DEPARTMENT OF ECOLOGY

July 8, 1997

TO:

Max Linden and Bob Barwin

Central Regional Office

FROM:

Art Johnson

Environmental Investigations and Laboratory Services

SUBJECT:

WAPATO LAKE - PESTICIDES LEVELS, SEDIMENT BIOASSAYS,

AND ABUNDANCE OF BENTHIC INVERTEBRATES

(Waterbody Number WA-47-9040)

Summary

Pesticides, lead, and arsenic were analyzed in composite samples of whole rainbow trout, rainbow trout fillets, and bottom sediments collected August-September 1996 from Wapato Lake, located in the fruit orchards above Lake Chelan. Lead arsenate was used historically to control codling moths in apple trees.

DDT, its metabolites DDD and DDE, dieldrin, hexachlorobenzene, dacthal and chlorpyrifos were detected in the fish tissue samples. All concentrations were low, generally less than 10 ug/Kg (parts per billion), and do not represent a hazard to human health or wildlife.

However, high concentrations of DDD (to 650 ug/Kg) and DDE (to 470 ug/Kg) were found in the lake sediments. The sediments were toxic in Microtox® bioassays and benthic macroinvertebrates were virtually absent. These findings are consistent with the presence of a toxin. Although pesticides may not be involved, the DDD concentrations are high enough to have a severe adverse effect on benthic invertebrate communities. Comparable or higher concentrations of DDD and DDE have been reported in the sediments of Roses Lake further downstream in the drainage.

Lead and arsenic were not detectable in Wapato Lake rainbow trout. The concentrations found in the sediments, approximately 20 mg/Kg and 3 mg/Kg, respectively, are at natural background levels.

Recommendation

Assess the health of the benthic invertebrate community in shallow nearshore areas
of Wapato Lake. These areas would be expected to be more productive than the
deepwater zone (54 - 58 feet) sampled in the present survey. Consider expanding
the assessment to include the other lakes in the drainage - - Roses, Dry, and
Antilon.

Background

In response to a request from the Central Regional Office, a survey was conducted last summer to determine if there were significant pesticide residues in the fish and sediments of Wapato Lake, located in the fruit orchards above Manson on Lake Chelan (Figure 1). Previous Ecology surveys had detected elevated levels of pesticides downstream of Wapato Lake. Sediment samples collected from Roses Lake in 1992 had high concentrations of the DDT metabolites DDD and DDE (Serdar et al., 1994). DDT and the organophosphorus insecticides azinphos-methyl, chlorpyrifos, and diazinon exceeded water quality criteria in 1994 samples from Stink Creek at the downstream end of the Wapato Lake drainage (Davis, 1996). Fish kills have occurred in Wapato Lake, although the cause is unknown and may not involve pesticides (Ken Williams, personal communication).

Sampling and Analysis

Rainbow trout and bottom sediment samples were obtained on September 12 and August 27, respectively. Sampling locations are shown in Figure 2. Rainbow trout were caught with gill nets set in the upper half of the lake. Three groups of eight fish each were selected to be analyzed as one whole fish composite and two composites of skin-on fillets. Sufficient numbers of other species could not be obtained for analysis, including through use of an electroshocker.

The fish used for fillet samples were separated by size. One composite consisted of fish with a median total length of 226 mm, the other 317 mm. The smaller fish would have been planted as fingerlings in May 1996, while the large ones would have been released as fingerlings in May 1995 (Ken Williams, personal communication).

A stainless steel, 0.05m^2 Ponar grab was used to collect sediment samples at one site each in the upper and lower lake. Sediment samples consisted of composites of the top 2-cm surface layer from five separate grabs. Water depths were 54 - 58 feet.

Fish samples were analyzed for 43 pesticides or breakdown products known to have significant bioaccumulation potential. The majority of these chemicals are no longer used in the U.S. The sediments were analyzed for 162 pesticide compounds that include most of the active ingredients in formulations currently in use. The fish and sediment analysis included PCBs, but these were not detected.

The samples were also analyzed for lead and arsenic. Large amounts of lead arsenate were used to control codling moths in Washington apple trees prior to the introduction of DDT in 1948. As a result, high levels of lead and arsenic are found in the soil of many older orchards (Benson, 1968; Kittle, 1994; Peryea, personal communication)

Sediment toxicity was evaluated through laboratory bioassays and an analysis of the benthic invertebrate community. Aliquots from sediment samples were tested against the amphipod *Hyalella azteca* and the bioluminescent bacteria, *Vibrio fischeri* (Microtox ®). The *Hyallela* assay is a ten-day test of survival. The Microtox system measures reduction in light output on contact with the sample.

Benthic invertebrate samples consisted of three separate grabs at each of the two sediment sampling sites shown in Figure 2. The entire grab's contents was sieved through a 0.5 mm screen and the retained organisms preserved in ethyl alcohol.

Detailed information on sampling methods and preparation of tissue and sediment samples can be found in Davis and Serdar (1996). The chemical analyses were done at the Ecology Manchester Environmental Laboratory, except sediment grain size which was analyzed by Soil Technology, Inc., Seattle. The sediment bioassays were conducted by CH2M Hill, Seattle. Appendix A contains descriptions of methods, supporting quality assurance information, and the complete chemical data showing all chemicals analyzed and associated detection limits. Identification and enumeration of benthic invertebrates was done by Aquatic Biology Associates, Corvallis, following the protocols in Plotnikoff and White (1996).

Results

Table 1 summarizes the results from chemical analysis of the fish tissue and sediment samples. Relatively few pesticides were detected. Fish samples contained trace amounts (generally less than 10 ug/Kg) of DDT compounds, dieldrin, hexachlorobenzene, dacthal, and chlorpyrifos. Of these, only dacthal (DCPA, a herbicide) and chlorpyrifos (Lorsban, an insecticide) are currently used. The highest concentrations and largest number of compounds were detected in the whole fish sample, followed by the fillet sample from the larger of the two groups of trout. Lead and arsenic were not detected in the fish samples. None of the pesticide concentrations detected exceed EPA (1993) screening values for 10⁻⁶ health risks, FDA action levels,

or other fish consumption guidelines. These levels would not be considered a concern for wildlife (Newell et al., 1987).

The sediments contained elevated concentrations of the DDT metabolites DDD (230 - 650 ug/Kg) and DDE (160 - 470 ug/Kg). (DDD also had some historical use as an insecticide, TDE/Rothane.) The highest concentrations occurred in the lower lake sample. Low concentrations of undegraded DDT and chlordane were also detected in the lower lake. Lead and arsenic concentrations measured in the sediments, approximately 20 and 3 mg/Kg, respectively, are not elevated above natural background (San Juan, 1994; PTI 1989).

Levels of DDT compounds in Wapato Lake are about half those found downstream in Roses Lake. As in Wapato, high concentrations in Roses Lake sediments (1,488 - 1,667 ug/Kg total DDT) are not reflected in the lake's fish; 103 ug/Kg total DDT was detected in rainbow trout fillets (Serdar et al., 1994). It appears that these compounds are effectively sequestered in the sediments. Recent Ecology data show a state median of 60 ug/Kg total DDT in fish fillets (Davis, 1996).

Findings from the sediment bioassays are summarized in Table 2. The survival rate of *Hyallela* amphipods exposed to Wapato Lake sediments was 83 - 88%, not significantly different from amphipods in laboratory control sediments (washed silica sand). The Microtox test, however, showed there was substantial toxicity in both sediment samples. A sediment concentration of approximately 4% (4.5% upper lake, 3.2% lower lake) caused a 50% reduction in light output when compared to a control sediment. Microtox has been shown to be the more sensitive of these two bioassays in tests on Washington State freshwater sediments (Cubbage, personal communication).

Analysis of the invertebrate samples showed the only benthic organisms present were Porifera colonies (small sponges of 0.5-2 mm diameter). *Chaoborus* larvae (phantom midges) and *Daphnia* (water fleas) were also present in some samples but these are water column species that rest on the bottom during the day to avoid predation. Appendix B contains the sample data.

In the opinion of Dr. Robert Wisseman (1997), director of the laboratory doing the taxonomy:

"The virtual absence of benthic fauna is abnormal, and suggests the influence of toxins. Benthic fauna that would be normally found throughout temperate North America on soft lake bottoms of similar depth, would be:

Eutrophic lakes/ponds with near anaerobic bottom sediments. The minimum fauna expected would be Oligochaeta (worms) and Chironomidae (midges).

Mesotrophic and oligotrophic lakes/ponds with more aerobic bottom sediments.

Common and widespread taxa include Oligochaeta, Chironomidae, Nematoda (roundworms), Sphaeriidae (fingernail clams), Ceratopogonidae (no-see-um midges), Hirudinea (leaches), Amphipoda (scuds), Isopoda, Gastropoda (snails), Sialis (alderflies), Callibaetis (mayflies), and several caddisfly genera. Other taxa can be expected depending on the proximity of other types of substrate."

Although constituents other than pesticides may be responsible for the absence of benthic invertebrates or the toxic effect seen in the Microtox test, sediment chemistry data point to DDD levels as one potential factor. Concentrations of 6 ug/Kg 4,4'-DDD (normalized to total organic carbon content) have been shown to result in severe adverse effects on sediment-dwelling organisms (Persaud et al., 1993). 4,4'-DDD concentrations in Lake Wapato sediments were 3.1 mg/Kg TOC in the upper lake and 8.9 mg/Kg TOC in the lower lake. Persaud et al. calculated a lowest effect level for 4,4'-DDD of 8 ug/Kg dry weight compared to 230 - 650 ug/Kg dry in Wapato Lake. Although DDE concentrations approach those of DDD, DDE has a low toxicity to invertebrates and no insectidal properties (McEwen and Stephen, 1979).

References

Benson, N.R. 1968. Arsenic in Soil. Proceedings, Washington State Horticultural Association. pp. 109-114.

Cubbage, J. Personal communication. Freshwater Sediment Criteria Development Project, Washington State Dept. of Ecology, Olympia, WA.

Davis, D. 1996. Washington State Pesticide Monitoring Program: 1994 Surface Water Sampling Report. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 96-305.

Davis, D., A. Johnson, and D. Serdar. 1995. Washington State Pesticide Monitoring Program: 1993 Fish Tissue Sampling Report. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 95-356.

Davis, D., and D. Serdar. 1996. Washington State Pesticide Monitoring Program: 1994 Fish Tissue and Sediment Sampling Report. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 96-352.

Kittle, L. 1994. Migrant Worker Housing Facility Lead and Arsenic Survey. Washington State Dept. of Health, Olympia, WA.

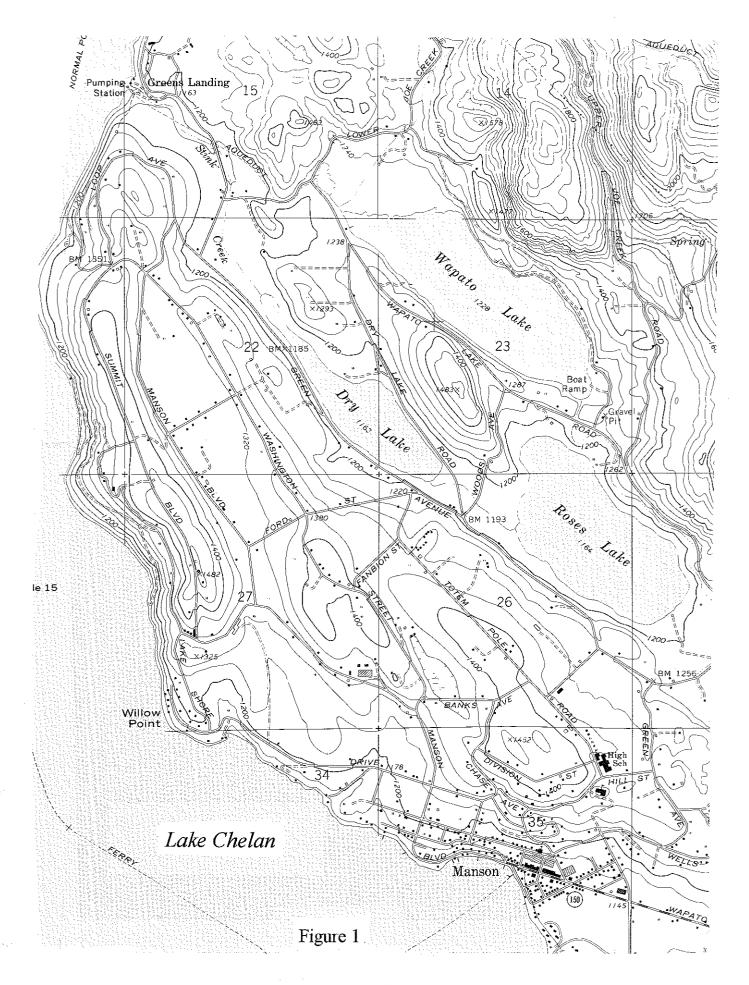
McEwen, F.L. and G.R. Stephen. 1979. The Use and Significance of Pesticides in the Environment. John Wiley and Sons, Inc., New York.

Newell, A, D. Johnson, and L. Allen. 1987. Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife. New York State Dept. of Environmental Conservation. Tech. Rept. 87-3.

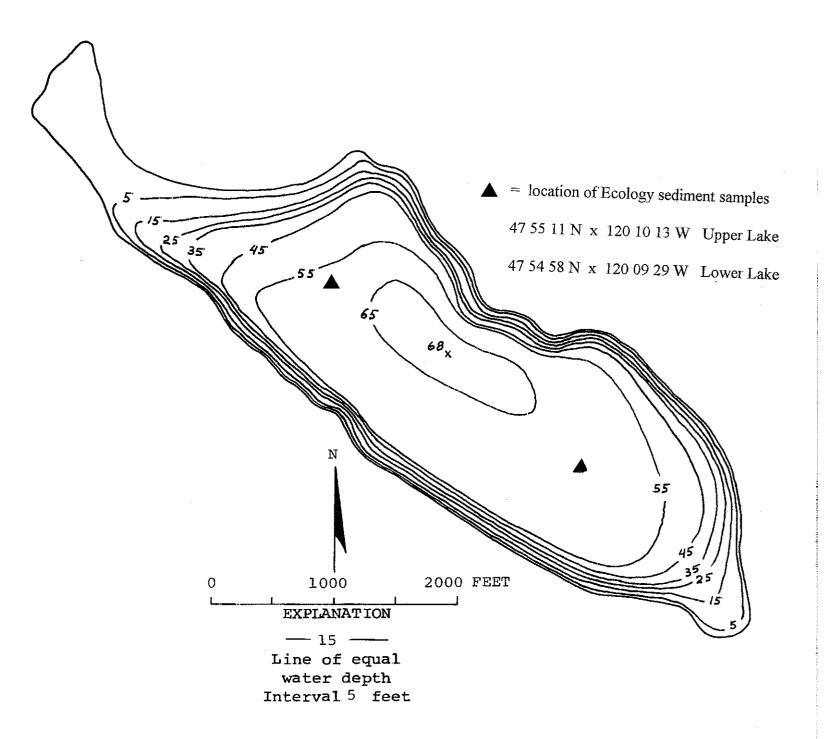
Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. ISBN 0-7729-9248-7.

Peryea, F. Personal communication. Tree Fruit Research and Extension Center, Washington State Univ., Wenatchee, WA.

Plotnikoff, R.W. and J. White. 1996. Taxonomic Laboratory Protocol for Stream Macroinvertebrates Collected by the Washington State Department of Ecology. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 96-323.


PTI. 1989 (draft). Background Concentrations of Selected Chemicals in Water, Soil, Sediments, and Air in Washington State. Prep. for Washington State Dept. of Ecology by PTI Environmental Services, Bellevue, WA.

San Juan, C. 1994. Natural Background Soil Metals Concentrations in Washington State. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 94-114.


Serdar, D., A. Johnson, and D. Davis. 1994. Survey of Chemical Contaminants in Ten Washington Lakes. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 94-154.

Williams, Ken. Personal communication. Washington State Dept. of Fish and Wildlife, Wenatchee, WA.

Wisseman, R.W. 1997. Letter to A. Johnson, Washington State Dept. of Ecology, Olympia, WA. Aquatic Biology Assoc., Inc., Corvallis, OR.

Page 7

Wapato Lake, Chelan County. From Washington Department of Game, February 15, 1950.

Figure 2

Table 1. Pesticides, Lead, and Arsenic Concentrations Detected in Wapato Lake Samples [pesticides in ug/Kg (ppb); metals in mg/Kg (ppm); tissue on wet weight basis; sediment as dry weight]

Sample Type		Rainbow Trou	t	Sediment		
Tissue	Whole	Fillet	Fillet			
Mean Length	204	226	317			
Mean Weight	132	126	326		~ ~	
No Individuals	8	8	8			
Location		- -		Upper Lake	Lower Lake	
Date	12 Sept 96	12 Sept 96	12 Sept. 96	27 Aug 96	27 Aug 96	
Sample No.	37-8330	37-8331	37-8332	35-8082	35-8089	
4,4'-DDE	50	15	28	160	470	
2,4'-DDE	4.0 U	3.7 U	4.0 U	13 U	15	
4,4'-DDT	11	4.0	3.9	13 U	27	
4,4'-DDD	6.1	1.8 J	3.3 J	230	650	
2,4'-DDD	0.6 NJ	3 7 U	4 0 U	33	90	
DDMU	<u>3.3 J</u>	<u>1.1 J</u>	<u>2,2 J</u>	<u>30</u>	<u>90</u>	
total DDT*	68	21	35	423	1,222	
dieldrin	1.4 J	3.7 U	0.9 J	38 U	44 U	
cis-chlordane	4.0 U	3 7 U	$4.0~\mathrm{U}$	13 U	6.1 J	
hexachlorobenzene	0.5 NJ	19 U	$2.0~\mathrm{U}$	6 4 U	7.3 U	
dacthal	1.4 J	3 7 U	0.6 J	170 U	180 U	
chlorpyrifos	0.9 J	7.4 U	1.5 J	51 U	58 U	
lead	0 2 U	0.2 U	0 2 U	19.8	20.9	
arsenic	0 3 UJ	0 3 UJ	0.3 UJ	2.9	3.0	
lipid	4.0%	2 6%	3.0%			
total organic carbon				7 4%	7.3%	
fines (silt+clay)				94%	98%	

Note: detections shown in **bold**

U = not detected at or above reported value

J/NJ = estimated concentration

^{*}excluding the metabolite DDMU

Table 2. Results of Bioassays on Lake Wapato Sediments

Location	Upper Lake	Lower Lake	
Date	27 Aug. 96	27 Aug. 96	
Sample No.	35-8082	35-8089	
<u>Hyallela</u>			
Percent Survival	83.3%	88.3%	
(control = 88.3%)			
<u>Microtox</u>			
EC50*	4.5%	3.2%	

^{*}EC50 = effective concentration reducing light output by 50%

APPENDIX A

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

December 16, 1996

Subject:

Grayland Cranberry Pesticides, Garrison Creek and Wapato Lake Fish Tissues

Samples:

96-358165 to -358171

96-388311

96-378330 to -378332

Case No.

1634-96

1608-96

1564-96

Officer:

Dale Davis Ed Rashin

Art Johnson

By:

Dickey D. Huntamer &

Norman Olson

Organics Analysis Unit

TISSUE PESTICIDES/POLYCHLORINATED BIPHENYLS

ANALYTICAL METHODS:

The tissue samples from the three projects listed above were extracted and analyzed together as a batch using the Manchester Environmental Laboratory fish tissue procedure. The tissue was extracted with acetone by grinding with a Polytron tissue grinder, solvent exchanged to hexane, cleaned up using Florisil. The 50% Florisil fraction was partitioned with acetonitrile and further cleaned up with Forisil. Analysis was done following SW-846-8080 by dual column capillary gas chromatography with electron capture detectors.

HOLDING TIMES:

The samples were stored frozen until extraction. All extraction holding times were within the recommended limits.

BLANKS:

No target analytes were detected in the laboratory blanks.

SURROGATES:

Two of the surrogates, dibutylchlorendate (DBC) and decachlorobiphenyl (DCB) had acceptable recoveries. The surrogate, 4,4' dibromoctafluorobiphenyl (DBOB) was not used in the analysis. Tetrachloro-meta-xylene (TMX) was also added as a surrogate. Recoveries for TMX ranged from 38% to 82% except for sample, -388311 Garrison Creek, where only 5% was recovered. Recoveries for DBC and DCB in sample -388311 were acceptable so no qualifiers were added to the data.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

Matrix spike recoveries were acceptable for most of the compounds. The following four compounds had slight problems with matrix spike recoveries. No qualifiers were added to the data based on the matrix spike recoveries. The compounds were:

Spiked Sample	-3783	30	-378267	
Heptachlor	low(4%	6) -LDP1	49%LDP1	
	73%	-LDP2	16%LDP2	
Methyl Parathion	108%	-LDP1	61% - LDP1	
	79%	-LDP2	33% - LDP2	
2,4-DDT	85%	-LDP1	79% - LDP1	
	36%	-LDP2	75% - LDP2	
Chlorpyrifos	191%	-LDP1	124% LDP1	
	71%	-LDP2	147% -LDP2	

ANALYTICAL COMMENTS:

Endrin aldehyde was not included as a target due to the lack of recovery after the Florisil cleanup.

Kelthane breaks down to 4,4° dichlorobenzophenone. Both compounds were monitored for but no spike recoveries calculated. Data flagged as estimated quantitation limits, "UJ".

Trifluralin was not spiked but was monitored for and it is also flagged "UJ".

No other analytical problems were encountered in the analysis. The data is acceptable for use as qualified.

DATA QUALIFIER CODES:

U	-	The analyte was not detected at or above the reported value.
J .	-	The analyte was positively identified. The associated numerical value is an estimate.
UJ	-	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are unusable for all purposes.
EXP	-	The result is equal to the number before EXP times 10 to the power of the number after EXP. As an example 3EXP6 equals 3×10^6 .
NAF	-	Not analyzed for
N	-	For organic analytes there is evidence the analyte is present in this sample.
NJ	•	There is evidence that the analyte is present. The associated numerical result is an estimate.
E	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range.
bold	•	The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

CN_FISHT.DOC

Department of Ecology

Analysis Report for

Lead

Project Name: Wapato Lake

LIMS Project ID: 1564-96

Project Officer: Art Johnson **Date Reported:** 22-NOV-96

Method: EPA239.2 Matrix: Tissue

Analyte: Lead

Sample	QC	Field ID	Result	Qualifier	Units	Received	Analyzed
96378330 96378331 96378332 96378332 96378332 BLN63895 LCS64016	Matrix S Matrix S		0.2 0.2 0.2 100 % 100 % 0.2 86 %	U U U	mg/Kg mg/Kg mg/Kg	09/16/96 09/16/96 09/16/96 09/16/96 09/16/96	11/15/96 11/15/96 11/15/96 11/15/96 11/15/96

PROCEDURAL BLANKS

The procedural blanks associated with these samples show no analytically significant levels of analyte

SPIKED SAMPLES ANALYSIS

Spiked and duplicate spiked sample analysis were performed on this data set. All spike recoveries are within the CLP acceptance limits of +/- 25%.

PRECISION DATA

The results of the spiked and duplicate spiked samples are used to evaluate precision on this sample set. The relative percent difference (RPD) for all analytes is within the 20% CLP acceptance window for duplicate analysis.

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

LCS analyses, except those for arsenic, are within the windows established for each parameter. Arsenic data is qualified UJ, as undetected at estimated detection level due to low recovery of arsenic from the DORM-1 and DORM-2 LCS samples

Please call Randy Knox at SCAN 360-871-8811 or Jim Ross at SCAN 360-871-8808 to further discuss this project

RLK:rlk

November 25, 1996

To:

Art Johnson

RSK

From:

Randy Knox, Metals Chemist

Subject:

Wapato Lake Project

Tissue

QUALITY ASSURANCE SUMMARY

Data quality for this project is generally good with the exception that recovery of arsenic from the LCS samples is low No other significant quality assurance issues are noted with the data

SAMPLE INFORMATION

The samples from the Wapato Lake Project were received by the Manchester Laboratory on 9/16/96 in good condition.

HOLDING TIMES

All analyses were performed within the USEPA Contract Laboratory Program (CLP) holding times for metals analysis (28 days for mercury, 180 days for all other metals)

INSTRUMENT CALIBRATION

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. All initial and continuing calibration verification standards were within the relevant USEPA (CLP) control limits. AA calibration gave a correlation coefficient (r) of 0.995 or greater, also meeting CLP calibration requirements.

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN64094

Method: SW8080 **Date Prepared:** 10/02/96 Matrix: Tissue

Blank ID: OBT6276A2 Project Officer: Art Johnson

Date Analyzed: 11/01/96

Units: ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	3.6	U	PCB - 1254	36	\mathbf{U}
Beta-BHC	3.6	$\check{\mathbf{U}}$	PCB - 1260	36	$\check{\mathbf{U}}$
Gamma-BHC (Lindane)	3.6	$ar{\mathbf{U}}$	Dacthal (DCPA)	3.6	Ū
Delta-BHC	3.6	Ŭ	PCB - 1232	36	U
Heptachlor	3.6	$\ddot{ extbf{U}}$	Diazinon	36	Ū
Aldrin	3 6	Ū	Ethion	14	Ū
Heptachlor Epoxide	3.6	U	Parathion	7.1	U
Trans-Chlordane (Gamma)	3.6	U	Methyl Parathion	7.1	U
Endosulfan I	3.6	Ū	Treflan (Trifluralin)	3.6	UJ
Dieldrin	3.6	U	Chlorpyriphos	7.1	U
4,4'-DDE	3.6	Ū	ry r		
Endrin	3.6	${f U}$	Surrogate Recoveries		-
Endosulfan II	3.6	U			
4,4'-DDD	3.6	U	Dibutylchlorendate	69	%
Endrin Aldehyde	3.6	U	Tetrachloro-m-xylene	51	%
Endosulfan Sulfate	3.6	U	Decachlorobiphenyl	78	%
4,4'-DDT	3.6	\mathbf{U}			
Endrin Ketone	3.6	${f U}$			
Methoxychlor	3.6	${f U}$			
Alpha-Chlordene	36	\mathbf{U}			
Gamma-Chlordene	36	U			
Oxychlordane	3.6	${f U}$			
DDMU	36	\mathbf{U}			
Cis-Chlordane (Alpha-Chlordane	36	${f U}$			
Cis-Nonachlor	3.6	U			
Kelthane	14	UJ			
2,4'-DDE	36	${f U}$			1
Trans-Nonachlor	3.6	${f U}$			1
2,4'-DDD	36	${f U}$			
2,4'-DDT	3.6	U			1
Mirex	3.6	U	•		
Toxaphene	110	U			
4,4'-Dichlorobenzophenone	14	UJ	•		i
Hexachlorobenzene	1.8	U			
Pentachloroanisole	18	U			l
Tetradifon (Tedion)	14	U			
PCB - 1242	36	U			ŀ
PCB - 1248					1

Authorized Dry	000	
Authorized By:		i

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Method: SW8080

Sample: BLN64093 Blank ID: OBT6276A1

Date Prepared: 10/02/96

Matrix: Tissue

Project Officer: Art Johnson

Date Analyzed: 11/01/96

Units: ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	36	U	PCB - 1254	36	\mathbf{U}
Beta-BHC	3.6	Ŭ	PCB - 1260	36	Ū
Gamma-BHC (Lindane)	3.6	${f U}$	Dacthal (DCPA)	3.6	U
Delta-BHC	36	U	PCB - 1232	36	U
Heptachlor	3.6	U	Diazinon	- 36	U
Aldrin	3.6	U	Ethion	14	U
Heptachlor Epoxide	3.6	U	Parathion	7.1	U
Trans-Chlordane (Gamma)	3.6	\mathbf{U}	Methyl Parathion	7 1	${f U}$
Endosulfan I	3.6	${f U}$	Treflan (Trifluralin)	36	UJ
Dieldrin	3.6	${f U}$	Chlorpyriphos	7.1	${f U}$
4,4'-DDE	36	U	10 1		
Endrin	3.6	U	Surrogate Recoveries		
Endosulfan II	3.6	U	2		
4,4'-DDD	3.6	U	Dibutylchlorendate	68	%
Endrin Aldehyde	3.6	U	Tetrachloro-m-xylene	48	%
Endosulfan Sulfate	3.6	${f U}$	Decachlorobiphenyl	82	%
4,4'-DDT	3.6	${f U}$	The state of the s		
Endrin Ketone	3.6	U			
Methoxychlor	3.6	U			
Alpha-Chlordene	3.6	U			
Gamma-Chlordene	3.6	${f U}$			*
Oxychlordane	3.6	${f U}$			
DĎMU	3.6	U			
Cis-Chlordane (Alpha-Chlordane	3.6	U			
Cis-Nonachlor	3.6	\mathbf{U}			
Kelthane	14	UJ			
2,4'-DDE	3.6	U			
Trans-Nonachlor	3.6	Ū			
2,4'-DDD	3.6	U			
2,4'-DDT	3.6	Ū			
Mirex	3.6	Ŭ			
Toxaphene	110	Ū			
4,4'-Dichlorobenzophenone	14	ŪJ			
Hexachlorobenzene	18	Ü			
Pentachloroanisole	1.8	Ŭ			
Tetradifon (Tedion)	14	Ŭ			
PCB - 1242	3 6	Ŭ			
PCB - 1248	36	Ŭ	•		
		•			

Authorized By:	6) . He
Aumonzea By:	Y X XX

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96378332 Field ID: LG RBT FL

Date Received: 09/16/96

Method: SW8080

Field ID: LG RBT FL
Project Officer: Art Johnson

an .

Date Prepared: 10/02/96 **Matrix:** Tissue **Date Analyzed:** 11/01/96 **Units:** ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	4.0	U	PCB - 1254	40	U
Beta-BHC	4.0	Ŭ	PCB - 1260	40	Ŭ
Gamma-BHC (Lindane)	4.0	Ŭ	Dacthal (DCPA)	0.6	Ĵ
Delta-BHC	4.0	$ar{\mathbf{U}}$	PCB - 1232	40	Ŭ
Heptachlor	4.0	Ū	Diazinon	40	Ū
Aldrin	4.0	Ū	Ethion	16	U
Heptachlor Epoxide	4.0	$ar{\mathbf{U}}$	Parathion	7.9	Ū
Trans-Chlordane (Gamma)	4.0	$ar{\mathbf{U}}$	Methyl Parathion	7.9	Ū
Endosulfan I	4.0	Ū	Treflan (Trifluralin)	4.0	UJ
Dieldrin	0.9	J	Chlorpyriphos	1.5	J
4,4'-DDE	28	•	- K 4 K	= =	•
Endrin	$\frac{-3}{4.0}$	U	Surrogate Recoveries		
Endosulfan II	4.0	Ū	Danie og de la constant de la consta		
4,4'-DDD	3.3	Ĵ	Dibutylchlorendate	67	%
Endrin Aldehyde	4.0	Ŭ	Tetrachloro-m-xylene	53	%
Endosulfan Sulfate	4.0	Ŭ	Decachlorobiphenyl	81	%
4,4'-DDT	3.9	_	, ,		
Endrin Ketone	4.0	U			
Methoxychlor	4.0	$ar{\mathbf{U}}$			
Alpha-Chlordene	4.0	$ar{\mathbf{U}}$	•		
Gamma-Chlordene	40	Ū			
Oxychlordane	4.0	Ū			
DDMU	2.2	J			
Cis-Chlordane (Alpha-Chlordane	4.0	Ŭ		*	
Cis-Nonachlor	4.0	Ū			
Kelthane	16	ŬJ			
2,4'-DDE	4.0	Ū			
Trans-Nonachlor	4.0	Ū			
2,4'-DDD	4.0	$\check{\mathbf{U}}$			
2,4'-DDT	4.0	Ŭ			
Mirex	4.0	Ŭ			
Toxaphene	120	Ŭ			
4,4'-Dichlorobenzophenone	16	ŬI			
Hexachlorobenzene	2.0	Ü			
Pentachloroanisole	2.0	Ŭ			
Tetradifon (Tedion)	16	Ŭ			
PCB - 1242	40	Ŭ			
PCB - 1248	40	Ŭ			

authorized By:	2.X1.	
aumorizea By:		

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96378331 Date Received: 09/16/96 Field ID: SM RBT FL

Date Prepared: 10/02/96

Method: SW8080

Matrix: Tissue

Project Officer: Art Johnson

Date Analyzed: 11/01/96 **Units:** ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	37	\mathbf{U}	PCB - 1254	37	U
Beta-BHC	3.7	${f U}$	PCB - 1260	37	U
Gamma-BHC (Lindane)	3.7	U	Dacthal (DCPA)	3.7	U
Delta-BHC	3.7	U	PCB - 1232	37	U
Heptachlor	3.7	U	Diazinon	37	U
Aldrin	3.7	${f U}$	Ethion	15	${f U}$
Heptachlor Epoxide	3.7	U	Parathion	7.4	\mathbf{U}
Trans-Chlordane (Gamma)	3.7	Ū	Methyl Parathion	7.4	U
Endosulfan I	3.7	$ar{\mathbf{U}}$	Treflan (Trifluralin)	3 7	UI
Dieldrin	3.7	Ü	Chlorpyriphos	7.4	U
4,4'-DDE	15	_			
Endrin	37	${f U}$	Surrogate Recoveries		
Endosulfan II	3.7	$\check{\mathbf{u}}$	~ ·		
4,4'-DDD	1.8	$\check{\mathbf{J}}$	Dibutylchlorendate	63	%
Endrin Aldehyde	3.7	Ŭ	Tetrachloro-m-xylene	38	%
Endosulfan Sulfate	3.7	Ū	Decachlorobiphenyl	80	%
4,4'-DDT	4.0	Ü			
Endrin Ketone	3.7	U			٠
Methoxychlor	37	$\widetilde{\mathbf{U}}$			
Alpha-Chlordene	3.7	Ū			
Gamma-Chlordene	3.7	Ū			
Oxychlordane	3.7	f u			
DDMU	1.1	Ĵ			
Cis-Chlordane (Alpha-Chlordane	3.7	Ŭ			
Cis-Nonachlor	3.7	Ŭ			
Kelthane	15	ŬJ			
2,4'-DDE	3.7	Ŭ			
Trans-Nonachlor	3.7	Ŭ			
2,4'-DDD	3.7	$reve{\mathbf{U}}$			
2,4'-DDT	3.7	Ŭ			
Mirex	3.7	Ŭ			
Toxaphene	110	Ü			
4,4'-Dichlorobenzophenone	15	ÜJ			
Hexachlorobenzene	1.9	U			
Pentachloroanisole	1.9	Ü		•	
Tetradifon (Tedion)	15	Ŭ			-
PCB - 1242	37	Ŭ			
PCB - 1242 PCB - 1248	37 37	Ü			
I CD - 1240	.91	U			ļ

O. 4.5 Authorized By:

Release Date: (2/(3/96)

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96378330 (Matrix Spike - LMX2) Date Received: 09/16/96

Method: SW8080

Field ID: SM RBT WH

Date Prepared: 10/02/96

Matrix: Tissue

Project Officer: Art Johnson

Date Analyzed: 11/01/96 **Units:** % Recovery

Analyte	Result	Qualifier			
Alpha-BHC	89		Surrogate Recoveries		
Beta-BHC	94				
Gamma-BHC (Lindane)	95		Dibutylchlorendate	74	%
Delta-BHC	102		Tetrachloro-m-xylene	77	%
Heptachlor	73		Decachlorobiphenyl	82	%
Aldrin	86		-		
Heptachlor Epoxide	83				
Trans-Chlordane (Gamma)	86				
Endosulfan I	80		•		
Dieldrin	76				
4,4'-DDE	121				
Endrin	77				
Endosulfan II	97				
4,4'-DDD	102				
Endosulfan Sulfate	104				
4,4'-DDT	82				
Endrin Ketone	107				
Methoxychlor	104				
Alpha-Čhlordene	79			•	
Gamma-Chlordene	96				
Oxychlordane	94				
DDM U	103				
Cis-Chlordane (Alpha-Chlordane	97				
Cis-Nonachlor	91				
2,4'-DDE	88				
Trans-Nonachlor	92				
2,4'-DDD	100				
2,4'-DDT	36				
Mirex	96				
Hexachlorobenzene	49				
Pentachloroanisole	53				
Tetradifon (Tedion)	87				
Dacthal (DCPA)	103			•	
Diazinon	122				
Ethion	84				
Parathion	101				
Methyl Parathion	79 .				
Chlorpyriphos	71				

D. Wat Authorized By: _____

Release Date: /2/23/96

Page:

3

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name: Wapato Lake **LIMS Project ID:** 1564-96

Sample: 96378330 (Matrix Spike - LMX1) Date Received: 09/16/96

Method: SW8080

Field ID: SM RBT WH

Date Prepared: 10/02/96

Matrix: Tissue

Project Officer: Art Johnson

Date Analyzed: 11/01/96 **Units:** % Recovery

Analyte	Result Qualifier			
Alpha-BHC	97	Surrogate Recoveries		
Beta-BHC	104		•	
Gamma-BHC (Lindane)	103	Dibutylchlorendate	78	%
Delta-BHC	114	Tetrachloro-m-xylene	52	%
Heptachlor	4	Decachlorobiphenyl	82	%
Aldrin	74	<u> </u>		
Heptachlor Epoxide	93			
Trans-Chlordane (Gamma)	95	·		
Endosulfan I	92			
Dieldrin	89			
4,4'-DDE	89			
Endrin	89			
Endosulfan II	108			
4,4'-DDD	112			
Endosulfan Sulfate	116			
4,4'-DDT	89			
Endrin Ketone	116			
Methoxychlor	114			
Alpha-Chlordene	63			
Gamma-Chlordene	100			
Oxychlordane	98			
DDMU	93	~		
Cis-Chlordane (Alpha-Chlordane				
Cis-Nonachlor	97			
2,4'-DDE	87			
Trans-Nonachlor	85			
2,4'-DDD	106			
2,4'-DDT	85			
Mirex	97			
Hexachlorobenzene	34			
Pentachloroanisole	57			
Tetradifon (Tedion)	101			
Dacthal (DCPA)	121			
Diazinon	92			
Ethion	88		i	
Parathion	103			
Methyl Parathion	108			
Chlorpyriphos	191			

Authorized By:	Release Date: _	12/13/96
----------------	-----------------	----------

Department of Ecology

Analysis Report for

Pesticides in Tissue; WSPMP list

Project Name: Wapato Lake LIMS Project ID: 1564-96

Sample: 96378330 Date Received: 09/16/96 Method: SW8080 Field ID: SM RBT WH Date Prepared: 10/02/96 Matrix: Tissue Project Officer: Art Johnson Date Analyzed: 11/01/96 Units: ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	40	U	PCB - 1254	40	U
Beta-BHC	4.0	Ŭ	PCB - 1260	40	Ŭ
Gamma-BHC (Lindane)	4.0	$ar{\mathbf{U}}$	Dacthal (DCPA)	1.4	Ĵ
Delta-BHC	4.0	Ŭ	PCB - 1232	40	Ŭ
Heptachlor	4.0	$ar{\mathbf{U}}$	Diazinon	40	Ū
Aldrin	4.0	Ü	Ethion	16	Ū
Heptachlor Epoxide	4.0	Ū	Parathion	8.0	Ū
Trans-Chlordane (Gamma)	4.0	U	Methyl Parathion	8.0	Ū
Endosulfan I	4.0	Ū	Treflan (Trifluralin)	4.0	ŪJ
Dieldrin	1.4	Ĵ	Chlorpyriphos	0.9	Ĵ
4,4'DDE	50	J	10-1-		ŭ
Endrin	4.0	\mathbf{U}	Surrogate Recoveries		
Endosulfan II	4.0	Ū			
4,4'-DDD	6.1		Dibutylchlorendate	71	%
Endrin Aldehyde	4.0	U	Tetrachloro-m-xylene	74	%
Endosulfan Sulfate	4.0	Ū	Decachlorobiphenyl	88	%
4,4'-DDT	11	_	, , , , , , , , , , , , , , , , , , ,		
Endrin Ketone	4.0	${f U}$			
Methoxychlor	4.0	U	•		
Alpha-Čhlordene	4.0	U			
Gamma-Chlordene	4.0	U			
Oxychlordane	40	${f U}$			
DĎMU	3.3	J			
Cis-Chlordane (Alpha-Chlordane	4.0	Ū			
Cis-Nonachlor	4.0	${f U}$			
Kelthane	16	UJ			
2,4'-DDE	4.0	U			
Trans-Nonachlor	4.0	\mathbf{U}			
2,4'-DDD	0.6	NJ			
2,4'-DDT	4.0	U			-
Mirex	4.0	U			
Toxaphene	120	U			
4,4'-Dichlorobenzophenone	16	UJ			
Hexachlor obenzene	0.5	NJ			
Pentachloroanisole	2.0	U			:
Tetradifon (Tedion)	16	U	•		
PCB - 1242	40	Ū			
PCB - 1248	40	Ū			

Authorized By: O. Vactor

Release Date: 12/13/96

Department of Ecology

Analysis Report for

Arsenic

Project Name: Wapato Lake

LIMS Project ID: 1564-96

Project Officer: Art Johnson **Date Reported:** 22-NOV-96

Method: EPA206.2

Matrix: Tissue Analyte: Arsenic

Sample	QC F	ield ID	Result	Qualifier	Units	Received	Analyzed
96378330 96378331 96378332	S L	M RBT WH M RBT FL G RBT FL	0.3 0.3 0.3	UJ UJ UJ	mg/Kg mg/Kg mg/Kg	09/16/96 09/16/96 09/16/96	11/21/96 11/21/96 11/21/96
96378332 96378332 BLN63895 LCS63896 LCS64016	S S		80 % 78 % 0.3 62 % 64 %	U	mg/Kg	09/16/96 09/16/96	11/21/96 11/21/96

Authorized By: Sally Sull Release Date: 1/22/96 Page: 1

Department of Ecology

Analysis Report for

Percent Lipids

Project Name: Wapato Lake

LIMS Project ID: 1564-96

Project Officer: Art Johnson **Date Reported:** 19-DEC-96

Method:

EPA608 5

Matrix:

Tissue

Analyte: Lipids

Sample QC	Field ID	Result Qualifier Units	Received Analyzed
96378330 96378331 96378332 BLN64243 BLN64244	SM RBT WH SM RBT FL LG RBT FL OBT6276B1 OBT6276B2	4.04 % 2.60 % 2.97 % 0.00 U % 0.00 U %	09/16/96 10/11/96 09/16/96 10/11/96 09/16/96 10/11/96

Authorized By: Release Date: 12/19/9t Page: 1

7411 Beach Dr E, Port Orchard Washington 98366

CASE NARRATIVE

November 25, 1996

Subject:

Grayland and Wapato Lake sediments, week 35

Samples:

Grayland - 96358155 - 62

Wapato - 96358032 & 39

Officer(s):

Dale Davis (Grayland)

Art Johnson (Wapato)

By:

Norman Olson

Bob Carrell Organics Analysis Unit

PESTICIDE & HERBICIDE ANALYSIS

ANALYTICAL METHODS: (SW846-8081 & Draft EPA Method 8085; formerly modified 1618 & 1658) Separate samples for the neutrals and Acids were extracted following Manchester Laboratory's standard operating procedure for the extraction of pesticides and herbicides. The neutral target compounds were extracted by soxhlet extraction with acetone as the extraction solvent followed by solvent exchange to hexane. The acid target compounds were hydrolyzed with base and extracted with diethyl ether in separatory funnels. The extracts were analyzed by capillary Gas Chromatography with Electron Capture Detection (GC/ECD) and Gas Chromatography with Atomic Emission Detection (GC/AED). Confirmations of detected pesticides and herbicides were performed either via Dual Dissimilar Column retention time comparison and/or Gas Chromatography and Ion-Trap mass spectrometry (GC/ITD).

All analytes have a respective practical quantitation limit (PQL) that is higher than the corresponding method detection level (MDL). If a target analyte is detected and confirmed at a concentration below its PQL, the reported concentration is qualified as an estimate, 'J' qualifier. This procedure also applies to the method blanks.

This method has been utilized for determination of pesticides and herbicides in soil samples on numerous occasions. However, the use of the method on sediment samples with large proportions being water (70 to 90% water), we have less experience. Although the matrices from the two projects differ, the high percentage water common to both is probably the most significant factor influencing method applicability towards each target compound. Therefore, most of the target compounds were spiked, in duplicate, into both a Grayland sample and a Wapato sample. The data from the four spiked samples should be enough to make a decision on the applicability of the method for each target compound.

Analytes showing no applicable toward the method, via zero matrix spike recoveries, were deleted from the target compound list reports. Decisions were made on the need to qualify some targets due to their respective recovery performance. The deletion and the qualification of the targets is discussed in each of the individual parameter sections below.

Both projects, Grayland and Wapato Lake, were extracted and analyzed in the same batch, Therefore the information that follows is a compilation of the data.

NITROGEN-CONTAINING PESTICIDE ANALYSIS

BLANKS: No nitrogen-containing target compounds were detected in the laboratory blanks. Hence, the blanks demonstrate the system was free from this type of contamination.

HOLDING TIMES: All samples were extracted within 14 days of sampling.

SURROGATES: 1,3-Dimethyl-2-nitrobenzene recoveries ranged from 28% to 70% No established acceptance limits have been placed on the recoveries of this surrogate for this matrix. Due to the nature of the sample matrices, very large percentage water, these recoveries were not unexpected. No qualifiers were attached to the nitrogen-containing pesticides on the basis of surrogate recoveries.

MATRIX SPIKING: All nitrogen-containing target pesticides were spiked except Triallate and appropriate levels of Hexazinone. Therefore, the quantitation limits for these two analytes were 'J' qualified throughout

Ten of nitrogen-containing targets were not recovered from the matrix spiked samples and were deleted from the target list, they are the following:

Chlorthalonil

Fluridone

Diuron

Pendimethalin

Tebuthiuron Norflurazon Atraton MGK 264 Metalaxyl Prometon

Six of the targets showed low recoveries from at least one of the spiked sample duplicates. For example, the fluorinated amines showed good recoveries from the Wapato spike but very low recoveries from the Grayland sample. The following are the targets that were 'J' qualified due to low recoveries:

Ethalfluralin

Benfluralin

Carboxin

Trifluralin

Oxyfluorfen

Profluralin

COMMENTS: Data is useable as qualified

ORGANOPHOSPHOROUS PESTICIDE ANALYSIS

BLANKS: No organophosphorous target compounds were detected in the laboratory blanks.

HOLDING TIMES: All samples were extracted within 14 days of sampling.

SURROGATES: Triphenylphosphate recoveries from the sediment samples and blanks ranged from 41% to 101%. No recovery acceptance limits have been established for this surrogate in this matrix. No qualifiers were attached on the basis of Triphenylphosphate surrogate recoveries.

MATRIX SPIKING: All organophosphorous pesticide (OPPest) target compounds were spiked

Eight of OPPest targets were not recovered from the matrix spiked samples and were deleted from the target list, they are the following:

Imidan

Mevinphos

Fensulfothion

Methyl Parathion

Fenamiphos

Methyl Paraoxon

Phosphamidan

Dimethoate

Three of the OPPest targets showed low recoveries from at least one of the spiked sample duplicates. The following are the targets that were 'J' qualified due to low recoveries:

Fenitrothion

EPN

Parathion

COMMENTS: The data is useable as qualified

ORGANOCHLORINE PESTICIDE ANALYSIS

BLANKS: No organochlorine target compounds were detected in the laboratory blanks.

HOLDING TIMES: All samples were extracted within 14 days of sampling

SURROGATES: Surrogate recoveries from the sediment samples and blanks ranged from 25% to 84%, 17% to 88% and 17% to 94% for Dibromooctafluorobiphenyl, Tetrachloro-meta-xylene and Decachlorobiphenyl respectively. Only two of the samples had Decachlorobiphenyl recoveries of less than 40%. No recovery acceptance limits have been established for these surrogates in this matrix. No qualifiers were attached on the basis of surrogate recoveries.

MATRIX SPIKING: All of the organochlorine targets (CL-Pest/PCB) were spiked except for Toxaphene, Tetradifon, HCB, PCP-methyl and the PCBs

Three analytes, Methoxychlor, Captan and Captafol, were not recovered from the spiked matrices and, therefore, were not included in the target list reports. Kelthane was recovered as its breakdown product, 4,4'-dichlorobenzophenone, but the recovery was not quantitated. Kelthane was qualified 'J' throughout on this basis

COMMENTS: The data is useable as qualified.

SULFUR-CONTAINING AND PYRETHROID PESTICIDE ANALYSIS

BLANKS: None of these types of target analytes were detected in the laboratory blanks

HOLDING TIMES: All samples were extracted within 14 days of sampling.

SURROGATES: There no designated surrogate compounds for these groups of targets Recovery efficiencies of surrogates from other neutral pesticide groups should also apply to this group.

MATRIX SPIKING: Recoveries for the Sulfur-containing pesticide, Propargite, ranged from 42% to 82%.

None of the pyrethroid pesticides were spiked Therefore, the quantitation limits for all of these analytes were 'J' qualified throughout In addition, interferences in the samples caused the practical quantitation limits for these analytes to be raised

COMMENTS: The data is useable as qualified.

ACID HERBICIDE ANALYSIS

BLANKS: No acid herbicide target compounds were detected in the laboratory blanks

HOLDING TIMES: All samples were extracted within 14 days of sampling.

SURROGATES: 2,4,6-Tribromophenol recoveries from sediment samples and blanks ranged from 35% to 95%, except for the recovery from one of the matrix spiked samples from Grayland which was 309%. This high recovery is not a problem because it occurred in a matrix spike sample and the target analyte recoveries associated with the spiked were in order. No recovery acceptance limits have been established for this surrogate in this matrix. No qualifiers were attached on the basis of Tribromophenol surrogate recoveries.

MATRIX SPIKING: All acid herbicide targets were spiked Two analytes, Acifluorfen and Dinoseb, were not recovered from either the Grayland sample nor the Wapato sample, therefore neither were included in the target list reports. One other analyte, 4-nitrophenol, was not recovered from the Wapato sample, and it also was not included in the Wapato target list report and was 'J' qualified for the Grayland reports.

COMMENTS: Only samples 96358158 & 62 for Grayland and samples 96358082 & 89 for Wapato were analyzed for acid herbicides

The data is useable as qualified

DATA QUALIFIER CODES:

ſ	J	-	The analyte was not detected at or above the reported value
J		 <u>estimat</u>	The analyte was positively identified The associated numerical value is an e
U	IJ	-	The analyte was not detected at or above the reported estimated result.
R	EJ	-	The data are unusable for all purposes
N	AF	-	Not analyzed for.
N		-	For organic analytes there is evidence the analyte is present in this sample
N	J	•	There is evidence that the analyte is present. The associated numerical result is an estimate.
Ė		-	This qualifier is used when the concentration of the associated value exceeds the known calibration range

Department of Ecology

Analysis Report for

Chlorophenoxy Herbicides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63681

Method: SW8150

Blank ID: OBS6254A1H

Date Prepared: 09/10/96

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/04/96

Units: ug/Kg

Analyte	Result	Qualifier	 	·
2,4,6-Trichlorophenol	65	U		
3,5-Dichlorobenzoic Acid	110	Ü		
2,4,5-Trichlorophenol	65	Ŭ		
Dicamba I	110	Ü		
2,3,4,6-Tetrachlorophenol	60	Ü		
MCPP (Mecoprop)	220	Ü		
MCPA	220	Ŭ		
Dichlorprop	120	Ŭ		
Bromoxynil	110	Ŭ		
2,4-D	110	Ŭ		
2,3,4,5-Tetrachlorophenol	60	Ŭ		
Trichlopyr	92	Ŭ		
Pentachlorophenol	54	Ŭ		
2,4,5-TP (Silvex)	87	Ŭ		
2,4,5-T	87	Ŭ		
2,4-DB	130	Ŭ		
Bentazon	160	Ŭ		
Ioxynil	110	Ŭ		
Picloram	110	ÜJ		
Dacthal (DCPA)	87	Ü		
2,4,5-TB	98	Ŭ		
Diclofop-Methyl	160	Ŭ		
4-Nitrophenol	190	ŬJ		
	170	<u> </u>		
Surrogate Recoveries				
2,4,6-Tribromophenol	59	%		
-,-,-				

Authorized By:	- I Cury

Release Date: ///26/95

Department of Ecology

Analysis Report for

Chlorophenoxy Herbicides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63682

Method: SW8150

Blank ID: OBS6254A2H

Date Prepared: 09/10/96

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/04/96

Units: ug/Kg

Analyte	Result	Qualifier -	_					
2 4 C Tristians have	65	T T		 				
2,4,6-Trichlorophenol	65	Ŭ						
3,5-Dichlorobenzoic Acid	110	Ü						
2,4,5-Trichlorophenol	65	U						
Dicamba I	110	\mathbf{U}						
2,3,4,6-Tetrachlorophenol	60	U						
MCPP (Mecoprop)	220	U						
MCPA	220	${f U}$						
Dichlorprop	120	U						
Bromoxynil	110	U						
2,4-D	110	U				·		
2,3,4,5-Tetrachlorophenol	60	\mathbf{U}						
Trichlopyr	92	Ū						
Pentachlorophenol	54	U						
2,4,5-TP (Silvex)	87	Ü						•
2,4,5-T	87	$\tilde{\mathbf{U}}$						
2,4-DB	130	Ū						
Bentazon	160	Ŭ						
Ioxynil	110	Ŭ						
Picloram	110	ŬI						
Dacthal (DCPA)	87	Ŭ,						
2,4,5-TB	98	Ŭ						
Diclofop-Methyl	160	Ŭ						
4-Nitrophenol	190	UI						
4-Muophenoi	120	U)		·	•		•	
Surrogate Recoveries					•	•	•	
2,4,6-Tribromophenol	53	%						

Authorized By:	1 Cares

Department of Ecology

Analysis Report for

Chlorophenoxy Herbicides

Project Name: Wapato Lake LIMS Project ID: 1564-96

Sample: 96358082 Date Received: 08/28/96 Method: SW8150

Field ID: UPPER Date Prepared: 09/10/96 Matrix: Sediment/Soil

Project Officer: Art Johnson Date Analyzed: 10/04/96 Units: ug/Kg

Analyte	Result	Qualifier	 	
2,4,6-Trichlorophenol	130	U		
3,5-Dichlorobenzoic Acid	210	\mathbf{U}		
2,4,5-Trichlorophenol	130	U		
Dicamba I	210	U		
2,3,4,6-Tetrachlorophenol	120	U		
MCPP (Mecoprop)	420	${f U}$		
MCPA 1 1/	420	U		
Dichlorprop	230	U		
Bromoxynil	210	${f U}$		
2,4-D	210	${f U}$		
2,3,4,5-Tetrachlorophenol	120	${f U}$		
Trichlopyr	180	U		
Pentachlorophenol	110	${f U}$		
2,4,5-TP (Silvex)	17 0	\mathbf{U}		
2,4,5-T	170	${f U}$		
2,4-DB	250	${f U}$		
Bentazon	320	${f U}$		
Ioxynil	210	\mathbf{U}		
Picloram	210	$\mathbf{U}\mathbf{J}$		
Dacthal (DCPA)	170	${f U}$		
2,4,5-TB	190	\mathbf{U}		
Diclofop-Methyl	320	U		
Surrogate Recoveries				
2,4,6-Tribromophenol	71	%		

Authorized By: Release Date: 1/21/96 Page: 1

Department of Ecology

Analysis Report for

Chlorophenoxy Herbicides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96358089

Method: SW8150

Field ID: LOWER

Date Received: 08/28/96

Matrix: Sediment/Soil

Date Prepared: 09/10/96

Project Officer: Art Johnson

Date Analyzed: 10/04/96

Units: ug/Kg

Analyte	Result	Qualifier	·
	4.40	••	
2,4,6-Trichlorophenol	140	$\widetilde{\mathbf{n}}$	
3,5-Dichlorobenzoic Acid	230	U	
2,4,5-Trichlorophenol	140	$\underline{\mathbf{U}}$	
Dicamba I	230	U	
2,3,4,6-Tetrachlorophenol	130	U	
MCPP (Mecoprop)	460	\mathbf{U}	
MCPA	460	U	
Dichlorprop	250	U	
Bromoxynil	230	${f U}$	
2,4-D	230	${f U}$	
2,3,4,5-Tetrachlorophenol	130	${f U}$	
Trichlopyr	190	U	
Pentachlorophenol	120	\mathbf{U}	
2,4,5-TP (Silvex)	180	\mathbf{U}	
2,4,5-T	180	${f U}$	
2,4-DB	280	${f U}$	
Bentazon	340	U	
Ioxynil	230	U	
Picloram	230	UJ	
Dacthal (DCPA)	180	${f U}$	
2,4,5-TB	210	$\bar{\mathbf{U}}$	
Diclofop-Methyl	340	Ü	
Surrogate Recoveries			
2,4,6-Tribromophenol	72	%	

P Carrey Authorized By: _

Release Date: 11/26/96

Department of Ecology

Analysis Report for

Chlorophenoxy Herbicides

		·····	,-		
Project Name: Wapato Lake	e			LIMS Pr	oject ID: 1564-96
Sample: 96358089 (Matrix Spike - LMX1) Field ID: LOWER Project Officer: Art Johnson		Date Received: Date Prepared: Date Analyzed:	09/10/96	Method: Matrix: Units:	SW8150 Sediment/Soil % Recovery
Analyte	Result Q	ualifier			
2,4,6-Trichlorophenol	82				
3,5-Dichlorobenzoic Acid	109				
2,4,5-Trichlorophenol	98				
Dicamba I	162				
2,3,4,6-Tetrachlorophenol	92				
MCPP (Mecoprop)	127				•
MCPA	124				
Dichlorprop	111				
Bromoxyniî	51				
2,4-D	109				
2,3,4,5-Tetrachlorophenol	108				
Trichlopyr	106				
Pentachlorophenol	98				
2,4,5-TP (Silvex)	106				
2,4,5-T	58				
2,4-DB	114				
Bentazon	107				
Ioxynil	120				
Picloram	63				
Dacthal (DCPA)	173				
2,4,5-TB	108				
Diclofop-Methyl	77				
Surrogate Recoveries					
2,4,6-Tribromophenol	64	%			

Authorized By:

Release Date: /// 24 / 96

Page:

Department of Ecology

Analysis Report for

Chlorophenoxy Herbicides

Project Name: Wapato Lake			LIMS Project ID: 1564-96		
Sample: 96358089 (Matrix Spi Field ID: LOWER Project Officer: Art Johnson	ke - IMX2)	Date Received: Date Prepared: Date Analyzed:	09/10/96	Method: Matrix: Units:	SW8150 Sediment/Soil % Recovery
Analyte	Result Q	ualifier			
2,4,6-Trichlorophenol	70				
3,5-Dichlorobenzoic Acid	79				
2,4,5-Trichlorophenol	86				
Dicamba I	120				
2,3,4,6-Tetrachlorophenol	80				
MCPP (Mecoprop)	94				
МСРА	87				
Dichlorprop	85				
Bromoxynil	54				
2,4-D 2,3,4,5-Tetrachlorophenol	80				
	93 83				
Trichlopyr Pentachlorophenol	85				
2,4,5-TP (Silvex)	76				
2,4,5-11 (Shvex) 2,4,5-T	83				
2,4-DB	82				
Bentazon	79				
Ioxynil	120				
Picloram	48				
Dacthal (DCPA)	134				
2,4,5-TB	80				
Diclofop-Methyl	51				
Surrogate Recoveries					
2,4,6-Tribromophenol	66	%			

Authorized By: Release Date: 1/26/96 Page: 3

Department of Ecology

Analysis Report for

Sulfur Containing Pesticides

Project Name: Wapato Lake

LIMS Project ID: 1564-96

Project Officer: Art Johnson **Date Reported:** 26-NOV-96

Method: Matrix: EPA1618 Sediment/Soil

Analyte:

Propargite

Sample	QĊ	Field ID	Result	Qualifier	Units	Received	Analyzed
96358082 96358089 BLN63759 BLN63760		UPPER LOWER OBS6249A1 OBS6249A2	130 150 31 31	U U U U	ug/Kg ug/Kg ug/Kg ug/Kg	08/28/96 08/28/96	10/13/96 10/13/96 10/13/96 10/13/96

Authorized By: Release Date: 1/26/96 Page: 1

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96358082

Method: EPA1618

Field ID: UPPER Project Officer: Art Johnson

Date Prepared: 09/05/96 Date Analyzed: 10/13/96

Date Received: 08/28/96

Matrix: Sediment/Soil

Units: ug/Kg

Analyte	Result	Qualifier			
Dichlobenil	130	U	Surrogate Recoveries		
Propachlor (Ramrod)	150	\mathbf{U}			
Ethalfluralin (Sonalan)	97	UJ	1,3-Dimethyl-2-nitrobenzene	40	%
Treflan (Trifluralin)	96	UJ			
Simazine	64	${f U}$			
Atrazine	64	U			
Pronamide (Kerb)	260	${f U}$			
Terbacil	190	${f U}$			
Metribuzin	64	\mathbf{U}			
Alachlor	230	U			
Prometryn	64	${f U}$			
Bromacil	260	\mathbf{U}_{-}			
Metolachlor	260	U			
Diphenamid	190	${f U}$	•		
Napropamide	190	U			
Oxyfluorfen	260	UJ			
Eptam	130	U			
Butylate	130	U			
Vernolate	130	${f U}$			
Cycloate	130	Ū			
Benefin	97	Ü			
Propazine	64	U			
Triallate	170	ŪJ			
Ametryn	64	Ū			
Terbutryn (Igran)	64	Ŭ			
Hexazinone	96	ŪJ			
Pebulate	130	Ü			
Molinate	130	Ŭ			
Chlorpropham	260	Ŭ			
Triadimefon	170	Ŭ		•	
Butachlor	220	Ŭ			
Carboxin	710	ŬJ			
Fenarimol	190	Ü			
Di-allate (Avadex)	240	Ü			
Proflutalin	150	UJ			
Cyanazine	97	Ü			
Суапалинс	71				

Authorized By:	Sn	
.,		

Release Date:

11/26/94

Department of Ecology

Analysis Report for

LIMS Project ID: 1564-96

Nitrogen Containing Pesticides

Project Name: Wapato Lake

Sample: 96358082 (Matrix Spike - LMX1) Date Received: 08/28/96 Method: EPA1618 Date Prepared: 09/05/96 Matrix: Sediment/Soil

Project Officer: Art Johnson Date Analyzed: 10/13/96 Matrix: Sediment/Soil

Project Officer: Art Johnson Date Analyzed: 10/13/96 Units: % Recovery

Result	Qualifier			
77		Surrogate Recoveries		
		Surrogue recovered		
		1.3-Dimethyl-2-nitrobenzene	52	%
		•	•	
42				
CC	NAF			
24	- 11			
		•		
	NAF			
71	- 1			
		•		
	77 12 37 33 30 35 54 51 36 40 58 31 42 65 42 55 65 61 55 48 31 33 24 38 71 50 66 59 21 27 79 73 54 30	77 12 37 33 30 35 54 51 36 40 58 31 42 65 42 55 65 61 55 48 31 33 NAF 24 38 NAF 71 50 66 59 21 27 79 73 54	77 Surrogate Recoveries 12 37	77 12 37 33 30 35 54 51 36 40 58 31 42 65 42 55 65 61 55 48 31 33 NAF 71 50 66 69 21 27 79 73 54

Authorized By:	Release Date: 1//Z6/96	Page:	2

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

Project Name: Wapato Lake LIMS Project ID: 1564-96

Sample: 96358082 (Matrix Spike - LMX2) Date Received: 08/28/96 Method: EPA1618

Field ID: UPPER Date Prepared: 09/05/96 Matrix: Sediment/Soil

Project Officer: Art Johnson Date Analyzed: 10/13/96 Units: % Recovery

Analyte	Result		C		
Dichlobenil	69		Surrogate Recoveries		
Propachlor (Ramrod)	9		1 2 D:	61	%
Ethalfluralin (Sonalan)	46		1,3-Dimethyl-2-nitrobenzene	01	7/0
Treflan (Trifluralin)	46				
Simazine	30		•		
Atrazine	36				
Pronamide (Kerb)	51				
Terbacil	47				
Metribuzin	32				
Alachlor	42				
Prometryn	31				
Bromacil	31				
Metolachlor	55				
Diphenamid	21				
Pendimethalin	49				
Napropamide	48				
Oxyfluorfen	59				
Eptam	77			•	
Butylate	107				
Vernolate	76				
Cycloate	78				
Benefin	82				
Prometon (Pramitol 5p)	0				
Propazine	46				
Triallate		NAF			
Ametryn	50				
Terbutryn (Igran)	59				
Hexazinone		NAF			
Pebulate	88				
Molinate	78				
Chlorpropham	93				
Triadimefon	28				4
Butachlor	27				
Carboxin	6				
Fenarimol	49		•		
Di-allate (Avadex)	46				
Profluralin	81				
Cyanazine	54				

Authorized By:	The state of the s	Release Date:	11/26/96	Page:	3

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Date Prepared: 09/05/96

Method: EPA1618

Field ID: LOWER

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/13/96 **Units:**

ug/Kg

Analyte	Result	Qualifier	<u></u>		<u>-</u>
Dichlobenil	150	U	Surrogate Recoveries		
Propachlor (Ramrod)	170	U	<u> </u>		
Ethalfluralin (Sonalan)	110	UJ	1,3-Dimethyl-2-nitrobenzene	47	%
Treflan (Trifluralin)	110	UJ			
Simazine	73	\mathbf{U}			
Atrazine	73	U			
Pronamide (Kerb)	290	U			
Terbacil	220	U			
Metribuzin	73	U			
Alachlor	260	U			
Prometryn	73	U			
Bromacil	290	U			
Metolachlor	290	U			
Diphenamid	220	U			
Napropamide	220	U			
Oxyfluorfen	290	ŪJ			
Eptam	150	Ū			
Butylate	150	Ü			
Vernolate	150	Ū			
Cycloate	150	Ŭ		ŧ	
Benefin	110	ŪJ			
Propazine	73	Ü			
Triallate	190	ŪJ			
Ametryn	73	Ü			
Terbutryn (Igran)	73	Ŭ			
Hexazinone	110	Ŭ			
Pebulate	150	Ü			
Molinate	150	Ŭ			
Chlorpropham	290	Ŭ			
Butachlor	250	Ŭ			
Carboxin	800	UJ			
Fenarimol	220	Ü			
Di-allate (Avadex)	280	Ŭ			
Profluralin	170	UJ			
Cyanazine	110	Ü			
Triadimefon	190	U			
THAUMICION	190	U			

Authorized By: Release Date: 1/26/96 Page: 1				j .		
	Authorized By:	Ju .	Release Date:	1// 1/2/////	Page:	1

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63759

Method: EPA1618

Units:

Blank ID: OBS6249A1

Date Prepared: 09/05/96

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/13/96

ug/Kg

Analyte	Result	Qualifier			
Dichlobenil	31	U	Surrogate Recoveries		
Propachlor (Ramrod)	38	U	3		
Ethalfluralin (Sonalan)	24	UJ	1,3-Dimethyl-2-nitrobenzene	70	%
Treflan (Trifluralin)	24	UJ			-
Simazine	16	${f U}$			
Atrazine	16	\mathbf{U}			
Pronamide (Kerb)	63	U			
Terbacil	47	U			
Metribuzin	16	${f U}$			
Alachlor	56	${f U}$			
Prometryn	16	U			
Bromacil	63	U			
Metolachlor	63	U			
Diphenamid	47	U			
Napropamide	47	\mathbf{U}			
Oxyfluorfen	63	UJ			
Eptam	31	U			
Butylate	31	U			
Vernolate	31	U			
Cycloate	31	${f U}$			
Benefin	24	UJ			
Propazine	16	\mathbf{U}			
Triallate	41	UJ			
Ametryn	16	U			
Terbutryn (Igran)	16	U			
Hexazinone	23	UJ			
Pebulate	31	U			
Molinate	31	U			
Chlorpropham	63	\mathbf{U}			
Triadimefon	41	U			
Butachlor	55	Ŭ			
Carboxin	170	ŪJ			
Fenarimol	47	Ü			
Di-allate (Avadex)	59	Ŭ			
Profluralin	38	ŬJ			
Cyanazine	24	Ü			
-)	-,	Č			
			·		

Authorized	By:	JZ	F

Page:

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63760

Date Prepared: 09/05/96

Method: EPA1618 Matrix: Sediment/Soil

Blank ID: OBS6249A2 Project Officer: Art Johnson

Date Analyzed: 10/13/96

Units: ug/Kg

Analyte	Result	Qualifier			
Dichlobenil	31	U	Surrogate Recoveries		
Propachlor (Ramrod)	38	Ū	2 4110 5 4110		
Ethalfluralin (Sonalan)	24	ŪJ	1,3-Dimethyl-2-nitrobenzene	44	%
Treflan (Trifluralin)	24	UJ			
Simazine	16	U			
Atrazine	16	Ū			
Pronamide (Kerb)	63	U			
Terbacil	47	U			
Metribuzin	16	Ū			
Alachlor	56	Ū			
Prometryn	16	Ū			
Bromacil	63	Ū			
Metolachlor	63	Ū			
Diphenamid	47	Ū			
Napropamide	47	$ar{\mathbf{U}}$			
Oxyfluorfen	63	ŪJ			
Eptam	31	Ü			
Butylate	31	U			
Vernolate	31	U			
Cycloate	31	U			
Benefin	24	UJ			
Propazine	16	Ú			
Triallate	41	UJ			
Ametryn	16	${f U}$			
Ferbutryn (Igran)	16	U			
Hexazinone	23	ÚJ			
Pebulate	31	Ü			
Molinate	31	Ŭ			
Chlorpropham	63	Ŭ			
Triadimefon	41	Ŭ			
Butachlor	55	Ŭ			
Carboxin	170	ŬJ			
Fenarimol	47	Ü			
Di-allate (Avadex)	59	Ŭ			
Profluralin	38	ÜJ			
Cyanazine	24	Ü			

	4	<u> </u>
Authorized By:		Vz.
numonzeu by.		un

Release Date:

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96358082

Date Received: 08/28/96

Method: EPA1618 Matrix: Sediment/Soil

Field ID: UPPER

Date Prepared: 09/05/96

ug/Kg

Date Analyzed: 10/13/96 Project Officer: Art Johnson Units:

Analyte	Result	Qualifier	 	
- · · · ·	15	T T		
Demeton-O	45	U		
Sulfotepp	38	U		
Demeton-S	45	U		
Fonofos	38	\mathbf{U}		
Disulfoton (Di-Syston)	38	U		
Methyl Chlorpyrifos	51	U		
Fenitrothion	45	UJ		
Malathion	51	\mathbf{U}		
Chlorpyriphos	51	\mathbf{U}		
Merphos (1 & 2)	77	U		
Ethion	45	${f U}$		
Carbophenothion	64	${f U}$		
EPN	64	UJ		
Azinphos Ethyl	100	U		
Ethoprop	51	U		
Phorate	45	U		
Diazinon	51	$ar{\mathbf{U}}$		
Ronnel	45	Ū		
Fenthion	45	Ŭ		
Parathion	51	ŬJ		
Bolstar (Sulprofos)	45	Ü		
	120	Ü		
Azinphos (Guthion)	77	Ŭ		
Coumaphos	51	Ü		
Dichlorvos (DDVP)				
Dioxathion	110	U		
Propetamphos	130	U		
Tetrachlorvinphos (Gardona)	130	U		
Butifos (DEF)	90	$\underline{\mathbf{U}}$		
Abate (Temephos)	580	\mathbf{U}		
Surrogate Recoveries				
Triphenyl Phosphate	66	%		

Authorized By:	-P3

Release Date:

11/26/90

Page:

1

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name: Wapato Lake LIMS Project ID: 1564-96

Sample: 96358082 (Matrix Spike - LMX1) Date Received: 08/28/96 Method: EPA1618 Date Prepared: 09/05/96 Matrix: Sediment/Soil

Project Officer: Art Johnson Date Analyzed: 10/13/96 Units: % Recovery

Analyte	Result Qualifier
Demeton-O	14
Sulfotepp	56
Demeton-S	18
Fonofos	56
Disulfoton (Di-Syston)	50
Methyl Chlorpyrifos	57
Fenitrothion	54
Malathion	51
Chlorpyriphos	54
Merphos (1 & 2)	27
Ethion	51
Carbophenothion	54
EPN	56
Azinphos Ethyl	44
Ethoprop	57
Phorate	49
Diazinon	56
Methyl Parathion	57
Ronnel	41
Fenthion	42
Parathion	52
Bolstar (Sulprofos)	40
Imidan	41
Azinphos (Guthion)	40
Coumaphos	37
Dichlorvos (DDVP)	32
Dioxathion	33
Propetamphos	88
Tetrachlorvinphos (Gardona)	55
Butifos (DEF)	77
Abate (Temephos)	13
Surrogate Recoveries	
Triphenyl Phosphate	41 %

Authorized By:	Release Date:	11/26/91	Page:	2
----------------	---------------	----------	-------	---

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name: Wapato Lake				LIMS Pr	roject ID: 1564-96
Sample: 96358082 (Matrix Sp Field ID: UPPER Project Officer: Art Johnson	ike - LMX2)	Date Received: Date Prepared: Date Analyzed:	09/05/96	Method: Matrix: Units:	EPA1618 Sediment/Soil % Recovery
Analyte	Result Q	ualifier			
Demeton-O	13				
Sulfotepp	78				
Demeton-S	37				
Fonofos	76				
Disulfoton (Di-Syston)	71				
Methyl Chlorpyrifos	82				
Fenitrothion	<i>75</i>				
Malathion	69				
Chlorpyriphos	83				
Merphos (1 & 2)	40				
Ethion	72				
Carbophenothion	76				
EPN	81				
Azinphos Ethyl	63				
Ethoprop	53				
Phorate	51				
Diazinon	<i>5</i> 5				•
Methyl Parathion	53				
Ronnel	53				
Fenthion	48				
Parathion	60				
Bolstar (Sulprofos)	55				
Azinphos (Guthion)	34				
Coumaphos	35				
Dichlorvos (DDVP)	20				·
Dioxathion	25				
Propetamphos	69				
Butifos (DEF)	35				
Abate (Temephos)	9				
Imidan	38				
Tetrachlorvinphos (Gardona)	41				
Surrogate Recoveries					
Triphenyl Phosphate	46	%			
		·			

Authorized By: _

Page:

3

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: **96358089** Date Received: 08/28/96

Method: EPA1618

Field ID: LOWER

Project Officer: Art Johnson

Date Prepared: 09/05/96 Date Analyzed: 10/13/96

Matrix: Sediment/Soil **Units:** ug/Kg

Analyte Result Qualifier Demeton-O 51 U U Sulfotepp 44 Demeton-S 51 U **Fonofos** 44 U Disulfoton (Di-Syston) 44 \mathbf{U} Methyl Chlorpyrifos 58 U Fenitrothion 51 UJ Malathion 58 U Chlorpyriphos 58 U Merphos (1 & 2) 87 U Ethion 51 \mathbf{U} Carbophenothion 73 U 73 UJ **EPN Azinphos Ethyl** 120 U **Ethoprop** 58 U Phorate 51 U Diazinon 58 \mathbf{U} Ronnel 51 U Fenthion 51 U **Parathion** 58 UI Bolstar (Sulprofos) 51 U Azinphos (Guthion) 130 U Coumaphos 87 U Dichlorvos (DDVP) 58 U Dioxathion 120 U **Propetamphos** 150 U Tetrachlorvinphos (Gardona) 150 IJ Butifos (DEF) U 100 Abate (Temephos) \mathbf{U} 650 **Surrogate Recoveries** Triphenyl Phosphate %

Authorized	By:	de	7
	•		_

Release Date: 1/26/96

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63759

Method: EPA1618

Blank ID: OBS6249A1

Project Officer: Art Johnson

Date Prepared: 09/05/96 Date Analyzed: 10/13/96 Matrix: Sediment/Soil **Units:** ug/Kg

Analyte	Result	Qualifier		 		
Demeton-O	11	U				
Sulfotepp	9.4	Ü				
Demeton-S	11	Ū				
Fonofos	9.4	U				
Disulfoton (Di-Syston)	9.4	U				
Methyl Chlorpyrifos	13	${f U}$				
Fenitrothion	11	UJ				
Malathion	13	Ü				
Chlorpyriphos	13	Ū				
Merphos (1 & 2)	1 9	Ŭ				
Ethion	11	$ar{\mathbf{U}}$				
Carbophenothion	16	Ŭ				
EPN	16	ŬJ				
Azinphos Ethyl	25	Ū				
Ethoprop	13	Ū				
Phorate	11	U				
Diazinon	13	U				
Ronnel	11	U				
Fenthion	$\overline{11}$	Ü				
Parathion	13	ŪJ				
Bolstar (Sulprofos)	$\overline{11}$	Ü				
Azinphos (Guthion)	$\tilde{28}$	Ū				
Coumaphos	1 9	Ŭ				
Dichlorvos (DDVP)	<u>13</u>	Ŭ				
Dioxathion	27	Ŭ				
Propetamphos	31	$\check{\mathbf{U}}$				
Tetrachlorvinphos (Gardona)	31	Ŭ		•	•	
Butifos (DEF)	$\frac{31}{22}$	$reve{\mathbf{U}}$				
Abate (Temephos)	140	Ŭ				
Abate (Temophos)	170	O				
Surrogate Recoveries						
Triphenyl Phosphate	101	%				

authorized By:	1

Release Date: 1//26/92

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name: Wapato Lake LIMS Project ID: 1564-96

Sample: BLN63760 Blank ID: OBS6249A2 Method: EPA1618 te Prepared: 09/05/96 Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Prepared: 09/05/96 Matrix: Sedime Date Analyzed: 10/13/96 Units: ug/Kg

Analyte	Result	Qualifier	·	•	
Demeton-O	11	U			
Sulfotepp	9.4	Ū			
Demeton-S	11	Ū			
Fonofos	9.4	Ū			
Disulfoton (Di-Syston)	9.4	Ū			
Methyl Chlorpyrifos	13	Ū			
enitrothion	$\overline{11}$	ŪJ			
Ialathion	13	Ü			
Chlorpyriphos	13	Ū			
ferphos (1 & 2)	19	Ū			
thion	11	$ar{\mathbf{U}}$			
Carbophenothion	$\overline{16}$	$ar{\mathbf{U}}$			
PN	16	ŪI			
zinphos Ethyl	25	Ū			
thoprop	13	Ū			
horate	$\overline{11}$	Ū			
azinon	13	Ü			
onnel	11	Ū			
enthion	$\overline{11}$	Ū			
arathion	13	UJ			
lstar (Sulprofos)	$\overline{11}$	Ü			
zinphos (Guthion)	$\overline{28}$	Ū			
oumaphos	19	Ü			
chlorvos (DDVP)	13	Ũ			
oxathion	27	Ū			
opetamphos	31	Ū			
etrachlorvinphos (Gardona)	31	Ŭ			
tifos (DEF)	22	Ŭ			
bate (Temephos)	$\frac{-1}{140}$	$ar{\mathbf{U}}$			
	· · ·	-			
rrogate Recoveries					
	61	%			

Authorized By: _	54		Release Date: _	11/20	196	Page:	1
------------------	----	--	-----------------	-------	-----	-------	---

Department of Ecology

Analysis Report for

Chlorinated Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96358082

Date Received: 08/28/96

Method: EPA1618 Matrix: Sediment/Soil

Field ID: UPPER Pro

Date Prepared: 09/05/96

Kg

roject Officer: A	Art Johnson	Date Analyzed:	10/13/96	Units:	ug/Kį

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	13	U	PCB - 1232	260	U
Beta-BHC	13	Ŭ	PCB - 1221	130	$ar{\mathbf{U}}$
Gamma-BHC (Lindane)	13	Ŭ			
Delta-BHC	13	$\mathbf{\tilde{U}}^+$	Surrogate Recoveries		
Heptachlor	13	Ū			
Aldrin	13	$ar{\mathbf{U}}$	4,4-Dibromooctafluorobiphenyl	36	%
Heptachlor Epoxide	13	Ū	Tetrachloro-m-xylene	20	%
Trans-Chlordane (Gamma)	13	Ū	Decachlorobiphenyl	28	%
Endosulfan I	38	${f U}$			
Dieldrin	38	${f U}$			
4,4'-DDE	160				
Endrin	38	U			
Endosulfan II	38	U			
4,4'-DDD	230				
Endrin Aldehyde	38	U			
Endosulfan Sulfate	38	${f U}$			
4,4'-DDT	13	${f U}$			
Endrin Ketone	38	UJ			
Alpha-Chlordene	13	\mathbf{U}			
Gamma-Chlordene	13	${f U}$			
Oxychlordane	38	U			
DDMU	30		. -		
Cis-Chlordane (Alpha-Chlordane	13	${f U}$			
Cis-Nonachlor	13	U			
Kelthane	150	UJ			
2,4'-DDE	13	U			
Trans-Nonachlor	13	U			
2,4'-DDD	33				
2,4'-DDT	13	U			
Mirex	38	U			
Toxaphene	380	U			İ
Hexachlorobenzene	6.4	U			
Pentachloroanisole	6.4	U			
Tetradifon (Tedion)	51	U			
PCB - 1242	130	U			
PCB - 1248	130	U			
PCB - 1254	130	U			
PCB - 1260	130	U			
]					1

Authorized By: _

Release Date: 11/26/96

Page:

Department of Ecology

Analysis Report for

Chlorinated Pesticides (GC/AED)

Project Name: Wapato Lake LIMS Project ID: 1564-96

Sample: 96358082 (Matrix Spike - LMX1) Date Received: 08/28/96 Method: EPA1618

Field ID: UPPER Date Prepared: 09/05/96 Project Officer: Art Johnson Date Analyzed: 10/13/96 Units: % Recovery

Analyte	Result	Qualifier			
Alpha-BHC	54		•		
Beta-BHC	45				
Gamma-BHC (Lindane)	42				
Delta-BHC	41				
Heptachlor	6.1				
Aldrin	34				
Heptachlor Epoxide	8.7				
Trans-Chlordane (Gamma)	40			•	
Endosulfan I	45				
Dieldrin	45				
4,4'-DDE	51				
Endrin	37				
Endosulfan II	40				
4,4'-DDD	41				
Endrin Aldehyde	34				
Endosulfan Sulfate	58				
4,4'-DDT	43				
Endrin Ketone	12				
Alpha-Chlordene	33				
Gamma-Chlordene	42				
Oxychlordane	41				
DDMU	55				
Cis-Chlordane (Alpha-Chlordane					
Cis-Nonachlor	42				
Kelthane		NAF			
2,4'-DDE	101				
Trans-Nonachlor	89				
2,4'-DDD	126				
2,4'-DDT	105				
Mirex	87				
Surrogate Recoveries					
4,4-Dibromooctafluorobiphenyl	47	%			
Tetrachloro-m-xylene	48	%			
	40 47	% %			
Decachlorobiphenyl	4/	70			

	120			111-21-4		_
A 41 . ' 4 Th	$\mathcal{O}^{\mathcal{A}}$	D ₂	Jaca Data	1/12.6/91	Page:	2
Authorized By:	<u></u>	K	elease Date:	1/04/14	rage.	
	*				_	

Department of Ecology

Analysis Report for

Chlorinated Pesticides (GC/AED)

LIMS Project ID: 1564-96 **Project Name:** Wapato Lake

Sample: 96358082 (Matrix Spike - LMX2) Date Received: 08/28/96 Method: EPA1618 Field ID: UPPER Date Prepared: 09/05/96 Matrix: Sediment/Soil Date Analyzed: 10/13/96 % Recovery Project Officer: Art Johnson **Units:**

Analyte	Result	Qualifier			
Alpha-BHC	66				
Beta-BHC	71				
Gamma-BHC (Lindane)	67				
Delta-BHC	52				
Heptachlor	21				
Aldrin	52				
Heptachlor Epoxide	24				
Trans-Chlordane (Gamma)	62				
Endosulfan I	54				
Dieldrin	55				
4,4'-DDE	127				
Endrin	44				
Endosulfan II	48				
4,4'-DDD	116				
Endrin Aldehyde	40				
Endosulfan Sulfate	59				
4,4'-DDT	66				
Endrin Ketone	17		•		
Alpha-Chlordene	7 5				
Gamma-Chlordene	93				
Oxychlordane	92				
DDMU	140				
Cis-Chlordane (Alpha-Chlordane					
Cis-Nonachlor	96				
Kelthane		NAF			
2,4'-DDE	42				
Trans-Nonachlor	39				
2,4'-DDD	61				
2,4'-DDT	48				
Mirex	40			•	
Surrogate Recoveries		·	·		
4,4-Dibromooctafluorobiphenyl	58	%			
Tetrachloro-m-xylene	64	%			
Decachlorobiphenyl	58	%			

Surrogate Recoveries			-	
1,4-Dibromooctafluorobiphenyl	58	%		
l'etrachloro-m-xylene	64	%		
Decachlorobiphenyl	58	%		

	\mathcal{C}		10 1.
Authorized By:	(Ta	Release Date:	
- · · · · · · · · · · · · · · · · · · ·			

Department of Ecology

Analysis Report for

Chlorinated Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Field ID: LOWER

Sample: 96358089 Date Received: 08/28/96

Method: EPA1618 Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Prepared: 09/05/96 Date Analyzed: 10/13/96

Units:

ug/Kg

ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	PCB - 1232 PCB - 1221 Surrogate Recoveries 4,4-Dibromooctafluorobiphenyl Tetrachloro-m-xylene Decachlorobiphenyl	290 150 53 45 51	U U % %
ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	PCB - 1221 Surrogate Recoveries 4,4-Dibromooctafluorobiphenyl Tetrachloro-m-xylene	150 53 45	U % %
ט ט ט ט ט	Surrogate Recoveries 4,4-Dibromooctafluorobiphenyl Tetrachloro-m-xylene	53 45	%
ט ט ט ט ט ט	4,4-Dibromooctafluorobiphenyl Tetrachloro-m-xylene	45	%
U U U U U U U U	4,4-Dibromooctafluorobiphenyl Tetrachloro-m-xylene	45	%
U U U U U U U	Tetrachloro-m-xylene	45	%
U U U U U U U	Tetrachloro-m-xylene		% %
U U U U U U		51	%
U U U U U U			
U U U U U U			
U U U U U			
U U U U U			
U U U U U			
U U U U			
U U U U			
U U U U			
U U			
U U			
U U			
${f U}$			
\mathbf{U}			
_			
J			
Ŭ			
ŪJ			
U			
_			
U			
Ŭ			
Ŭ			
U			
	U U U U	U U U U U	U U U U

•	
Anthorized Dry	
Authorized By:	

Release Date: 11/21/66

Department of Ecology

Analysis Report for

Chlorinated Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63759

Method: EPA1618

Blank ID: OBS6249A1

Date Prepared: 09/05/96

Matrix: Sediment/Soil

Date Analyzed: 10/13/96 Project Officer: Att Johnson

Units: ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	3.1	U	PCB - 1232	63	U
Beta-BHC	3.1	Ŭ	PCB - 1221	31	Ŭ
Gamma-BHC (Lindane)	3.1	Ū	+		Ü
Delta-BHC	3.1	Ŭ	Surrogate Recoveries		
Heptachlor	3.1	Ū			
Aldrin	3.1	Ū	4,4-Dibromooctafluorobiphenyl	79	%
Heptachlor Epoxide	3.1	Ū	Tetrachloro-m-xylene	88	%
Trans-Chlordane (Gamma)	3.1	Ū	Decachlorobiphenyl	94	%
Endosulfan I	9.4	Ū			
Dieldrin	9.4	$ar{\mathbf{U}}$			
4,4'-DDE	3.1	Ū			
Endrin	9.4	Ū			
Endosulfan II	9.4	Ū			
4,4'-DDD	3.1	Ū			
Endrin Aldehyde	9.4	Ū			
Endosulfan Sulfate	9.4	Ū			
4,4'-DDT	3.1	$ar{\mathbf{U}}$			
Endrin Ketone	9.4	UJ			
Alpha-Chlordene	3.1	U			
Gamma-Chlordene	3.1	Ū			
Oxychlordane	3.1	Ü			
DDMU	3.1	Ū			
Cis-Chlordane (Alpha-Chlordane	3.1	Ū			
Cis-Nonachlor	3.1	Ū			
Kelthane	38	ÜJ			
2,4'-DDE	3.1	U			
Trans-Nonachlor	3.1	Ū			
2,4'-DDD	3.1	Ŭ			
2,4'-DDT	3.1	$ar{\mathbf{U}}$			
Mirex	9.4	Ū			
Toxaphene	94	Ū			
Hexachlorobenzene	1.6	Ū			
Pentachloroanisole	1.6	Ŭ			
Tetradifon (Tedion)	13	Ŭ			
PCB - 1242	31	Ŭ			
PCB - 1248	31	Ŭ			,
PCB - 1254	31	Ŭ			
PCB - 1260	31	Ŭ			
		_			

Authorized	By:	Sei	1
			∕-

Release Date:

Department of Ecology

Analysis Report for

Chlorinated Pesticides (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63760

Method: EPA1618

Blank ID: OBS6249A2

Date Prepared: 09/05/96

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/13/96

Units: ug/Kg

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Alpha-BHC	3.1	${f U}$	PCB - 1232	63	U
Beta-BHC	3.1	Ü	PCB - 1221	31	Ŭ
Gamma-BHC (Lindane)	3.1	Ŭ	in the fact to the first fit.		
Delta-BHC	3.1	Ü	Surrogate Recoveries		
Heptachlor	3.1	Ŭ			
Aldrin	3.1	Ŭ	4,4-Dibromooctafluorobiphenyl	54	%
Heptachlor Epoxide	3.1	Ŭ	Tetrachloro-m-xylene	58	%
Trans-Chlordane (Gamma)	3.1	Ū	Decachlorobiphenyl	65	%
Endosulfan I	9.4	$ar{\mathbf{U}}$			
Dieldrin	9.4	Ū	•		į
4,4'-DDE	3.1	Ŭ			
Endrin	9.4	Ŭ			
Endosulfan II	9.4	Ū			ì
4,4'-DDD	3.1	Ū			
Endrin Aldehyde	9.4	Ū			
Endosulfan Sulfate	9.4	Ū			
4,4'-DDT	3.1	$ar{\mathbf{U}}$			
Endrin Ketone	9.4	UJ			
Alpha-Chlordene	3.1	$ar{\mathbf{U}}$			
Gamma-Chlordene	3.1	Ū			
Oxychlordane	3.1	Ū			
DDMU	3.1	$ar{\mathbf{U}}$			
Cis-Chlordane (Alpha-Chlordane	3.1	$ar{\mathbf{U}}$			
Cis-Nonachlor	3.1	$ar{\mathbf{U}}$			
Kelthane	38	ŪJ			
2,4'-DDE	3.1	Ū			
Trans-Nonachlor	3.1	Ū			
2,4'-DDD	3.1	Ū			
2,4'-DDT	3.1	Ū			
Mirex	9.4	Ū			
Toxaphene	94	Ŭ			
Hexachlorobenzene	1.6	Ŭ			
Pentachloroanisole	1.6	Ŭ			
Tetradifon (Tedion)	13	Ŭ		*	
PCB - 1242	31	Ŭ	•		[
PCB - 1248	31	Ŭ			
PCB - 1254	31	Ŭ			
PCB - 1260	31	Ŭ			1
		Č	•		

	<u>e</u>
Authorized By:	04

11/24/96 Release Date:

Page:

Department of Ecology

Analysis Report for

Pyrethrins (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96358082 Field ID: UPPER

Date Received: 08/28/96

Method: EPA1618

Project Officer: Art Johnson

Date Prepared: 09/05/96 Date Analyzed: 10/13/96

Matrix: Sediment/Soil

Units: ug/Kg

Result	Qualifier	
1300	UJ	
1300	UJ	
1300	UJ	
260	UJ	
	1300 1300 1300	1300 UJ 1300 UJ 1300 UJ

Authorized By:

Page:

1

Department of Ecology

Analysis Report for

Pyrethrins (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: 96358089

Date Received: 08/28/96

Method: EPA1618

Field ID: LOWER

Date Prepared: 09/05/96

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/13/96

Units: ug/Kg

Analyte	Result	Qualifier	
Resmethrin	1500	UJ	
Phenothrin	1500	UJ	
cis-Permethrin	1500	UJ	
Fenvalerate (2 isomers)	290	UJ	

Authorized By: _

Release Date: 1/26/46

Department of Ecology

Analysis Report for

Pyrethrins (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63759

Method: EPA1618

Blank ID: OBS6249A1

Date Prepared: 09/05/96

Matrix: Sediment/Soil

Project Officer: Art Johnson

Date Analyzed: 10/13/96

Units: ug/Kg

Analyte	Result	Qualifier
Resmethrin	310	UJ
Phenothrin	310	UJ
cis-Permethrin	310	UJ
Fenvalerate (2 isomers)	63	UI

Authorized By:

Release Date:

Department of Ecology

Analysis Report for

Pyrethrins (GC/AED)

Project Name:

Wapato Lake

LIMS Project ID: 1564-96

Sample: BLN63760

Method: EPA1618

Blank ID: OBS6249A2

Project Officer: Art Johnson

Date Prepared: 09/05/96 Date Analyzed: 10/13/96 Matrix: Sediment/Soil

Units: ug/Kg

Analyte	Result	Qualifier	
Resmethrin	310	UJ	
Phenothrin	310	UJ	
cis-Permethrin	310	UJ	
Fenvalerate (2 isomers)	63	UJ	

Authorized By:

Release Date: ///26/96

Page:

1

September 12, 1996

To:

Art Johnson

From:

Randy Knox, Metals Chemist

Subject:

Wapato Lake Project

Sediment

QUALITY ASSURANCE SUMMARY

Data quality for this project is excellent. No significant quality assurance issues are noted with the data

SAMPLE INFORMATION

The samples from the Wapato Lake Project were received by the Manchester Laboratory on 8/28/96 in good condition

HOLDING TIMES

All analyses were performed within the USEPA Contract Laboratory Program (CLP) holding times for metals analysis (28 days for mercury, 180 days for all other metals)

INSTRUMENT CALIBRATION

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. All initial and continuing calibration verification standards were within the relevant USEPA (CLP) control limits. AA calibration gave a correlation coefficient (r) of 0.995 or greater, also meeting CLP calibration requirements.

PROCEDURAL BLANKS

The procedural blanks associated with these samples show no analytically significant levels of analytes except lead. The reported lead detection level is raised to 0.4 mg/Kg. At this detection level there is no observed lead contamination.

SPIKED SAMPLES ANALYSIS

Spiked and duplicate spiked sample analysis were performed on this data set All spike recoveries are within the CLP acceptance limits of +/- 25%.

PRECISION DATA

The results of the spiked and duplicate spiked samples are used to evaluate precision on this sample set. The relative percent difference (RPD) for all analytes is within the 20% CLP acceptance window for duplicate analysis.

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

LCS analyses are within the windows established for each parameter.

Please call Bill Kammin at SCAN 360-871-8801 to further discuss this project

RLK:tlk

Department of Ecology

Analysis Report for

Arsenic

Project Name: Wapato Lake

LIMS Project ID: 1564-96

Project Officer: Art Johnson **Date Reported:** 10-SEP-96

Method: EPA206.2 Matrix: Sediment/Soil

Analyte: Arsenic

Sample	QC	Field ID	Result	Qualifier	Units		Received	Analyzed
			2.9 3.0 82 % 77 % 0.3 96 %	U	mg/Kg	Dry Wt. Dry Wt.	08/28/96 08/28/96 08/28/96 08/28/96	09/06/96 09/06/96 09/06/96 09/06/96 09/06/96

Authorized By: All Release

Release Date: 9/12/26

Page: 1

Department of Ecology

Analysis Report for

Lead

Project Name: Wapato Lake

LIMS Project ID: 1564-96

Project Officer: Art Johnson **Date Reported:** 10-SEP-96

Method:

EPA239.2

Matrix: Sedin Analyte: Lead

Sediment/Soil

Sample	QC Field ID	Result Qualifier	Units	Received	Analyzed
	Matrix Spike SPB3589	19.8 20.9 118 % 116 % 0.4 U 113 %	mg/Kg Dry Wt. mg/Kg Dry Wt. mg/Kg Dry Wt.	08/28/96 08/28/96 08/28/96 08/28/96	09/09/96 09/09/96 09/09/96 09/09/96

Authorized By: My Ml

Release Date: $\frac{9}{2}$

Page: 1

WA DOE: Wapato Lake Grain Size Distribution¹

Table 1

Sample Number	Gravel % > US #4 sieve	Sand % US #4 - #200 sieve	Silt % 0.075 - 0.002 mm	Clay % < 0.002 mm
35-8082	2	4	47	47
35-8089 Dup 1	0	1	59	40
35-8089 Dup 2	1	1	61	37

¹ Samples submitted were analyzed for grain size following ASTM D-422 methodology

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA 98366

September 24, 1996

Project:

Wapato Lake

Samples:

35-8082, 8089

Laboratory:

Sound Analytical

By:

Pam Covey

Case Summary

These samples were received at the Manchester Environmental Laboratory (MEL) on August 28, 1996 and sent to Sound Analytical on September 6, 1996 for TOC analysis using PSEP method

The samples were analyzed within acceptable holding limits, and the method blank associated with these samples has shown the process is free from contamination.

One sample was analyzed in triplicate and was within acceptable limits for the Relative Percent Difference (RPD)

For consistency with MEL reporting protocol, all non-detect values have been qualified with a "U" (the analyte was not detected at or above the reported result).

The results are acceptable for use as amended.

SOUND ANALYTICAL SERVICES, INC.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: WA Department of Ecology Date: September 17, 1996

Report On: Analysis of Solid

Report No.: 59255

IDENTIFICATION:

Samples received on 09-06-96

Project: Wapato Lake

ANALYSIS:

Lab Sample No. 59255-1

Client ID: 35-8082

General Chemistry Units: mg/kg

Parameter Method Result PQL 74,000 Total Organic Carbon PSEP 100

Lab Sample No. 59255-2

Client ID: 35-8089

General Chemistry Units: mg/kg

<u>Parameter</u> <u>Method</u> Result POL Total Organic Carbon PSEP 73,000 100

ND - Not Detected PQL - Practical Quantitation Limit

SOUND ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

General Chemistry

Client: WA Department of Ecology

Lab No:

59255q

Units:

mg/kg

QC Batch No.

296

Date Analyzed: 9-11-96

METHOD BLANK

Parameter	Result	PQI.
Total Organic Carbon	1000	100

ND = Not Detected

PQL = Practical Quantitation Limit

TRIPLICATE

Parameter	Lab Sample No.	Sample Result	Duplicate Result	Triplicate Result	%RSD
Total Organic Carbon	59255-(74,100	76,900	75,600	1.9

%RSD = Percent Relative Standard Deviation

BIOASSAY REPORT ACUTE BIOASSAYS Conducted August 30 through September 9, 1996

Prepared for

WASHINGTON STATE DEPT. OF ECOLOGY PORT ORCHARD, WASHINGTON

Prepared by

CH2M HILL 2300 NW Walnut Boulevard Corvallis, Oregon 97330

> September 26, 1996 Lab I.D. No. C01708

INTRODUCTION

CH2M HILL conducted acute bioassays from August 30 through September 9, 1996, on samples provided by Washington State Department of Ecology, Port Orchard, Washington. The organisms tested were the amphipod (*Hyalella azteca*) and the bioluminescent bacteria (*Vibrio fischeri*).

METHODS AND MATERIALS

TEST METHODS

The amphipod tests were performed according to Standard Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates, ASTM: E1383-90

The Microtox tests were performed according to Microtox M500 Manual, Solid Phase Test Protocol, Microbics Corporation Version 3.

TEST ORGANISMS

The amphipods were obtained from Chesapeake Cultures, Nayes, Virginia. The amphipods used were juveniles and were 2 to 3 millimeters in length. The organisms used for the Microtox testing were obtained from Microbics Corporation. All test organisms appeared vigorous and in good condition prior to testing.

DILUTION WATER

The water used for acclimation and dilution water during the static testing for the amphipods was reconstituted moderately hard water with a total hardness of 86 mg/l as CaCO₃, alkalinity of 64 mg/l as CaCO₃, and pH of 7.6. The dilution water used for the Microtox testing was a 2 percent sodium chloride solution provided by Microbics corporation.

SAMPLE PREPARATION

For the *Hyallela azteca* bioassays, 50ml of sample was placed in a test chamber, 200 ml of dilution water was then added and allowed to stand overnight. The test solutions were aerated slowly for 30 minutes prior to addition of test organisms.

For the Microtox testing, the sample was placed in dilution water and the organisms were allowed direct contact with the sample.

TEST CONCENTRATIONS

The Hyalella azteca bioassay concentration tested was 100 percent sample sediment with reference sediment for the control. The laboratory control was 16 grade washed silica sand. The photoperiod during the test was 16 hours light, 8 hours dark, and the temperature remained at $20\pm1^{\circ}$ C throughout the test.

The dilutions for the Microtox testing were 0.01, 0.02, 0.04, 0.08, 0.15, 0.31, 0.62, 1.23, 2.47, 4.93, 9.87, and 19.7 percent sample sediment with dilution water as control. A control sediment was obtained from Northwestern Aquatic Sciences and was used as a reference control to compensate for color and turbidity interferences in the test. A control sediment from the Wapato Lake sampling area was not available.

SAMPLE COLLECTION AND DESCRIPTION

The samples were collected August 27, 1996 and shipped to CH2M HILL's Corvallis laboratory. The samples were stored at 4°C in the dark until test initiation. Chain of custody for sample collection is provided in Appendix C.

MONITORING OF BIOASSAYS

The amphipod tests were monitored at initiation and every 48 hours thereafter for dissolved oxygen and pH. Conductivity was monitored at test initiation and termination. Mortality was determined at test termination. Light intensity output of the bacteria was monitored at test initiation and termination in the Microtox test. Temperature was monitored continuously throughout the testing period

RESULTS AND DISCUSSION

STATIC BIOASSAYS

The raw data sheets are presented in Appendix A and the results are summarized in the Tables below. Table 1 summarizes the survival data from the *Hyalella azteca* tests:

Table 1 Summary of Results Hyalella azteca					
Sample ID	# alive / # tested (% survival)				
Test d	ate 5/3/94				
Lab Control	53./60 (88.3%)				
100% Upper	50 / 60 (83.3%)				
100% Lower	53 / 60 (88.3%)				

The Hyalella azteca showed no statistically significant reduction in survival when compared to the lab control The no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) were 100 and greater than 100 percent, respectively for both samples Sediment control survival was 88 3 percent.

The LC₅₀ value (the concentration of sample causing a 50 percent reduction in biological measurement, e.g. survival) was calculated on survival. The LC₅₀ value for survival was greater than 100 percent for both samples.

Table 2 summarizes the results of the Microtox testing performed

	Table 2 Summary of Results Microtox Testing	
Sample ID	EC50 value without reference sediment adjustment	EC50 value with reference sediment adjustment
Upper Lake	1.29 %	4.47 %
Lower Lake	1.17 %	3.20 %

The Microtox testing showed a reduction in bacteria luminescence when compared to the control values and when compared to the reference sediment.

REFERENCE TOXICANT TEST

The 48-hour LC_{50} value and 95-percent control chart limits for the reference toxicant test (cadmium for the amphipods and phenol for the bacteria) conducted in August are listed below. The results indicate that the organisms was within their expected sensitivity range.

Table 3 Reference Toxicant Tests					
Species	LC ₅₀	95% C.I.			
Microtox	17.6 mg/l	14.0 to 21.7 mg/l			
Hyalella azteca	8.3 µg/l	4.9 to 13.3 μg/l			

APPENDIX B

Benthic Invertebrate Biomonitoring-September 27, 1996 Sampling Wapato Lake, near Lake Chelan, Washington

For Washington Department of Ecology, Olympia, WA

Sample analysis by Aquatic Biology Associates, Corvallis, OR

Ponar dredge samples; 0.05m2, 500 micron; 54-58 feet depths; substrates of dark, organic ooze

Lake Location	Lower	Lower	Lower	Upper	Upper	Upper
Sample Identification	358090	358091	358093	358083	358084	358085
BENTHIC INVERTEBRATES						
Porifera colonies	10	35	103	15	27	61
				<u> </u>		-
NON-BENTHIC INVERTEBRA	ATES					
Daphnia	16	0	11	7	2	0
Chaoborus	8	10	4	16	10	5

Abundances are per 0.05 square meter.