

Sound Refining Company Class II Inspection July/August 1994

July 1995

Publication No. 95-337

printed on recycled paper

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact the Environmental Investigations and Laboratory Services Program, Toxics Investigations Section, Joan LeTourneau at (360) 407-6764 (voice). Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office P.O. Box 47600 Olympia, Washington 98504-7600 (360) 407-7472

Refer to Publication Number 95-337

Sound Refining Company Class II Inspection July/August 1994

by Steven Golding

Environmental Investigations and Laboratory Services Program Olympia, Washington 98504-7710

July 1995

Water Body No. WA-10-0020

Publication No. 95-337

printed on recycled paper

Table of Contents

		1		
List of Figures and Tables				ii
Abstract		••••	i	iii
Summary				
Wastewater Sediment				
Recommendations				vi
Introduction				1
Facility Description				
Objectives				2
Procedures	• • • • • • • • • • •			2
Results and Discussion				
Wastewater Image: Market State Stat				
NPDES Permit Compliance/Gener Treatment Effectiveness	•			
Split Sample Comparison				5
Priority Pollutant Scans Bioassays				
Sediment				
Priority Pollutant Scans				8
Bioassays			•••••••	9
References				10
Appendices				

List of Figures and Tables

Figures		
Figure 1.	Location Map	11
Figure 2.	Flow Schematic	12
Tables		
Table 1.	Sampling Station Descriptions	13
Table 2.	General Chemistry Results	14
Table 3.	NPDES Permit Limits and Inspection Results	16
Table 4.	Split Sample Results Comparison	17
Table 5.	VOA, BNA, Metals Detected in Influent and Effluent	18
Table 6.	Effluent Bioassay Results	21
Table 7.	Sediment VOA, BNA, and Metals Detected	23
Table 8.	Sediment Bioassay Results	25

Abstract

A Class II Inspection was conducted at the Sound Refining Company refinery in Tacoma, Washington on July 20-21, 1994. Related sediment sampling was conducted August 22, 1994. The effluent met all daily average and daily maximum NPDES permit requirements. The effluent BOD₅ concentration met the daily maximum permit limit but was greater than the daily average permit limit. Effluent BOD₅ was based on a 24-hour sample while BOD₅ permit limits are based on monthly averages. Plant treatment effectiveness generally fell within a range typical of similar facilities. Considerable nitrification was taking place. Split sample comparisons of Ecology and Sound sampling and analyses showed close agreement.

All VOA compounds found in effluent were in concentrations below State water quality criteria. No BNA compounds were detected in effluent. Of eight priority pollutant metals detected in effluent, copper, mercury, and zinc exceeded State marine water quality criteria. Mercury exceeded the chronic criterion by a factor of 76. Of four species tested in effluent bioassay tests, the fathead minnow and bivalve larvae showed significant mortality and developmental effects.

Seven VOA compounds were found in sediment samples near the outfall. Of the BNAs detected in sediment samples, bis(2-ethylhexyl)phthalate and hexachlorbenzene exceeded Marine Sediment Quality Standards criteria. No metals exceeded Marine Sediment Quality Standards criteria. The echinoderm embryo sediment bioassay test showed no statistically significant difference relative to the control. For the marine amphipod test, all three sediment samples showed a statistical difference for mortality from the control.

Summary

Wastewater

Plant flow is measured with an in-line flow meter just upstream of the effluent box and was not accessible for Ecology verification of flow measurements.

The effluent met all permit requirements for COD, TSS, oil and grease, phenolic compounds, NH_3 -N, sulfide, total chromium, hexavalent chromium, and pH. The effluent BOD₅ concentration met the daily maximum permit limit but was greater than the daily average permit limit. Effluent BOD₅ was based on a 24-hour sample while BOD₅ permit limits are based on monthly averages. Because the BOD₅ test showed a toxic response to the effluent, actual effluent BOD₅ was likely higher.

The wastewater treatment facility was achieving substantial nitrification at the time of the inspection. A comparison with other facilities indicates that the nitrification may have been occurring in the rotating biological contactor unit.

Treatment effectiveness generally fell within a range typical of similar facilities.

Results of sample splits were in close agreement for Ecology and Sound samples and analyses of COD, TSS, oil and grease, NH₃-N, phenolics, and pH.

Twenty-three volatile organic acid (VOA) compounds, fifteen base-neutral acid (BNA) compounds, and seven priority pollutant metals were detected in the influent.

Eight priority pollutant and other target VOA compounds were detected in the effluent. Of these, naphthalene (12.8 μ g/L - est.; 3.2 μ g/L - est.) was found in the highest concentrations. All VOA compounds found in the effluent were in concentrations below State water quality criteria. No BNA compounds were detected in the effluent.

Of the eight priority pollutant metals detected in effluent samples, copper, mercury, and zinc exceeded State marine water quality criteria. Mercury exceeded the chronic criterion by a factor of 76. Although a dilution study has not been conducted, there are plans to eliminate the outfall by diverting the treated wastewater to the City of Tacoma sewer system.

Effluent bioassays showed toxicity for most species tested. Rainbow trout and *Daphnia magna* showed no statistically significant mortality. The fathead minnow and bivalve larvae tests showed statistically significant mortality and developmental effects.

Page iv

Sediment

Seven VOA compounds were found in the two sediment samples near the outfall (Sed-1 and Sed-2). MEK (p-isopropyltoluene) was found in concentrations of 27.2 μ g/Kg-dry (est.) in Sed-1 and 22.7 μ g/Kg-dry in Sed-2 (est.). MEK was also found in the Sound influent and effluent. Seven VOA compounds were found in the background sediment sample, all at concentrations below 1.0 μ g/Kg-dry.

Although no BNAs were detected in the Sound effluent, sediment results indicate BNA contamination near the outfall. BNA concentrations in the two sediment samples near the outfall were generally higher than the BNA concentrations in the background sample by a factor of two. Of the BNAs detected in the sediment samples, bis(2-ethylhexyl)phthalate exceeded the Marine Sediment Quality Standards chemical criterion in Sed-1 and was 99% of the maximum chemical criterion. Hexachlorobenzene in Sed-2 exceeded the maximum chemical criterion by 58%.

While metals were found in elevated concentrations in the effluent, metals in sediments near the outfall were found in similar concentrations to those at the background site, reflecting the contaminated nature of the background comparison site. Ten metals were detected in each of the three sediment samples, all in concentrations lower than applicable Marine Quality Standards.

For the echinoderm embryo sediment bioassay test, none of the combined endpoint data showed a statistically significant difference relative to the control.

For the marine amphipod sediment test, mortality in all three sediment samples was statistically different than the control. The mean mortality for the two sediment samples near the outfall did not exceed the 25% mortality biological effects criterion for amphipod tests.

Recommendations

- The effluent meter should be checked regularly per manufacturer's recommendations, and meter accuracy should be assured. Provision for a means of independent evaluation of the flow determined by the in-line flow meter should be considered.
- Further sediment sampling and analyses should be considered to verify concentrations of bis(2-ethylhexyl)phthalate and other BNA compounds.

Introduction

A Class II Inspection was conducted at the Sound Refining Company (Sound) refinery in Tacoma, Washington on July 20-21, 1994 (Figure 1). Conducting the inspection of the facility were environmental engineers Guy Hoyle-Dodson and Steven Golding from the Department of Ecology Toxics Investigations Section. Raymond Burke, lab and environmental supervisor for Sound, assisted during the inspection. The inspection was requested by the Department of Ecology Industrial Section. Nancy Kmet of the Industrial Section is permit manager.

Facility Description

Crude oil is refined at the facility by both atmospheric and vacuum distillation. The principle petroleum products are heavy fuel oil, asphalt, naphthas, and lube stocks.

Primary treatment of wastewater is with API and corrugated plate separators (CPS), a surge pond, and an induced air flotation unit (IAF) to separate oil from the wastewater (Figure 2). The wastewater is then treated in an activated sludge aeration basin, followed by a rotating biological contactor unit (RBC), and a clarifier. The effluent is discharged via Outfall 001 to the Hylebos Waterway (Figure 1). The 12-inch outfall line discharges 22 feet from shore at a depth of 10 feet below MLLW (mean low low water).

Stormwater not from plant process areas is treated with oil skimmers and wood excelsior filters. Sanitary sewage from the facility is pumped to the City of Tacoma sewer system.

Discharge from Outfall 001 and stormwater outfalls 002, 003, and 004, is regulated by National Pollutant Discharge Elimination System (NPDES) Permit No. WA 000320-4. The permit includes two production tiers representing partial and full production rates. The permit was issued May 15, 1990 and expires May 15, 1995.

Sound is tentatively planning to discontinue discharge of effluent, and instead divert its pretreated wastewater to the City of Tacoma sewer system, by January 1, 1996 (Kmet, 1995).

Objectives

Objectives of the inspection included:

- Assess effluent compliance with NPDES permit limits
- Verify NPDES permit self-monitoring, and split samples with the permittee to determine the comparability of sampling methods and laboratory results
- Evaluate treatment effectiveness
- Assess effluent toxicity with bioassays and pollutant scans
- Assess toxicity of sediments near the outfall

Procedures

Ecology collected a composite sample of influent process water (Inf-E) from the influent box upstream of the API separator. Grab samples of influent process water were collected downstream of the API separator (Inf-1,2), and grab and composite samples of IAF effluent and of final effluent (Eff) were collected. Sound also collected final effluent grab and composite samples (Table 1, Figure 2).

Sediment samples were collected by Ecology near the Sound outfall (Table 1, Figure 1).

Ecology and Sound sampler configurations and locations are summarized in Figure 2 and Table 1. A more detailed description of sampling procedures appears in Appendix A. Sampling times and parameters analyzed appear in Appendix B. Ecology analytical methods and laboratories performing the analyses are summarized in Appendix C. Ecology field and laboratory QA/QC are summarized in Appendix D. Quality assurance cleaning procedures are included in Appendix E. A glossary of terms appears in Appendix H.

Results and Discussion

Wastewater

Flow Measurements

Plant flow is measured with an in-line flow meter just upstream of the effluent box and was not accessible for Ecology verification of flow measurements. The effluent meter should be checked regularly per manufacturer's recommendations, and meter accuracy should be assured.

Sound reported flow during the 24-hour period 7 AM - 7 AM July 20-21, 1994 of 48,710 gallons. Ecology recorded flow from the Sound totalizer of 48,562 gallons. This Ecology flow, a prorated estimate from 0945 7/20 to 1030 7/21, verified Sound's reporting of flow. Sound's flow will be used for calculations within this report.

NPDES Permit Compliance/General Chemistry

General chemistry results appear in Table 2. The effluent met the limits in Sound's NPDES permit for COD, TSS, oil and grease, phenolic compounds, NH_3 -N, sulfide, total chromium, hexavalent chromium, and pH (Table 3).

Effluent BOD_5 met the daily maximum permit limit but was greater than the daily average permit limit. The BOD_5 test showed a toxic response to the effluent. Actual BOD_5 in the effluent may have been higher. It should be noted that the daily average permit limit is based on a monthly average, not a single day's sample as collected during the inspection.

The permit specifies two tiers of effluent limitations based upon production. When production for the previous two consecutive months averages less than 5,000 barrels (bbls) per day, tier one effluent limits apply. Average production was 3,429 bbls per day for May 1994 and 837 bbls per day for June (Burke, 1994). Tier one limits applied at the time of the inspection. Production for 7 AM July 20 to 7 AM 21 1994 was 3,067 bbls.

The tier one effluent limitations for Outfall 001 that appear in Table 3 include stormwater allocations, as specified in the permit, for any effluent flow in excess of 45,000 gallons per day. With a plant flow of 48,710 gpd the 3,710 gpd excess flow is attributed to stormwater flow. The extent of actual stormwater flow at the time of the inspection is unknown.

A comparison of influent ammonia and nitrate-nitrite concentrations indicate that the wastewater treatment facility was achieving substantial nitrification at the time of the

inspection. Ammonia concentrations of approximately 2.8 mg/L in the influent were reduced to approximately 0.04 mg/L in the effluent (Table 2). The reduction of 50 mg/L of alkalinity from the influent to the effluent is consistent with the nitrification of approximately 7 mg/L of NH₃-N. NO₂+NO₃ concentrations increased from approximately 1.3 mg/L in the influent to 16 mg/L in the effluent. The reduction in NH₃-N concentrations is not sufficient to account for the large decrease in alkalinity or the large increase in NO₂ + NO₃-N concentration. The unaccounted for increase in effluent NO₂ + NO₃-N may indicate the likelihood of organic nitrogen in the influent being converted to ammonia in the wastewater treatment processes and then nitrified, or the oxidation of other nitrogenous compounds.

Two composite samplers were used simultaneously to collect a large volume of influent sample (Inf-E). Because the level of influent in the influent box was low during the inspection, one of the influent samplers appeared to contain a large portion of oil, apparently sampling from a layer of oil floating on the surface. The oily sample was discarded. The other composite sample was used for all influent composite analyses. This sample did not appear oily, but it may not have been representative of the combined oil and water components of the influent either. The composite influent sample intake, located in the influent below the floating oil, may have collected a disproportionately low proportion of oil.

In comparisons of parameter concentrations through a wastewater treatment facility, it is usually assumed that the facility is in a steady state. To be in a steady state, a wastewater treatment facility must be in operation for a period of time longer than its detention time. Dry weather detention time through the wastewater treatment facility is 2 to 4.5 days (Burke, 1994). Because the plant started up at 1830 on July 19, just 13 hours before the inspection, the wastewater treatment facility was not in a steady state. To the extent that conditions in the treatment facility did not approximate a steady state, a degree of uncertainty is introduced to determinations of treatment effectiveness and analyses of nitrification.

Treatment Effectiveness

From comparisons of influent samples and effluent samples, treatment efficiencies have been calculated and appear in the following table. TSS and oil and grease percent removals are based on comparisons of grab samples. All other comparisons are based on composite samples. Because percent removals are based on comparisons with the influent and the representativeness of the influent composite sample was uncertain, and also because the wastewater treatment facility was not in a steady state, calculated percent removals should be viewed with caution. The lower than expected calculated percent removals through the IAF appear to indicate not the actual removal efficiency through the IAF, but the unrepresentative weak Inf-E composite sample. The low IAF TSS concentrations can be attributed to settling in the surge pond and equalization tank upstream of the IAF.

Parameter	IAF Effluent (mg/L)	Typical IAF Effluent (mg/L)	Removal Through IAF	Typical Removal Through IAF	Final Effluent (mg/L)	Typical Final Effluent (mg/L)	Final Effluent Removal	Typical Final Effluent Removal
TSS	8;5	25-60	82%	50-85%	42	20-100	41%	20-70%
BOD	126	45-200	10%	20-70%	74**	10-60	47%**	40-95%
COD	290	130-450	15%	10-60%	72	50-300	79%	30-65%
NH3-N	2.82		-1 %		0.044	3-50	98%	0-15%
Oil&Grease	15;11	5-20	70%	70-85%	3	1.6-50	93%	50-90%

Comparison of Concentrations and Removal Efficiencies with Typical Values*

* From EPA (1978)

** The effluent BOD test showed a toxic response. As a result, the actual effluent BOD_5 concentration was likely higher and the percent removal likely lower.

 BOD_5 , COD, and oil and grease concentrations and removal efficiencies through the IAF were within the typical range (EPA, 1978). Final effluent concentrations of TSS and COD were within the typical range. Effluent BOD_5 was somewhat higher than typical, despite sample toxicity in the BOD_5 test, and percent BOD_5 removal through the plant was within the normal range. The effluent oil and grease concentration was low with higher than typical percent removal.

Effluent NH_3 -N was considerably lower than the typical range. This indicates the achievement of nitrification in the facility. The RBC unit following the other treatment units, which was not present in the systems included in the EPA comparison facilities, may be responsible for the nitrification. Nitrification occurs in RBC units or in other biological treatment units when detention times are long and temperature and other conditions are favorable (Metcalf and Eddy, 1991).

Split Sample Comparison

Samples were split to determine the comparability of Ecology and permittee laboratory results and sampling methods (Table 4). Results were in close agreement for Ecology and Sound samples and analyses of COD, TSS, oil and grease, NH₃-N, phenolics, and pH.

Priority Pollutant Scans

Influent

Influent BNAs and metals were included in the Inf-E sample. Because of sampling problems in the poorly mixed influent box, influent BNAs and metals results may be nonrepresentative. Since the Inf-E sample may have included only a portion of the total wastestream, Inf-E BNA and metals results may be only a partial representation of BNAs and metals in the influent. VOAs were sampled downstream of the API, providing for a more representative sample.

Twenty-three priority pollutant and other target volatile organic acid (VOA) compounds were detected in the influent (Table 5). Toluene was found in the highest concentrations (2760 μ g/L - est. and 3170 μ g/L - est.). Fifteen priority pollutant and other target base-neutral acid compounds were detected in the influent, with 4-methylphenol (2800 μ g/L) at the highest concentration.

Of the seven priority pollutant metals detected in the influent samples, zinc was found in the highest concentration (47.1 μ g/L). Total chromium was found in a concentration of 11 μ g/L (est.).

Effluent

Eight priority pollutant and other target VOA compounds were detected in the effluent (Table 5). Of these, naphthalene (12.8 μ g/L - est.; 3.2 μ g/L - est.) was found in the highest concentrations. All VOA compounds found in the effluent were in concentrations lower than State water quality criteria (Ecology, 1992). No BNA compounds were detected in the effluent.

A complete list of parameters analyzed and analytical results is included in Appendix F. A number of tentatively identified compounds (TICs) were found in the influent samples in concentrations up to 991 μ g/L (est.). In the effluent samples the highest concentrations of tentatively identified compounds were the VOAs 1-methyl-naphthalene (60.7 μ g/L - est.) and 2-methylnaphthalene (134 μ g/L - est.). TICs are summarized in Appendix G.

Eight priority pollutant metals were detected in the effluent samples. Copper in the effluent exceeded the acute marine State water quality criterion by a factor of six. Total mercury concentrations were lower than the State acute criterion but higher than the chronic marine criterion by a factor of 76. Zinc was found in slightly higher concentrations than State acute and chronic criteria. Hexavalent chromium was found in concentrations well below State water quality criteria.

A dilution ratio at the mixing zone boundary of approximately 6:1 for copper and approximately 76:1 for mercury would be required to meet water quality standards. [Note: A higher dilution factor may be required if background concentrations in the receiving water of one or more of these pollutants of concern is elevated or if other effluent conditions are more critical than those which were assumed]. A dilution zone study has not been conducted for the Sound outfall (Kmet, 1995). Plans to divert the treated wastewater to the City of Tacoma sewer system are expected to eliminate the outfall, however.

The concentrations for some metals were higher in the Inf-E composite sample than the Eff-E sample. This may reflect an unrepresentative Inf-E sample or the wastewater treatment facility having not arrived at a steady state at the time of the sampling.

Bioassays

The *Daphnia magna* test resulted in an NOEC of 100% and an LC50 of greater than 100% (Table 6). The *Daphnia magna* test was not acceptable in accordance with the WET rule power standard (Ecology, 1993). The power standard requires the test to be able to find a significant difference in results which disagree by 30%. In this case no significant difference in survival was found in a test with a 40% disagreement in survival between control and 100% effluent.

For the bivalve larvae test, the NOEC for survival was 70% effluent. It was not possible to determine an LC50. Abnormality was significant at 35% effluent, with an NOEC of 17.5% effluent. The EC50 was 66.6% effluent.

The fathead minnow test resulted in significant mortality at 100% effluent. The LC50 was estimated at greater than 100%. The NOEC for mortality was 50%. The NOEC for growth was 25%.

The bioassay test for rainbow trout showed no toxic effects.

Sediment

General Chemistry/Physical Characteristics

The sediment sample collected closest to the outfall diffuser (Sed-1) and the background sample (Sed-3) shared a common grain size distribution, with the samples consisting of one half silt and one quarter each of sand and clay (Table 2). The sample collected downcurrent of the diffuser (Sed-2) contained less silt and more sand than the other two samples. TOC, percent solids and percent volatile solids were similar for all three samples.

Priority Pollutant Scans

Seven VOA compounds were found in the two sediment samples near the outfall (Sed-1 and Sed-2 - Table 7). Of these, all were at concentrations of 1.2 μ g/L or less except 2-butanone (MEK) and p-isopropyltoluene. MEK was found at concentrations of 27.2 μ g/Kg-dry (est.) in Sed-1 and 22.7 μ g/Kg-dry in Sed-2 (est.). MEK was found in the Sound influent and effluent. The Sed-2 sample contained 13.0 μ g/Kg-dry p-isopropyltoluene, a compound found in the Sound influent. Seven VOA compounds were found in the background sediment sample (Sed-3), all at concentrations less than 1.0 μ g/Kg-dry.

Although no BNAs were detected in the Sound effluent, sediment results indicate BNA contamination near the outfall. Twenty-five BNA compounds were found in the Sed-1 and Sed-2 samples. Twenty BNA compounds were found in Sed-3, the background sediment sample. BNA concentrations in Sed-1 and Sed-2 were generally higher than the BNA concentrations in Sed-3 by a factor of two.

Of the BNAs detected in the sediment samples, bis(2-ethylhexyl)phthalate exceeded the Marine Sediment Quality Standards chemical criterion in Sed-1 and was 99% of the maximum chemical criterion. Hexachlorobenzene in Sed-2 exceeded the maximum chemical criterion by 58%.

While metals were found in elevated concentrations in the effluent, metals in sediments near the outfall were found in similar concentrations to those at the background site. This reflects the contaminated nature of the background comparison site. Ten metals were detected in each of the three sediment samples. Metals concentrations were similar in all three sediment samples (Table 7). All metals found were in concentrations lower than applicable Marine Sediment Quality Standards.

A complete list of parameters analyzed and analytical results is included in Appendix F.

A number of tentatively identified compounds were found in the sediment samples in concentrations up to 22,700 μ g/Kg-dry. VOA TICs were found in the Sed-1 sample in concentrations generally three orders of magnitude higher than those in the Sed-2 sample. Only one VOA TIC was found in the Sed-3 background sample. BNA TICs were in closer agreement between all three sediment samples than were the VOA TICs. Sediment TICs are summarized in Appendix G.

Bioassays

For the echinoderm embryo sediment bioassay test, none of the combined endpoint data showed a statistically significant difference relative to the West Beach control (Table 8).

Marine amphipod sediment test survival was 98% in the control and ranged from 69% in Sed-3 to 81% in Sed-1. Mortality in all three sediment samples was statistically different than the control. The mean mortality for Sed-1 and Sed-2, the two sediment samples near the outfall, did not exceed the 25% mortality biological effects criterion for amphipod tests (Ecology, 1991).

References

- Burke, R., 1994. Personal Communication, June 1, 1994. Sound Refining Company, Tacoma, Washington.
- Ecology, 1991. Marine Sediment Quality Standards, in <u>Sediment Management Standards</u>. Chapter 173-204 320(3)(a) WAC.
- Ecology, 1992. Water quality criteria, in <u>Water Quality Standards for Surface Waters of</u> <u>the State of Washington</u>. Chapter 173-201A-040 WAC.

Ecology, 1993. Whole Effluent Toxicity Testing and Limits. Chapter 173-205-070(4).

- Ecology, 1994. <u>Laboratory User's Manual (Fourth Edition</u>). Manchester Environmental Laboratory, Manchester, Washington.
- EPA, 1978. <u>Washington State Refineries: Petroleum, Petroleum Derivatives, and</u> <u>Wastewater Effluent Characteristics</u>. EPA-600/7-78-040.
- Kmet, N., 1995. Report review comment, June 20, 1995. Washington State Department of Ecology, Olympia, Washington.
- Metcalf and Eddy, 1991. <u>Wastewater Engineering: Collection, Treatment, & Disposal</u>. 3rd Edition, New York, NY.

Figure 1 – Location Map – Sound Refining, July 1994

Figure based on schematic supplied by Sound Refining Company. IAF Aeration Pond ЧЪ Ш Equalization T-24 Tank Sound Refining Co., Tacoma Wastewater Treatment Plant Surge Pond CPS Inf-1,2 Figure 2 - Flow Schematic - Sound Refining, July 1994. RBC Separator Influent API Clarifier Inf-E ц Ш Stormwater Outfall 003 Ēff ШĦ Hay Bale E)- Ecology sample station Filter S) - Sound sample station RBC - Rotating Biological 6 CPS - Corrugated Plate Effluent Separator Contactor IAF - Induced Air Flotation 003 Eff - Effluent Inf - Influent

Table 1 - Sampling Station Descriptions - Sound Refining, 1994.

Influent (Inf-E)

Process water influent. Influent was sampled from the influent box just upstream of the API separator. Because the wastewater flow in the box was only approximately three inches in depth, the compositer strainer was placed on the bottom of the influent box on its side. Hanger wire was inserted through the stainless steel strainer to keep the strainer stationary.

Influent (Inf-1, Inf-2)

Grab influent samples were taken at the downstream end of the API in a well mixed area.

IAF

Effluent from the IAF. The IAF effluent was sampled from a pipe as the effluent entered the aeration pond. A stainless steel strainer was placed into the open end of the IAF effluent pipe.

Effluent (Eff-E, Eff-S)

Effluent from Outfall 001. Sound and Ecology's compositer intakes were located in the effluent box, in a well mixed location just upstream of the weir, downstream of the hay bale filter in the box. Effluent depth in the box was approximately 18 inches. The compositer strainers were within three inches of the wastewater surface.

Stormwater Outfall 003

Stormwater outfall 003 was the only stormwater outfall discharging at the time of the inspection. Sound reports that outfall 003 discharges continually as a result of groundwater flow. Grab-composite samples were collected by intercepting the discharge in air. The samples were collected with a beaker cleaned for priority pollutant sampling. The beaker was attached to a pole.

Sed-1 (47°16'33"N 122°23'05"W)

Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.

Sed-2 (47°16'35"N 122°23'10"W)

Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet.

Sed-3 (47°16'28"N 122°22'45W)

Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet.

	Eff-E Eff-S Eff-G 003-1 Eff-Dupe 0 comp comp grab grab-comp comp 0 7/20-21 7/20 7/20 7/20-21 1 7/20-21 7/20 7/20-21 7/20-21 0 0730-0730 0730-0730 0845 1050 0730-0730 3 298114 298115 298116 298118 298120	8 532 535 478 193 533 56.4 67.0 53.7 31.9 30.7E 29.3E	ω <i>τ</i> -	42 36 20 1U 14 12 20 1U 74* 59*	72 76 76 20 20.2 18.7 2 20.2 18.7 0.0 0.044 0.016 0.0 15.7 16.0 10 0.864 0.932 10 0.1	1000	74 140 22.1 18.2 74 140 22.1 18.2 8.7 7.6 6.8 . 560 552 493 193	grab - grab sample tected grab - grab sample d result. G - grab sample for bioassay testing se of titratable ** - hexavalent chromium samples xic taken at 1614 on 7/12
	Eff-1 Eff-2 grab grab 7/20 7/20 7/20 0900 1300**	483 518 2U 2U			86 81 17.7 18.2 3 3	10U 10U 2U	22.4 24.2 7.3 7.6 493 535 <0.1 <0.1	The analyte was not detected at or above the reported result. estimated result because of difficulty in reaching a titratable endpoint. BOD tests showed a toxic
	IAF-E E comp (7/20-21 (0730-0730 0 298111 298	413 95.1 24.7	321 321		290 66.7 2.82 0.491 0.336	00	8 4 9 8 4 9 9 3 4 9	 U - The analy at or abov at or abov at or abov at or abov difficulty endpoint, * = BOD test
ng, 1994.	IAF-2 grab 7/20 1330 298110	429 430		a S).5 68.7 15 11		35.4 36.3 8.2 7.8 444 451	on effluent 1003
Sound Refining, 1994	Inf-E IAF-1 comp grab 7/20-21 7/20 30-0730 0955 298107 298109	391 41 106 31.8E	364 275	71 60 140	340 69.6 70 2.79 1.33 0.333 1		7.68 8.8 4.27 4.27 4.27	influent induced air flotation effluent 001 effluent duplicate sample stormwater outfall 003 sediment sample Ecology sample
1	Inf-2 grab 7/20 1355** 298106	421 26		3	84.1 24	- F200.0	37.4 7.0 464	Dupe Inf Sed E
nistry R∉	Inf-1 grab 7/20 1015 298105	395 33		51	80.4 67	0.005	36.8 7.3 429 3	
Table 2 - General Chemistry Results	Parameter Location: Type: Date: Time: Lab Log #:	GENERAL CHEMISTRY Conductivity (urthos/cm) Atalinity (mg/L CaCO3) Hatdness (mg/L CaCO3) Sulfide (mg/L) Grain Size (%)	Gravel (>2.0 mm) Sand (2 0 - 0.063 mm) Silt (0.063-0.004 mm) Clay (<0.004 mm) TS (mg/L) TNS (mg/L)	TSS (mg/L) TNVSS (mg/L) % Solids % Volattle Solids BOD5 (mg/L)	COD (mg/L) COD (water mg/L) TOC (water mg/L) NH3-N (mg/L) NO2+NO3-N (mg/L) NO2+NO3-N (mg/L) Oil and Grease	F-Coliform MF (#/100mL) F-Coliform MPN (#/100mL) Cyanide total (ug/L) Cyanide (wk & dis ug/L) ORGANICS	Prenolucs Totalywarer-ug/L) FIELD OBSERVATIONS Temperature (C) FIERP-cooled (C) PH Conductivity (umhos/cm) Sulfide (mg/L) Sulfide (mg/L)	

Table 2 - (cont'd) - Sound Refining, 1994	d Refinii	ng, 1994	.	
Parameter Location: Type: Date: Time: Lab Log #:	Sed-1 grab 8/22 1200 348000	Sed-2 grab 8/22 1225 348001	Sed-3 grab 8/22 1255 348002	· · · ·
GENERAL CHEMISTRY Conductivity (umhos/cm)				
Hardness (mgl. CaCO3) Sulfide (mgl.) Grain Size (%)				
Gravel (>2.0 mm) Sand (2.0 – 0.063 mm)	0 93	4 36	1 25	
Silt (0.063-0.004 mm) Clay (<0.004 mm)	ខ្លួស្ត	38	82	
1 S (mg/L) TNVS (mg/L) TSS (mg/L)				
I NVSS (mg/L) % Solids	44.3	42.8	38.5	
% Volatile Solids	8.3	82	7.8	
COD (mg/L)				
TOC (water mg/L) TOC (soit/sed mg/Kg)	35,000	32,000	29,000	
NH3-N (mg/L) NO2+NO3-N (mg/L)				
Total-P (mg/L) Oil and Grease (mg/L)				
F-Coliform MF (#/100mL)				
Cyanide total (ug/L) Cyanide (wk & dis ug/L)				
ORGANICS Phenolics Total(water-ug/L) FIELD OBSERVATIONS				
Temperature (C) Temp-cooled (C)				
ConductWity (umhos/cm) Chlorine (mg/L) Sulfide (mg/L)			grab -	grab sample
			Sed-1 -	Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet. Sediment semile collected 100 verds downcurrent (northwest) at the and of
·	·			the Sound pier at a depth of 23 feet. Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet.

Page 15

Outfall 001		•	Fooleer
Parameter	NPDES Limit	s (lbs/day)*	Ecology Inspection Results (Ibs/day)
	Daily Avg. * *	Daily Max. * *	
BOD5	26.8	50.5	30.1***
COD	136	265	29.2
TSS	22.7	35.0	17.1
Oil and Grease	8.2 10 mg/L ****	15.5	1.2 3 mg/L
Phenolic Compounds	0.065	0.261	<0.004
NH3-N	2.8	6.1	0.018
Sulfide	0.15	0.3	<0.8; <0.04@
Total Chromium	0.077	0.219	0.0028 (est.)
Hexavalent Chromium	0.006	0.01	0.0013 (est.)
pH (std. units)	6.	0 to 9.0 @@	7.3-7.6

Table 3 – NPDES Permit Limits and Inspection Results – Sound Refining, 1994.

- * for Tier One production of less than 5,000 bbls per day average for two consecutive months. Stormwater allocation for 3,710 gpd above 45,000 gpd dry weather flow has been added in. Total flow measured by Sound 48,710 gpd for the period 7/20-21 7:30 AM - 7:30 AM.
- ** Daily average is the average over a calendar month. Daily maximum is the highest recorded daily value for the same monthly period.
- *** The BOD5 test showed a toxic response to the effluent.
- *** at no time exceeding 15 mg/L
- @ laboratory test result; field test result
- @@ Excursions between 4.0 and 10.0 shall not be considered violations provided no single exursion exceeds 60 minutes in length and total excursions not exceed 7 hours and 26 minutes per month.

	Location: Type: Date: Time: Lab Log #:	Eff-1 grab 7/20 0900 298112	Eff-2 grab 7/20 1300 298113	Eff-E comp 7/20-21 0730-0730 298114	Eff-S1 grab 7/20 0730	Eff-S comp 7/20-21 0730-0730 298115
	Sampled by:	Ecology	Ecology	Ecology	Sound	Sound
Parameter:	Analysis by:					:
COD (mg/L)	Ecology Sound			72 87.8		76 70.9
TSS (mg/L)	Ecology Sound			42 48.0		36 26.0
Oil and Grease (mg/L)	Ecology Sound	3	3		1.1	·
NH3-N (mg/L)	Ecology Sound			0.044 <0.1		0.016 <0.1
Phenolics Total (ug/L)	Ecology Sound			<10.0 5.7		<10.0
рН	Ecology Sound	7.3	7.6		7.55	
	E - S - Eff - grab - comp -	Ecology sample Sound sample effluent sample grab sample composite sample				

Table 4 – Split Sample Results Comparison – Sound Refining, 1994.

	Table 5 - VOA, BNA, Metals Det	Detected	in Influen	it and Efflu	ient - Sour	ected in Influent and Effluent - Sound Refining, 1994.		
	Location: Type:	Inf-1 grab	Inf-2 grab	Eff-1 grab	Eff-2 grab		State Water Quality Criteria Summary	Criteria Summary
	Labe: Lab Log#:	1120 1015 298105	11256 1355@ 298106	0900 0900 298112	1120 1300@ 298113		Acute Marine	Chronic Marine
(Groun) ¹	VOA Compounds	(ng/L)	(ng/L)	(ng/L)	(ng/L)		(ng/L)	(ng/L)
त्व ल	Acetone Chloroform Barreno	1870 EJ 10.5 J 822	2400 EJ 11.0 J	-			12.000 *(a) 5.100 *	8,400 *(a) 700 *
ს თ	1,1,1-Trichloroethane Chloromathane	163	225 8.4. J		*		31,200 * 12,000 *	R 400 *(a)
đ	1,1-Dichloroethane	25.8	76.4					
	2-Butanone (MEK) , Trichloroethene	1680 E	2300 E	0.86 J	f 69:0		2.000 *	
c	Naphthalene	487	481	12.8 J	3.2 J		2,350 *	
	o–Xylene 1.2.4–Trimethvlbenzene	661 634	720 688		L 76.0			
	lsopropylbenzene	3	60.5					
	p-isopropyltoluene	18.6 J 407	18.7 J X76	l co n	- 69 0		* UER	
	Propylbenzene	74.5	-14 28.6		2 3		}	
	Butylbenzene	14.8 J	16.8 J					
	1,2-Dichloroethane		42.8				113,000 *	
	4-Methyl-2-Pentanone (MIBK)	87.6	83.0					
	1,3,5-Trimethylbenzene			0.40 J	0.28 J			
	Totuene Tetrachioroethene	2760 E	3170 E	0.49 J	0.18 J		6,300 * 10,200 *	5,000 ° 450 *
	sec-Butylbenzene	19.0 J	21.0 J					
٩	cis-1,2-Dichloroethene						224,000 *(b)	
q	trans-1,2-Dichloroethene						224,000 *(b)	
	2-Haxanone Total Xylenes måp-Xylene	156 2000 1340	172 2210 1490	1.8 J.81 J.81	1.4 J 1.4 J L			
	Inf - influent Eff - effluent				S	Sed-1 - Sediment sample collec	Sediment sample collected 25 feet downcurrent (northwest) from the end	est) from the end
•	 E The concentration of the associated value exceeds the known calibration range. J The analyte was positively identified. The associated numerical value is an estimate. 	i value exce d. The asso	eds the know ciated numer	n calibration ra ical value is an		or the outrain pipe at a depth of 2/ reer. Sed-2 - Sediment sample collected 100 yards. the Sound pier at a depth of 23 feet. Sed-3 - Background station. Sediment sample (southeast) of the Sound outfall pipe at	or the outlait pipe at a depth of 2/ reet. Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet. Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet.	hwest) at the end of e upcurrent t.

	Table 5 - (cont'd) - Sound Refini	ning, 1994.				
	Location: Type: Date: Time:	Inf-E comp 7/20-21 0730-0730	Eff-E comp 7/20-21 0730-0730	Eff-Dupe comp 7/20-21 0730-0730	State Water Qualit Acute	State Water Quality Criteria Summary Acute Chronic
	Lab Log#:	298107	298114	298120	Marine	Marine
(Group) ¹	BNA Compounds	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)
	Benzo(a)Pyrene Dibenzo(a,h)Anthracene Benzo(a)Anthracene		(none detected) ((none detected)	(n) 300 *(n) 300 *(n) (n)	
c	lsophorone Acenaphthene	20.5 6.2 J			12,900 * 970 *	710 *
c	Phenanthrene	21.4		· ·		
- c	Butytbenzy/ Phthalate Fluorene Casharvia	102 J 102 J			2.944 *() 300 *(n)	34 *()
c	Vaphthalene	388			2,350 *	
	2-Methylnaphthalene	234				
	2-Methylphenol	1120				
	2,4-Dimethylphenol 4-Methylphenol Phanol	684 2800 1180			* 008 5	
	Bis(2-Ethylhexyl)Phthalate				2.944 *(i)	3.4
	Di-n-Octyl Phthalate					3.4
ß	Hexachlorobenzene					129 "(g)
	Anthracene Pyrene Dibenzoturan	201 21 C 22 C			300 300 •(I)	
c 0	Benzo(g,h,i)Perylene Indeno(1 2 3_od)Durano				300 *(n) 300 *(n)	
: c	Benzo(b)Fluoranthene					
	Fluoranthene Benzo(k)Fluoranthene Assonabilitions				40 * 300 *(n) 300 *(n)	†
: c	Chrysene	3.5 J			88 - E	
	3B-Coprostanol Retene					
			Sed-1-		5 feet downcurrent (north	west) from the end
	Err - emuent Dupe - duplicate		Sed-2	1	00 yards downcurrent (no	orthwest) at the end of
	J - The analyte was positively identified. The associated numerical value is an estimate	The associated numerical valu	Je is an estimate. Sed−3	the sound plet at a deput of 23 feet. - Background station. Sediment sample collected 1/4 mile upcurrent of outpeasit) of the Sound outtail pipe at a depth of 26 feet.	23 reet. Int sample collected 1/4 m all pipe at a depth of 26 fe	nile upcurrent eet.

Location: Inf-2 Inf-E Type: grab comp Date: 7/20 7/20-21 Time: 1356@ 7720-730 Lab Log#: 298105 298107 (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 0.12 overable 11 P 0.12 overable 11 P 110 ant (total) REJ REJ	2 873 873	Eff-E comp	Eff-Dupe comp	Eff-S comp	003-1			
Time: 1356@ 0780-0730 Lab Log#: 298106 298107 (ug/L) (ug/L) (ug/L) ent (ug/L) (ug/L) (ug/L) 0.12 overable 11 P 0.12 ant (total) REJ REJ				7/20-21	grab 7/20	State Water Qualit	State Water Quality Criteria Summary	
(ug/L) (u		. .		0730-0730 298115	298118	Acute Marine	Chronic Marine	
ent overable overable nt (total) REJ P REJ 11	(ng/L)	(ng/L)	(1/bn)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	
0.12 overable 11 P 11 P HEJ 11		0 0	8	6.7		2.319 *	13 * 36	
overable 11 P 11 P REJ 22		0.70 P	0.46 P	0.52 P		37.2	8.0	
23 25	4 2 P 4 2 P	6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	72 P 64 P	53 P 54 P		1,100	8	
3.2	L	17 P	18 P	13 P	48 P	10,300		
	_	1.9 P				151	5.8	
Mercury (totat) 3.42 N		1.89 N	N 16.1	1.26 N		2.1	0.025	
Nickel Selenium Silver		a 9 7	6 80 0	0 80 D		300 1.	79 71	
47.1		1			4 P	85	11	•
INDTE: SOME INDIVIDUAL COMPOUND CRITERIA O REFER TO APPROPRIATE EPA DOCUMENT ON AMBI	OR LOELS MA BIENT WATER (r Not AGI QUALITY (R LOELS MAY NOT AGREE WITH GROUP CRITERIA OR L ENT WATER QUALITY CRITERIA FOR FULL DISCUSSION	ROUP CRITE	OETS.			
The analyte was not detected at or above the reported result. The analyte was not detected at or above the reported estimated result. The analyte was detected above the instrument detection limit but below the established minimum quantitation limit. The data are unusehle for all numbers.	oorted result. oorted estimated detection limit b imits.	l result. ut below th	ne established	minimum qu		ifluent exceeds acute or	 effluent exceeds acute or chronic water quality criteria 	riteria
nexavalent chromium sampled at 1415 on 7/20					• •	thanes	-	
insufficient data to develop criteria. Value present	inted is the LOE	L - Lowest	ied is the LOEL - Lowest Observed Effect Level	fect Level.	b Total Dichloroethenes g Total Chlorinated Benz	Dichloroethenes Chlorinated Benzenes (excluding Dichlorobenzenes)	ng Dichlorobenzenes)	
Metals are total recoverable unless otherwise noted.	ted. Sediment metals are total.	netais are	total.		Total	Polynuclear Aromatic Hydrocarbons	bons	
Inf – influent sample Eff – effluent sample Dupe – duplicate sample 003 – stormwater outfall 003				Sed-1 - Sed-2 - Sed-3 -	Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet. Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet. Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet.	1 25 feet downcurrent (n 1 of 27 feet. 1 100 yards downcurren 2 23 feet. ment sample collected 1 urfall ploe at a denth of	orthwest) from the end t (northwest) at the end 14 mile upcurrent 26 feet.	ಕ

Table 6 – Effluent Bioassay Results – Sound, 1994.

<u>Daphnia m</u>	agna - 48-1 <i>(Daphnia n</i> Sample No	• /		,
Sample			Percent	
Concentra	tion	# Tested *	Survival	
6.25 12.5 25 50	% Effluent % Effluent % Effluent % Effluent % Effluent % Effluent	20 20 20 20 20 20 20	100 100 95 90 80 60	

NOEC = 100% effluent LC50 > 100% effluent

* four replicates per concentration, five organisms per replicate

Bivalve Larvae - 48 hour survival and development test Pacific oyster *(Crassostrea gigas)* Sample No. 298116

Sample Conc.*	% Survival	% Abnormal
Brine Control	76.3	4.2
Seawater Control	80	-1.7
4.38 % Effluent	72	0.1
8.75 % Effluent	72	2.8
17.5 % Effluent	60	4.7
35 % Effluent	44.0	10.9
70 % Effluent	76	52.5

Chronic	Acute
NOEC = 17.5 % effluent	LC50 = a
EC50 = 66.6 % effluent	NOEC = 70 % effluent

* 3 replicates per test concentration, average initial count of 113 embryos per replicate.

a Not possible to estimate

Fathead Minnow larval – 7 day survival and reproduction test (Pimephales promelas)

Sample No. 298116

Sample Conc.	# Tested*	Survival	Weight (mg)	
Control	40	92.5	0.511	
6.25 % Effluent	40	82.5	0.478	
12.5 % Effluent	40	92.5	0.463	
25 % Effluent	40	87.5	0.475	
50 % Effluent	40	87.5	0.389	
100 % Effluent	40	70.0	0.416	

NOEC for Weight = 25 % effluent NOEC for Survival = 50 % effluent LC50 > 100 % effluent

* four replicates per concentration, ten organisms per replicate

Rainbow Trout - 96 hour survival test (Oncorhynchus mykiss)

Sample No. 298116

Sample Conc.	Number Tested*	Percent Survival	
Control	30	100	
100 % Effluent	30	100	

NOEC for Survival = 100 % effluent LC50 > 100 % effluent

* three replicates per concentration, ten organisms per replicate

NOEC -	no observable effects concentration
LOEC -	lowest observable effects concentration
LC50 -	lethal concentration for 50% of the organisms
1	effect concentration for 50% of the organisms

Cation: Sed-1 Sed-2 Sed-2 Sed-2 Sed-2 Sed-1 Sed-2 Sed-2 Sed-2 Sed-3 Sed-2 Sed-3 Sed-3 Sed-3 Sed-3 Sed-2 Sed-3 <	Sed-1			Maille Coulinein Quairy Carinan	a summy output
8/22 13.0 0.76 0.76 0.28 <th< th=""><th>grab</th><th>Sed-2 grab</th><th>Sed-3 grab</th><th>Chemical Criteria</th><th>Max. Chemical Criteria</th></th<>	grab	Sed-2 grab	Sed-3 grab	Chemical Criteria	Max. Chemical Criteria
ug/Kg-dry ug/Kg-dry ug/Kg-dry ug/Kg-dry 27.2 2.2.7 J 0.47 27.2 2.2.7 J 0.47 27.2 1.3.0 0.36 27.2 1.2 J 0.36 13.0 1.2 J 0.28 141 J 1.2 J 0.28 15. J 1.2 J 0.54 0.20 J 7.3 0.78 0.20 J 7.3 0.78 15. J 1.2 J 0.54 0.20 J 7.3 0.78 15.0 J 1.12 J 0.54 708 J 7.3 0.78 710 J 1.48 50.1 130 J 1.48 50.1 130 J 1.48 50.1 144 J 116 J 114 J 1.48 50.1 130 J 58.0 J 144 J 1.16 J 114 J 1.16 J 114 J J 58.0 114 J J 58.0	8/22 1200 348000	8/22 1225 348001	8/22 1255 308132	TOC Basis	TOC Basis
2772 J 22.7 J 0.76 2772 J 22.7 J 0.47 13.0 13.0 0.36 141 J 0.50 J 15 J 1.2 J 0.36 15 J 1.2 J 0.36 15.1 J 1.2 J 0.36 0.20 J 7.3 0.78 0.20 J 1.2 J 0.54 0.20 J 1.2 J 0.28 150 J 1.2 J 0.28 150 J 1.2 J 0.54 0.20 J 1.2 J 0.54 0.20 J 1.2 J 0.54 0.20 J 1.2 J 0.54 130 J 1.43 50.1 50.1 144 J J J 50.1 130 J J J 50.1 144 J J J<	mg/Kg-dry	mg/Kg-dry	mg/Kg-dry	mg/Kg	mg/Kg
115 J 15 J 12 J 15 J 15 J 12 J 15 J 12 J 0200 J 12 J 0200 J 12 J 1337 J 12 J 1337 J 12 J 1338 J 144 J 148 J 148 J 148 J 144 J 148 J 144 J 158.0 J 2710 2150 J 144 J 288. J 2710 2150 J 118 J 138 459 J 288. J 2710 2150 J 2710 21					
1.2 J 1.5 J 1.2 J 1.5 J 1.2 J 0.20 J 1.2 J 0.20 J 1.2 J 0.30 J 1.2 J 1.66 J 1.66 J 1.14 J 1.45 J 1.14 J 1.46 J 1.14 J 1.46 J 1.14 J 1.46 J 1.16 J 1.17 J 1.16 J 1.17 J 1.16 J 1.1					
Zene oroethene hloroethene nds nds nds re accense re accense re accense re accense re re accense re re re re re re re re re r					
hloroethene 0.20 J nds J 7.3 nds 0.88 J 7.3 nds 758 566 withracene 150 J 102 J racene 708 566 hthalate 108 J 148 hthalate 108 J 148 thalene 108 J 148 001 J 58.0 J xyl)Phthalate 2710 thalate 144 J 116 J nthalate 2710 thalate 144 J 116 J withalate 2710 thalate 144 J 116 J colore 458 377 thalate 118 J 386 colPyrene 458 J 386 colPyrene 476 336					
nds te 708 566 tracens 708 566 tracens 737 0675 e 736 965 hthalate 109 J 148 o 738 965 hthalate 109 J 148 thalene 109 J 148 thalene 114 J 176 thalate 2710 90.1 J 58.0 J thalate 2710 116 J thalate 2710 116 J thalate 2710 2150 thalate 459 J 386 c0)Pyrene 459 J 386					
e 150 J 102 J 737 515 J 102 J 737 575 738 J 148 738 J 148 738 J 148 730 J 148 90.1 J 58.0 J 144 J 116 J 144 J 58.0 J 146 2710 116 J 146 2710 2150 J 118 J 138 456 J 364					
736 965 166 965 130 J 176 213 206 110 J 98.8 J 90.1 J 58.0 J 144 J 116 J 435 377 1940 2150 1940 2150 118 J 138 459 J 138	202 428 J 211 J	17.7 3.19 J 21.1 4.62	2.78 J 12.8 1.73 J	8 <u>7 7</u> 9	210 33 270 57
168 130 J 130 J 213 288 J 213 288 J 210 J 90.1 J 58.0 J 144 J 144 J 145 377 118 J 138 118 J 138 138 118 J 138 138 118 J 138 138 118 J 138 138 138 138 138 138 138 138 138 138	21.0	30.2	10.4	100	480
130 J 176 218 206 710 J 98.8 J 90.1 J 58.0 J 58.0 J 144 J 116 J 435 377 118 J 138 118 J 138 459 J 386 459 J 386	4.74			4.9	64
llate 2710 144 J 435 377 1940 2150 118 J 138 459 J 364 e 476 386	3.77 J 8.23 3.14 J 2.57 J	550 6.44 3.09 J 1.81 J	2.07 J 3.83 J 2.09 J 2.94 J	23 88 870 870	79 170 64 670
144 J 116 J 435 377 1940 2150 118 J 138 459 J 364 476 386	77.4	· ·		47	78
116 J 435 \$77 1940 2150 118 J 138 459 J 364 e 476 386	4.11 J	1		58	4500
118 J 138 459 J 364 e 476 386	12.4 55.4	3.83 J 11.8 67.2	- 6.28 31.6	0.38 220 1000	2.3 1200 1400
e 476 386	3.37 J 13.1 J	4.31 11.4	2.38 J 12.3	15 31	58 78
	13.6	12.1	11.7	34	88
15/0 1280 1700 2230	41.9 48.6	40.3 69.7	33.8 27.6	160	1200
Benzo(k)Fluoranthene 484 440 345 Acenaphthvlene 132 J 108 J 54,3 J	13.8 3.77 J	13.8 3.38 J	11.9 1.87 J	99	99
1580 1410	45.1	44.1	28.1	110	460
3B-Coprostanol 2340 J 2280 J 2450 J	G6.9 J	71.3 J	84.5 J		

1

Table 7 – (cont'd) – Sound Refining, 1994.

Marine Sediment Quality Standards

Sed-2 Sed-3 grab grab 8/22 8/22 1/2/55		P 29.9 20.5 P 0.472 N 0.541 N 21.1 25.6 1.3 119 N 58.4 N 67.3 N 0.102 0.144 15.2 20.8 P 0.42P 0.57 P
Sed-1 grab 8/22 1200	бш	304 0.25 0.25 26.2 26.2 26.2 26.2 26.7 26.7 26.7 26.7

** Sediment metals are total metals.

J The analyte was positively identified. The associated numerical result is an estimate.
 P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
 N The spike sample recovery is not within control limits.

- criterion exceeded

Sed-1 - Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.

Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet. Sed-2 -

Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet. Sed-3 -

Table 8 – Sediment Bioassay Results – Sound Refining, 1994.

Echinoderm Embryo Test

Sample Seawate West Be	(Dendraster excentricus) Sample Sample No. % abnorn Seawater Control 12.9 West Beach Control 22.6	<i>xcentricus)</i> % abnormal 12.9 22.6	% abnormal/ dead* 24.1 46.1	Percent mortality 0.0 21.8
Sed-1	348000	28.7	58.6	33.8
Sed-2	348001	17.0	61.2	46.2
Sed-3	348002	20.2	63.2	47.0

* based on an average initial count of 213 embryos per 10 ml subsample.

Marine Amphipod Sediment Test

(Rhepoxinius abronius)

Sample Sample No. West Beach Control Sed-1 348001 Sed-3 348002	Sample I ach Contro 348000 348001	Sediment emergence events lo. (No./test chamber) I 1.2 1.4 2.2 3.0	10-Day mortality (No./test chamber) 0.4 3.8 4.4 6.2	Mortality 98% 81% 59%	Failure to rebury (No./test chamb 0.0 0.2 0.6 0.2
---	--	--	--	--------------------------------	---

5 replicates (test chambers) of 20 organisms each per replicate.

Sed-1 - Sediment sample collected approximately 25' downcurrent (northwest) of the outfall.
 Sed-2 - Sediment sample collected approximately 100 yards downcurrent (northwest) of the outfall.
 Sed-3 - Sediment sample collected approximately 1/4 mile upcurrent (southeast) of the outfall.

This page is purposely blank for duplex printing
Appendices

This page is purposely blank for duplex printing

Appendix A - Sampling Procedures - Sound Refining, 1994.

All Ecology Isco samplers were set up to collect equal volumes of sample every 30 minutes for 24 hours. All samplers were set to collect sample from 7:30 AM to 7:30 AM to coincide with the refinery sampler collection time. All composite samplers were iced to keep samples cool. Sampler configurations and locations are summarized in Figure 2 and Table 1.

The Sound final effluent sampler was set up to collect equal volumes of sample with one sample per 10 gallons of flow. The sampler operated from 7:30 AM to 7:30 AM.

Ecology employed a 0.1 m^2 van Veen grab sampler to collect sediments at three stations: one at a background site approximately 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet; one 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet; and one 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.

At each sediment station, the top two centimeters of sample from successive grab samples were collected. A VOA bottle was filled from one grab, while the remainder of the sample was placed in a three gallon stainless steel bucket, homogenized and put in appropriate containers for analysis.

Parameter Location: Type: Date: Time:	GENERAL CHEMISTRY Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Sulfide (mg/L) Garael (>2.0 mm) Gravel (>2.0 mm)	Sand (2:0 - 0.063 mm) Sitt (0.063-0.004 mm) Clay (<0.004 mm) TS (m9/L)	TINYS (mg/L) TSS (mg/L) % Solids % Volatie Solids & DODatie Solids	COD (mg/L) TOC (water mg/L) TOC (soil/sed mg/Kg) NH3-N (mg/L) NO2+NO3-N (mg/L)	Total-P (mg/L) Oil and Grease (mg/L) F-Coliform MF (#1100mL) C-Coliform MPN (#1100mL) Cyanide total (ug/L) Cyanide (wit & dis ug/L)	ORGANICS Phenolics Total(water-ug/L) FIELD OBSERVATIONS Temperature (C)	pH Conductivity (umhos/cm) Chlorine (mg/L) Sulfide (mg/L)	
					_	Ŷ		
Inf-1 grab 7/20 1015	298105 EE EE		ш	ш		ш	тт п	•
Inf2 grab 7/20 1355**	298108 E		ш	ш	ш шш	ш	шт п	Inf - IAF - Eff -
280	2088107 107 107	ωι		<u>и</u> ш ти		ш ц	шш	Inf - influent IAF - induced air flotation effluent EFF - 001 effluent
IAF-1 grab 7/20 0955	298109 E		ш	ш	ш	W	шш	r flotation ef
IAF-2 grab 7/20 1330	298110 E		ш	ш	ш	ш ,	щШ	fluent
IAF-E comp 7/20-21 0730-0730		ωı	и тара т Грани и	лат <u>т</u> ай	ш	u	шш	шо* * 111
Eff-1 grab 7/20 0900	288112 28812		ш	шш	С Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	ш	шт п	Ecology analysis Sound analysis Sound grab sam
Eff-2 grab 7/20 1300**	298113 E E E		ш	шш	ш т п т ш т	ш	т т т	Ilysis /sis sample take
Eff-E comp 7/20-21 0730-0730	298114 EEEE	μı	ពលីតា ក	ាញកា ស្លីអ	ш	8 "	шш	Ecology analysis Sound analysis Sound analysis Sound arb sample taken 0730 on 7/20
Eff-S comp 7/20-21 0730-0730	2022 2021 2022 2022 2022 2022 2022 2022	ш	பலின் ந	100 m 100 m	W	ш н	ш	Ecology analysis Sound analysis Sound analysis G = gr G = gr Cound grab sample taken 0730 on 7/20
Eff-G grab 7/20 0845	99 268 268 268 268 268 268 268 268 268 268		ш			U.	шш	grab sample composite sample grab sample for bid
003-1 grab-comp 7/20 1050	208118 2081		ш	ш	ш	ш	шш	grab sample composite sample grab sample for bloassay testing
Eff-Dupe comp 7/20-21 0730-0730					Ψ			r testing

Appendix B - Sampling Schedule - Sound Refining, 1994.

Appendix B - (cont'd) - Sound Refining, 1994. Parameter Location: Sed-1 Sed-2 Sed-3 Parameter Location: Sed-1 Sed-3 Sed-3 Sed-3 Parameter Lab Log #: 348000 348001 348001 State:	· · · ·						Sediment sample collected 25 feet downcurrent (northwest) from the end of the outtall pipe at a depth of 27 feet. Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet. Background station. Sediment sample collected 1/4 mile upcurrent
B - (cont'd) - Sound Refining, Location: Sod-1 Sod-2 Time: Use area Time: area Lab Log #: 348000 348001 Lab Lab Lab Lab Lab Lab Lab Lab Lab Lab	1994.	Sed-3 grab 8/22 348002		mm	ш		Sed-1 - Sed-2 - Sed-3 -
B - (cont'd) - Sound Re Location: Sed-1 Type: Brab Date: 1200 Lab. Log #: 348000 tEMISTRY L Caccosh L. Caccosh	efining,	Sed-2 grab 8/22 1225 348001	шттт	шш	W		
B - (cont'd) - { Location: Type: Date: Type: Date: Time: LeakISTRY Leak	sound Re	Sed-1 grab 8/22 1200 348000		WW .	ш		
Appendix Parameter Parameter Parameter Conductivity (Matalinity (mg Matalinity (mg Matalinity (mg Matality (Sint (2.0 ms Gravel (>2.0 mg Sint (2.0 ms Gravel (>2.0 mg/L) TNVS (mg/L) TNVS (mg/L) TOCO (mg/L) TOC	< B - (cont'd) - S		GENERAL CHEMISTRY Conductivity (urthosecom) Attactivity (urthosecom) Attactivity (urthosecom) Bardo (mg/L) Grado (mg/L) Grado (mg/L) Sand (2:0 - 0:063 mm) Sand (2:0 - 0:063 mm)	rNVS (mg/L) SSS (mg/L) NVSS (mg/L) Solids A Volatile Solids 30D5 (mg/L) 20D (mg/L)	LOC (water mg.r.) COC (sottised mg/Kg) NH3-M mg/L) NO2+NO3-N (mg/L) Total-P (mg/L) Total-P (mg/L) Colification ME (4100mL)	F-Coliform MPN (#190mL) Syanida total (ug/L) Cyanida (wk & dis ug/L) Organida (wk & dis ug/L) Preanolics Total(water-ug/L) Field OBSERVATIONS Temperature (C)	Temp-cooled (C)*+ pH Conductivity (umhos/cm) Chlorine (mg/L) Sulfide (mg/L)

grab – grab sample

Appendix C – Ecology Analytical Methods – Sound Refining, 1994.

	Method Used for	Laboratory
Laboratory Analysis	Ecology Analysis	Performing Analysis
Conductivity	EPA, Revised 1983: 120.1	Ecology Manchester Laboratory
Alkalinity	EPA, Revised 1983: 310.1	Ecology Manchester Laboratory
Hardness	EPA, Revised 1983: 130.2	Ecology Manchester Laboratory
Sulfide	EPA, Revised 1983: 410.1; 376.1	Sound Analytical Services
Grain Size	Tetra Tech, 1986:TC-3991-04	Soil Technology
TS	EPA, Revised 1983: 160.3	Ecology Manchester Laboratory
TNVS	EPA, Revised 1983: 106.3	Ecology Manchester Laboratory
TSS	EPA, Revised 1983: 160.2	Ecology Manchester Laboratory
TNVSS	EPA, Revised 1983: 106.2	Ecology Manchester Laboratory
% Solids	APHA, 1989: 2540G.	Ecology Manchester Laboratory
% Volatile Solids	EPA, Revised 1983: 160.4	Ecology Manchester Laboratory
BOD5	EPA, Revised 1983: 405.1	Ecology Manchester Laboratory
COD	EPA, Revised 1983: 410.1	Sound Analytical Services
TOC (water)	EPA, Revised 1983: 415.1	Ecology Manchester Laboratory
TOC (soil/sed)	EPA, Revised 1983: 415.1	Sound Analytical Services
NH3-N	EPA, Revised 1983: 350.1	Ecology Manchester Laboratory
NO2+NO3-N	EPA, Revised 1983: 353.2	Ecology Manchester Laboratory
Total-P	EPA, Revised 1983: 365.3	Ecology Manchester Laboratory
Oil and Grease (water)	EPA, Revised 1983: 413.1	Ecology Manchester Laboratory
F-Coliform MF	APHA, 1989: 9222D.	Ecology Manchester Laboratory
F-Coliform MPN	APHA, 1989: 9221C.	Ecology Manchester Laboratory
Cyanide (total)	EPA, Revised 1983: 335.2	Ecology Manchester Laboratory
Cyanide (wk & dis)	APHA, 1989: 4500-CNI.	Ecology Manchester Laboratory
VOC (water) - Extensive TICs	EPA, 1986: 8260	Ecology Manchester Laboratory
VOC (soil/sed) - Extensive TICs	EPA, 1986: 8240	Ecology Manchester Laboratory
BNAs (water) - Extensive TICs	EPA, 1986: 8270	Ecology Manchester Laboratory
BNAs (soil/sed) - Extensive TICs	EPA, 1986: 8270	Ecology Manchester Laboratory
Phenolics Total(water)	EPA, Revised 1983: 420.2	Ecology Manchester Laboratory
PP Metals (water)	EPA, Revised 1983: 200-299	Ecology Manchester Laboratory
PP Metals (soil/sed)	EPA, Revised 1983: 200-299	Ecology Manchester Laboratory
Total chromium	EPA, Revised 1983: 218.3	Ecology Manchester Laboratory
Hexavalent chromium	EPA, Revised 1983: 218.5	Ecology Manchester Laboratory
Salmonid DOE 80-12 (One Conc.)	Ecology, 1981.	Parametrix
Bivalve Larvae (chronic)	ASTM E724-1989	Parametrix
Fathead Minnow (chronic)	EPA, 1989:1000.0	Parametrix
Echinoderm Embryo	EPA, 1991.	Northwestern Aquatic Sciences
Rhepoxinius (solid acute)	ASTM, 1990: E1367	Northwestern Aquatic Sciences

METHOD BIBLIOGRAPHY

APHA-AWWA-WPCF, 1989. Standard Methods for the Exanination of Water and Wastewater, 17th Edition.

 APHA-AWWA-WPCF, 1989. Standard Methods for the Examination of Water and Wastewater, 17th Edition.
 ASTM, 1989: E724. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluses. In: Annual Book of ASTM Standards, Water and Environmental Technology.
 American Society for Testing and Materials, Philadelphia. Pa.
 Ecology, 1981. Static Acute Fish Toxicity Test, WDOE 80–12, revised July 1981.
 EPA, Revised 1983. Methods for Chemical Analysis of Water and Wastes, EPA–600/4–79–020 (Rev. March, 1983).
 EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW–846, 3rd. ed., November, 1986. EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms. Second edition. EPA/600/4-89/100.

EPA, 1991. NAS-XXX-SP/DE4. June 10, 1991. Revision 1 (1-18-92). Based on Puget Sound Estuary Program. 1991. Interim final recommended guidelines for conducting laboratory bioassays on Puget Sound sediments.

Tetra Tech, 1986. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound, Prepared for Puget Sound Estuary Program.

Appendix D - Quality Assurance/Quality Control (QA/QC) - Sound Refining, 1994.

SAMPLING QA/QC

Ecology quality assurance procedures for sampling included priority pollutant cleaning of the sampling equipment prior to the inspection to prevent sample contamination (Appendix E). Chain-of-custody procedures were followed to assure the security of the samples (Ecology, 1994).

LABORATORY QA/QC

General Chemistry Analysis

COD and Sulfide analyses were performed within holding times. While the TOC sample was not frozen, the holding time for frozen samples is 6 months. The procedural blanks showed that the processes were free from contamination. All check standards are reasonable, acceptable, and within QC limits. Duplicate analyses were within QC limits. All matrix spike recoveries and precision data were reasonable, acceptable, and within QC limits.

VOA, BNA, and Pesticide/PCB Priority Pollutant Organics Analysis

Wastewater and sediment samples were analyzed within the recommended holding times. Low levels of the common laboratory solvents acetone and methylene chloride were detected in the wastewater and sediment laboratory blanks. The EPA five times rule was applied to all target compounds which were found in the blanks. Surrogate recoveries were within acceptable limits for all samples. All water matrix spikes were within acceptable QC limits for both percent recovery and RPD for all compounds except acetone, carbon disulfide and naphthalene. Results for these compounds in sample 298112 were given the "J" qualifier. Soil matrix spikes were within acceptable QC limits for both percent recovery and Relative Percent Differences (RPD).

Metals Analysis

Wastewater and sediment samples were analyzed within the recommended holding times with the exception of hexavalent chromium which exceeded the 24 hour holding time by 3 hours. Calibrations were acceptable. Procedural blanks showed no significant levels of analytes. All spike recoveries for wastewater were within acceptance limits except mercury and hexavalent chromium for sample 298107. All spike recoveries for sediment were within acceptance limits except antimony, cadmium, lead, thallium, and zinc. Cd, Pb, Tl and Zn results are qualified with "N" for unacceptable spike recoveries. The antimony results are qualified with "J" as estimates due to other QA deficiencies. Laboratory control sample analyses were within the windows established for each parameter with the exception of the sediment antimony results.

Two of the samples for hexavalent chromium, 298106 (Inf-2) and 298107 (Inf-E), were nearly opaque. This presented severe interferences and hex chrome was not determined for

these samples.

LABORATORY AUDIT

The Sound Refining laboratory was accredited on July 1, 1992. An onsite audit will be conducted during the summer of 1995. The accreditation expires on March 31, 1996.

Appendix E - Priority Pollutant Cleaning Procedures - Sound Refining, 1994.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent
- 2. Rinse several times with tap water
- 3. Rinse with 10% HNO3 solution
- 4. Rinse three (3) times with distilled/deionized water
- 5. Rinse with high purity methylene chloride
- 6. Rinse with high purity acetone
- 7. Allow to dry and seal with aluminum foil

Appendix T = VOA, VOA Compounds Carbon Tetrachloride Aestorie Aestorie Chlorotom Benzene 1.1.1-Trichloroethane Bromochloromethane Chloromethane Bromochloromethane Chloroethane Bromochloromethane Chloroethane 1.1.1.2-Dichloroethane Chloroethane Bromoform Methylene Chloride Carbon Disuffide Bromoform Bromoform 1.1.2-Dichloroethane 1.1.2-Dichloroethane Trichloroethane 1.1.2-Tetrachloroethane Trichloroethane 1.1.2.2-Tetrachloroethane Trichloroethane	- VOX, DNA, allo metals Scall Fox Location: Inf-1 Type: 720 Date: 720 Time: 1015 Lab Log#: 2850 U ug/L as 250 U de 250 U de 250 U methane 250 U onide 250 U onida 250 U hene 250 U onida 250 U hene 250 U onida 250 U hene 250 U hene 250 U onida 250 U hene 250 U hene 250 U	2 25.0 U 2 2 2 0 U	- 「「」 - 「」 - 」 - 」 - 」 - 」 - 」 - 」 - 」 -		· # 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	:ccdreeecceeecceeecceeec	Eff-E comp 280-01730 280-1730 ug/L ug/L	Eff-Dupe comp 7720-21 2981730 2981720 ug/L ug/L	Eff-S comp 7/2021 07300 298115 ug/L	003-1 grab 7/20 10/L ug/L	
1.2.3-Trichlorobenzene Haxachtiorobutadiene Naphthalene o-Xylene 2-Chlorodouene 1.2.4-Trimethylbenzene 1.2.4-Trimethylbenzene 1.2.3-Trichloropropane 1.2.3-Trichloropropane	L L .	25.0 U 487 887 834 U 25.0 U 25.0 U 25.0 U 25.0 U	25.0 U 481 481 25.0 U 25.0 U 25.0 U 25.0 U 25.0 U 25.0 U 25.0 U								
Inf - influent sample	sample		- de	 detected analyte 							

Appendix F - VOA, BNA, and Metals Scan Results - Sound Refining, 1994.

Eff - minute sample Eff - ottfall 003 sample 003 - outfall 003 sample Dupe - duplicate sample E - Ecology sample S - Sound Refining sample

VOA Compounds (cont'd)	Location: Type: Date: Time: Lab Log#:	Inf-1 grab 7/20 1015 ug/L ug/L	Inf-2 grab 7/20 1355@ 0 298108 ug/L	Inf-E comp 7/20-21 0730-0730 298107 ug/L	Eff-1 grab 7/20 0900 09112 ug/L	Eff-2 grab 7/20 1300@ 298113 ug/L	Eff-E comp 7/20-21 0730-0730 298114 ug/L	Eff-Dupe comp 7/20-21 0730-0730 298120 ug/L	Eff-S comp 7/20-21 0730-0730 298115 ug/L	003-1 grab 7/20 1050 298118 ug/L
tart-Butytbenzene leopropytbenzene p-leopropyttoluene Ethytbenzene		25.0 U 52.2 U 18.8 J 407	25.0 U 80.5 13.7 J 475		1.0 U 1.0 U 1.0 U 1.0 U 0.83 J	U 01 U 01 U 01 U 050				
Styrene (Ethenylbenzene) Propylbenzene Butyfbenzene 4-Chiarotoluane 1,4-Dichtorobenzene 1,2-Dichromosthane (FDR)		25.0 U 74.5 J 25.0 U 25.0 U 25.0 U	25.0 U 79.5 16.8 J 25.0 U 25.0 U 25.0 U			00000000000000000000000000000000000000	1			
1,2-Dichloroethane 4-Methvl-2-Pentanone (MIBK)		25.0 U	42.8 83.0	×	0.1 0.1 0.0	0.0				
1.3.5-Trimethylbenzens Bromobenzens Toluene Chlorobenzene 1.2.4-Trichlorobenzene		255.0 U 255.0 U 255.0 U 255.0 U 255.0 U	178 266.0 U 255.0 U 255.0 U 255.0 U							
Tetrachionomous Tetrachionomeurane sec-Butylionnzane 1.3-Dichlorophome cis-1,2-Dichloroethene trans-1,2-Dichloroethene			250 U 2510 J 2520 U 2550 U 2550 U			2222223 222222 2222222				
1.3-Dichloroponzene 1.1-Dichloropropena 2-Hexanona 2.2-Dichloropropane 1.1.1.2-Tetrachloroethane Total Xylenes		25.0 U 25.0 U 156 U 25.0 U 25.0 U	25.0 U 25.0 U 172 25.0 U 25.0 U 25.0 U 25.0 U		0 0 0 10 0 10 0 10 0 10 0 1 0 0 1 18 1					
m&p-Xylene cta-t,3-Dichloropropene ttana-(,3-Dichloropropene Inf - influent sample		1340 132 U 118 U	1490 13.2 U 11.8 U - de	j j - detected analyte	0.47 U	0.47 U 0.47 U				

Appendix F - (cont'd) - Sound Refining, 1994.

Inf – influent sample Eff – effluent sample 003 – outfall 003 sample Dupe – duplicate sample E – Ecology sample S – Sound Refining sample

Appendix F – (c	Appendix F – (cont'd) – Sound Refining, 1994.	efining, 1994.				,			·	
BNA Compounds	Location: Type: Date: Time: Lab Log#:	Inf-1 grab 7/20 1015 ug/L	Inf-2 grab 7/20 1355@ 0 298106 ug/L	Inf-E comp 7/20-21 0730-0730 298107 ug/L	Eff-1 grab 7/20 0900 298112 ug/L	Eff-2 grab 7/20 1300@ 0 298113 ug/L	Eff-E comp 7/20-21 0730-0730 298114 ug/L	Eff-Dupe comp 7/20-21 0730-0730 298120 ug/L	Eff-S comp 7/20-21 0730-0730 298115 ug/L	003–1 grab 7/20 208118 ug/L
Benzo(a)Pyrene 2.4-Dinitrophenol Dibenzo(a,h)Anthracene Benzo(a)Anthracene 4-Chioro-3-Methylphenol	the of			131 U 131 U 131 U 131 U 131 U			0.82 U 32.8 U 0.82 U 0.82 U 0.82 U	4 8 8 9 4 4 4 4 4 7 4 4 4 4	53555	
Aniline Dimethytnitroaamine Benzotc Aoid Hexachioroethane Hexachiorocyclopentadiene Isonhorone	adiene			13.1 U 85.6 U 824 U 13.1 U 13.1 U 20.5			C C C C C C C C C C C C C C C C C C C	1.4 542 144 13.6		
Acenaphthene Diethyl Phthalate Di-m-Burty Phthalate Phenanthtens Butylbenzyl Phthalate N-Nitrosodiohenvlamine							0.82 U 0.82 U 0.82 U 0.82 U 0.82 U 0.82 U			
Fluorene Cathazole Hexachionobutadiene Pentachiorophenoi 2.4,6-Trichlorophenoi 2-Nitroaniline										
2-Nitrophenol Naphthalane 2-Methymaphthalane 2-Chloronaphthalane 3,3-Dichlorobenzidine Benzidine	a a 2			13.1 UJ 348 234 13.1 U 13.1 U 13.1 U 13.1 U					399900:	
2-Methylphenol 1:2-Dichriorobenizerte ce-Chitorophenol 2:4.5-Trichtlorophenol Nitrobenizere 3-Nitroaniline 4-Nitroaniline				1120 131 U 131 U 131 U 131 U 131 U 131 U 131 U 131 U						
4-Nitrophenol Benzyl Alcochol 4-Bromophenyl Phenylether 2.4-Dimethylphenol 4-Methylphenol	yjettee						4.1 U 0.82 U 0.82 U 0.82 U 0.82 U 0.82 U	8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
Inf-i Eff-e 003-0 Dupe-d	influent sample effluent sample outfall 003 sample duplicate sample	шю	Ecology sample Sound Refining sample	sample	- det	- detected analyte				•

tan tatan t	Type: Date: 7720 Time: 2881015 ug/L ug/L	grab 13720 298366 298366 2001 106 2001	07320-21 238-073 238-075 238-0	4120 688 692 120 120 120 120 120 120 120 120 120 12	grab 13 7/20 13 13 2081 13 ug/L ug/L	330003300300000	973/780-21 238-0729-21 238-0729-21 238-0729-21 238-0729 2000 2000 2000 2000 2000 2000 2000	7720-21 288-115 ug/L	1720 1720 1950 1971 198
Benzo(b)Fluoranthene Fluoranthene Benzo(k)Fluoranthene Acenaphthylene Chrysene Retene 3.5-Dinitro-2-Methylphenol 3.5-Dinitrobuene 2.6-Dinitrobuene 2.6-Dinitrobuene A-Chlorophenyl Phenylether Bis(2-ctitoroisopropyl)-							eccceeccce ****************************		

Inf - influent sample Eff - effluent sample 003 - outfall 003 sample Dupe - duplicate sample E - Ecology sample S - Sound Refining sample

] - detected analyte

Appendix F - (cont'd) - Sound Refining, 1994.

Appendix F - (cont'd) - Sound Refining, 1994.

~		3 3 3 3 8 4 4
003–1 grab 7/20 1050 298118 ug/L) 15 80 15 80
Eff-S comp 7/20-21 0730-0730 298115 ug/L) 30 U 1 67 1 1 U
Eff-Dupe comp 7/20-21 0730-0730 298120 ug/L	·	u 30 U 1 68
Eff-E comp 7/20-21 0730-0730 298114 ug/L		30 U 6.9
Eff-2 grab 7/20 1300@ 298113 ug/L		
Eff-1 grab 7/20 0900 298112 ug/L		
Inf-E comp 7/20-21 0730-0730 298107 ug/L		30 U 11.0
Inf-2 grab 7/20 1355@ 298106 ug/L		
Inf-1 grab 7/20 1015 298105 ug/L		
Location: Type: Date: Lab Log#:		
	Metals *	Antmony Arsenic Beryinun

Berylliun		<u>1 U</u>	11	1 0	<u>1 U</u>	<u> </u>	n I
Cadmium	0	0.12 P		0.70 P	0.46 P	0.52 P	0.10 U
Chromium	11* P	5 U	7* P	6.3 P	7.2 P	5.3 P	5 U
Hexavalent	3	REJ	4.2* P	3.3* P	6.4* P	6.4* P	
Trivalent		1					
Copper	<u> </u>	g. +-		17 P	18 P	13 P	4.8 P
Lead	°	<u>32 P</u>	L	1.8 P	2.4 P	2.0 P	1.0 U
Mercury (Total)	3.2	3.42 N	1	1.89 N	1.91 N	1.26 N	0.05 U
Nickel		10 U	ł	10 U	10 U	10 U	10 U
Selenium	~	0 0		2.0 U	2.0 U	2.0 U	2.0 U
Silver	0.0	ð G		1.0 P	0.90 P	0.62 P	0.50 U
Thalltum	CN .	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
Zinc	47	1	L	79:9	89.8	61.5	4 P
a da bara successione a bara succession a state a la testa de testa de testa de testa de testa de testa de test	a difficiencia di seconda de secon		alada a ladad ana adhirana bashadd				

All metals are total recoverable except mercury and those results marked with a *. Marked results are total metals.

U The analyte was not detected at or above the reported result.
 UJ The analyte was not detected at or above the reported estimated result.
 UJ The analyte was positively identified. The associated numerical result is an estimate.
 E The concentration of the associated value exceeds the known calibration range.
 P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
 REJ The data are nurusable for all purposes.
 @ hexavalent chromium grabe sampled at 1415 on 7/20

– detected analyte

Inf - influent sample Eff - effluent sample 003 - outfall 003 sample Dupe - duplicate sample E - Ecology sample S - Sound Refining sample

Loc Lab VOA Compounds Carbon Tetrachloride	-ocation:	Sed-1 drah	Sed-2 grab		Sed-3 grab	
VOA Compounds Carbon Tetrachioride	Type: Date: Time: ab Log#:	8/22 1200 348000 348000	8/22 1225 348001 110/Kn_drv		8/22 1255 308132 110/Kn-drv	
Carbon Tetrachloride	2	f in Born				
		3.6 U 867 U	3.5 649	n Ei	36 383	53
Chloroform Chloroform				2 P	36	b
Benzene		87	3.5		0.76	Ļ
1,1,1-Trichloroethane		3.6 U	3.5	ר ר	3.6	þ
Bromomethane		3.6 U	3.5	2	3.6	∍
Chloromethane		3.6 U	3.5	D	3.6	D
Dibromomethane		3.6 U	3.5	Ð	3.6	D
Bromochioromethane		3.6 U	3.5	Ð	3.6	J
Chloroethane		3.6 U	3.5	D	3.6)
Vinyl Chloride		3.6 U	3.5	>	3.6	5
Methylene Chloride		3.6 U	3.5	5	1.4	3
Carbon Disuifide		6.1 UJ	l 5.4	8	5.3	3
Bromoform		3.6 U	3.5	Ð	5.6	3
Bromodichloromethane		3.6 U	3.5	Ð	3.6	B
1,1-Dichloroethane		3.6 U	3.5	D	3.6	>
1,1-Dichloroethene		3.6 U	3.5	2	3.6	>
Trichlorofluoromethane		3.6 U	3.5	5	3.6	∍
Dichlorodifluoromethane			3.5	Þ	3.6	Ð
1,2-Dichloropropane		3.8 U	3,5	Ð	3,6	Ð
2-Butanone (MEK)	L	27.2 J	22.7	F	14,1	3
1,1,2-Trichloroethane		3.6 U	3.5	þ	3.6	∍
Trichloroethene		3.6 U	3.5	_ >	0.47	h
1,1,2,2-Tetrachloroethane		3.6 U	3.5	ן כ	3.6	þ
1,2,3-Trichlorobenzene		3.6 U	3.5	Ð	3.6	5
Hexachiorobutadiene		3.6 U	3.5	3	3.6	З
Naphthalene		17.9 U	3.5	Ð	3.6	Ð
o-Xylene		3.6 U	3.5	D	3.6	>
2-Chlorotoluene		3.6 U	3.5	5	3.6	∍
1,2-Dichlorobenzene		3.6 U	3.5	5	3.6	>
1,2,4-Trimethylbenzene			3.5	Ð	3.6	Ð
1,2-Dibromo-3-Chloropropane (DBCP)	pane (DBCP)		3.5	Ð	3.6	Э.
1,2,3+Trichloropropane		3.6 U	8.9 8	Ð	3.6	2

8

Appendix F - (cont'd) - Sound Refining, 1994.

٦

Sed-1 - Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.
Sed-2 - Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet.
Sed-3 - Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 2

Appendix F - (cont'd) - Sound Refining, 1994.

Location:	Sed-1	Sed-2	Sed-3
Type:	grab	grab	grab
Date:	8/22	8/22	8/22
Time:	1200	1225	1255
Lab Log#:	348000	348001	308132
•	ug/Kg-dry	ug/Kg-dry	ug/Kg–dry

VOA Compounds (cont'd)

Sed-1 - Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.
Sed-2 - Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet.
Sed-3 - Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 2 feet.

1994.
 Sound Refining,
()
cont

Location: Type: Date: Time:	Sed-1 grab 8/22	Sed2 grab 8/22	Sed-3 grab 8/22 1255
Lab Log#: BNA Compounds	348000 ug/Kg-dry	348001 ug/Kg-dry	308132 ug/Kg-dry
		FRF	
2 4-Dintrochenol	<u>1920 UJ</u>	1250 UJ	
Dibenzo(a.h) Anthracene	150 J	102 J	L 80.6 J
Benzo(a) Anthracene	737	675	370
Caffeine	157 U	125 U	147 U
4-Chloro-3-Methylphenol	157 U	125 U	147 U
Aniline			.
Dimethytnitrosamine			
Benzoic Acid		1250 U	
Hexachloroethane	157 UJ		
Hexachlorocyclopentadiene			295 UJ
lsophorone	157 U	125 U	147 U
Acenaphthene			- T
Diethyl Phthalate			147 U
ui-fi-butyi Fhunalate Diii	n /ct	420 UU	500 1
Prindianumene Drittidhammid Dhthalata	130	1961	147 11
butyibeli zyi Filulalate N_Nitrosodinhanvlamina	157 11	- 122 122 122	147 U
n nuoscupriori juanno Photene	130 1		
Carbazole	12 <u>7 U</u>	125 U	147 U
Hexachlorobutadiene	157 U	125 U	147 U
Pentachlorophenol	157 U	125 U	147 U
2,4,6-Trichlorophenol	157 U	125 U	147 U
2-Nitroaniline	157 U	125 U	147 U
2-Nitrophenol	157 U	125 U	147 U
Naphthaiene	218	206	F 111
2-Methyinaphthalene	110 J	98.8 J	60.5 J
2-Chloronaphthalene	157 U	125 U	
3,3'-Dichlorobenzidine			
Benzidine	-	- 1	- 1
2-Methyphenol			
1,2-Dichlorobenzene			
o-Chlorophenal	157 U	125 U	147 U
2,4,5-Trichlorophenol	157 U	125 U	_
Nitrobenzene	157 U	125 U	_
3-Nitroaniline			
4-Nitroaniline	157 UJ	125 U	
4-Nitrophenol	787 U	627 U	737 U
Bantol Alcohol	167 U	125 U	147 U

Sedi-1 - Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.
Sed-2 - Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet.
Sed-3 - Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 26 feet.

Appendix F - (cont'd) - Sound Refining, 1994.

Sed-1	Sed-2	Sed-3
grab	grab	grab
8/22	8/22	8/22
1200	1225	1256
348000	348001	308132
ug/Kg-dry	ug/Kg-dry	ug/Kg-dr)
	Sed-1 grab 8/22 1200 348000 ug/Kg-dry	Sed-1 Sed-2 grab grab 8/22 8/22 1200 1225 348000 348001 ug/Kg-dry ug/Kg-dry

>

6 01

m

BNA Con

4 Metryphend 501 J 55 U 125 U 147 U 1.4 -Dichlorobenizanie 157 U 125 U 147 U Phond 57 U 125 U 147 U Phond 57 U 125 U 147 U Phond 787 U 125 U 147 U Phond 787 U 125 U 147 U Phond 787 U 125 U 147 U Bio2-ChiocosthoxyMathane 157 U 125 U 147 U Bio2-ChiocosthoxyMathane 157 U 125 U 147 U Authisoons 157 U 125 U 147 U Authisoons 157 U 125 U 147 U 2 4-Tichtrothenzene 157 U 125 U 147 U 2 4-Dinfrotolenze 157 U 125 U 147 U	4-Bromophenyl Phenylether 2.4-Dimethylphenol	157 U 157 U	125 U 125 U	147 U 147 U
Inforcementation 157 U 125 U 147 candiline 157 U 125 U 147 thiorosity/filthet 157 U 125 U 147 torobenzene	1-Methylphenol	<u> </u>	58.0 J	85.2 J
Coantiline 157 UL 125 U 147 IncreativelyTextual 157 U 125 U 147 IncreativelyMethane 157 U 125 U 147 Introcettry/Ether 157 U 125 U 147 Introcettry/Intradic 157 U 125 U 147 Introcettry/Intradic 157 U 125 U 147 Introcettry/Intradic 157 U 125 U 147 Introconnectory/Intradic 157 U 125 U 147 Introconnectory/Intradic 157 U 125 U 147 Introconnectory/Intradic 157 U 125 U 147 Introconnectory/Introconnecto	I,4-Dichlorobenzene	157 U	125 U	147 U
157 U 125 U 135 U 147 157 U 125 U 125 U 737 157 U 1255 U 1255 U 755 157 U 1255 U 1755 U 755 157 U 1255 U 176 U 755 157 U 1255 U 1255 U 147 157 U 1255 U 1255 U </td <td>4-Chloroaniline</td> <td></td> <td>125 U</td> <td>147 U</td>	4-Chloroaniline		125 U	147 U
Filter 737 14 737 15 1 737 hioroethwilether 157 1 125 1 14 hioroethoxy/Mathane 157 1 125 1 14 hioroethoxy/Mathane 157 1 125 1 14 firthiartee 157 1 125 1 14 hiorophenol 157 1 125 1 14 first 157 1 125 1 14 first 157 1 125<	Phenol			147 U
IntoroathyljEther 157 U 125 U 147 thylnexyl/Phthalate 144 J 125 U 147 thylnexyl/Phthalate 144 J 125 U 147 forobenzene 157 U 125 U 147 forobenzene 157 U 125 U 147 hiorobenzene 157 U 125 U 147 frootoluene 137 U 125 U 147 frootoluene 127 U	Pyridine		***	737 U
Inforcethorsylverthane 157 U 125 U 147 Cryl Prithalate 144 1 1 1 1 1 Cryl Prithalate 157 U 157 U 157 U 147 Cryl Prithalate 157 U 157 U 155 U 147 Ensity 157 U 125 U 147 Histophenoi 157 U 125 U 147 Histophenoi 157 U 125 U 147 Introlouene 157 U 125 U 147 Introlouene 157 U 125 U 147 Introlouene 157 U 1250 97 147 </td <td>Bis(2-Chiproethyl)Ether</td> <td></td> <td>125 U</td> <td>147 U</td>	Bis(2-Chiproethyl)Ether		125 U	147 U
thylnexyl/huthalate 2710 561 U 755 ctyl Prithalate 144 1 125 147 lorobenzene 157 1 125 1 147 dictilarobenzane 157 1 125 1 147 fictilarobenzane 157 1 1250 916 916 fictilarobenzane 157 1 125 1 147 fictilarobenzane 157 1 125 1 147 fictinarithene 157 1 <td>Bis(2-Chioroethoxy)Methane</td> <td></td> <td></td> <td>147 U</td>	Bis(2-Chioroethoxy)Methane			147 U
City Phthalate 144 J 125 U 147 Incohenzene 157 U 157 U 125 U 147 Incohenzene 157 U 125 U 147 Incohenzene 157 U 125 U 147 Incohenzene 157 U 125 U 147 Incoluene 157 U 1280 916 916 Incoluene 157 <td< td=""><td>3is(2-Ethylhexyl)Phthalate</td><td>2710</td><td>561 UJ</td><td>755 UJ</td></td<>	3is(2-Ethylhexyl)Phthalate	2710	561 UJ	755 UJ
Incoherization 157 U 116 J 147 ensite 377 U 125 U 147 ensite 377 U 125 U 147 functoherization 157 U 125 U 147 functoherization 157 U 125 U 147 functoluence 157 U 1280 U 916 functoluence 157 U 1280 U 147 functoluence 157 U 128 U 147 functoluence 157 U 125 U 147 funce 157 U 125 U	Di-n-Octyl Phthalate	144 J		147 U
435 437 182 182 hicklinrobenzene 157 1 1 1 hicklinrobenzene 157 1 125 1 1 henylhydrazine 157 1 125 1 1 hinylhydrazine 138 3 3 3 3 3 hinylhydrazine 138 3 3 3 3 3 3 hinylhydrazine 138 3 3 3 3 3 3 1, 2, 3-cd)Pyrene 157 1 138 8 3 </td <td>Hexachlorobenzene</td> <td></td> <td>116 J</td> <td>147 U</td>	Hexachlorobenzene		116 J	147 U
Artilitrobenzene 157 U 125 U 147 Introtoluene 157 U 125 U 147 Intratition 1840 2150 147 147 Intra 183 386 346 346 I.1.3-cut)Prene 1570 1280 979 979 I.1.3-cut)Prene 1570 1280 973 345 I.1.4.4. 123.3 1410 815 345 I.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Anthracene	435	377	182
Introduce 157 U 125 U 147 Introduce 133 336 346 346 Introduce 133 386 346 346 Introduce 1570 1290 979 345 Introduce 1570 1280 345 345 Introduce 1570 1280 345 345 Introduce 1570 1280 345 345 Introduce 1570 1280 147 345 Introduce 1570 1280 147 345 Introduce 157 1255 147 345 Introduce 157 1255 147 147 <	I,2,4-Trichlorobenzene			147 U
Ifrotoluene 157 U 125 U 147 henylhydrazine 157 U 125 U 147 Amenylhydrazine 153 386 340 345 Athole 1570 1280 979 345 Athole 1570 1280 979 345 Athole 1570 1280 979 345 Athole 132 168 340 345 Athole 132 168 1410 843 Athole 132 168 1410 843 Athole 132 168 147 147 Athole 132 1 1470 245 Athole 157 1 125 1	2.4-Dichlorophenol		125 U	
Inversion Inversion <t< td=""><td>2,4-Dinitrotoluene</td><td>157 U</td><td>125 U</td><td>147 U</td></t<>	2,4-Dinitrotoluene	157 U	125 U	147 U
Image: Network in the image is a structure in the image is a st	I,2-Diphenylhydrazine			147 U
K Prithalata 157 U 125 U 147 Afrean 157 U 125 U 147 Afrean 12,3-cd)Pyrene 157 U 128 88.9 1,2,3-cd)Pyrene 1,5,3-cd)Pyrene 12,3-cd)Pyrene 340 340 1,2,3-cd)Pyrene 1,5,0 1290 979 340 340 0Fluoranthene 1,700 2230 800 979 343 340 0Fluoranthene 1700 2230 1410 815 345 345 hthylene 1530 1 166 300 2450 2450 vicetanol 1570 1 1250 1 1470 hthorototiustre 157 1 125 1 1470 ophenyl Phenylether 157 1 125 1 147 ophenyl Phenylether 157 1 125 1 147	Jyrene	1940	2150	916
118 1 128 584 585 1500 1570 1280 340 1570 1570 1280 340 1570 1280 2230 815 1570 1280 2430 345 1570 1410 815 345 1570 125 1410 815 1570 125 1470 1470 1571 125 1470 1470 1671 125 1470 1470 1671 125 1470 1470 1671 125 1470 1470 1671 125 1470 1470 161 125 1470 1470 1671 125 1470 1470	Dimethyl Phthalate			
456 364 356 356 e 1570 1220 979 1570 1200 2230 979 1700 2230 815 345 1700 2230 815 343 1700 2230 815 343 1570 1410 815 343 1570 125 1410 815 1570 125 1470 815 1570 125 1470 815 16hind 157 125 1470 167 125 1470 1470 167 125 1470 1470 167 125 1477 1477	Dibenzofuran		138	68:9 J
476 386 340 e 1570 1290 979 1570 1290 273 979 e 436 440 343 1570 1290 979 979 1570 1290 136 343 1570 1280 1410 815 1570 1570 1250 1470 1570 125 1470 1470 ifst 157 1255 1470 ifst 125 1470 1470 ifst 125 1470 1470 ifst 1255 1470 1470 ifst 1255 1470 1470 ifst 125 1477 1477 ifst 1255 1477 1477	Senzo(g,h,i)Perylene	459.1	364	356
1570 1290 979 1700 2230 800 1700 2230 815 182 1 108 300 1832 1 108 343 1832 1 108 543 1830 1 2230 815 2340 1250 1410 815 1570 157 125 1470 157 1255 1 1470 16therd 157 1255 1 147 16therd 157 1 125 1 147 16therd 157 1 125 1 147	ndeno(1,2,3-cd)Pyrene	476	386	340
1700 2230 800 484 440 845 132 1108 945 132 1108 543 1500 1410 815 2340 125 1470 1570 125 1470 157 125 1470 157 125 1470 157 125 1470 157 125 1470 1470 125 147 1470 125 147 1470 125 147	3enzo(b)Fluoranthene	1570	1290	626
484 440 345 132 1 108 543 1530 1410 543 1540 1410 543 1540 1410 245 2340 1 226 245 2340 1 226 1470 245 157 1 125 1 147 157 1 125 1 147 viamitie 157 1 125 1 147 1)-there 157 1 125 1 147	-luoranthene	1700	2230	800
132 1 108 54.3 1530 1410 815 2340 2280 246 2340 2280 246 2340 1570 1250 1470 1570 1255 1470 147 157 125 1250 1470 147 1255 1477 1470 157 1255 1250 1477 ylamine 157 1255 1477 157 1255 1477 1477	3enzo(k)Fluoranthene	484	440	345
1530 1410 815 2340 J 2280 246 2340 1570 1 246 phenol 1570 1 226 1570 1 125 1 147 1571 125 1 147 ytamine 157 1 125 1 147 ytamine 157 1 125 1 147 ytamine 157 1 125 1 147 161 157 1 125 1 147	Acenaphthylene	132 J	£	54.3 J
2340 J 2280 J 2450 J 2470 J<	Chrysene	1580	1410	815
A06 300 220 phenol 1570 1 125 1 1470 i 1577 1 125 1 1470 i 1577 1 1255 1 1470 i 1577 1 1255 1 1477 ytamine 1577 1 1255 1 1477 ytamine 1577 1 1255 1 1477	3B-Coprostanol	2340 J	2280 J	2450 J
Iphenol 1570 U 125 U 1470 r 1577 U 125 U 147 r 1577 U 125 U 147 ytamine 157 U 125 U 147 ytamine 157 U 125 U 147 ytamine 157 U 125 U 147	Retene	406	300	220
157 157 1 125 1 147 Mamine 157 1 125 1 147 Mamine 157 1 125 1 147 Mather 157 1 125 1 147 Mather 157 1 125 1 147	4,6–Dinitro–2–Methylphenol	1570 U	125 U	1470 U
157 U 128 U 147 157 U 128 U 147 157 U 128 U 147 157 U 125 U 147 157 U 125 U 147	1,3-Dichtorobenzene		2022	200
157 U 128 U 147 167 U 128 U 147 157 U 125 U 147	2,6-Dinitrotoiuene			
157 U 125 U 157 U 125 U	V-Nitroso-di-n-Propylamine			
	L-Chlorophenyl Phenylether	157 U 157 U	125 U	147 U
	sis(z-cniorolsopropyi)-			14/ 0

Sed-1 - Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.
Sed-2 - Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet.
Sed-3 - Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 28 feet.

Appendix F - (cont'd) - Sound Refining, 1994.

Sed-3	grab 8/22	1255 308132	mg/Kg-dry
		1225 348001	-
Sed-1	grab 8/22	1200 348000	mg/Kg-dry
Location:	Type: Date:	Time: Lab Loo#:	

Metals *

Antimony

3 UJ 3 UJ

PN 8

Beryflium	0.25 P	0.24 P	0.21 P
admium	0.4 P	0.472 N.	0.541 N
	26.2	21.1	25.6
	127	113	119
Lead	62.5 N	58.4 N	N 8/9
I	0.144	0.102	0.144
	19.2	15.2	20:8
	0.47 P	0.42P	0.57 P
J	0.3 UJ	0.3 UJ	0.3 UJ
	0.50 UN	0.50 UN	0.50 UN
	121 N	116 N	138 N

* Sediment metals are total metals.

7 – detected analyte

23

~ш**с** z@

The analyte was not detected at or above the reported result. The analyte was not detected at or above the reported estimated result. The analyte was positively identified. The associated numerical result is an estimate. The concentration of the associated value exceeds the known calibration range. The analyte was detected above the instrument detection limit but below the established minimum quantitation limit. The spike sample recovery is not within control limits.

Sed-1 - Sediment sample collected 25 feet downcurrent (northwest) from the end of the outfall pipe at a depth of 27 feet.
Sed-2 - Sediment sample collected 100 yards downcurrent (northwest) at the end of the Sound pier at a depth of 23 feet.
Sed-3 - Background station. Sediment sample collected 1/4 mile upcurrent (southeast) of the Sound outfall pipe at a depth of 29 feet.

Appendix G – VOA and BNA Scan Tentatively Identified Compounds (TICs) – Sound Refining, 1994.

TIC data are presented on the laboratory report sheets that follow. VOA (volatile organic) fractions are identified as VOA. BNA (semivolatile organic) fractions are identified as B/N/Acid. Locations corresponding to the Lab Log# (called Sample No. on the laboratory report sheet) and data qualifiers are summarized on this page. If sheets are not included for a station, no TICs were detected.

Location:	Inf-E	Inf–1	Inf-2	Eff-E	Eff-Dupe	Eff-1	Eff-2
Type:	comp	grab	grab	comp	comp	grab	grab
Date:	7/20-21	7/20	7/20	7/20-21	7/20-21	7/20	7/20
Time:	0730-0730	1015	1355	0730-0730	0730-0730	0900	1300*
Lab Log#:	298107	298105	298106	298114	298120	298112	298113

Location:	Sed-1	Sed-2	Sed-3
Type:	grab	grab	grab
Date:	8/22	8/22	8/22
Time:	1200	1225	1255
Lab Log#:	348000	348001	348002

Inf - influent

Eff - effluent

Sed - sediment

comp - composite sample

grab – grab sample

E - Ecology sample

Sample No: 94 298105 Description: INF-1

Tent Ident - VOA Sca	Water-T	otal
	Result	Units
NAPHTHALENE, 1-METHYL-	131NJ*	•••••••
2-Methylnaphthalene	170NJ*	
1H-INDENE	87.8NJ*	
CYCLOHEXANE, METHYL-		
	271NJ*	
THIOPHENE, TETRAHYDRO-	115NJ*	
Cyclohexane	203NJ*	
CYCLOPENTENE	255NJ*	ug/l
Indan	286NJ*	ug/1
Thiophene, 2-methyl	238NJ*	
2-Butene, (Z)	56.8NJ*	
BENZENE, 1-ETHYL-2-MET+	240NJ*	ug/l
THIOPHENE, 3-METHYL-	120NJ*	
BENZENE, 1-ETHYL-3-MET+	392NJ*	•••
BENZENE, 1-ETHYL-4-MET+	417NJ*	37
1H-INDENE, 2,3-DIHYDRO+		
THIOPHENE, TETRAHYDRO-+		
THIOPHENE, TETRAHYDRO-+		

Laboratory: Ecology, Manchester

Sample No: 94 298106

Description: INF-2

Begin Date: 94/07/20.

		- +
Tent Ident - VOA Sca	Water-Total	
	Result Units	
*		- 1
METHANE, THIOBIS	74.6NJ* ug/l	
Butane, 2-Methyl	47.8NJ* ug/l	
NAPHTHALENE, 1-METHYL-	159NJ* ug/l	
2-Methylnaphthalene	183NJ* ug/l	
PENTANE, 3-METHYL-	83.4NJ* ug/l	
Cyclopentane-methyl	467NJ* ug/l	
2 - PENTANONE	68.6NJ* ug/l	
CYCLOHEXANE, METHYL-	344NJ* ug/1	
THIOPHENE	347NJ* ug/1	
Cyclohexane	372NJ* ug/1	
CYCLOPENTENE	284NJ* ug/1	
Cyclobutane	61.5NJ* ug/l	
CYCLOPENTANE (DOT)	170NJ* ug/1	
Benzene, 1,2,3,4-Tetra+	89.0NJ* ug/1	
2-BUTENE, 2-METHYL	116NJ* ug/l	
BENZENE, 1,2,3-TRIMETH+	454NJ* ug/1	
Thiophene, 2-methyl	138NJ* ug/1	
BENZENE, 1-ETHYL-2-MET+	450NJ* ug/1	
THIOPHENE, 3-METHYL-	238NJ* ug/1	
BENZENE, 1-BTHYL-3-MET+	991NJ* ug/l	
	ug/1	

8 - AUG -	94	Washington State Depart *** Lab Analysis	ment of Ecology Report ***	Page 2
Transa Proj C	ode : DOE-1	8169412 Seq #: 01 164X SOUND REFINING	(6A) Tent Ident -	B/N/Acid Scan PE # : D38F1
Sample	NO.: 94 29	98107 Alterna	ate Keys:	
Samp M	atrix: (10)	Water-Total	Units: (11) ug/1	% Slds: NAR
QA COO	le: () (Jnspecifed	Pea	ks Total:
Date E	xtracted:	Date Analyzed: 9	40808 # Days to	Ext/Anal: 0/ 18
Line		Parameter Description		lue
		·····		
1	T08883	Toluene		30NJ
2	120923	CYCLOPENTANONE	ug/1 5 ug/1 2	17NJ
3	108941	Cyclohexanone	ug/1 2	57NJ
4	1757422	CYCLOPENTANONE, 3-METH	IYL - ug/1 3	22NJ
5 6		Ethylbenzene	ug/1 3	77NJ
6	108383	m-Xylene	ug/1 12	30NJ
7	106423	p-Xylene	ug/1 6	14NJ
8	-3008001	p-Xylene UNKNOWN COMPOUND 1 BENZENE, 1-ETHYL-2-MET	ug/1	276J
9	611143	BENZENE, 1-ETHYL-2-MET	$\frac{1}{1} \frac{1}{3}$	78NJ
10	620144	BENZENE, 1-ETHYL-3-MET	THYL- ug/l 2 IYL- ug/l 6 ug/l 4	27NJ
11	526738	BENZENE, 1,2,3-TRIMETH	IYL- ug/l 6	60NJ
12	95636		e ug/1 4	58NJ
13		UNKNOWN HYDROCARBON 1	ug/l	146J
14		PHENOL, 2-ETHYL-	ug/1 ug/1 1	26NJ
15	95874		ug/1 2	09NJ
16	934805	BENZENE, 4-ETHYL-1,2-D	DIMETHY ug/1 1	57NJ
17	95658	Phenol, 3,4-dimethyl	ug/1 9	26NJ
18	526750	PHENOL, 2,3-DIMETHYL- UNKNOWN HYDROCARBON 2	ug/1 1	96NJ
19		UNKNOWN HYDROCARBON 2	ug/1	146J
20	618451		1y1) ug/1 85	.2NJ
21	1687645	PHENOL, 2-ETHYL-6-METH	IYL-ug/1 52	
22	621272	PHENOL, 3-PROPYL-	ug/1 1	42NJ
23	90120	NAPHTHALENE, 1-METHYL- 1H-Inden-5-01, 2,3-dib	ug/1 88 lydro ug/1 87	.5NJ
24	1470946	1H-Inden-5-ol, 2,3-dib	iyaro ug/1 87	.4NJ
25	2423714	Phenol, 2,6-dimethyl-4	-nitro ug/l 85	
26		NAPHTHALENE, 2,7-DIMET		.1NJ
27	569415	NAPHTHALENE, 1,8-DIMET	HYL- ug/1 77	.5NJ

Sample No: 94 298112 Description: EFF-1

Tent Ident - VOA Sca	Water-Total Result Unit
NAPHTHALENE, 1-METHYL-	60.7NJ* ug/1
2-Methylnaphthalene	134NJ* ug/1
UNKNOWN COMPOUND 1	3.6J* ug/1

Laboratory: Ecology, Manchester

Sample No: 94 298113

Description: EFF-2

Tent Ident - VOA Sca	Water-T	+ otal
	Result	Units
÷		+
NAPHTHALENE, 1-METHYL-	3.3NJ*	ug/l
BENZENE, 1,2,3,5-TETRA+	0.61NJ*	ug/l
BENZENE, 1-ETHYL-2-MET+	1.4NJ*	ug/l
BENZENE, 1-ETHYL-3-MET+	0.52NJ*	ug/l
ETHANE, 1,2-DIETHOXY-	1.3NJ*	ug/l
1,3-Dioxolane	2.6NJ*	ug/l
UNKNOWN HYDROCARBON 1	0.39J*	ug/1
UNKNOWN HYDROCARBON 2	0.46J*	ug/l
UNKNOWN COMPOUND 1	0.62J*	
	0.57NJ*	ug/l
BENZENE, (1-METHYL-2-C+	0.3/NU*	uy/i

ix: (10) () U acted: Par #	Parameter Description ETHANE, 1,2-DIETHOXY-	ts: (11) ug # Day Units	ys to Ext/Anal: 0/
Acted: Par # 629141	Date Analyzed: 940808 Parameter Description	# Day Units	ys to Ext/Anal: 0/
Acted: Par # 629141	Date Analyzed: 940808 Parameter Description	# Day Units	ys to Ext/Anal: 0/
Par # 629141	Parameter Description	Units	
629141			Value
	ETHANE, 1,2-DIETHOXY-		
		ug/1	8.3NJ
	UNKNOWN COMPOUND 1	ug/1	2.6J
5910894	Pyrazine, 2,3-dimethyl	ug/l	3.4NJ
3360640	Pyrazine, 2-ethyl-5-methyl	ug/1	2.5NJ
	ON NOW COMPOUND 2	ug/ I	8.5J
3008003	UNKNOWN COMPOUND 3		14.1J
3008004	UNKNOWN COMPOUND 4		8.3J
3008005	UNKNOWN COMPOUND 5		2.2J
			3.8J
3008007			3.7J
3008008	UNKNOWN COMPOUND 8		2.0J
3008009	UNKNOWN COMPOUND 9		1.9J
			2.0J
			2.2J 4.6J
008012			4.0J 3.0J
008013	UNKNOWN COMPOUND 13		2.5J
2002014	INKNOWN COMPOUND 15		3.7J
			3.7J
			3.0J
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		49/2	3.00
	3008002 3008003 3008004 3008005 3008006 3008007 3008008 3008009 3008010 3008011 3008012 3008013 3008014 3008015 3008016	3300840Pyrazine, 2*echyrsinechyr3008002UNKNOWN COMPOUND 23008003UNKNOWN COMPOUND 33008004UNKNOWN COMPOUND 43008005UNKNOWN COMPOUND 53008006UNKNOWN COMPOUND 63008007UNKNOWN COMPOUND 73008008UNKNOWN COMPOUND 83008009UNKNOWN COMPOUND 93008010UNKNOWN COMPOUND 103008011UNKNOWN COMPOUND 113008012UNKNOWN COMPOUND 123008013UNKNOWN COMPOUND 133008014UNKNOWN COMPOUND 143008015UNKNOWN COMPOUND 153008016UNKNOWN COMPOUND 163008017UNKNOWN COMPOUND-16	3008002 UNKNOWN COMPOUND 3 ug/1 3008003 UNKNOWN COMPOUND 3 ug/1 3008004 UNKNOWN COMPOUND 4 ug/1 3008005 UNKNOWN COMPOUND 5 ug/1 3008006 UNKNOWN COMPOUND 6 ug/1 3008007 UNKNOWN COMPOUND 7 ug/1 3008008 UNKNOWN COMPOUND 7 ug/1 3008009 UNKNOWN COMPOUND 9 ug/1 3008010 UNKNOWN COMPOUND 10 ug/1 3008011 UNKNOWN COMPOUND 11 ug/1 3008012 UNKNOWN COMPOUND 12 ug/1 3008013 UNKNOWN COMPOUND 13 ug/1 3008014 UNKNOWN COMPOUND 14 ug/1 3008015 UNKNOWN COMPOUND-15 ug/1

			_
8 - AUG - 94	Washington State Department *** Lab Analysis Rep	t of Ecology port ***	Page 4
	169412 Seq #: 03 .64X SOUND REFINING	(6A) Tent Ident - B/N	I/Acid Scan PE # : D38F1
Sample No.: 94 29	Alternate 1	Keys:	
Samp Matrix: (10) QA Code: () U Date Extracted:	Water-Total Un Inspecifed Date Analyzed: 94080	Peaks	TOLAL
Line Par #	Parameter Description	Units Value	3
1 629141 2 5910894 3 13925036 4 2896608 5 112367 6 -3008001 7 -3008002 8 -3008003 9 -3008004 10 -3008005 11 -3008006 12 -3008007 13 -3008008 14 -3008009 15 -3008010 16 -3008011 17 -3008012 18 -3008013 19 -3008014 20 -3008015	ETHANE, 1,2-DIETHOXY- Pyrazine, 2,3-dimethyl Pyrazine, 2-ethyl-6-methyl 1,3-BENZENEDIOL, 4-ETHYL- ETHANE, 1,1'-OXYBIS[2-ETHOUNKNOWN COMPOUND 1 UNKNOWN COMPOUND 2 UNKNOWN COMPOUND 3 UNKNOWN COMPOUND 4 UNKNOWN COMPOUND 5 UNKNOWN COMPOUND 6 UNKNOWN COMPOUND 7 UNKNOWN COMPOUND 7 UNKNOWN COMPOUND 8 UNKNOWN COMPOUND 8 UNKNOWN COMPOUND 9 UNKNOWN COMPOUND 10 UNKNOWN COMPOUND 10 UNKNOWN COMPOUND 11 UNKNOWN COMPOUND 12 UNKNOWN COMPOUND 13 UNKNOWN COMPOUND 14 UNKNOWN COMPOUND 15 UNKNOWN COMPOUND 15 UNKNOWN COMPOUND 16	ug/1 8.0N ug/1 3.6N ug/1 3.1N ug/1 1.9N DXY ug/1 14.3N ug/1 7.7 ug/1 8.2 ug/1 3.5 ug/1 3.5 ug/1 3.5 ug/1 3.5 ug/1 3.5 ug/1 3.5 ug/1 3.6 ug/1 3.6 ug/1 3.6 ug/1 3.6 ug/1 3.7 ug/1 3.3 ug/1 3.4 ug/1 5.0 ug/1 2.9 ug/1 2.9 ug/1 2.9 ug/1 2.9 ug/1 4.7 ug/1 3.1	NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ N

•

Sample No: 94 348000

Description: SED-1

Tent Ident - VOA Sca	Sediment
· ·	Result Units
METHANE, THIOBIS	50NJ* ug/kg
CAMPHENE (DOT)	410NJ* ug/kg
.ALPHA PINENE	1700NJ* ug/kg
1,4-CYCLOHEXADIENE, 1-+	2200NJ* ug/kg
1,3-CYCLOHEXADIENE, 1-+	1400NJ* ug/kg
.BETA PINENE	5300NJ* ug/kg
LINONENE	900NJ* ug/kg
CYCLOHEXENE, 1-METHYL-+	4200NJ* ug/kg
BICYCLO[3.1.0]HEX-2-EN+	360NJ* ug/kg
3 - CARENE	380NJ* ug/kg
BICYCLO[3.1.0]HEX-2-EN+	6600NJ* ug/kg
Bicyclo[3.1.0]hexane, +	930NJ* ug/kg

* • • • • • • • • • • • • • • • • • • •	
Tent Ident - B/N/Aci	Sediment
1	Result Units
OCTADECANOIC ACID	677NJ* ug/kg
CHOLESTEROL	7250NJ* ug/kg
. GAMMA SITOSTEROL	8200NJ* ug/kg
Oleic acid	7460NJ* ug/kg
Decanoic Acid, Tetra-	1720NJ* ug/kg
87	2340NJ+ ug/kg
Decanoic Acid, Penta-	2640NJ* ug/kg
9-HEXADECENOIC ACID	1550NJ* ug/kg
86	2580NJ* ug/kg
UNKNOWN HYDROCARBON 1	2410J* ug/kg
UNKNOWN COMPOUND 3	2800J* ug/kg
UNKNOWN COMPOUND 4	1010J* ug/kg
UNKNOWN COMPOUND 5	4400J* ug/kg
SULFUR, MOL. (SS)	10900NJ* ug/kg

Sample No: 94 348001

Tent Ident - VOA Sca	Sediment	
	Result	Units
METHANE, THIOBIS	218NJ*	ug/kg
ALPHA PINBNE	5.1NJ*	ug/kg
1,4-CYCLOHEXADIENE, 1-+	2.7NJ*	ug/kg
.BETA PINBNE	3.3NJ*	ug/kg
LIMONENE	3.9NJ*	ug/kg ug/kg
BICYCLO [4.1.0] HEPT - 2 - E+ BICYCLO [4.1.0] HEPT - 2 - E+	8.2NJ* 2.6NJ*	ug/kg ug/kg
UNKNOWN HYDROCARBON 3	5.0NJ*	ug/kg
DECANE, 2,2,6-TRIMETHY+	0.98NJ*	ug/k g

Tent Ident - B/N/Aci	Sediment	
i i i	Result	Units
Decanoic Acid, Hexa-	7700NJ*	ug/kg
CHOLESTEROL	8090NJ*	ug/kg
.GAMMASITOSTEROL	7700NJ*	ug/kg
Oleic acid	659NJ*	ug/kg
Decanoic Acid, Tetra-	1850NJ*	ug/kg
87	2200NJ*	ug/kg
9-HEXADECENOIC ACID	8100NJ*	ug/kg
UNKNOWN COMPOUND 1	4130J*	ug/kg
UNKNOWN COMPOUND 2	1950J*	ug/kg
UNKNOWN COMPOUND 3	1190J*	ug/kg
UNKNOWN COMPOUND 4	2260J*	ug/kg
UNKNOWN COMPOUND 5	6940J*	ug/kg
UNKNOWN COMPOUND 6	1970J*	ug/kg
UNKNOWN COMPOUND 7	3540J*	ug/kg
SULFUR, MOL. (SS)	22700NJ*	ug/kg
BENZENE, METHYL (1-METH+	2960NJ*	ug/kg

Sample No: 94 348002

Description: SED-3

*	
Tent Ident - VOA Sca	Sediment
	Result Units
METHANE, THIOBIS	136NJ* ug/kg

Tent Ident - B/N/Aci	Sediment	
l	Result Units	1
*		• = +
CHOLESTEROL	5790NJ* ug/kg	
. GAMMA SITOSTEROL	5320NJ* ug/kg	
PHYTOL	3000NJ* ug/kg	
Decanoic Acid, Tetra-	1610NJ* ug/kg	
9-HEXADECENOIC ACID	4710NJ* ug/kg	
UNKNOWN COMPOUND 1	1300J* ug/kg	
UNKNOWN COMPOUND 2	2160J* ug/kg	
UNKNOWN COMPOUND 3	1520J* ug/kg	
UNKNOWN COMPOUND 4	1920J* ug/kg	
Sulfur, (S7)	2050NJ* ug/kg	
SULFUR, MOL. (SE)	\$190NJ* ug/kg	

Blank ID: vbw4202

*	
Tent Ident - VOA Sca	Water-Total
Blank #1	Result Units
*	• • • • • • • • • • • • • • • • • • • •
UNKNOWN COMPOUND 1	15.8J* ug/l

Blank ID: BS4244

Blank ID: BW4203

.	
Tent Ident - B/N/Aci	Water-Total
Blank #1	Result Units
+ • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene.	0.24NJ* ug/l
UNKNOWN HYDROCARBON 1	0.25J* ug/1
UNKNOWN HYDROCARBON 2	0.21J* ug/l
UNKNOWN COMPOUND 1	0.47J* ug/l
UNKNOWN COMPOUND 2	0.30J* ug/1
UNKNOWN COMPOUND 3	0.42J* ug/1
UNKNOWN COMPOUND	0.27J * ug/1
UNKNOWN COMPOUND 5	0.84J* ug/1
UNKNOWN COMPOUND 6	0.25J* ug/1
difluorbiphenyl (surro+	0.40 NJ * ug/1
difluorobiphenyl (surr+	0.54NJ* ug/1

Tent Ident - B/N/I	Aci Sediment
Blank #1	Result Units
* • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
OCTADECANOIC ACID	34.0NJ* ug/kg
4 - HYDROXY - 4 - METHYLI	PENT+ 106000NJ* ug/kg
OCTADECANAL	26.1NJ* ug/kg
4-PENTEN-2-ONE, 4-1	
UNKNOWN COMPOUND 1	$\frac{1}{289J* ug/kg}$
UNKNOWN COMPOUND 2	53.0J* ug/kg
UNKNOWN COMPOUND 3	115J* ug/kg
UNKNOWN COMPOUND 4	186J* ug/kg
UNKNOWN COMPOUND 5	709J* ug/kg
UNKNOWN COMPOUND 6	736J* ug/kg
UNKNOWN COMPOUND 7	145J* ug/kg
UNKNOWN COMPOUND 8	277J* ug/kg
UNKNOWN COMPOUND 9	198J* ug/kg
UNKNOWN COMPOUND 10) 27.1J* ug/kg
UNKNOWN COMPOUND 1:	l 27.2J* ug/kg
UNKNOWN COMPOUND 12	2 78.5J* ug/kg
UNKNOWN COMPOUND 13	
UNKNOWN COMPOUND 14	
UNKNOWN COMPOUND-1!	
UNKNOWN COMPOUND-10	652J* ug/kg

Blank ID: BS4244D

Blank ID: BW4203D

| Tent Ident - B/N/Aci Water-Total Tent Ident - B/N/Aci 1 Sediment | Blank #2 Result Units Result Units 1 Blank #2 Tetrachloroethene OCTADECANOIC ACID 0.28NJ* ug/l 33.8NJ* ug/kg 4-HYDROXY-4-METHYLPENT+ 115000NJ* ug/kg UNKNOWN HYDROCARBON 1 0.21NJ* ug/1 0.26NJ* ug/1 4-PENTEN-2-ONE, 4-METH+ 2800NJ* ug/kg UNKNOWN HYDROCARBON 2 UNKNOWN HYDROCARBON 3 0.37NJ* ug/1 2-Pentene, 3,4-dimethy+ 838NJ* ug/kg 260J* ug/kg UNKNOWN COMPOUND 1 0.43NJ* ug/1 UNKNOWN HYDROCARBON 4 207J* ug/kg UNKNOWN COMPOUND 2 UNKNOWN HYDROCARBON 5 0.44NJ* ug/1 37.6J* ug/kg 0.46NJ* ug/1 UNKNOWN HYDROCARBON 6 UNKNOWN COMPOUND 3 0.43NJ* ug/1 UNKNOWN COMPOUND 4 301J* ug/kg UNKNOWN HYDROCARBON 7 624J* ug/kg UNKNOWN COMPOUND 5 UNKNOWN HYDROCARBON 8 0.26NJ* ug/1 515J* ug/kg UNKNOWN COMPOUND 6 UNKNOWN COMPOUND 1 0.49J* ug/1 0.36J* ug/1 **UNKNOWN** COMPOUND 7 178J* ug/kg UNKNOWN COMPOUND 2 0.38J* ug/1 UNKNOWN COMPOUND 8 122J* ug/kg UNKNOWN COMPOUND 3 302J* ug/kg UNKNOWN COMPOUND 9 UNKNOWN COMPOUND 4 0.33J* ug/1 31.0J* ug/kg UNKNOWN COMPOUND 10 0.40J* ug/1 UNKNOWN COMPOUND 5 25.2J* ug/kg UNKNOWN COMPOUND 11 UNKNOWN COMPOUND 6 0.92J* ug/1 UNKNOWN COMPOUND 12 84.2J* ug/kg difluorbiphenyl (surro+ difluorobiphenyl (surr+ 0.42NJ* ug/1 UNKNOWN COMPOUND 13 UNKNOWN COMPOUND 14 297J* ug/kg 0.57NJ* ug/1 1690J* ug/kg 508J* ug/kg UNKNOWN COMPOUND-15 25.0NJ* ug/kg

16-Octadecenal

Appendix H - Glossary of Terms - Sound Refining, 1994.

BOD - biochemical oxygen demand

BNA - base-neutral acids (semivolatile organics)

COD - chemical oxygen demand

comp - composite sample

CPS - corrugated plate separator

dry wt - dry weight

est. - estimated concentration

E - Department of Ecology

EC50 - concentration with an effect to 50% of the test organisms

Eff - effluent

EPA - United States Environmental Protection Agency

F-coli - fecal coliform bacteria

g - gram

grab - grab sample

grab-comp - grab-composite sample

IAF - induced air flotation unit

Inf - influent

LC50 - concentration which is lethal to 50% of the test organisms

MF - membrane filter

mg - milligram

mg/L - milligram per liter

NOEC - no observable effect concentration

NPDES - National Pollutant Discharge Elimination System

P - phosphorus

pH - hydrogen ion concentration

QA - quality assurance

QC - quality control

RBS - rotating biological surface

Sed - sediment sample

Sound - Sound Refining Company

TIC - tentatively identified compound

TNVS - total nonvolatile solids

TNVSS - total nonvolatile suspended solids

TOC - total organic carbon

TS - total solids

TSS - total suspended solids

 μ g - microgram

VOA - volatile organic acid