.024U 2 0.024U 3 0.057 4 0.024U 5 0.024U 6 0.48 7 0.024U	MW4 MW3 MW6 3MW TRANSFER		930811 930811 930811 930812 930812 930812 930812 930812 930812	•

Record Type: TRNIN2 Date Verified: <u>Shara</u> By: <u>Stripton</u> Transaction Status: New Transaction...First Printing...Unverified. Processed: 26-AUG-93 07:16:56 Status: N Batch: (In CUR DB)

6-AUG-93	Washington ***	State Department of Ecology Lab Analysis Report ***	Page 2
Transaction #: Project: (DOE- Param: (1		(WE) Ecology, Mano SCHOOL	eneral chester Lab D3E20 PZM
QA Code: Instrument: Method: Chemist: Lab Prep: Matrix: Units:	(PEPIDFID) Pe (WTPH-G		
Line Sample	# Result	Sample Location/Description	#Days to Anl
1 93 338033	3 0.059	MW3	930812 (7)

Record Type: TRNIN2 Date Verified: 8/27/93 By: 976Transaction Status: New Transaction...First Printing...Unverified. Processed: 26-AUG-93 07:16:56 Status: N Batch: (In CUR DB) SUPACK

6-AUG-93	Washington ***	State Department of Lab Analysis Report	Ecology ***	Page 3	•
Transaction #: Project: (DOE- Param: ()		(WE) I SCHOOL	Organics - General Ecology, Mancheste D3E20	r Lab	
QA Code: Instrument: Method: Chemist: Lab Prep: Matrix: Units:	(PEPIDFID) Pe (WTPH-G	tal D	Blank ID: BW3231 etroleum Hydrocarbo urs Worked: ate Preprd: ate Anlyzd: 930819	on-Gas	
Line Sample	# Result	Sample Location/Des	cription	#Days to An	1
1 93 33803	0.024U	MW5	· · · · · · · · · · · · · · · · · · ·	930811 (8))

Record Type: TRNIN2 Date Verified: 8/27/93 By: 2900 Transaction Status: New Transaction...First Printing...Unverified. Processed: 26-AUG-93 07:16:56 Status: N Batch: (In CUR DB)

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

August 30, 1993

Subject: Endicott School

Samples: 93 - 338030 to -338038

Case No. DOE-837Y

Officer: Pam Marti

By:

Dickey D. Huntamer

BETX ANALYSIS

ANALYTICAL METHODS:

The samples were analyzed by EPA Method SW-846 - 8020. Normal laboratory QA/QC procedures were performed with the analyses.

HOLDING TIMES:

The samples were analyzed within the recommended holding times.

BLANKS:

The EPA five times rule was applied to all target compounds which were found in the blank. Compounds that were found in the sample and in the blank were considered real and not the result of contamination if the levels in the sample are greater than or equal to five times the amount of compounds in the associated method blank. No target compounds were detected in the laboratory blank.

SURROGATES:

All surrogate recoveries were within acceptable limits.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

A matrix spike and spike duplicate was analyzed using samples -338030 and -338031 due to insufficient sample. Recoveries ranged from 97% to 104% and the Relative Percent Differences (RPD) ranged from 0% to 7%. All recovery and precision data were within acceptable limits.

*	** Lab Analysis	Report ***		
==> Transaction #: 08260	1756 Lab	poratory: (WE)	Ecology, Ma	nchester Lab
Work Group: (51) V	'OA - PP Scan			
Instrument: (PEPIDFID) F	erkin-Elmer PID/	FID		
Method: (RX1-GO) C	rganics, General	L		
Chemist: (JRF) F	atmeyer Folkerts	s, J. DO Ho	ours Worked:	· .
Project: DOE-837Y ENDIC	COTT SCHOOL	•	Prg	Ele#: D3E20
Prj Off: Marti, Pam	DOE Anal	lysis Due: 930)812 Revised	Due:

Page

1 .

Washington State Department of Ecology

*** Sample Records in Transaction ***

6-AUG-93

Seq#	Sample #	QA	Date/Time	Description	Alternate Keys
01	93338030	LBK1	930811	 MW5	
02	93338030	LBK2	930811	MW5	
03	93338030		930811	MW5	
04	93338030	LMX1	930811	MW5	
05	93338031	LMX2	930811	MW7	
06	93338031		930811	MW7	
07	93338032	•	930811	MW4	
08	93338033		930812	MW 3	· · ·
09	93338034		930812	MW6	
10	93338035		930812	MW6	
11	93338036		930812	3 MW	
12	93338037		930812	TRANSFER	
13	93338038		930812	TRANSPOR	

Record Type: TRNIN3 Date Verified: $\frac{27/93}{127/93}$ By: <u>Prototo</u> Transaction Status: Edited Transaction...First Printing...Unverified. Processed: 26-AUG-93 08:03:39 Status: E Batch: (In CUR DB) Page 2 Endicott School - BETX

ANALYTICAL COMMENTS:

No problems were encountered in the analysis of these samples. The data is acceptable to use without additional qualifiers.

DATA QUALIFIER CODES:

U	-	The analyte was not detected at or above the reported value.
J	-	The analyte was positively identified. The associated numerical value is an estimate.
IJ	-	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are <u>unusable</u> for all purposes.
EXP	*	The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example 3EXP6 equals 3×10^6 .
NAF	-	Not analyzed for.
Ν	-	For organic analytes there is evidence the analyte is present in this sample.
NJ	-	There is evidence that the analyte is present. The associated numerical result is an estimate.
Е	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range.
*	-	The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

 $\frac{\sqrt{2}}{\sqrt{2}} \lambda_{1}$

CN_ENDI5.DOC - 3

6-AUG-9	3	Washington State Depart *** Lab Analysis		Page 2
		260756 Seq #: 01 37Y ENDICOTT SCHOOL	(51) VOA - PP Sca	an PE # : D3E20
	ID : BW323 No.: 93 33	-	te Keys:	
QA Code	e: (LBK1) L	Water-Total ab Blank Sample #1 Date Analyzed: 9		eaks Total:
Line	Par #	Parameter Description	Units	Value
1	71432	Benzene	ug/l	0.20
1 2	108883	Toluene	ug/l	0.2U
3	100414	Ethylbenzene		0.2U
4 5				0.6U
5	-540363	p-Difluorobenzene	% Recov	104 (Surr) PR

6-AUG-93	Washington State Departme *** Lab Analysis I		Page 3
Transaction #: (Proj Code : DOE-	8260756 Seq #: 02 837Y ENDICOTT SCHOOL	(51) VOA - PP S	can PE # : D3E20
Blank ID : BW32 Sample No.: 93		e Keys:	
QA Code: (LBK2))) Water-Total Lab Blank Sample #2 Date Analyzed: 93		%Slds: Peaks Total: to Ext/Anal: 0/ 12
Line Par #	Parameter Description	Units	Value
3 10041	3 Toluene 4 Ethylbenzene 7 Total Xylenes	ug/l ug/l ug/l ug/l % Recov	0.2U 0.2U 0.2U 0.6U 104 (Surr) PR
	• •		
	:		•
			, , ·

6-AUG-93	Washington State Depart *** Lab Analysis		Page 4
	08260756 Seq #: 03 -837Y ENDICOTT SCHOOL	(51) VOA - PP Sc	an PE # : D3E20
Sample No.: 93	Alterna Alterna	te Keys:	
Samp Matrix: (10 QA Code: () Date Extracted:			eaks Total:
Line Par #	Parameter Description	Units	Value
	3 Toluene 4 Ethylbenzene 7 Total Xylenes	ug/l ug/l ug/l ug/l % Recov	0.2U 0.2U 0.2U 0.2U 0.6U 105 (Surr) PR

. .

6-AUG-9		Washington State Depart *** Lab Analysis	Report ***	
Transac Proj Co	tion #: 08: de : DOE-8:	260756 Seq #: 04 37Y ENDICOTT SCHOOL	(51) VOA - PP S	can PE # : D3E20
Sample	No.: 93 33	8030 Alterna	te Keys:	
Samp Ma QA Code Date Ex	atrix: (10) e: (LMX1) L ctracted:	Water-Total ab Mtrx Spike #1 (% Rec Date Analyzed: 9	Units: (94) % Re 30824 # Days	cov %Slds: Peaks Total: to Ext/Anal: 0/
Line	Par #	Parameter Description	Units	Value
	71432	Benzene	% Recov	104
1 2 3 4 5	108883	Toluene Ethylbenzene Total Xylenes	 % Recov % Recov % Recov % Recov 	
2 3 4	108883 100414 1330207	Toluene Ethylbenzene Total Xylenes	% Recov % Recov	104 104

·

· · · · · ·

6-AUG-9	3	Washington State Departme *** Lab Analysis P	ent of : Report	Ecology ***		Pag	e 6
Transac Proj Co	ction #: 08 ode : DOE-8	260756 Seq #: 05 37Y ENDICOTT SCHOOL	(51)	VOA - PP		E # : 1	D3E20
Sample	No.: 93 33	8031 Alternate	e Keys:				-
OA Code	e: (LMX2) L	ab Mtrx Spike #2 (% Rec			Recov % Peaks To	otal:	,
		Date Analyzed: 930 Parameter Description		# Days		Anal:	0/ 13
Line	Par #	Parameter Description	U		Value	Anal:	0/ 13
Line	Par # 		U 	nits	Value 103 102	Anal:	0/ 13
Line 1 2 3	Par # 71432 108883	Parameter Description Benzene	U % %	nits Recov Recov Recov	Value 103 102 97	Anal:	0/ 13
Line 1 2 3	Par # 71432 108883 100414 1330207	Parameter Description Benzene Toluene Ethylbenzene Total Xylenes	U 	nits Recov Recov Recov Recov Recov	Value 103 102 97 103		
Line	Par # 71432 108883 100414 1330207	Parameter Description Benzene Toluene Ethylbenzene	U 	nits Recov Recov Recov	Value 103 102 97 103		0/13 r) PR

6-AUG-93	3	Washington Sta *** Lal	ate Department 5 Analysis Rep	of Ecology ort ***		Page 7
		260756 Seq 37Y ENDICOTT		51) VOA - PP		# : D3E20
Sample N	Io.: 93 33	8031	Alternate H	(eys:		
OA Code:	: () Ŭ	Water-Total nspecifed Date A		,	Peaks Tot to Ext/An	
Line	Par #	Parameter De	scription	Units	Value	
1 2 3 4 5	108883 100414 1330207	Benzene Toluene Ethylbenzene Total Xylene p-Difluorobe	S	ug/l ug/l ug/l % Recov	0.2U 0.2U 0.2U 0.6U 105	(Surr) PR

۲. ۲.

6-AUG-93	Washington State Depart *** Lab Analysis		Page 8
	8260756	(51) VOA - PP S	can PE # : D3E20
Sample No.: 93 3	38032 Alterna	ate Keys:	
QA Code: ()) Water-Total Unspecifed Date Analyzed: S		<pre>%Slds: Peaks Total: to Ext/Anal: 0/ 12</pre>
Line Par #	Parameter Description	Units	Value
1 71432 2 108883 3 100414 4 1330207 5 -540363	Toluene Ethylbenzene Total Xylenes	ug/l ug/l ug/l % Recov	17 1.1 0.2U 0.6U 103 (Surr) PR

· .

6-AUG-93	3	Washington State Departme *** Lab Analysis R	ent of Ecology eport ***	Page 9
		260756 Seq #: 08 37Y ENDICOTT SCHOOL	(51) VOA - PP Scan	PE # : D3E20
Sample 1	No.: 93 33	8033 Alternate	Keys:	
QA Code	: () Ū			%Slds: ks Total: Ext/Anal: 0/ 7
Line	Par #	Parameter Description	Units Va	lue
1 2 3 4 5	108883 100414	Ethylbenzene Total Xylenes	ug/l ug/l	585 2.8 1.3 3.2 102 (Surr) PR

.

.

6-AUG-93	· 5	Nashington State Depart *** Lab Analysis				Pa	ge 10
		260756 Seq #: 09 37Y ENDICOTT SCHOOL	(51) VOA - PP :		PE # :	D3E20
Sample No.	: 93 338	3034 Alterna	te Key	s:			
QA Code: (() Üı	Water-Total nspecifed Date Analyzed: 9		s: (11) ug/ # Days	Peaks	Total:	
Line	Par #	Parameter Description		Units	Value	2	
2 3 4 1	71432 108883 100414 1330207 -540363	Benzene Toluene Ethylbenzene Total Xylenes p-Difluorobenzene		ug/l ug/l ug/l ug/l % Recov	370 0.26 0.24 0.88 102	5 1 3	rr) PR

.

..

6-AUG-9	3 1	Washington State Depar *** Lab Analysi	tment of Ecology s Report ***		Page	11
Transac Proj Co	tion #: 08 de : DOE-8	260756 Seq #: 10 37Y ENDICOTT SCHOOL	(51) VOA - PI		# : D31	520
Sample	No.: 93 33	8035 Altern	ate Keys:			
QA Code	trix: (10) : () U tracted:		Units: (11) ug 930820	g/l %S Peaks To ys to Ext/A	tal:	0/ 8
Line	Par #	Parameter Description	Units	Value		
1 2 3 4 5	71432 108883 100414 1330207 -540363	Toluene Ethylbenzene Total Xylenes	ug/l ug/l ug/l ug/l % Recov	333 0.28 0.22 0.84 102	(Surr)	PR

A Code:() UnspecifedPeaks Total:ate Extracted:Date Analyzed: 930820# Days to Ext/Anal:0/inePar #Parameter DescriptionUnitsValue			260756 Seq #: 11 (37Y ENDICOTT SCHOOL	51) VOA - PP 5		# : D31	E20
DA Code: () UnspecifedPeaks Total:Date Extracted:Date Analyzed: 930820# Days to Ext/Anal: 0/LinePar #Parameter DescriptionUnitsValue171432Benzeneug/l5002108883Tolueneug/l2.43100414Ethylbenzeneug/l1.341330207Total Xylenesug/l12.5	ample	No.: 93 33	8036 Alternate K	eys:			
1 71432 Benzene ug/l 500 2 108883 Toluene ug/l 2.4 3 100414 Ethylbenzene ug/l 1.3 4 1330207 Total Xylenes ug/l 12.5	QA Cod	e: () Ü	nspecifed		Peaks To	tal:	0/ 8
2 108883 Toluene ug/l 2.4 3 100414 Ethylbenzene ug/l 1.3 4 1330207 Total Xylenes ug/l 12.5	Line	Par #	Parameter Description	Units	Value		
2 108883 Toluene ug/l 2.4 3 100414 Ethylbenzene ug/l 1.3 4 1330207 Total Xylenes ug/l 12.5	1	71432	Benzene				
3 100414 Ethylbenzene ug/l 1.3 4 1330207 Total Xylenes ug/l 12.5	2						
4 1330207 Total Xylenes ug/l 12.5	2		· · · · · · · · · · · · · · · · · · ·				
	<u>э</u>	1330207					
5 -540363 p-Difluorobenzene % Recov 103 (Surr) F	3 4		- Difluorohongono	% Recov	103	(Surr)	PR

× .

			1) VOA - PP		# : D3	₩20
eroj co	de : DOE-8	37Y ENDICOTT SCHOOL		E L	π	120
Sample	No.: 93 33	3037 Alternate Ke	ys:		•	
	h	Water-Total Uni	ts: (11) ug/	1 %S1	ds:	
QA Code	e: ()Ū			Peaks Tot to Ext/Ar		0/ 1
DA Code Date Ex	e: () Ü tracted:	nspecifed		Peaks Tot		0/ *
DA Code Date Ex Line	e: () U tracted: Par #	nspecifed Date Analyzed: 930819 Parameter Description	# Days Units	Peaks Tot to Ext/Ar		0/ 1
QA Code Date Ex Line	e: () Ü tracted:	nspecifed Date Analyzed: 930819 Parameter Description Benzene	# Days	Peaks Tot to Ext/Ar Value		0/
DA Code Date Ex	e: () U tracted: Par # 71432	nspecifed Date Analyzed: 930819 Parameter Description Benzene Toluene	# Days Units ug/l	Peaks Tot to Ext/Ar Value 0.2U		0/ *
QA Code Date Ex Line	e: () U tracted: Par # 71432 108883	nspecifed Date Analyzed: 930819 Parameter Description Benzene Toluene Ethylbenzene	# Days Units ug/l ug/l	Peaks Tot to Ext/Ar Value 0.2U 0.32		0/ - 1

6-AUG-93	7	Washington ***	State Depar Lab Analysi	tment of s Report	Ecology ***		Page	14
Transact Proj Code	ion #: 08; e : DOE-8;	260756 S 37Y ENDIC	eq #: 13 OTT SCHOOL	(51)	VOA - PP		; # : D3	E20
Sample N	o.: 93 33	8038	Alterr	nate Keys				
OA Code:		Water-Tot nspecifed Dat	al e Analyzed:		: (11) ug, # Day:	Peaks To	stal:	0/ 7
Line	Par #	Parameter	Description	n .	Units	Value		
1 2 3 4 5	71432 108883 100414 1330207 -540363		enes		ug/l ug/l ug/l ug/l % Recov	0.2U 0.28 0.2U 0.6U 104	(Surr)	PR

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive East • Port Orchard, Washington 98366-8204 • (206) 871-8860 • 5CAN 871-8860

September 29, 1993

TO: Pam Marti, Project Officer

FROM: David A. Thomson

SUBJECT: Endicott School Results

SAMPLE RECEIPT:

The samples were received by the Manchester Laboratory on August 12, 1993 in good condition.

HOLDING TIMES:

The analyses were performed by Weyerhaeuser Analysis and Testing Services within the specified holding times using the following methods;

Total P-EPA method 365.3 NH3-EPA method 350.1 NO2/NO3-EPA method 353.2

PROCEDURAL BLANKS:

The procedural blanks associated with these samples showed no analytically significant levels of analytes.

STANDARD REFERENCE MATERIAL:

Standard reference material or external verification standards were all within the windows established for each method.

SPIKE RECOVERY:

Spike sample analyses were performed on sample number 338030 (NO2/NO3 and NH3) and sample number 338031 (T-P). All spike recoveries were within limits of +/- 12%.

PRECISION DATA:

The results of samples run in duplicate were used to evaluate precision on this sample set. The Relative Percent Difference (RPD) for all analytes was within the +/-2% window.

SUMMERY:

The data generated by the analysis of Endicott School samples can be used without qualification.

If you have any questions about the results or the methods used to obtain these results please call me at (206) 871-8822.

WEYERHAEUSER TECHNOLOGY CENTER Analytical Laboratories Tacoma, Washington

Report

Service Request 12697

..

Department of Ecology Endicott School

Sample Description	Analytical Lab Code	NH3-N mg/L	NO3/NO2-N mg/L	TP mg/L
338030	14507	< 0.02	3.78	0.31
338031	14508	< 0.02	3.50	1.1
338032	14509	< 0.02	6.68	0.26
338033	14510	< 0.02	6.94	0.15
338034	14511	< 0.02	2.26	0.16
338035	14512	< 0.02	2.48	0.16
338036	14513	< 0.02	5.57	0.25

Approved Maxim Rask Date 9-14-93 kas

3-AUG-93	Washington ***	State Department Lab Analysis Rep		Page 1
Transaction #: Project: (DOE- Param: (T SCHOOL	80) Ion Chromatograph WE) Ecology, Manchest D3E2 1	er Lab
QA Code: Instrument: Method: Chemist: Lab Prep: Matrix: Units:		onex #IC-2020 Ion) Inorganic Anion Cyma DOE ed	Chromatography s, Ion Chromatography Hours Worked: Date Preprd: Date Anlyzd: 930819	· · · ·
Line Sample	# Result	Sample Location/	Description	#Days to Anl
1 93 338030 2 93 338031 3 93 338032 4 93 338033 5 93 338034 6 93 338035 7 93 338036	7.6 21.6 39.5 19.7 19.5	MW5 MW7 MW4 MW3 MW6 MW6 3MW		930811 (8) 930811 (8) 930811 (8) 930812 (7) 930812 (7) 930812 (7) 930812 (7)

Record Type: TRNIN2 Date Verified: 8-24-93 By: Multivolume Transaction Status: New Transaction...First Printing...Unverified. Processed: 23-AUG-93 10:58:09 Status: N Batch: (In CUR DB)

3-AUG-93		ate Department of b Analysis Report		Page 1
Project: (DOE-	08231057 Seq 837Y) ENDICOTT S 946 S) Sulfate	CHOOL (WE)	Ion Chromatography Ecology, Manchester D3E20	- Lab PZM
Method: Chemist:		x #IC-2020 Ion Ch norganic Anions, a DOE Ho red D	romatography Ion Chromatography urs Worked: ate Preprd: ate Anlyzd: 930819	
Line Sample	# Result Sa	mple Location/Des	cription	#Days to Anl
1 93 338030 2 93 338031 3 93 338032 4 93 338033 5 93 338034 6 93 338035 7 93 338036	30.8 MW 67.8 MW 160 MW 32.2 MW 32.3 MW	17 14 13 16 16		930811 (8) 930811 (8) 930811 (8) 930812 (7) 930812 (7) 930812 (7) 930812 (7) 930812 (7) 930812 (7)

Record Type: TRNIN2 Date Verified: 8-24-63 By: Definition of the second Transaction Status: Edited Transaction...First Printing...Unverified. Processed: 23-AUG-93 11:01:05 Status: E Batch: (In CUR DB)

4-AUG-93		State Department of Lab Analysis Report		Page 1
Transaction #: Project: (DOE-8 Param: ((WE) T SCHOOL	Demand - Specified Ecology, Manchester D3E20	Lab PZM
Method: Chemist: Lab Prep: Matrix:	(EP1-415.1	I. Model 700 TOC) Organic Carbon, To , Debbie J. DOE Ho ed tal D	tal, Combustion or C urs Worked: ate Preprd: ate Anlyzd: 930823	xidation
Line Sample #	# Result	Sample Location/Des	cription	#Days to Anl
1 93 338030 2 93 338031 3 93 338032 4 93 338033 5 93 338033 5 93 338034 6 93 338035 7 93 338036	4.4 2.5 2.9 3.4	MW5 MW7 MW4 MW3 MW6 MW6 3MW		930811 (12) 930811 (12) 930811 (12) 930812 (11) 930812 (11) 930812 (11) 930812 (11)

Record Type: TRNIN2 Date Verified: $\frac{g/2\pi/3}{2}$ By: <u>icom a 3</u> Transaction Status: New Transaction...First Printing...Unverified. Processed: 24-AUG-93 08:26:54 Status: N Batch: (In CUR DB)

CA

9-AUG-93		State Department of Lab Analysis Report		Page 1
	37Y) ENDICOT	(WE) T SCHOOL ds T-Dissol mg/l	Solids - Specified Ecology, Manchester D3E20	r Lab PZM
Înstrument: (Method: (Chemist: (Lab Prep: (Matrix: (GRAV) Gr EP1-160.1 (CAB) Bickle,	avimetric Measuremen) Residue, Filterabl Kitty DOE Ho ed tal D	e, Gravimetric, Drie	ed at 180 Deg
Line Sample #	Result	Sample Location/Des	cription	#Days to Anl
1 93 338030 2 93 338031 3 93 338032 4 93 338033 5 93 338033 5 93 338034 6 93 338035 7 93 338036	511 679 900 638 618	MW5 MW7 MW4 MW3 MW6 MW6 3MW		930811 (5) 930811 (5) 930811 (5) 930812 (4) 930812 (4) 930812 (4) 930812 (4) 930812 (4)

Record Type: TRNIN2 Date Verified: 8 2093 By: Men. Transaction Status: New Transaction...Reprint...Unverified. Processed: 19-AUG-93 16:02:09 Status: P Batch: (In CUR DB)

APPENDIX D

Distance of Influence near a Trench

APPENDIX D

DATE: December 21, 1994

TO: Pam Marti

FROM: Denis Erickson $\mathcal{P}^{\mathcal{C}}$

SUBJECT: Distance of Influence near a Trench

At your request I estimated the distance of influence from a recovery trench in a water table setting. I used a method described in McWhorter and Sunada (1977) which, originally was developed to determine drain spacing. The steady-state configuration of the water table can be described by the following equation:

$$h^2 = h_o^2 - \frac{W}{K} (x^2 - (\frac{L}{2})^2)$$

where,

W = recharge rate (L/t)K = Hydraulic conductivity (L/t)and other terms are shown in Figure D-1.

Hydraulic conductivity was estimated by others from slug tests to be about 0.57 feet/day. The height of the water table above the trench (h_{max} , at x=0) ranged from 1 to 4.5 feet using water levels from on-site monitoring wells. I used daily precipitation records from Pullman, Washington for the period from January 1, 1970 through December 31, 1984 to estimate the annual precipitation (Hermanson, 1992). Watertable configurations were calculated for three recharge rates assuming 100%, 50%, and 25% infiltration.

The results are summarized in Table D-1.

W,feet/day	% Infiltration	h _{max} ,feet	Distance, feet
0.0047	100	1	11
0.0024	50	1	16
0.0012	25	1	22
0.0047	100	4.5	49
0.0024	50	4.5	70
0.0012	25	4.5	98

Table D-1. Estimated distances of influence from a trench.

In conclusion, using extreme conditions the distance of influence of the recovery trench ranged between 10 and 100 feet. Using average conditions the distance of influence is probably less than 50 feet.