

Marine Sediment Monitoring Program

II. Distribution and Structure of Benthic Communities in Puget Sound 1989-1993

September 1998

Publication No. 98-328

Printed on Recycled Paper

For additional copies of this report, contact:

Department of Ecology Publications P.O. Box 47600 Olympia, WA 98504-7600 Telephone: (360) 407-7472

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status, or sexual orientation.

For more information or if you have special accommodation needs, please contact Michelle Ideker at (360) 407-6677. Ecology Headquarters telecommunications device for the deaf (TDD) number is (360) 407-6006. Ecology Regional Office TDD numbers are as follows:

SWRO (IDD) (360) 407-6306 NWRO (IDD) (206) 649-4259 CRO (IDD) (509) 454-7673 ERO (IDD) (509) 458-2055

Marine Sediment Monitoring Program

II. Distribution and Structure of Benthic Communities in Puget Sound 1989-1993

prepared by Roberto J. Llansó, Sandra Aasen, Kathy Welch

Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Olympia, Washington 98504-7710

h ailide is

September 1998

Waterbody Number WA-01-0010

Publication No. 98-328

Table of Contents

	<u>Page</u>
List of Tables	
List of Figures	
Acknowledgments	vii
Abstract	ix
Introduction	
Methods	
Sampling Design	2
Sampling and Laboratory Procedures	
Data Analysis	
Missing Data	
Taxonomic Standardization and Elimination of Incidental Data	
Abundance	
Community Statistics	
Classification Analysis	
Analysis of Station-by-Species Coincidence Tables	
Dominance	
Temporal Trends in Abundance	
Computer Programs Used in Data Analysis	
Results	
Sediment Characteristics	
Composition	
Organic Carbon	
Sulfides	
Community Structure	
Abundance	
Species Composition	
Diversity	
Similarities among Stations	
Inverse Classification and Station-by-Species Coincidence Tables	
Dominant and Characteristic Species	
Temporal Trends	
Discussion	
Correspondence with Contamination	
Community Structure	
Evaluation of the MSMP and Recommendations	
Design	
Sieve Size and Taxonomic Resolution	
Replication	
Biomass	
Conclusions	
References	

h dillada di

- APPENDIX A Sediment Composition
- APPENDIX B. Taxonomic Listing of Macro-invertebrates
- APPENDIX C Percent Abundance in Six Major Taxonomic Groups
- APPENDIX D. Species and Station Groups Identified by Classification Analysis

List of Tables

Table 1.	Designation, location and sampling schedule of marine sediment monitoring stations	<u>Page</u>
Table 2.	Incidental taxa eliminated from data analysis and reasons for elimination	
Table 3.	Total number of taxa and total mean abundance of organisms available for classification analysis	
Table 4	Total abundance of benthic macrofauna at stations in Puget Sound	
Table 5.	Stations (selection) arranged by percent abundance of four major taxonomic groups	
Table 6.	Species richness as computed by Margalef's SR	
Table 7.	Stations with Margalef's Species Richness below 7.0 by year	
Table 8.	Evenness as computed by Pielou's J'	45
Table 9	Numerically dominant species in Puget Sound responsible for low evenness or fluctuations in evenness at listed stations	
Table 10	Species used in the classification analysis of MSMP stations categorized according to the type of substrate in which they were numerically dominant	
Table 11	Fifteen dominant species in Puget Sound by sediment type	
	Abundance and total number of species of macrobenthos in Puget Sound	77
Table 13	Number of species recorded from Elliott Bay, Commencement Bay, and Port Madison	
Table 14	Species recorded in Port Madison and absent from Elliott Bay and Commencement Bay	

List of Figures

Figure 1A	Pag Northern range of Puget Sound stations monitored by the MSMP	
Figure 1B	Southern range of Puget Sound stations monitored by the MSMP	5
Figure 2	Total mean abundance of benthic macrofauna in stations arranged from low to high abundance, 1989 and 1990 3	4
Figure 3.	Total mean abundance of benthic macrofauna in stations arranged from low to high abundance, 1991 and 1992.	5
Figure 4.	Total mean abundance of benthic macrofauna in stations arranged from low to high abundance, 1993.	6
Figure 5.	Shannon diversity H' of stations arranged from low to high diversity 4	8
Figure 6	Species richness SR as a function of percent silt and clay and percent total organic carbon in sediments 5	0
Figure 7.	Species richness SR of stations categorized by sediment type and total sulfide 5	1
Figure 8	Classification analysis of stations for 1989.5	5
Figure 9.	Classification analysis of stations for 1990	6
Figure 10.	Classification analysis of stations for 1991 57	7
Figure 11	Classification analysis of stations for 1992	8
Figure 12	Classification analysis of stations for 1993	9
Figure 13.	Nodal analysis of constancy for 1989.60)
Figure 14	Nodal analysis of constancy for 1990	1
Figure 15	Nodal analysis of constancy for 1991 62	2
Figure 16	Nodal analysis of constancy for 1992.63	3
Figure 17	Nodal analysis of constancy for 1993 64	1

Figure 18	Nodal analysis of fidelity for 1989	<u>Page</u> 65
Figure 19	Nodal analysis of fidelity for 1990	
Figure 20	Nodal analysis of fidelity for 1991	
Figure 21	Nodal analysis of fidelity for 1992	
Figure 22	Nodal analysis of fidelity for 1993	69
Figure 23.	Temporal changes in mean total abundance of benthic macrofauna at core stations	83
Figure 24.	Temporal changes in mean abundance of <i>Aphelochaeta</i> sp. (Annelida: Polychaeta) at six stations in Puget Sound	
Figure 25.	Temporal changes in mean abundance of Axinopsida serricata (Mollusca: Bivalvia) at six stations in Puget Sound	
Figure 26.	Temporal changes in mean abundance of Amphiodia urtica/periercta (Echinodermata: Ophiuroidea) at six stations in Puget Sound	
Figure 27.	Temporal changes in mean abundance of <i>Eudorella pacifica</i> (Crustacea: Cumacea) at six stations in Puget Sound	90
Figure 28.	Temporal changes in mean abundance of <i>Euphilomedes carcharodonta</i> (Crustacea: Ostracoda) at six stations in Puget Sound	91
Figure 29	Temporal changes in mean abundance of <i>Macoma</i> spp. (Mollusca: Bivalvia) at six stations in Puget Sound	
Figure 30.	Temporal changes in mean abundance of <i>Prionospio jubata</i> (Annelida: Polychaeta) at six stations in Puget Sound	
Figure 31.	Temporal changes in mean abundance of eight species in Elliott Bay	
Figure 32	Temporal changes in mean abundance of eight species in Magnolia Bluff	95
Figure 33	Temporal changes in mean abundance of eight species in Point Pully	96
Figure 34.	Temporal changes in mean abundance of eight species in Shilshole	97

Figure 35.	Top 2-3 numerically dominant species (1.0-mm mesh screen) at four sites in Puget Sound	100
Figure 36.	Abundance and number of taxa of benthic macro-invertebrates at four stations in Hood Canal	103

Acknowledgments

Many individuals contributed significantly to the preparation of this report We are grateful to those that helped with the standardization of benthic data files, especially Margaret Dutch, Cynthia Stonick and Roberta Woods. Their effort and commitment during the early stages of report preparation made possible the synthesis of vast amounts of benthic data. Margaret Dutch developed and painstakingly updated a Master Species List, from which Appendix B of this report was derived.

Taxonomic expertise was provided by many individuals. In-house taxonomy was conducted by Dale Davis, Margaret Dutch, Pamela Sparks-McConkey, Cynthia Stonick, Pete Striplin (now at Striplin Environmental Associates), Kathy Welch, and Roberta Woods. Externally, taxonomy was conducted through contracts with Marine Taxonomic Services (Corvallis, OR), EVS Environment Consultants (Seattle, WA) and MEC Analytical Systems (Carlsbad, CA). Taxonomists contributing to this project were Henry Chaney, Jeff Cordell, Allan Fukuyama, Gordon Hendler, Brigitte Hilbig, Steve Hulsman, Howard Jones, Jim Laughlin, Sandy Lipovsky, John Ljubenkov, Lawrence Lovell, Scott McEuen, Tony Phillips, Eugene Ruff, Paul Scott, Ronald Shimek, Craig Staude, and Susan Weeks.

Field sampling was conducted by Henry Dietrich, Margaret Dutch, Mark Golliet, Bob James, Pamela Sparks-McConkey, Cynthia Stonick, Pete Striplin, Fern Svendsen, and Roberta Woods. Technical assistance was provided by Bernard Strong. Charles Eaton, skipper of the R/V Kittiwake, provided skillful navigation and on-deck assistance.

Steve Barrett and Bill Ehinger provided computer support, and Steve Barrett designed the maps in Figures 1 and 35 of this report. Stephanie Ehinger wrote the Microsoft Excel macros for nodal analysis. Michelle Ideker formatted and proofed the final draft of this report.

We are grateful to peer reviewers for their contributions to this report. External review was conducted by John Armstrong and Bruce Duncan (U.S. Environmental Protection Agency), and Scott Redman (Puget Sound Water Quality Action Team). Internal review was provided by Ken Dzinbal (Ambient Monitoring Section) and Glenn Merritt (Watershed Assessments Section).

Abstract

The Marine Sediment Monitoring Program (MSMP) monitors sediment quality at sampling locations throughout Puget Sound. Objectives of the benthic component are to collect baseline data in contaminated and uncontaminated stations, as well as evaluate the condition of benthic macro-invertebrates in relation to concentrations of toxic chemicals in sediments. To address these objectives, this report documents spatial and temporal patterns of variation in species abundance and composition, and assesses effects from contamination at MSMP stations. In addition, the report identifies potential natural stresses that may structure benthic communities in Puget Sound and may constitute confounding factors in pollution monitoring studies.

Samples were collected March-April 1989-1993 from 76 monitoring stations located throughout Puget Sound, Hood Canal, and the Straits of Georgia and Juan de Fuca. Two types of stations were established: core stations, sampled once every year, and rotating stations, sampled once every three years in a rotating cycle alternating between the north, central, and south Puget Sound regions. Five van Veen grabs were collected at each station, and the organisms (1 0-mm sieve fraction) were identified to species. Sediment contaminants (not presented here), total organic carbon, total sulfide, and grain size were measured from the top 2 cm of paired samples

Multivariate analysis techniques showed that infaunal assemblages in Puget Sound are primarily related to sediment composition and water depth, and secondarily to geographical location. Assemblages of numerically dominant species were characterized using rank analysis. The majority of the species in Puget Sound were not restricted to one substrate, but were broadly distributed in different types of substrates with peaks of abundance in sand, mixed sediment, or mud. Diversity measures identified some stations as consistently having low species richness. These stations were distinctly separated in cluster analysis, and consisted of upper reaches of inlets in south Puget Sound, semi-enclosed bays, and some depositional locations associated with river plumes. These locations have the potential for the development of low DO episodes in bottom waters and the accumulation of sulfide in sediments. Abundance also was low at many of these locations.

In general, spatial patterns in species abundance and composition appeared to be unrelated to contaminant concentrations at sampling locations. However, the polychaete *Aphelochaeta* sp. was distinctly associated with sediment contamination and/or organic enrichment. This species may be useful as an indicator of pollution. In addition, large fluctuations in abundance were associated with the numerical dominance of typically 20 species of benthic organisms plus the Phoronida. Temporal patterns in species abundance at some stations differing in sediment quality were homogeneous basin-wide and unrelated to contamination.

This study represents the first system-wide effort to characterize benthic assemblages in the Puget Sound region The study evaluates the benthic component of the MSMP, suggests improvements to the design, and provides recommendations the definition of the

l

Introduction

This report is the second part of a summary that presents the results of the Marine Sediment Monitoring Program (MSMP) from 1989 through 1995. Volume 1 presented the sediment chemistry and bioassay results (Llansó *et al.*, 1998). Volume 2 presents the biological findings for the period 1989-1993.

The background and objectives of the MSMP were stated in Volume 1. Two objectives focussing on the benthic component of the program were to:

- (1) Collect baseline data and long-term data on Puget Sound sediments and macroinvertebrate communities in contaminated and uncontaminated areas.
- (2) Evaluate the condition of Puget Sound benthic macro-invertebrate communities in relation to the concentration of toxic chemicals in sediments.

To address these two program level objectives, the present report describes spatial and temporal patterns of variation in species abundance and composition at MSMP stations, characterizes benthic assemblages in Puget Sound, and assesses potential effects from contamination. In addition, the report looks at natural stresses that may structure benthic communities and which may constitute confounding factors in pollution monitoring efforts. In its last section, the report evaluates the design of the benthic component of the MSMP, suggests next steps in the evaluation of benthic data, and provides recommendations.

Methods

Sampling Design

Benthic infauna were collected 1989-1995 at 86 stations established throughout Puget Sound, Hood Canal, the Strait of Georgia, and the Strait of Juan de Fuca (Figure 1) Data presented in this report are for the period 1989-1993 since at the time of report preparation the taxonomy for the 1994 and 1995 samples had not been completed.

Stations were selected based on criteria established by the Monitoring Management Committee (MMC, 1988). The stations were selected subjectively to ensure a variety of physical environments and wide geographical coverage. Station locations included centers of major basins, bays and inlets, nearshore areas, and historic sampling sites with data extending back to the 1960s. Station distribution, however, was biased toward nearshore areas of about 20 m or less in depth. It was thought that nearshore areas would be most important in terms of diversity of benthic organisms (MMC, 1988). Focussing more heavily in nearshore areas would also allow more stations to be assessed in regions where sediment quality problems may be emerging as a consequence of shoreline development.

In addition to identifying emerging problem areas, a main focus of the MSMP was to monitor ambient conditions in order to characterize background sediments. Therefore, stations were deliberately located away from the immediate vicinity of major known sources of sediment contamination.

Of the original 86 stations, 76 were kept in the program and 10 were dropped or moved because of difficulties in sampling (Table 1) Stations with very coarse sediments were eliminated because gravel and rocks prevented adequate sample collection. Data from these 10 stations were not examined. Stations were categorized as "core" or "rotating" Core stations (34) were sampled annually, and rotating stations (42) were sampled once every three years in sets of fourteen, alternating among northern, central, and southern areas in the Puget Sound region (Table 1; Figure 1) Rotating stations were developed in the second year (1990) of the program to provide more concentrated, though less frequent, coverage of all portions of Puget Sound Therefore, 48 stations were sampled in any given year except for 1989, where a preliminary set of 50 stations was sampled. All sampling occurred during three weeks in late March or early April to allow for the measurement of the stable adult invertebrate population surviving over the winter (Tetra Tech, 1987).

i Ni

Sampling and Laboratory Procedures

Sampling was conducted according to the Puget Sound Estuary Program (PSEP) protocols (Tetra Tech, 1986; 1987) and procedures outlined in the MSMP Implementation Plan (Striplin, 1988) Five replicate sediment samples were collected at each station with a double 0.1 m^2 van Veen grab. The double van Veen consists of two separate compartments which allow simultaneous collection of chemistry and biological samples

Sediment samples from one van Veen compartment were washed through a 1 0-mm mesh screen using running sea-water. Benthic organisms retained in the screen were transferred to 10% buffered formalin in sea-water, stained with Rose Bengal, and later sorted, enumerated, and identified to species level in the laboratory.

In the laboratory, samples were washed in fresh water and stored in 70% ethanol previous to sorting and identification. Organisms were sorted into five major taxonomic groups: Annelida, Arthropoda, Mollusca, Echinodermata, and miscellaneous phyla (combined). Quality Assurance and Control procedures (QA/QC) included the re-examination of 20% aliquots of every sample. Sorting QC required recovery of 95% of the total number of organisms in the sample by the initial sorter. Samples not meeting this removal criterion were completely resorted.

Faunal identifications were performed by taxonomists at the Department of Ecology, and by Marine Taxonomic Services (Corvallis, OR), EVS Environment Consultants (Seattle, WA), and MEC Analytical Systems (Carlsbad, CA) Identifications were conducted to the lowest taxonomic level possible, usually to species. For incomplete specimens, only the anterior or posterior ends were counted and identified, depending on the species. All identifications were made using binocular dissecting scopes at 40x magnification power, or using compound microscopes If available, three representative organisms of each species or taxon were removed from the samples and placed in a voucher collection

QA/QC procedures consisted of the re-identification of five percent of all samples by senior taxonomists qualified to identify organisms in each major taxonomic group. Senior taxonomists also reviewed and verified all the voucher specimens generated by the primary taxonomists Reference lists of all the taxonomic literature used to identify the species, including publications describing recent changes in species nomenclature, were usually prepared and kept in laboratory files to aid in the identification of organisms in subsequent years.

Sediment characteristics that usually determine faunal composition were measured as described below. Further detail on laboratory procedures and sediment chemistry analyses can be found in Volume 1 of this report.

Figure 1A. Northern range of Puget Sound stations monitored by the MSMP.

한 반 반 반 반 한 한

÷

Table 1. Designation, location and sampling schedule of marine sediment monitoring stations. An "X" denotes yearly data in the Mari	Marine
Sediment Monitoring database. Core stations are sampled annually. Rotating stations are sampled in a 3 year rotation, and are designs	signated
with the letter "R"	0

Station	Station	Dottoto	Dottoro I otitudo		Approx.				,			
Number Name	Name	Schedule	tautuue (deg min N)	Longuude (deg min W)	water Depth (Meters)	89	90	91	Year 92	93	94	95
_	Semiahmoo Bay, Blaine	Core	48 59.46	122 51.73	23	×	×	X	X	X	X	Х
2R	Cherry Point	North	48 50.04	122 44.11	20	×		×			Х	
ŝ	Strait of Georgia (North of Patos Is.)	Core	48 52.22	122 58.71	223	×	×	×	×	×	×	×
4	Bellingham Bay	Core	48 41.04	122 32.29	24	×	×	×	Х	X	X	X
5	Samısh Bay	Core	48 35.85	122 32.00	21	Х	Х	Х	Х	х	×	X
6	East of Anacortes	Core	48 31.05	122 34.35	20	X ⁽¹⁾						
٢	Stratt of Juan de Fuca	Core	48 12.10	123 14.34	133	$\mathbf{X}^{(1)}$						
8	Port Angeles	Core	48 07.89	123 26.94	21	×	x	×	×	×	×	Х
6	Green Point	Core	48 08.10	123 17.20	20	$\mathbf{X}^{(2)}$						
9R	East of Green Point	North	48 08.02	123 14.94	14			×			×	
10R	Dungeness Bay	North	48 10.18	123 06.05	21	Х		Х			×	
11R	Discovery Bay	North	48 03.26	122 53.70	20	Х		×			×	
12	Port Townsend Bay	Core	48 05.05	122 46.59	21	Х	X	x	X	X	×	×

- Hornelio

÷-----

_

Continued.	
,	
Table	

r 93 94 95	Х		X X X	х х х	х х х	х х х	x x x	х х х	X	Х	X	x x x	
Year 91 92	×		XX	x X	X	x x	ХХ	x	×	X	×	x x	
90			X	×	Х	Х	Х	Х		·		×	
89	×	X ⁽¹⁾	×	×	Х	Х	×	Х	X	×	Х	×	
Approx. Water Depth (Meters)	20	20	81	61	123.5	10.5	20	20.5	20	182	20	268	
Longıtude (deg min W)	122 37.74	123 06.87	123 07.78	122 37.49	122 28.29	122.27,48	122 14.57	122 17.18	122 20.07	122 21.93	122 30.21	122 27.46	
Rotation Latitude Schedule (deg min N)	47 50.26	47 22.81	47 22.18	48 15.37	48 05.86	48 10.37	47 59.13	47 57.33	47 52.24	47 51.86	Central 47 51.31	47 51.05	
Rotation Schedule	North	Core	Core	Core	Core	Core	Core	Core	Central	Central	Central	Core	
ſ	North Hood Canal (South of Bridge)	South Hood Canal	South Hood Canal, Great Bend	Oak Harbor	Saratoga Passage	Port Susan	Port Gardner (Everett)	Mukilteo	East Central Basın (South of Picnic Point)	East Central Basin (West of Norma Beach)	West Central Basin (Whidbey Basin)	Central Basin	
Station Station Number Name	13R	16	17	18	19	20	21	22	23R	24R	25R	26	

Page 7

Table 1. Continued.

Station Station Number Name	Station r Name	Rotation Latitude Schedule (deg min	Rotation Latitude Schedule (deg min N)	Longıtude (deg min W)	Approx. Water Depth (Meters)	89	06	91	Year 92	93	94	95
28	Jefferson Head	Core	47 43.99	122 29.37	20	X ⁽¹⁾						
29	Shilshole	Core	47 42.05	122 27.24	199	×	×	×	X	X	×	×
30	Eagle Harbor	Core	47 37.43	122 30.18	13.5	×	X	x	×	×	×	×
31	West Point	Core	47 39.28	122 26.12	22	$\mathbf{X}^{(l)}$						
32	Magnolia Bluff	Core	47 37.91	122 24.52	21	×	×	x	×	X	×	×
33	Elliott Bay (SE of Duwamish Head)	Core	47 35.23	122 22.55	20	×	×	×	×	×	×	X
34	Sinclair Inlet	Core	47 32.83	122 39.73	9.5	×	×	x	Х	Х	Х	X
35	Dyes Inlet	Core	47 36.81	122 41.92	12.5	×	x	x	×	×	×	Х
36R	Brace Point	Central	47 30.81	122 23.85	15	×			×			×
37R	North Vashon Island (South of Dolphin Point)	Central	Central 47 29.26	122 27.35	20.5	×			×			×
38	Point Pully (3-Tree Point)	Core	47 25.70	122 23.62	199	×	×	x	×	X	×	×
39	Dash Point (East of Dumas Bay)	Core	47 20.23	122 22.32	14.5	×	×	×	×	×	×	×
40	City Waterway (Commencement Bay)	Core	47 15.68	122 26.24	10	×	×	X	×	×	×	×

arh-li-giùideana

-

Page 8

Continued	
Table	

Station Number	Station Name	Rotation Schedule	Rotation Latitude Schedule (deg min N)	Longitude (deg min W)	Approx. Water Depth (Meters)	89	90	91	Year 92	93	94	95
41	Blair/Sitcum Waterways (Commencement Bay)	Core	47 16.49	122 25.27	20.5	х	×	X	×	×	×	×
42	Ruston (Commencement Bay)	Core	47 18.24	122 29.95	39	X ⁽¹⁾						
43	Carr Inlet	Core	47 17.87	122 44.55	19	×	×	×	×	×	×	x
44	East Anderson Island	Core	47 09.68	122 40.42	20	X	×	×	×	×	×	X
45	Devil's Head	Core	47 09.88	122 45.10	52	X	×	x	×	×	X	X
46R	West Nisqually (Johnson Point)	South	47 07.91	122 46.97	22	×	×			×		
47	Case Inlet (Fudge Point)	Core	47 13.98	122 50.98	20	×	×	×	×	×	×	X
48	Outer Budd Inlet	Core	47 07.44	122 55.16	21.5	Х	X	X	×	X	×	×
49	Inner Budd Inlet	Core	47 04.79	122 54.81	5.25	×	×	Х	Х	Х	×	×
50	Oakland Bay, Shelton	Core	47 12.61	123 04.55	Ĺ	X ⁽³⁾						
69	Port Madison	Core	47 44.15	122 32.11	33.5		×	×	×	X	×	×
70	Oakland Bay, Sheiton	Core	47 12.77	123 04.96	5.3		X	X	×	×	×	Х
71	Fidalgo Bay, Cap Sante	Core	48 30.55	122 35.23	6.5		Х	X	×	×	X	X
101R	North Oakland Bay	South	47 13.92	123 03.17	S		×			Х		

Page 9

-- b-- eldJLEeht -d-4

Station Station Number Name		Rotation Schedule	Rotation Latitude Schedule (deg min N)	Longrtude (deg min W)	Approx. Water Depth (Meters)	89	06	16	Year 92	93	94	95
102R	Inner Totten Inlet	South	47 07.21	123 01.36	12		X			х		
103R	Mid Totten Inlet	South	47 10.24	122 57.46	20		x			×		
104R	Inner Eld Inlet	South	47 05.77	122 58.45	7		x			×		
105R	Outer Eld Inlet	South	47 08.08	122 56.70	16		Х			X		
106R	Mid Budd Inlet (East of Tykle Cove)	South	47 05.99	122 55.32	12		×			Х		
108R	Budd Inlet (West of Dover Point)	South	47 08.70	122 53.93	20		$\mathbf{X}^{(4)}$					
109R	Henderson Inlet	South	47 09.19	122 50.02	20		×			Х		
110R	Inner Case Inlet	South	47 21.23	122 48.78	20		x			x		
111R	Mid Case Inlet	South	47 18.22	122 47.80	21		x			x		
112R	Nisqually Delta	South	47 06.74	122 41.94	20		×			×		
113R	Willochet Bay	South	47 16.39	122 35.75	24		×			x		
114R	Henderson Bay	South	47 22.08	122 38.85	18		x			X		
115R	Outer Filucy Bay	South	47 12.19	122 44.75	18		Х			Х		
116R	Carr Inlet (North of McNeil Island)	South	47 13.06	122 39.83	20		$\mathbf{X}^{(4)}$					

seli-Alidebeen

-

Table 1. Continued.

Continued.	
e [.	
Table	

Station Number	Station r Name	Rotation Latitude Schedule (deg mir	Û.	Longitude (deg min W)	Approx. Water Depth (Meters)	89	06	16	Year 92	93	94	95
201R	Strait of Georgia, Roberts Bank	North	48 59.47	123 12.41	121			X			×	
202R	Point Roberts	North	48 55.91	123 05.59	117			х			Х	
203R	Bellingham Bay	North	48 45.00	122 32.00	12			×			×	
204R	East Sound	North	48 38.31	122 52.57	31			×			×	
205R	NW Blakely Island (West of Obstruction Island)	North	48 35.37	122 50.95	33			×			×	
206R	Friday Harbor	North	48 32.58	123 00.78	18			×			x	
207R	West Beach, Whidbey Island	North	48 23.96	122 40.26	28.5			×			×	
208R	Sequim Bay	North	48 02.52	123 00.37	13.5			Х			x	
209R	Skagit Bay	North	48 17.72	122 29.31	21			×			×	
301R	Useless Bay	Central	47 59.12	122 29.49	20				×			X
302R	Oak Bay	Central	48 01.16	122 42.87	19.5				×			×
303R	Quartermaster Harbor	Central	47 22.47	122 28.29	13.5				×			×
304R	Hood Canal, Tekiu Point	Central	Central 47 35.26	122 58.74	175				×			×

- A LANGIN - IV-

ŏ
Ð
Ę
0
ă
5
$\overline{()}$
\cup
Ϋ.
1.
Ϋ.
Ϋ.
Ϋ.
ble 1. (

Station Number	Station Station Number Name	Rotation Latitude Schedule (deg min	Rotation Latitude Longitude Schedule (deg min N) (deg min W)	Longitude (deg min W)	Approx. Water Depth (Meters)	89 90	91	Year 92	93	94	95
305R	Hood Canal, Outer Lynch Cove	Central	Central 47 23.82	122 55.90	20			×			×
306R	Scahurst, East Passage	Central	Central 47 28.23	122 22.56	75			×			×
307R	Holmes Harbor, Whidbey Island	Central 48 05.27	48 05.27	122 33.04	58			×			×
308R	Liberty Bay, Poulsbo	Central	Central 47 43.06	122 38.21	16.5			X			Х
⁽¹⁾ Static	⁽¹⁾ Station discontinued after 1989. ⁽²⁾ Station relocated and renumbered as 9R. ⁽³⁾ Station relocated and renumbered as 70. ⁽⁴⁾ Station discontinued after 1990.	¹⁾ Station reloc	ated and renui	nbered as 9R.	⁽³⁾ Station relocated a	and renumbered a	s 70. ⁽⁴⁾ St	ation disco	ntinued af	ter 1990.	

Page 12

Total organic carbon (TOC) was measured by high temperature combustion from samples collected from the top 2 cm of sediments. Sediment particle size analysis followed procedures described in Folk (1980). Sand was separated from mud by wet sieving, and the mud fraction (particles $< 62.5\mu$) was analyzed for percent silt and clay by pipette. Sand fractions (percent very fine sand, fine sand, medium sand, coarse sand, and very coarse sand) were not categorized until 1994. Samples for total sulfide (TS) were preserved in a solution of zinc acetate, and the TS was determined by distillation of the acid-labile sulfide following spectrophotometric analysis (methylene blue method) or a titrimetric analysis (1990 samples). In addition, the general physical aspect of the sample, including the presence and type of debris in the sample and the color of the sediment surface, were recorded in the field. A Redox Potential Discontinuity (RPD) depth was measured visually for each sample in 1994 and 1995 (see Volume 1).

Data Analysis

Missing Data

Benthic data presented in this report are for the period 1989-1993 Stations with discontinued sampling (Table 1) were not included in the analyses. This leaves a total of 76 stations examined In addition, Station 26 was not included in the analysis in 1989 because of missing arthropod data for replicates 2 and 4, and in 1990 and 1991 because sampling occurred off station location All missing data were due to lost or damaged samples.

In addition to Station 26, data were missing from the following samples and years. In 1989, mollusc data were missing from Station 30 replicate 5 and Station 35 replicate 3. In 1990, arthropod data were missing from Station 8 replicate 4 and Station 29 replicate 4. In 1993, most organisms were missing from Station 20 replicate 5 and Station 29 replicate 1 because of sample preservation problems.

Missing data were treated as follows. For diversity indices, the average number of molluscs and arthropods in four replicates were used to estimate mollusc and arthropod missing data in the replicate from which they were missing. Missing data for Station 20 and Station 29 in 1993 were not estimated from averages of remaining replicates because the data missing were substantial and affected all groups of organisms. For these last stations, diversity computations were based on four replicates. Classification analyses also were based on four replicates in cases with missing data.

Taxonomic Standardization and Elimination of Incidental Data

Data files were first standardized to ensure common species nomenclature This was necessary because numerous taxonomists contributed to the database, many changes in nomenclature occurred since the inception of the program, and the taxonomy of many

marine invertebrates in our region is poorly known. Uniform names and National Oceanographic Data Center (NODC) taxonomic codes were applied across data sets Taxonomic differences were eliminated by cross-correlating species lists and by consulting with taxonomists to resolve discrepancies. Some of these discrepancies could only be resolved by re-examining archived specimens. Since time limitations prevented re-examination of specimens, those cases were treated by combining species at the genera or family levels. Also, some closely related species that are difficult to distinguish were combined in unresolved "species complexes"

For diversity and classification analyses, organisms that represent incidental catches or which may not be fully exposed to chemical contaminants in sediments, were eliminated from the data. These were (1) colonial organisms recorded with presence/absence data, (2) organisms associated with hard substrate, such as rock or shell, (3) organisms that have minimal contact with the sediment or are mostly pelagic, and (4) organisms that are mostly epibionts, *i.e.*, associated with sponges, hydroids, bryozoans, algae, or vascular plants. Following these criteria, a total of 167 taxa were removed from the data files, 86 of which were species-level identifications (Table 2). Organisms that are in full contact with the sediment such as burrowers, and those that plow through or inhabit the sediment surface, were kept in the analyses. Since they cannot be enumerated, colonial organisms were removed from all analyses. References used as guidance in the elimination of incidental data were Ricketts (1939), Bousfield (1973), Smith and Carlton (1975), Kozloff (1983; 1987), Behrens (1991), and Jensen (1995).

Abundance

Mean faunal abundances were compared using one-factor analysis of variance (ANOVA) on transformed data if the assumptions of the test were met as indicated in Underwood (1981). The null hypothesis tested was that no difference existed in total species abundance between stations. When ANOVA assumptions were not met, distribution-free statistical procedures (Kruskal-Wallis test) were used. Transformation of counts to \log_{10} (x) was necessary to remove heterogeneity of variances and normalize the data. Homogeneity of variances before and after transformation was tested using Bartlett's test (Zar, 1984). Statistical analyses were conducted in SYSTAT (SPSS Inc., Chicago, IL).

Community Statistics

Community structure statistics were computed to discern patterns in species abundance and composition Species Richness (SR) was computed using the formula given by Margalef (1958):

$$SR = \frac{(s-1)}{\ln N}$$

Таха	Reason for Elimination
Porifera	
Leucosolenia sp.	hard substrate
Hydrozoa	presence/absence
Anthozoa	
Diadumene sp.	hard substrate
Limnactiniidae sp A	hard substrate
Metridium sp.	hard substrate
Metridium senile	hard substrate
Urticina coriacea	hard substrate
Polychaeta	
Circeis sp.	hard substrate
Circeis armoricana	hard substrate
Circeis spirillum	hard substrate
Hyalopomatus biformis	hard substrate
Neosabellar ia cementar ium	hard substrate
Polydora limicola	hard substrate
Pseudochitinopoma occidentalis	hard substrate
Serpula sp.	hard substrate
Serpula vermicularis	hard substrate
Serpulidae	hard substrate
Spirorbidae	hard substrate
Spirorbis sp	hard substrate
Mollusca: Polyplacophora	
Lepidochitonia dentiens	hard substrate
Polyplacophora	hard substrate
Mollusca: Gastropoda	
Prosobranchia	
Cerithiopsis sp.	epibiont
Cerithiopsis signa	epibiont
Collisella sp.	hard substrate
Crepidula sp	hard substrate
Crepidula sp. A	hard substrate
Crepipatella sp.	hard substrate
Crepipatella lingulata	hard substrate
Lacuna sp.	epibiont, hard substrate
Littorina sp.	epibiont, hard substrate
Margarites sp	epibiont, hard substrate
Margarites pupillus	epibiont, hard substrate
Petaloconchus sp	hard substrate (vermetid)

Table 2. Incidental taxa eliminated from data analysis and reasons for elimination.See text for further detail on criteria used to exclude these taxa.

9 Hêr Hali I

Table 2.	Continu	ed.
14010 2.	Continua	va.

Taxa	Reason for Elimination
Petaloconchus compactus	hard substrate (vermetid)
Solariella sp	epibiont, hard substrate
Mollusca: Gastropoda	
Opisthobranchia	
Aeolidacea	epibiont
Aeolidea sp	epibiont
Ancula sp.	epibiont
Armina californica	epibiont, mostly on sea pens
Corambe pacifica	epibiont
Corambe thompsoni	epibiont
Cuthona sp.	epibiont
Cuthona concinna	epibiont
Dendronotus sp.	epibiont
Diaphana sp.	epibiont
Diaphana californica	epibiont
Doto sp.	epibiont
Fiona pinnata	epibiont
Flabellinidae	epibiont
Nudibranchia	epibiont
Okenia sp.	epibiont
Onchidoris hystricina	epibiont
Polycera sp	epibiont
Mollusca: Bivalvia	
Bankia setacea	borer in wood
Hiatella sp.	borer, hard substrate
Hiatella arctica	borer, hard substrate
<i>Mytilus</i> sp	hard substrate
Mytilus edulis	hard substrate
Panomya sp	borer, hard substrate
Panomya ampla	borer, hard substrate
Pododesmus cepio	hard substrate
Teredo sp	borer in wood
Mollusca: Cephalopoda	
Rossia pacifica	pelagic
Arthropoda: Pycnogonida	
1 <i>chelia</i> sp	epibiont
Achelia chelata	epibiont
1chelia latifi ons	epibiont
Anoplodactylus sp	epibiont
Inoplodactylus erectus	epibiont
Nymphon pixellae	epibiont

hand a state of the second second

Table 2. Continued.

Taxa	Reason for Elimination
Phoxichilidium femoratum	epibiont
Pycnogonida	epibiont
Pycnogonum sp	epibiont
Arthropoda: Cirripedia	
Balanus sp	hard substrate
Balanus crenatus	hard substrate
Balanus hesperius laevidomus	hard substrate
Cirripedia	hard substrate
Arthropoda: Mysidacea	
Acanthomysis sp	mostly pelagic
Alienacanthomysis macropsis	mostly pelagic
Heteromysis odontops	mostly pelagic
Inusitatomysis insolita	mostly pelagic
Meterythrops robusta	mostly pelagic
Mysidacea	mostly pelagic
Mysidella americana	mostly pelagic
Neomysis sp	mostly pelagic
Neomysis kadiakensis	mostly pelagic
Neomysis mercedis	mostly pelagic
Pacifacanthomysis nephrophthalma	mostly pelagic
Pseudomma sp	mostly pelagic
Pseudomma berkeleyi	mostly pelagic
Pseudomma truncatum	mostly pelagic
Xenacanthomysis sp.	mostly pelagic
Xenacanthomysis pseudomacropsis	mostly pelagic
Arthropoda: Isopoda	
Aega symmetrica	parasitic in fish

Aega symmetrica Argeia pugettensis Idotea sp. Limnoria sp. I imnoria lignorum Rocinela cf americana Rocinela belliceps Synidotea sp. Synidotea nebulosa Synidotea nodulosa

Arthropoda: Amphipoda Gammaridea Calliopiidae Calliopius sp. Cyphocaris challengeri parasitic in fish parasitic in shrimp epibiont borer in wood parasitic in fish parasitic in fish borer in wood borer in wood borer in wood

pelagic pelagic pelagic -----

:

Taxa	Reason for Elimination
Dyopedos sp.	epibiont
Dyopedos articus	epibiont
Dyopedos bispinis	epibiont
Ericthonius sp	epibiont
Ericthonius brasiliensis	epibiont
Ericthonius hunteri	epibiont
Ericthonius rubricornis	epibiont
Eusiridae	pelagic
Eusirus sp.	pelagic
Eusirus cuspidatus	pelagic
Gammaropsis thompsoni	epibiont
Metopa sp.	epibiont
Matopa proboldes	epibiont
Metopella sp	epibiont
Parametopella sp.	epibiont
Peramphithoe sp	epibiont
Probolisca sp	epibiont
Proboloides sp.	epibiont
Rhachotropis sp	pelagic
Rhachotropis clemens	pelagic
Rhachotropis oculata	pelagic
Stenothoidae	epibiont
Stenothoe sp	epibiont
Stenula sp	epibiont
Arthropoda: Amphipoda	
Caprellidea	
Caprella sp	epibiont
Caprella irregularis	epibiont
Caprella laeviuscula	epibiont
Caprella mendax	epibiont
Caprellidea	epibiont
Tritella pilimana	epibiont
Arthropoda: Amphipoda	
Hyperiidea	
Hyperiidea	pelagic, epibiont
Parathemisto pacifica	pelagic, epibiont
Arthropoda: Decapoda	
Fabia subquadrata	commensal in mussels
Majidae	epibiont
Oregonia sp.	epibiont
Oregonia gracilis	epibiont
Pugettia sp.	epibiont

ł

Table 2. Concluded.

Iaxa	Reason for Elimination
Pugettia producta	epibiont
Brachiopoda	
Terebratalia sp.	mostly hard substrate
Terebratalia transversa	mostly hard substrate
Terebratulina sp.	mostly hard substrate
Terebratulina unguicula	mostly hard substrate
Entoprocta	presence/absence
Ectoprocta	presence/absence
Ascidiacea	
Agnesia septemtrionalis	hard substrate
Ascidia sp.	hard substrate
Ascidia paratropa	hard substrate
Boltenia sp	hard substrate
Boltenia villosa	hard substrate
Chelyosoma columbianum	hard substrate
Chelyosoma productum	hard substrate
Ciona intestinalis	hard substrate
Corella willmeriana	hard substrate
Enterogona	hard substrate
Eugyra arenosa	hard substrate
Molgulidae	hard substrate
Phlebobranchia	hard substrate
Pyura haustor	hard substrate
Pyura mirabilis	hard substrate
Stolidobranchia	hard substrate
Styela sp.	hard substrate
Styela gibbsii	hard substrate

where s is the number of species per station and N is the total number of individuals. Evenness (J') was computed for each station using the formula provided by Pielou (1966):

$$J' = \frac{H'}{\ln s}$$

where H' is the Shannon-Wiener index of diversity (Shannon, 1948) calculated as follows:

$$H' = \sum_{i=1}^{s} \left(\frac{n_i}{N}\right) \ln\left(\frac{n_i}{N}\right)$$

and n_i is the number of individuals in the *i* species.

SR varies from 0 for one species to large numbers for a high number of species. J', a measure of the distribution of individuals among the species, ranges from 0 for one species with many individuals and one or more species with one individual each, to 1 for equal numbers of individuals in each species. Species Richness and evenness were calculated on composite samples, i e, using the cumulative number of species in five replicates.

Diversity indices make assumptions about the relative abundance of species in natural communities, and they are dependent on sampling size (total area sampled). In addition, their values differ for communities at different stages in biotic succession, in different habitats or geographical areas, or at different times of the year They also differ with different efforts in the level of taxonomic resolution. For all of the above reasons, comparisons of diversity values beyond the scope of this study should be avoided. In this report, SR is only used to examine the relative rank-order in species diversity of stations.

Total species numbers and diversity indices were calculated after standardization of data files and elimination of incidental organisms (see above). Then, for each taxon and *station*, records with more than one level of identification were removed from the data files, leaving records with the lowest level of identification. Platyhelminthes, nemerteans, and oligochaetes were combined at the phylum and class levels because they were seldom identified to species.

Classification Analysis

Spatial trends in species distributions were analyzed using numerical classification (Boesch, 1977) Numerical classification (or cluster analysis) is a multivariate analysis technique that assigns species and samples to groups according to their similarity.

Results are graphically presented in the form of a dendogram where similar entities (species or samples) are grouped together. Forty-one to 48 stations were analyzed for each of five years (1989-1993) using the computer program COMPAH, updated and distributed by Eugene Gallagher (Environmental Science Program, University of Massachusetts, Boston, MA). Normal (by station) and inverse (by species) classifications were produced.

The Canberra metric coefficient (Lance and Williams, 1966) was used in its dissimilarity form:

$$D_{jk} = \frac{1}{s} \sum_{i=1}^{s} \frac{|x_{ij} - x_{ik}|}{(x_{ij} + x_{ik})}$$

where D_{jk} is the degree of dissimilarity between samples *j* and *k*, *s* is the number of species, x_{ij} is the mean abundance of species *i* in sample *k*. This index compares the percent abundance of species present in two samples. It has been favored by some ecologists (*e.g.*, Boesch, 1973; Stephenson *et al.*, 1972) to overcome the disproportional large influence that species with high abundance have on the values of similarity measures. Because the Canberra metric coefficient is an average of a series of fractions, large abundance values contribute only to one of the fractions, and thus do not place a much heavier weight in the index than values of less abundant species. Group average (Sneath and Sokal, 1973), a combinatorial and hierarchical classificatory strategy, was used as a clustering method for its moderate amount of group chaining (see Boesch, 1977, for a detailed account on clustering methods). No attempt was made at identifying or reallocating misclassified entities.

Data for numerical classification of stations and species were reduced by (1) elimination of incidental organisms (see above), (2) elimination of taxa above the species level according to criteria described below, and (3) by elimination of species occurring in low frequencies. Data reduction is a common procedure in ecological surveys that generate large amounts of information. It is left to the criteria of the investigator to decide which species should be eliminated from the analysis, but generally, rare species occurring in less than some arbitrary frequency are eliminated. Provided they are not habitat restricted, the presence or absence of rare species in a sample usually offer no particular pattern, and often contribute to obscuring the distribution patterns of the more common species (Boesch, 1977).

For classification analysis, records with more than one level of identification for each taxon and *year* were treated according to a "40% rule" developed for this study. If the abundance at a higher level of identification (e g, genus) was less than 40% of the combined abundance of this and the next lower level (e g, species), the lower level of identification was kept in the analysis and the higher level was removed from the

analysis. Otherwise (the abundance at the higher level >40% of the combined abundance), the lower level of identification was merged to the higher level.

In addition, taxa occurring below one percent of the total station abundance at all stations in one year, were eliminated from the analysis Using this procedure, 63.4 to 66.6 percent of the taxa, depending on the year, were eliminated from the analysis. These taxa, however, represented only 3.0 to 4.9 percent of the total abundance (Table 3), and many were sampled infrequently in Puget Sound.

Previous to the analysis, data were transformed to $\log (x+1)$ to lessen the sensitivity of the similarity measure to large abundances

Analysis of Station-by-Species Coincidence Tables

Nodal analysis (Williams and Lambert, 1961; Boesch, 1977) was used to relate the groups derived from normal and inverse classifications Nodal analysis is graphically displayed in sample-by-species coincidence tables, where the density pattern of the cells of the table is expressed in terms of constancy and fidelity (see below).

A sample-by-species coincidence table is the original data matrix re-arranged such that the samples and species are grouped according to the results of the classification analysis. At the node or intersection of each sample and species group, results from two indices (constancy and fidelity) are displayed. These indices describe differences among sample groups based on the frequency of occurrence of species in the sample groups. Conversely, the distribution of species among the samples are examined by the frequency with which they occur in the sample groups. These two indices do not take into consideration differences in the abundance of species among the sample groups. For this, another index expresses the average abundance of species in a sample group in relation to the overall abundance across all sample groups. This index of relative abundance was not very useful when applied to the Puget Sound data set. This is because we wished to account for qualitative and quantitative differences in the classification analysis on a more or less equal basis. Therefore, patterns of species abundance were directly examined from inspection of the raw data in the sample-byspecies coincidence tables.

Constancy (Stephenson *et al.*, 1972; Boesch, 1973) is the average presence of all species of a species group in a given sample group:

$$C_{ij} = \frac{a_{ij}}{(n_i n_j)}$$

-hilling

where a_{ij} is the number of occurrences of the species of species group *i* in sample group *j*, and n_i and n_i are the number of species and samples in groups *i* and *j*, respectively

			Year		
	1989	1990	1991	1992	1993
Number of Taxa					
Before 1% cut	410	382	444	476	392
After 1% cut	146	140	156	159	134
Percent eliminated	64.4	63.3	64.9	66.6	658
Percent remaining	35.6	36.7	35.1	33.4	34.2
Mean Abundance					
Before 1% cut	18908.8	17906.8	20421.2	20429.8	17156.3
After 1% cut	18246.0	17367.8	19689.8	19435.2	16571.1
Percent eliminated	3.5	3.0	36	4.9	3.4
Percent remaining	96.5	97.0	96.4	95.1	96.6

Table 3. Total number of taxa and total mean abundance (n=5 replicates) of organisms available for classification analysis (records with more than one level of identification removed, see methods) before and after reduction of taxa occurring below one percent of the total abundance per station for all stations.
The index is 1 when all species occur in all samples of a group, and 0 when none of the species occur in a sample group.

Fidelity (Boesch 1973; 1977) is the degree to which species are restricted to particular sample groups. It expresses the frequency of occurrence of all species of a species group in a given sample group compared to their overall frequency of occurrence in all sample groups:

$$F_{ij} = \frac{a_{ij} \sum_{j} n_{j}}{n_{j} \sum_{j} a_{ij}}$$

where the terms of the equation are as in the constancy index An index <1 indicates that the frequency of occurrence of the species of a species group in a sample group is less than their overall frequency, and an index >1 indicates that the frequency of occurrence of the species of a species group in a sample group is greater than their overall frequency

Dominance

Dominance was examined by grouping stations according to their similarity in the classification analysis, and hence, to shared physical and biological characteristics. For each station and year, species were arranged in order of descending average density. Rank scores were assigned to the ten top species, and the scores were summed over all years. The scores were then averaged by the number of years for which the station was sampled, and the averages summed across groups of stations to obtain a rank value Species having the highest ranking values were listed. Averaging was conducted to standardize scores and account for unequal sampling effort of stations.

Temporal Trends in Abundance

Temporal trends in abundance were analyzed for significance using nonparametric procedures. The Mann-Kendal test was used to test the null hypothesis of no trend in total mean abundance per station against the alternative hypothesis of either an upward or downward trend (Gilbert, 1987) The Mann-Kendal test is a "sign" test. All possible differences in data values are computed, and the sign of the difference is used to compute a statistic that is compared to a tabled probability. To test for homogeneity of direction of species in stations sharing a common basin, the Mann-Kendal statistic was computed and used to obtain a homogeneity chi-square statistic that was compared to tabled probabilities (Gilbert, 1987).

Computer Programs Used in Data Analysis

Standardization of benthic data files and elimination of incidental data were carried out in Microsoft Excel. Community structure statistics were calculated using programs written in SYSTAT (SPSS Inc., Chicago, IL) Removal of records with more than one level of identification by station (in diversity indices) or year ("40% rule" in classification analyses) was conducted in Microsoft Access. Elimination of rare species (one percent species abundance cut in classification analyses) was conducted using the program REDUCE in PRIMER version 3.1b (Plymouth Routines in Multivariate Ecological Research, Plymouth Marine Laboratory, Prospect Place, Plymouth, UK). PRIMER was also used to produce initial station classifications (not presented here) using the Bray-Curtis similarity measure. Wherever formatting and concatenation of data matrices were necessary, the program COMPOSE (Cornell University, Ithaca, NY) was used. Constancy and fidelity were calculated in Access, and results were displayed using macros written in Excel. Temporal trends in abundance were examined using Excel.

Results

Sediment Characteristics

Composition

Soft bottom substrates are generally classified according to sediment grain size and to shell and organic matter content. Several types of substrates have been recognized, such as gravel, shell/sand, sand, mud, and organic (Kendall, 1983). Gross habitat types, for example, can be subjectively defined according to pre-determined percentages of sand and mud. We have done this in Volume 1 of this report. However, these categories are not entirely distinct entities; each type may include varying mixtures of sand, silt, clay, shell, and organic material. Infaunal organisms respond differently to these compositional mixtures as well as to many other physical and chemical factors within the sediment. Accordingly, here we have looked at the relationship between grain size and species composition. The ranges used to categorize the sediments were based on the grouping of stations in cluster analysis (see below), and thus on the observed species distributional patterns.

Four classes of sediments were distinct in the analysis: sands, silty-sands, mixed, and clays. Sediments classified as sand consisted of $\geq 80\%$ sand. Sediments classified as silty-sand had sand in the range of 62%-80% and low amounts of clay (<13%). Sediments classified as mixed had sand in the range of 20%-68% and generally a larger proportion of clay up to 23%. Sediments classified as clay had higher amounts of clay (20%-55%) and typically a low amount of sand ($\leq 20\%$).

These four classes of sediments did not have sharp boundaries, but overlapped at both ends of their ranges. For example, some stations with a proportion of clay in the range 20%-23% could be classified either as mixed or as clay These stations, however, were primarily associated with either clay or mixed-type stations in the dendogram depending on their relative proportions of silt and sand. Stations with clay in the range 20%-23%, large amounts of silt, and low amounts of sand below 16%, were associated with claytype stations Stations with clay in the range 20%-23%, but with larger amounts of sand up to 58%, were associated with mixed-type stations. Similarly, some stations with a proportion of sand in the range 62%-68% could be classified either as silty-sand or as mixed, depending on the amount of clay. These stations were classified on the basis of both their relative proportions of sand, silt and clay, and their association with other stations in the dendogram.

Based on the above classification, sediments from 19 stations were sands, 5 were siltysands, 12 were mixed, and 27 were clays. Thirteen additional stations consisted of sediments of more than one type in different years. Of these 13 stations, 3 more often had sands, 2 silty-sands, 3 mixed, and 3 more often had clays. Two stations had mixed sediments in one year, and either clay or silty-sand in the second year. Sediment class for each station is given in Appendix A

Organic Carbon

Total organic carbon (TOC) ranged from 0.06% to 4.0%. In an attempt to relate TOC to groups of stations in the classification analysis, the sediments were classified according to their TOC content as having low ($\leq 1.5\%$), moderate (1.6%-2.5%), or high (>2.5%) TOC concentrations. Most sand and silty-sand sediments (97.6% of the stations in all five years) had low TOC concentrations. Mixed sediments (81.8%) generally had low TOC concentrations but some (10.9%) had moderate concentrations and a few (7.3%) had high concentrations. Clay sediments (61.5%) generally had moderate TOC concentrations, with about equal proportions of these sediments (17.6% and 20.9%, respectively) having low or high TOC concentrations.

Concentrations >2.5% TOC were measured in sediments of Port Angeles (Station 8), Sequim Bay (Station 208R), Dyes Inlet (Station 35), Sinclair Inlet (Stations 34), Shelton (Station 70), and inlet ends in South Puget Sound (Stations 49, 101R, 102R, 104R, 106R, and 110R), with the exception of Carr Inlet

Sulfides

Total sulfide (TS) concentration in sediments was classified as low or undetected (\leq 50 mg/kg dry weight), moderate (50-100 mg/kg), high (100-500 mg/kg) and very high (>500 mg/kg). The threshold separating low from moderate TS concentrations was chosen to approximate an existing preliminary Apparent Effect Threshold (AET) of 45 mg/kg (PTI, 1989) The other ranges are arbitrary, and should be revised after additional information is examined in relation to correlative effects of TS on community structure. This is because TS includes metal sulfides. Benthic organisms, however, respond to hydrogen sulfide, which is only a portion of the TS in sediments.

There was no clear relationship between TS and station group separation in the classification analysis. However, TS concentrations >100 mg/kg were measured in some terminal inlets and semi-enclosed bays, or in areas associated with fresh water plumes, where density stratification is likely to restrict mixing of the water column, and hence, replenishment of dissolved oxygen to bottom waters. Stations with TS >100 mg/kg were listed in Volume 1 of this report, but the list is repeated here so it can be readily compared to results from the analysis of benthic data.

Stations in terminal inlets or semi-enclosed bays with high TS were Sequim Bay (Station 208R), Lynch Cove (Station 305R), Dyes Inlet (Station 35), Sinclair Inlet (Station 34), Eagle Harbor (Station 30), Budd Inlet (Stations 48 and 49), and Inner Totten Inlet (Station 102R) Stations with high TS where water column density stratification and low DO are likely to occur seasonally were Saratoga Passage

(Station 19), Holmes Harbor (Station 307R), and the Strait of Georgia (Station 3). Bellingham Bay (Station 4) might be included in this last group. High TS at these stations was not recorded in all years.

Community Structure

Abundance

The total mean abundance of macrofauna by station and year is shown in Table 4 Mean abundance (all organisms included) ranged from 42 individuals per 0.1 m² at Saratoga Passage (Station 19) to 2,158 individuals per 0.1 m² at Commencement Bay (Station 41) in 1989. On average, these two stations respectively exhibited the lowest and the highest abundance for the period 1989-1993. As it would be expected given the large and heterogeneous geographical area covered by the MSMP, there were significant differences in total mean abundance among stations for each year (Kruskal-Wallis, p < 0.001)

Mean abundance was relatively high at stations in urban areas where the highest concentrations of contaminants were measured. For example, Port Angeles (Station 8), Eagle Harbor (Station 30), Elliott Bay (Station 33), Dyes Inlet (Station 35), and City Waterway in Commencement Bay (Station 40, also known as Thea Foss Waterway), exhibited macrofaunal densities ranging from 269 to 755 individuals per 0 1 m² (mean = 515.7; median = 562.8) (Table 4). Relative to all other stations, these stations did not exhibit either depressed or enhanced abundance. The highest densities of organisms (>1,000 individuals per 0.1 m²) were found in Discovery Bay (Station 11R), North Hood Canal (Station 13R), Sinclair Inlet (Station 34), and Commencement Bay (Station 41). The sediments in Discovery Bay and North Hood Canal were sands and contamination was undetected. The sediments in Sinclair Inlet and Commencement Bay (Station 41) consisted of mud and were primarily contaminated with trace metals and organic compounds (resin acids and sterols), respectively.

Core stations with consistent (between year) lowest mean abundance were Saratoga Passage (Station 19), Point Pully (Station 38), Inner Budd Inlet (Station 49), and Oakland Bay at Shelton (Station 70) (Table 4) The Strait of Georgia (Station 3) exhibited low mean abundance in 1990 and 1994 (1994 abundance not shown in this report). Rotating stations with lowest mean abundance were North Oakland Bay (Station 101R), Inner Totten Inlet (Station 102R), Inner Eld Inlet (Station 104R), Mid Case Inlet (Station 111R), Henderson Bay (Station 114R), Sequim Bay (Station 208R), South Hood Canal (Stations 304R and 305R), and Holmes Harbor (Station 307R). Except for Inner Budd Inlet and Shelton, all the preceding stations are located in rural areas of Puget Sound, and all are away from major industrial centers. With the exception of Saratoga Passage, Strait of Georgia, and Point Pully, these stations also are associated with terminal inlets or semi-enclosed bays. Saratoga Passage and the Strait of Georgia are influenced by the discharge plumes of two major freshwater inputs to the region, respectively the Skagit and the Fraser rivers. Point Pully is a deep station in the main basin of Puget Sound

In stations arranged by abundance (Figures 2-4), Saratoga Passage (Station 19) exhibited significantly lower mean abundance than all other stations in 1989 (ANOVA followed by partial *a posteriori* Tukey Multiple Comparison, p < 0.001). In 1990, Saratoga Passage (Station 19), Henderson Bay (Station 114R) and Point Pully (Station 38) had significantly lower mean abundance than stations up the rank (p < 0.01) (Station 3 excluded from the analysis because of the large variance), except for Shelton (Station 70) and Inner Budd Inlet (Station 49), which did not differ from this group of three stations (p > 0.05).

In 1991, Saratoga Passage (Station 19) had significantly lower mean abundance than stations up the rank (p < 0.01). Next, Shelton (Station 70) did not differ from Point Pully (Station 38), Sequim Bay (Station 208R) or Inner Budd Inlet (Station 49) (p > 0.05), but exhibited significantly lower mean abundance than stations ranking above this group (p < 0.01).

In 1992, mean abundance was not significantly different (p > 0.05) among stations in South Hood Canal (Stations 304R and 305R), Shelton (Station 70), Saratoga Passage (Station 19), Holmes Harbor (Station 307R), and Inner Budd Inlet (Station 49), but were (except for Inner Budd Inlet) significantly lower (p < 0.05) than stations up the rank. In 1993 mean abundance was not significantly different (p > 0.05) among Saratoga Passage (Station 19), Henderson Bay (Station 114R), Mid Case Inlet (Station 111R), and Shelton (Station 70), but was significantly lower in this group than stations up the rank (p < 0.05), except for North Oakland Bay (Station 101R).

The relationships between abundance and sediment parameters (percent silt-clay, total organic carbon, and total sulfide) were examined for all years combined. Abundance variables examined were station total mean abundance (all organisms included), and the abundance and percent abundance contributions per station of the following six major taxonomic groups: annelids, bivalves, gastropods, crustaceans, echinoderms, and other phyla (combined)

In general, abundance was not strongly related to any sediment parameter. There were only weak correlations (r = 0.21-0.36) between the following variables. Percent siltclay was inversely correlated with total mean abundance (r = -0.24) and the abundance of annelids (-0.23), gastropods (-0.36), crustaceans (-0.23), and other phyla (-0.23). Percent total organic carbon was inversely correlated with total mean abundance (r = -0.26) and the abundance of gastropods (-0.27). Total sulfide (detected values) was inversely correlated with total mean abundance (r = -0.28) and the abundance of crustaceans (-0.24) and other phyla (-0.24), and positively correlated with percent

Table 4. Total abundance (mean number of individuals per 0.1 m^2 and SD in parenthesis) of benthic macrofauna at stations in Puget Sound, 1989-1993. n = 5, except for Stations 20 and 29 in 1993 where n = 4 (A) All organisms (with the exception of presence/absence taxa) included (B) Incidental organisms (see Table 2) excluded. Blanks denote stations not sampled in a given year.

) (-		
Station	1989	1990	1991	1992	1993
A. All organisms included					
1 Semiahmoo Bay, Blaine	403 2 (122 2)	599.0 (243 6)	395 6 (113 3)	804 2 (135.4)	523 4 (92.8)
2R Cherry Point	359.0 (105.6)		256 0 (54.4)		
3 Strait of Georgia	338.6 (236.1)	57 0 (37 0)	173.0 (117.6)	250.4 (79.4)	182.0 (76.7)
4 Bellingham Bay	297.4 (28.5)	472.0 (143.1)	231.2 (18.6)	201.4 (16.3)	215.6 (43.4)
5 Samish Bay	255 8 (44 3)	504.4 (29.3)	281 8 (45.5)	247.6 (44.8)	269.4 (52.3)
8 Port Angeles	388 6 (22 2)	592 0 (569 6)	269 4 (59.5)	356 2 (93 6)	354 0 (114.6
9R East of Green Point	554.0 (161.2)		660.0 (133.7)		
10R Dungeness Bay	649.0 (85.2)		549.8 (204 5)		
11R Discovery Bay	992.0 (121.0)		1489.8 (329.6)		
12 Port Townsend Bay	360 8 (30 2)	493.4 (56.9)	378 6 (41.2)	347 4 (32 3)	392 4 (44.6)
13R North Hood Canal	1387 4 (229 1)		1110 2 (409.6)		
14 Hood Canal, Bangor	283.6 (49.9)	238 6 (117.5)	203.6 (49.6)	327.0 (67.5)	354.6 (76.1)
15 Dabob Bay	350.0 (141.9)	282.6 (50.0)	649.0 (33.9)	365 0 (83.6)	330.2 (51.8)
17 S Hood Canal, Great Bend	117 6 (25 7)	194.6 (73.3)	384.0 (29.2)	236 2 (35.8)	228 4 (20 0)
18 Oak Harbor	283 2 (170 4)	266 4 (41 6)	562 2 (187.5)	566 2 (104 5)	837.0 (107.5
19 Saratoga Passage	42.0 (5.7)	678 (121)	49 8 (12.0)	856 (148)	64.6 (15.1)
20 Port Susan	424.4 (56.3)	378 8 (31 9)	187.8 (34.1)	485.2 (67.3)	284.8 (34.2)
21 Port Gardner	924.4 (118.5)	761.8 (170.3)	573.4 (79.1)	1203 8 (108.3)	659.6 (164.9
22 Mukilteo	327 8 (69 7)	386.4 (35.8)	393 2 (101 3)	744 6 (241 3)	392 0 (71.1)
23R East Central Basin	438 8 (68 0)			843 0 (104 8)	
24R East Central Basin	98.8 (18.5)			267.4 (62.1)	
25R West Central Basin	368.8 (89.7)			882.8 (168.5)	
26 Central Basin	(a)	(b)	(b)	492.2 (93.4)	241 0 (38 6)
27R Richmond Beach	616 8 (62 0)			641 6 (104 4)	
29 Shilshole	165 0 (51.7)	260 6 (48 4)	304.2 (39.2)	469.2 (53.2)	441.5 (45.7)
30 Eagle Harbor	668.6 (244.4)	420.2 (85.3)	335.0 (75.0)	337.2 (22.1)	360.6 (105.5
32 Magnolia Bluff	647.0 (121.4)	616.6 (192.6)	529.8 (115 7)	402 4 (13.8)	362 4 (76 0)
33 Elliott Bay	617 0 (44 6)	461 8 (71.8)	609 2 (117 6)	562 8 (136 8)	594 6 (28.5)
34 Sinclair Inlet	580 8 (194 2)	456 8 (120 7)	1017 8 (453.6)	1025.6 (480.2)	731 6 (130 9)
35 Dyes Inlet	661 2 (358.1)	754 6 (206.6)	526.4 (152.5)	721.0 (371.8)	384.6 (50.1)
36R Brace Point	416.2 (65.4)			255.0 (91.4)	
37R North Vashon Island	569.0 (170.8)			749 8 (219 0)	
38 Point Pully	117 4 (28 2)	77.8 (11.3)	126 8 (26.8)	169 0 (43.4)	196 0 (37.6)
39 Dash Point	240 4 (62 5)	200 0 (63 5)	172.8 (44.4)	164.0 (196)	182.8 (29.9)
40 Commencement Bay	668.6 (50.7)	370.8 (75.7)	605.6 (117.3)	654.0 (85 6)	617.2 (70 1)
41 Commencement Bay	2158.2 (825.5)	2076.2 (164.9)	1692.0 (235.5)	918 0 (161 5)	808 0 (142.5)
43 Carr Inlet	569 0 (79 9)	649 8 (58 5)	668 8 (74.2)	858 8 (73.7)	686 4 (95.2)
44 East Anderson Island	473 2 (134 7)	696 2 (230 8)	456.2 (145.3)	571.2 (74.2)	661.6 (74.0)
45 Devil's Head	249.8 (71.8)	267 4 (33.7)	191.4 (59.3)	236.0 (29.2)	284.0 (53.1)

HUMPH

Table 4. Continued.

Station	1989	1990	1991	1992	1993
46R. West Nisqually	395.6 (78.2)	448.0 (106.5)			675.6 (108 9)
47 Case Inlet	407 0 (135.0)	547.0 (56 4)	590.8 (74.3)	797 8 (231 4)	722.4 (121.9)
48 Outer Budd Inlet	313 6 (84 9)	294 2 (60.8)	163.4 (29 8)	297 2 (45 2)	250.0 (67.9)
49 Inner Budd Inlet	140.0 (10 0)	124 0 (47.5)	140 4 (26 1)	112.2 (26.0)	203 0 (32 5)
69 Port Madison	. ,	333.0 (68.9)	514 2 (87.6)	528 6 (89 3)	632.4 (110.2)
70 Oakland Bay, Shelton		111.4 (26.4)	93.2 (11.9)	84 4 (35 9)	104.8 (39.7)
71 Fidalgo Bay		511 2 (74 8)	239 8 (37 0)	431.0 (72.5)	327 6 (33.2)
101R. North Oakland Bay		187 8 (45.0)			127 6 (16 0)
102R Inner Totten Inlet		158.6 (82.0)			82.2 (48.2)
103R Mid Totten Inlet		196.2 (30 9)			542.2 (189.5)
104R Inner Eld Inlet		182 6 (46 1)			247 6 (17.8)
105R Outer Eld Inlet		448.4 (114.1)			346.2 (496)
106R Mid Budd Inlet		374.4 (47.5)			358.0 (72.5)
109R Henderson Inlet		582.0 (107 0)			661 8 (174.5)
110R Inner Case Inlet		271 2 (118)			335 6 (46 5)
111R Mid Case Inlet		211.2 (83.3)			99.4 (47 5)
112R Nisqually Delta		169.8 (55 9)			285.0 (58.5)
113R Willochet Bay		395.8 (82.9)			548 4 (77.9)
114R Henderson Bay		81 0 (29.1)			82 6 (11 4)
115R Outer Filucy Bay		451.6 (132.7)			438.4 (99.7)
201R Roberts Bank			892.0 (182.7)		
202R Point Roberts			196.0 (32.6)		
203R Bellingham Bay		÷	260 0 (48.6)		
204R East Sound			225.0 (64.3)		
205R NW Blakely Island			396.0 (23.6)		
206R Friday Harbor			525 0 (161 9)		
207R West Beach			459 0 (68.0)		
208R Sequim Bay			128.0 (18.2)		
209R Skagit Bay			401.2 (33.9)		
301R Useless Bay				297.8 (162.6)	
302R Oak Bay				222 6 (67 0)	
303R Quartermaster Harbor				274 2 (43 7)	
304R. Hood Canal, Tekiu Point				62.6 (19.1)	
305R Hood Canal, Lynch Cove				100.6 (34.8)	
306R Seahurst				266 2 (113 8)	
307R Holmes Harbor				95.6 (27.4)	
308R Liberty Bay				559.0 (155.9)	
B. Incidental organisms excluded					
1 Semiahmoo Bay, Blaine	403 2 (122 2)	595 8 (248.6)	395 6 (113 3)	804.2 (135.4)	522 4 (92 1)
2R Cherry Point	358 6 (105.4)		255.8 (54.1)		
3 Strait of Georgia	336.8 (237.1)	56.4 (36 5)	170 6 (118 5)	248 8 (78.6)	181 6 (76.3)
4 Bellingham Bay	297.4 (28 5)	472 0 (143 1)	231 0 (18 3)	201.2 (16 5)	215 6 (43.4)
5 Samish Bay	255 2 (44.6)	503 6 (29.4)	281.6 (45.1)	247.6 (44.8)	269 0 (52 2)

FE #BMBI

-

Table 4. Continued

Station	1989	1990	1991	1992	1993
8 Port Angeles	388 2 (22 5)	592 0 (569 6)	266 4 (60.2)	353.6 (937)	353.0 (115.2)
9R East of Green Point	538 8 (155 0)		552 0 (114.3)		
10R Dungeness Bay	645 2 (83.3)		545 6 (205.3)		
11R Discovery Bay	958 6 (109.1)		1450 0 (329.3)		
12 Port Townsend Bay	360 6 (30.4)	493.0 (56.7)	378 4 (41 4)	345 2 (33.8)	389 4 (45 6)
13R North Hood Canal	1376.4 (226.9)		1082.2 (417.4)		
14 Hood Canal, Bangor	281.8 (50.8)	230 8 (118.2)	190.8 (40 0)	318.0 (58 7)	338.8 (69.3)
15 Dabob Bay	346 0 (138.1)	281 2 (49 6)	647.6 (34 1)	362.6 (82.8)	328.8 (50.4)
17 S Hood Canal, Great Bend	117.2 (25.3)	192 4 (73 7)	384.0 (29.2)	236.2 (35.8)	226.6 (20.3)
18 Oak Harbor	283 2 (170 4)	265 2 (41 9)	561 0 (189.2)	565.4 (103.9)	833.6 (106.6)
19 Saratoga Passage	40 0 (7.1)	66.0 (12.4)	49 2 (12.3)	83 8 (14 5)	62.6 (14.0)
20 Port Susan	424 4 (56.3)	378.6 (31.8)	187 8 (34.1)	483 8 (66.8)	282 0 (32.9)
21 Port Gardner	924 2 (118.6)	761.8 (170.3)	573 4 (79.1)	1202 8 (108.7)	659 4 (165 1)
22 Mukilteo	327.8 (69.7)	385.8 (36.1)	393 0 (101 5)	742 6 (242.1)	391 6 (71.3)
23R East Central Basin	433.6 (68.8)			767.0 (197.7)	
24R East Central Basin	97.8 (18.1)			261.8 (63.9)	
25R West Central Basin	363.2 (89.8)			867.0 (171.3)	
26 Central Basin	(a)	(b)	(b)	484.2 (94 5)	223 2 (27 5)
27R Richmond Beach	608 0 (58 5)			626.8 (96.4)	
29 Shilshole	164 0 (51.8)	258.6 (46.5)	302.4 (39.4)	468 0 (53 5)	438.8 (45.9)
30 Eagle Harbor	666 8 (244.4)	419.8 (85.1)	334.0 (75.5)	335 2 (22 3)	359.6 (105 5)
32 Magnolia Bluff	638 8 (117.9)	598.6 (1898)	523 2 (115.1)	395 0 (13.6)	349 8 (69.5)
33 Elliott Bay	617 0 (44.6)	461.0 (71.2)	603 6 (113.9)	557 2 (134.3)	591 2 (29.1)
34 Sinclair Inlet	570 6 (190.8)	449 0 (116.3)	984.8 (439 5)	960.8 (429.3)	708 8 (126 3)
35 Dyes Inlet	642.8 (333.4)	740 8 (197.3)	505.6 (132.4)	708.8 (365.9)	377 6 (43 3)
36R Brace Point	412.4 (68.3)			250.0 (88.9)	
37R North Vashon Island	552.2 (168.2)			729_2 (212 2)	
38 Point Pully	116.2 (27.8)	76.8 (11.8)	125.6 (26.5)	167.6 (43-1)	193.8 (37.4)
39 Dash Point	239 0 (61.1)	199.0 (62.6)	171 8 (44.2)	162 6 (18 6)	181.4 (29.6)
40 Commencement Bay	668 2 (50.9)	369.0 (75.1)	605.4 (117.3)	653 4 (85.7)	616.8 (69.7)
41 Commencement Bay	2158 2 (825.5)	2076.0 (164-7)	1692 0 (235.5)	915 4 (162.7)	802.2 (136.8)
43 Carr Inlet	569 0 (79.9)	649.2 (57.7)	668 8 (74 2)	858.4 (74.0)	685.8 (95.9)
44 East Anderson Island	467.0 (134.1)	666 4 (226.6)	446.0 (142 6)	560.2 (72.0)	653 2 (71 7)
45 Devil's Head	249.2 (71.4)	267 2 (33 6)	190.6 (59.1)	236.0 (29.2)	283 6 (53 2)
46R West Nisqually	390 4 (78 3)	443 2 (106.9)			673.4 (109.3)
47 Case Inlet	398.8 (132.0)	521.4 (57.2)	564.2 (61.2)	764.4 (216 1)	666.8 (92.7)
48 Outer Budd Inlet	312.8 (84.9)	294.2 (60.8)	160.2 (29.0)	293.6 (42.8)	247.2 (68.7)
49 Inner Budd Inlet	137.8 (10.4)	123 4 (47.9)	140.4 (26.1)	112 2 (26 0)	202.8 (32.8)
69 Port Madison		332.2 (67.7)	512 8 (86.6)	524 6 (87 1)	626.6 (1118)
70 Oakland Bay, Shelton		111 2 (26 1)	86 0 (7 7)	70 4 (18.2)	96.4 (29.5)
71 Fidalgo Bay		506 6 (73.8)	239 8 (37.0)	427.8 (74.5)	327 4 (32 8)
101R North Oakland Bay		187 4 (45 0)			127 2 (15 7)
102R Inner Totten Inlet		150 2 (72.7)			81 0 (48 4)
103R Mid Totten Inlet		191 8 (29 8)			535.6 (182.5)
104R Inner Eld Inlet		181.8 (46 0)			246.2 (178)

..........

;

Table 4. Concluded.

Station	1989	1990	1991	1992	1993
105R Outer Eld Inlet		447 8 (114 9)			345.2 (49.1)
106R Mid Budd Inlet		374 2 (47 8)			357.0 (72.1)
109R Henderson Inlet		577.4 (101.3)			659.2 (173.5)
110R Inner Case Inlet		271 2 (118.0)			334.4 (44.4)
111R Mid Case Inlet		210.0 (81.7)			93 2 (43.6)
112R Nisqually Delta		167 2 (56 1)			272.4 (54 0)
113R Willochet Bay		392 0 (79 1)			548.4 (77.9)
114R Henderson Bay		80.4 (29.9)			82.6 (11.4)
115R Outer Filucy Bay		449.6 (132.6)			436.2 (98.6)
201R Roberts Bank			879.4 (176.8)		
202R Point Roberts			195.6 (32.2)		
203R Bellingham Bay			259.6 (47.8)		
204R East Sound	•		225 0 (64.3)		
205R NW Blakely Island			393 4 (24.8)		
206R Friday Harbor			524 6 (162.1)		
207R West Beach			457.4 (66 0)		
208R Sequim Bay			127.8 (18.5)		
209R Skagit Bay			398.4 (36.3)		
301R Useless Bay				250 8 (84.5)	
302R Oak Bay				221.4 (68.1)	
303R Quartermaster Harbor				273.6 (44.2)	
304R Hood Canal, Tekiu Point				61_2 (18 0)	
305R Hood Canal, Lynch Cove				100.4 (34.6)	
306R Seahurst				262 0 (109 4)	
307R Holmes Harbor				95.4 (27.8)	
308R Liberty Bay				535.8 (118.2)	

^(a) Abundance not reported because data from two replicates were missing ^(b) Abundance not reported because station was sampled off location

Figure 2. Total mean abundance ($\log \pm SD$) of benthic macrofauna in stations arranged from low to high abundance. Upper graph, 1989; lower graph, 1990.

Station

Figure 4. Total mean abundance ($\log \pm SD$) of benthic macrofauna in stations arranged from low to high abundance, 1993.

annelids (0.22) With the exception of this last relationship, there was no correlation (r < 0.21) between the percent abundance contribution of taxonomic groups and sediment parameters. Station total mean abundance patterns were also examined in relation to metal and total PAH concentrations in sediments. No associations between these variables were found

Species Composition

Excluding hydrozoans, ectoprocts, and entoprocts (presence/absence data), a total of 846 taxa were identified to the species or subspecies level from 1989 to 1993. In addition, 77 taxa were identified exclusively to the genus level. We have included in this total some distinct species that were recorded in the MSMP but were combined into complexes during the standardization process. Oligochaetes were not identified to species except in 1993, and are therefore not included in the total. A complete taxonomic list of macro-invertebrates found in the MSMP is provided in Appendix B.

Polychaetes accounted for 46% (389) of the species and were the dominant component of macrobenthos in Puget Sound. Arthropods accounted for 27% (233) of the species, molluscs for 17% (143), and the remaining taxa accounted for 10% (81) of the species. Scrutiny of the data by station and species revealed consistent species composition patterns across years; however, there was high spatial and temporal variability in the numerical contribution of these species to the total abundance per station. Overall, as dominance shifted between taxa, the relative proportion of organisms grouped in six major taxonomic groups varied (Appendix C, see below). However, for all years, polychaetes were numerically dominant in most stations, and accounted for more than 75% of the total number of organisms at 13 stations.

The percent contribution of annelids, bivalves, gastropods, crustaceans, echinoderms, and other phyla to the total abundance per station is shown in Appendix C. Several groups of stations could be distinguished according to the relative abundance of four of these taxonomic groups (Table 5).

Two stations were numerically dominated (>97%) by annelids: Sequim Bay (Station 208R) and South Hood Canal at Lynch Cove (Station 305R) These two stations are located in rural areas and both are affected by periodic hypoxia (see Discussion). Two groups of stations consisted predominantly of annelids with bivalves and crustaceans in variable but significant densities The sediments at these stations were mostly mixed or sands, but some such as Henderson Bay (Station 114R) and East Sound (Station 204R) were clays. The percentage of crustaceans at these stations decreased with increasing clay content, but this relationship was not strong

A third group of stations consisted largely of annelids and crustaceans, and the sediments were sand, mixed, or mud. Other groups of stations had various combinations of taxa (Table 5) For example, a fourth group consisted of

		Annelida		P Biva		bundanc Crusta		Echinoc	lermata
Predominant Taxa	Station	Range	Mean	Range	Mean	Range	Mean	Range	Mean
A 1'1	2000			0		1			
Annelids	208R	99 98		0 0		1		0 0	
	305R	98		0		0		0	
Annelids and bivalves	2R	58-69	63.7	13-20	16 6	5-7	6.2	1-2	1.4
	3	20-77	57.3	12-65	26 9	9-16	119	0-1	0.3
	114R	69-71	700	5-16	10.7	1-2	15	3-9	5.8
Annelids, bivalves,	8	58-82	70.7	8-18	13 0	8-19	12.5	0-1	0.6
and crustaceans	10R	76-77	76.7	9-11	10.3	10-13	11.6	0-0	0.1
	14	30-54	44.8	21-53	30.8	11-23	175	0-2	1.4
	20	56-76	678	15-20	16.7	1-23	11.7	0-0	0 0
	26	35-55	44.8	10-23	16 5	28-31	29.3	0-1	0.4
	33	39-57	49.3	14-31	20 8	17 -29	25.2	1-7	2.2
	39	32-54	38.0	14-28	19.8	25-44	36 3	0-1	0.2
	40	40-59	48 8	16-32	24.5	9-29	22.0	0-7	2.0
	71	51-63	55 3	15-23	17.3	14-23	18.0	4-6	5.3
	202R	78		8		9		2	
	204R	43		22		24		6	
	301R	48		21		23		1	
	302R	30		26		30		5	
	306R	. 55		22		20		0	
Annelids and crustaceans	11R	48-60	53.9	3-6	4.6	27-42	34 4	0-0	0.1
	27R	38-49	43 3	8-11	9.5	36-46	40.0	1-1	1.1
	30	46-70	58.9	8-19	11.3	15-38	25.0	0-3	11
	32	56-70	61.8	5-11	81	17-28	21.9	1-4	2.9
	34	65-85	76.8	2-4	2.8	10-26	16 7	1-1	0.7
	36R	37-42	396	10-16	12.9	41-44	42 4	1-1	0.6
	37R	66-67	66.7	5-8	6.3	14-17	15.6	2-4	2.6
	44	54-71	64.4	4-11	71	12-27	17.1	2-8	3.4
	45	64-74	71.4	3-8	5.4	9-18	14.0	3-7	4.0 2.3
	49 104R	39-86	55 8	2-16	7.4 2.2	5-36 4-30	20 3 17 0	0-4 0-2	09
		57-83 57-68	70.0 62.4	1-3 7-9	2.2 8.5	7-24	17.0	0-2 0-4	1.9
	111R 112R	61-62	61.6	6-10	8.2	14-22	18.2	0-4	0.0
	203R	65		5	0.Z	21	10.2	0-0 6	00
	203R 209R	03 37		15		42		1	
	209R 303R	37		15		42 54		3	
	307R	81		3		11		0	
Annelids, crustaceans,	35	21-53	44.3	1-1	1.0	34-53	41.1	5-21	9.9
and echinoderms	43	25-34	30.3	4-7	5 5	28-40	32.8	24-33	28 1
	46R	32-56	43.9	2-7	43	26-43	34.3	6-17	10.1
	69	34-55	40 8	3-22	12.3	26-39	30.5	1-30	13.0

- 10- 10-10-10-1

Table 5. Stations (selection) arranged by percent abundance of four major taxonomicgroups. Shown is the range (rounded) and mean percent of five years (1989-1993). SeeTable 1 for station location.

Predominant Taxa	Station	Anneli Range M		I Biva Range	lvia	Abundan Crusta Range	acea	Echinoo Range	
						0			
	105R	35-42	38.4	2-3	2.3	23-26	24.5	26-31	28.7
	106R		363	2-2	20	34-45	39 7	17-20	18.5
	109R		31.6	1-1	1.0	36-38	36.8	27-30	28 5
	110R	27-35	31.2	1-5	2.7	13-20	16.6	34-53	43.5
	113R		33.0	5-16	10.7	22-29	25.6	18-36	26.9
	115R		40 2	1-7	41	13-16	14 6	30-46	37.9
Annelids, bivalves, crus-	4	15-57	36.3	14-33	24.5	7-27	16.6	3-33	18.4
taceans and echinoderms	5	19-36	26.2	20-41	31.0	9-30	18.9	10-30	18.2
	9R	73		7		2		16	
	12	22-32	24.8	6-27	17.2	8-15	12.8	35-46	418
Bivalves	1 3 R	8-14	111	71-72	716	10-12	11.4	0-0	0.1
	17	14-54	33.7	35-83	57.4	0-10	62	0-0	0.0
	18	23-55	37.2	32-66	525	1-6	2.8	0-0	0 0
	24R	18-41	29.8	16-63	39.5	12-29	20.5	1-3	2.2
	29	9-32	17 1	31-76	59 2	10-31	186	0-1	1.1
	41	19-52	32.2	43-70	56.5	4-10	5.5	0-8	22
	101R		18.3	59-71	64.8	7-11	8.9	3-4	3.7
	205R	25		54		5		8	
	206R	38		45		5		2	
	207R	36		55		4		0	
	304R	18		59		8		3	
Bivalves, crustaceans,	21		21 5	39-54	48 8	18-35	283	0-0	00
and annelids	22	12-22	16.3	32-42	36.0	30-44	35.3	0-0	0.1
	23R	16-16 I	16.1	26-44	35.0	22-38	29.9	0-0	02
	25R	14-37 2	25.1	18-52	35.4	27-40	33.8	1-1	0.8
	38	13-24	18.8	7-51	30 1	32-61	45 4	2-4	2.4
Crustaceans	48	8-25	16.7	8-23	13.0	53-81	64.4	0-5	1.1
Crustaceans and echino- derms	1	9-25	16.1	4-9	6.2	26-55	36 7	29-54	40.2

Table 5. Concluded.

e le dela della constructione de la

approximately equal proportions of annelids, crustaceans, and echinoderms with few bivalves. A fifth group consisted of annelids, crustaceans, and echinoderms and a higher proportion of bivalves. A sixth group was numerically dominated by bivalves. The remaining of the stations were characterized by molluscs, crustaceans, and other phyla in various percentages

The grouping of stations according to the percent abundance of taxonomic groups did not reveal any clear pattern in relation to contaminant concentrations in sediments. And, although in general a relationship between grain size and percent abundance could be identified, there was not a strong relationship. Some stations with either sand or mud were numerically dominated by the same taxonomic group. This is expected, as broad taxonomic groups represent a mixture of organisms with different life styles and feeding behaviors. Also, grain size is only one structuring factor. Other physical or biological factors that were not measured (e g, additional sediment properties such as porosity or shear strength, the hydrodynamic regime of the boundary layer, or the type and density of epibenthic predators) are likely to influence community structure in Puget Sound.

One last observation that can be extracted from the examination of Appendix C is the large inter-annual variability in the relative abundance of taxonomic groups at many of the stations in Puget Sound In the following section we look at diversity and examine the relative contribution to this variability of shifts in species dominance

Diversity

Diversity was examined by looking separately at its two components, species richness (as measured by Margalef's SR) and the distribution of individuals among the species (evenness, as measured by Pielou's J') Species richness remained relatively constant across years for most stations (Table 6) Rankings of SR values across years were highly concordant for stations common to all years (Kendall coefficient of concordance W = 0.91; Friedman test statistic $\chi^2 = 131.87$, p < 0.001) and for rotating stations in 1990 and 1993 (Kendall coefficient of rank correlation $\tau = 0.76$; t_s = 7.52, p < 0.001) Stations with variation greater than 15% around the mean SR value are indicated in Table 6. Only twelve stations showed this level of inter-annual variability.

Species richness (SR < 7.0) was consistently low at some stations (Table 6). The number of species occurring at these stations was generally below 50, which represents 29% to 33% of the highest number of species recorded in the MSMP. Species richness was low in many of the stations that exhibited low abundance. For example, the Strait of Georgia (Station 3), Inner Budd Inlet (Station 49), Shelton (Station 70), Sequim Bay (Station 208), South Hood Canal (Stations 304R and 305R), and Holmes Harbor (Station 307R), generally had SR values below 7.0 (Table 7). Other stations with low species richness included Semiahmoo Bay in Blaine (Station 1), Hood Canal at Great Bend (Station 17), Outer Budd Inlet (Station 48), and East Sound in the San Juan Islands (Station 204R) (Table 7). In addition, most rotating stations located in the

1.200

upper or middle reaches of inlets in South Puget Sound (e.g., Carr Inlet, Case Inlet, Totten Inlet, Eld Inlet, and Oakland Bay) exhibited low species richness

Evenness (Table 8) varied with fluctuations in the abundance of a few common species. Concordance of rankings among J' values across years was lower than concordance among SR values, but agreement among ranks was significant for both, core stations (Kendall coefficient of concordance W =0.67; Friedman test statistic $\chi^2 = 96.98$, p < 0.001) and rotating stations in 1990 and 1993 (Kendall coefficient of rank correlation $\tau = 0.41$; t_s =4.06, p < 0.001).

The lowest evenness values (J' <0.35) were recorded at Sequim Bay (Station 208R), North Hood Canal (Station 13R), Hood Canal at Great Bend (Station 17), Hood Canal at Lynch Cove (Station 305R), Commencement Bay at the Blair-Sitcum waterways (Station 41), Inner Budd Inlet (Station 49) and Outer Budd Inlet (Station 48) (Table 8). Stations with low evenness (J' <0.50) or showing variability in J' values greater than 0.15 units, reflected the numerical dominance of typically 20 species of benthic organisms plus the Phoronida (Table 9). Some of these species (*e.g.*, *Amphiodia urtica/periercta*, *Macoma carlottensis*, *M. nasuta*, *Aphelochaeta* sp., *Axinopsida serricata*, *Paraprionospio pinnata*) respond to organic enrichment, and because of their opportunistic life history strategies, may show large increases or decreases in abundance. The numerical dominance of these species at some locations may provide information about natural or human-related organic inputs to Puget Sound.

In order to couple the measures of species richness and dominance provided above, the Shannon index of diversity was calculated for each station and year, and is shown in Figure 5 as the average of five years. Inspection of Figure 5 shows immediately that Sequim Bay (Station 208R) and South Hood Canal at Lynch Cove (Station 305R) had the lowest diversity At these two stations richness was low (the number of species was 4 and 23, respectively), and due to the abundance of *Nephtys cornuta* and *Paraprionospio pinnata* (see Table 9), evenness was also low The very low diversity at these stations is indicative of communities under stress. South Hood Canal at Great Bend (Station 17) also had low species richness and, particularly in 1991, low evenness due to the numerical dominance of *Axinopsida serricata*. All three locations are affected by hypoxia (see Discussion).

Other stations with relatively few species included Inner (Station 49) and Outer (Station 48) Budd Inlet. These two stations also exhibited low evenness in 1993. However, the lack of a consistent pattern of low evenness in all years is reflected in the higher diversity averages, particularly at Station 49 (Figure 5)

Additionally, the Shannon index shows that North Hood Canal (Station 13R) and Commencement Bay at Blair-Sitcum waterways (Station 41) were clearly less diverse than most other stations (Figure 5) Surprisingly, however, the number of species at

	Station	1989	1990	1991	1992	1993
1	Semiahmoo Bay, Blaine	6.14	5.63	5.53	6.51	4.68
2R	Cherry Pt	12.63		13.78		
3*	Strait of Georgia	10.74	4.63	5 93	7.04	6.31
4	Bellingham Bay	9.75	9.67	7.24	10 18	9.04
5	Samish Bay	8 71	9.07	8.15	8 85	8.74
8	Port Angeles	13,95	11 95	12 87	14.65	13 62
9R	Green Pt			5 81		
10 R	Dungeness Bay	15.62		15.99		
1IR*	Discovery Bay	18 67		14.87		
12	Port Iownsend Bay	10.90	9 48	9.69	8.60	9.91
 13R	North Hood Canal	14.04		11 64		
14	Hood Canal Bangor	15.31	17.47	16.79	16.84	18.77
15	Dabob Bay	18 28	15.09	13.62	14 06	16.03
17	S Hood Canal, Great Bend	5.97	5.10	5.03	4.82	4 98
18*	Oak Harbor	7.19	7.38	7 94	11.09	11.76
19	Saratoga Passage	7.62	8.29	10 38	9.48	9.98
20*	Port Susan	9 68	8.09	8.77	11 86	8.93
21	Port Gardner (Everett)	9.61	8 14	8.42	9.42	8 79
22	Mukilteo	10.83	12.05	11.76	14.16	13.48
 23R*	East Central Basin Picnic Pt	13.32			17.38	
24R	East Central Basin Norman Beach	11 22			10 57	
25R*	West Central Basin	10.96			14.35	
26	Central Basin	(a)	(b)	(b)	16.47	16.58
27R	Richmond Beach	17.55			20.31	
29	Shilshole	10 00	9.00	7.79	7 50	7.48
30	Eagle Harbor	10.52	10 87	13.93	12 01	11.75
32	Magnolia Bluff	20.92	18.31	19.78	20.02	19.32
33	Elliott Bay Duwamish Head	14.85	15.04	16 53	17.12	17.25
34	Sinclair Inlet	10 49	8:71	8.84	10 15	8.95
35	Dyes Inlet	8.55	8 17	8.55	9.06	7 47
36R	Brace Point	14.48			16.21	
37R	North Vashon Island	21 44			22.80	
38*	Pt Pully	9.53	7.06	8.38	6 58	6.71
39	Dash Point	10.78	11 77	11.90	12.44	11 07
10	Commencement Bay City Waterwa	11.40	12.52	13 08	13.61	15.20
11*	Commencement Bay Blair/Sitcum	7 33	8.11	786	9.90	11.13
3	Carr Inlet	12 38	12.03	14.18	13 07	11.96
4	East Anderson Island	19.12	18.64	20.29	21.25	18.97
15	Devil's Head	10.29	10.02	10 25	10.48	11.67
6R	West Nisqually Johnson Pt	12 85	13.78			13.69
7*	Case Inlet Fudge Pt	13 83	17 50	17.53	22 45	17 03
8	Outer Budd Inlet	7.22	6.73	6.58	6.59	5.91
19	Inner Budd Inlet	4.74	4.83	5.19	6.17	5.06
i9	Port Madison		15.17	16 48	18.68	18.03

de li - a**l la la la la la la c**entra de la comunicación de la com

Table 6. Species richness as computed by Margalef's SR. Stations with values for which the coefficient of variation >15% are indicated by asterisks. Blanks denote stations not sampled in a given year. SR ranges from 0 (one species) to high numbers (high species richness).

Table	6.	Concluded.

. <u> </u>	Station	1989	1990	1991	1992	1993
70	Oakland Bay, Shelton		6 66	5.13	6.15	6.72
71	Fidalgo Bay Cap Sante		12.16	10.21	13 35	11.71
101R	North Oakland Bay		6.15			6 69
102R	Inner Totten Inlet		4.68	<u> </u>	<u></u> -	5 19
103R	Mid Iotten Inlet		10.63			12.49
104R	Inner Eld Inlet		5.43		·	4.78
105R	Outer Eld Inlet		8.30			9.17
106R	Mid Budd Inlet		518			6 08
109R	Henderson Inlet		6.02			6 14
110R*	Inner Case Inlet		5 83			4 4 1
11 1R*	Mid Case Inlet		11.83			7.71
112R*	Nisqually Delta		8.93			13.04
113R	Willochet Bay		13.93			15 43
114R	Henderson Bay		6.03			5.00
115R	Outer Filucy Bay		10 54			10.08
201R	Strait of Georgia, Roberts Bank			14.48		
202R	Strait of Georgia, Pt Roberts			12.27		
203R	Bellingham Bay			10.83	·	
204R	East Sound			5.14		
205R	NW Blakely Island			11 51		
206R	Friday Harbor			16.27		
207R	Whidbey Island West Beach			13.20		
208R	Sequim Bay			0.46		
209R	Skagit Bay			11 34		
301R	Useless Bay				13.26	
302R	Oak Bay				13 75	
303R	Quartermaster Harbor		·		9 57	
304R	Hood Canal, Tekiu Point				6.22	
305R	Hood Canal Lynch Cove				3.54	
306R	Seahurst East Passage				17.28	
307R	Holmes Harbor				5 68	
308R	Liberty Bay				12 32	

^(a) Index not reported because data from two replicates were missing. ^(b) Index not calculated because samples were taken off station location.

-

al le al**fille** al de

same rotating stations (sampled on a three year rotation and designated with a number >100 and the letter "R") in south Puget Sound (100R-Sound. Note that the same core stations (sampled annually and designated with a number <100) appear in the list for most years. Also, the stations was generally below 50, which represents 29-33% of the species recorded at the station with the highest species richness in Puget Table 7. Stations with Margalef's Species Richness below 7.0 by year, in rank order from low to high. The number of species at these

19891990199149Inner Budd Inlet3Strait of Georgia208RSequim Bay17S. Hood Canal102RInner Totten Inlet17S. Hood Canal17S. Hood Canal102RInner Budd Inlet70Oakland Bay17S. Hood Canal105RMid Budd Inlet70Oakland Bay17S. Hood Canal106RMid Budd Inlet49Inner Budd Inlet106RMid Budd Inlet49Inner Budd Inlet49Inner Budd Inlet106RInner Eld Inlet1Semiahmoo Bay9RGreen Point108RInner Case Inlet3Strait of Georgia3Strait of Georgia108RHenderson Inlet3Strait of Georgia48Outer Budd Inlet114RHenderson Bay101RN. Oakland Bay700akland Bay70Oakland Bay70Oakland Bay700akland Bay	
 3 Strait of Georgia 208 102R Inner Totten Inlet 49 Inner Budd Inlet 49 Inner Budd Inlet 17 S. Hood Canal 20 106R Mid Budd Inlet 106R Mid Budd Inlet 104R Inner Eld Inlet 104R Inner Case Inlet 109R Henderson Inlet 101R N. Oakland Bay 70 Oakland Bay 	1991 1992 1993
48 Outer Budd Inlet	uim Bay305RLynch Cove110RInner Case InletHood Canal17S. Hood Canal1Semiahmoo Baykland Bay307RHolmes Harbor104RInner Eld Inlett Sound70Oakland Bay17S. Hood Canalt Sound70Oakland Bay17S. Hood Canalt Sound70Oakland Bay17S. Hood Canalt Sound70Oakland Bay17S. Hood Canalt Sound70Oakland Bay17S. Hood Canaler Budd Inlet700akland Bay17S. Hood Canalt Sound700akland Bay102RInner Budd Inletanahmoo Bay304RTekiu Point114RHenderson Bayanahmoo Bay304RTekiu Point102RInner Budd Inletanahmoo Bay304RTekiu Point102RInner Budd Inletanahmoo Bay38Point Pully48Outer Budd Inletanahmoo Bay38Point Pully48Outer Budd Inletanahmoo Bay38Point Pully3Strait of Georgiaanahmoo Bay3Strait of Georgia3Strait of Georgiaanahmoo Bay3Strait of Georgia3Strait of Georgiaanahmoo Bay3Strait of Georgia3Point Pullyanahmoo Bay3Strait of Georgia3Point Pullyanahmoo Bay3Strait of Georgia3Point Pullyanahmoo Bay3Strait

······

	Station	1989	1990	1991	1992	199
1	Semiahmoo Bay, Blaine	0 62	0 53	0.51	0.46	0.5
2R	Cherry Pt.	0.69		0.75		-
3	Strait of Georgia	066	0.76	0.70	0.54	0.6
4	Bellingham Bay	0.74	0 66	0 64	069	0.7
5	Samish Bay	0.71	0.70	0.74	0 72	0 7
8	Port Angeles	0.75	0.50	0.76	0.:75	0.6
9R	Green Pt.			0.46		-
10R	Dungeness Bay	0.59		0.64		
11 R	Discovery Bay	0.67		0.58		-
12	Port Iownsend Bay	0 60	0 59	0 54	058	0.5
13R	North Hood Canal	0.37		0.33		-
14	Hood Canal, Bangor	0.67	0.80	0.84	0.72	0.7
15	Dabob Bay	0 82	0.81	0 46	0.72	0.7
17	S Hood Canal Great Bend	0.58	0.63	0.27	0 42	0 5
18	Oak Harbor	0.59	0.52	0.46	0.53	0 4
19	Saratoga Passage	0.85	0 59	0 85	080	0.8
20	Port Susan	0.65	0.70	0.72	0.66	0 73
21	Port Gardner (Everett)	0.52	059	0.61	0.55	0 5
22	Mukilteo	0.58	0 58	0 58	0.59	0.6
23R	East Central Basin Picnic Pt.	0.60			0.57	-
24R	East Central Basin Norman Beach	0.86			0.56	-
25R	West Central Basin	0.55			0.43	-
26	Central Basin	(a)	(b)	(b)	0.73	082
27R	Richmond Beach	0.61			0 69	-
29	Shilshole	0.66	0.48	0.44	0.36	0.40
30	Eagle Harbor	0 49	0.61	0.70	0.69	0.69
32	Magnolia Bluff	0.63	0.65	0.73	0 73	0 74
33	Elliott Bay Duwamish Head	0.65	0.66	0.70	0.71	0.7(
34	Sinclair Inlet	0 62	0.65	0.39	0.44	0.58
15	Dyes Inlet	0.53	0.54	0.64	0 48	0 54
86R	Brace Point	0.64			0.76	
87R	North Vashon Island	0.65			0.76	
8	Pt Pully	0.70	0.80	0.64	0 61	0.65
9	Dash Point	0.62	0.66	0.74	0.72	0.75
0	Commencement Bay City Waterwa	0 59	0 67	0 68	068	0.71
-1	Commencement Bay Blair/Sitcum	0.32	0.34	0.37	0.52	0.49
3	Carr Inlet	0.57	0.57	058	0.60	0.66
4	East Anderson Island	0 73	0 69	0 82	0.77	0.76
5	Devil's Head	0.61	0.62	0.71	0.69	0.67
6R	West Nisqually Johnson Pt.	0.74	0.71			0.67
7	Case Inlet Fudge Pt	0 67	0 73	0 71	0:75	0.76
8	Outer Budd Inlet	0.48	0.56	0.61	0.43	0.31
9	Inner Budd Inlet	0.73	069	0.73	0 76	0.34
9	Port Madison		0 75	0 72	0.72	0.72
0	Oakland Bay Shelton		0 67	0.72	0.81	075

Table 8. Evenness as computed by Pielou's J'. Blanks denote stations not sampled in a given year. J' ranges from 0 (low evenness) to 1 (high evenness).

÷

rable o. Concluded	Table	8.	Concluded.
--------------------	-------	----	------------

	Station	1989	1990	1991	1992	1993
71	Fidalgo Bay Cap Sante		0.78	0.80	077	0.75
101R	North Oakland Bay		0.49			0.58
102R	Inner Totten Inlet		0.73			0 53
103R	Mid Totten Inlet		0 78			0 70
104R	Inner Eld Inlet		0.68			0.42
105R	Outer Eld Inlet		0.58			0.59
106R	Mid Budd Inlet		0 64			0 60
109R	Henderson Inlet		0.52			0 51
110R	Inner Case Inlet		0.58			0.58
111R	Mid Case Inlet		077	 ·		0.69
112R	Nisqually Delta		0 67			0 72
113R	Willochet Bay		0.66			0.69
114R	Henderson Bay		0.71			0.66
115R	Outer Filucy Bay		0.64			0 62
201R	Strait of Georgia Roberts Bank			0.46		
202R	Strait of Georgia Pt Roberts			0 75		
203R	Bellingham Bay			0.76		
204R	East Sound			0.75		
205R	NW Blakely Island			0.55		
206R	Friday Harbor			0 74	· <u>-</u>	
207R	Whidbey Island West Beach			0.56		
208R	Sequim Bay			0.10		
209R	Skagit Bay			0 59		
301R	Useless Bay				0.71	
302R	Oak Bay				078	
303R	Quartermaster Harbor				0.71	
304R	Hood Canal, Tekiu Point				0.69	
305R	Hood Canal, Lynch Cove				0.34	
306R	Seahurst East Passage				0.78	
307R	Holmes Harbor				0 55	
308R	Liberty Bay				0.63	

^(a) Index not reported because data from two replicates were missing. ^(b) Index not calculated because samples were taken off station location.

street and the second second

Table 9. Numerically dominant species in Puget Sound responsible for low evenness (J'<0.50) or fluctuations in evenness at listed stations. A= Amphipoda, B= Bivalvia, C= Cumacea, D= Decapoda, E= Echinodermata, O= Ostracoda, P= Polychaeta, S= Sipuncula. This table was constructed by inspecting data files and selecting the species with the largest discrepancies in abundance (averaged over 5 replicates) across years (stations sampled more than once) or within a year (stations sampled once). The abundance of these species was artificially lowered to eliminate the discrepancy and the index re-calculated to examine the influence of these species on fluctuations in J'.

Species	Station			
Amphiodia urtica-periercta (E)	1 Semiahmoo Bay, 35 Dyes Inlet			
Aphelochaeta sp. (P)	8 Port Angeles, 30 Eagle Harbor, 35 Dyes Inlet,			
	41 Commencement Bay			
Axinopsida serricata (B)	17 S. Hood Canal, 18 Oak Harbor, 41 Commencement Bay			
Eudorella pacifica (C)	35 Dyes Inlet, 48 Outer Budd Inlet			
Euphilomedes carcharodonta (O)	13R N. Hood Canal, 25R W Central Basin			
Macoma calcarea (B)	3 Strait of Georgia			
Macoma carlottensis (B)	24R E. Central Basin, 29 Shilshole, 38 Point Pully			
Macoma nasuta (B)	101R N. Oakland Bay			
Nephtys cornuta (P)	102R Inner Totten Inlet, 208R Sequim Bay			
Paraprionospio pinnata (P)	49 Inner Budd Inlet, 104R Inner Eld Inlet, 305R Lynch Cove			
Pectinaria californiensis (P)	19 Saratoga Passage			
Phoronida	15 Dabob Bay, 18 Oak Harbor			
Phyllochaetopterus prolifica (P)	34 Sinclair Inlet, 35 Dyes Inlet			
Pinnixa schmitti (D)	30 Eagle Harbor, 35 Dyes Inlet			
Protomedeia grandimana (A)	1 Semiahmoo Bay			
Psephidia lordi (B)	13R N. Hood Canal, 25R W. Central Basin, 101R N. Oakland Bay			
Spiochaetopterus costarum (P)	18 Oak Harbor			
Spiophanes berkeleyorum (P)	18 Oak Harbor			
Spiophanes bombyx (P)	9R Green Point, 25R W. Central Basin			
Thysanocardia nigra (S)	201R Roberts Bank			
Yoldia sp. (B)	3 Strait of Georgia			

- Hellehard -

these stations were among the highest in Puget Sound. Particularly, North Hood Canal had a rich assemblage of up to 125 species. Diversity was low because of the high numerical dominance of a few species. Thus, the separate estimates of species richness and evenness provided valuable insight into the diversity at these locations. This insight would have been lost had Shannon diversity been used as the sole criterion to rank stations in the MSMP.

Dominance in North Hood Canal and Commencement Bay (Station 41) was due to different species. North Hood Canal was dominated by *Psephidia lordi* and *Euphilomedes carcharodonta*, which were ubiquitous primarily in sand or mixed substrates in Puget Sound Commencement Bay was dominated by *Aphelochaeta* sp. and *Axinopsida serricata*, which were found to be associated with organic enrichment and pollution in other studies (see Discussion). While North Hood Canal consisted of clean sands, a variety of contaminants were detected in the sediments of Station 41, most notably resin acids and high concentrations of sterols.

Species richness was inversely correlated with percent silt-clay (r = -0.75) and total organic carbon (r = -0.64) (Figure 6). In stations grouped by sediment type, mud substrates generally supported fewer species than mixed substrates, with sands supporting the highest number of species (Figure 7) Species richness was inversely correlated with the concentration of total sulfide in sediments (r = -0.39), but the relationship was weak. In stations grouped by sulfide concentration, however, a decrease in species richness with sulfide became clear (Figure 7). Evenness was not correlated with grain size or organic carbon, although it was weakly and inversely correlated with sulfide (r = -0.32).

Similarities among Stations

Classification analyses of stations for 1989-1993 are shown in Figures 8 through 12. These analyses are based on mean species abundance. The 1989 data also were analyzed for each individual replicate, and the replicates were found to cluster by station. Only two of the 243 replicate samples included in the analysis were classified in different station groups. Although the analysis of separate replicates was not conducted for all years due to computational difficulties, the 1989 results suggest that the averaging of replicates to examine species distributional patterns is probably adequate.

Results from the classification analyses showed consistent patterns of spatial variation. These patterns could be explained primarily on the basis of differences in substrate and water depth, and secondarily on the basis of differences in species composition and abundance between north and south Puget Sound There was no clear separation of stations in relation to low or moderate (see Volume 1) contaminant concentrations in sediments.

11-12-01

er ti be**di Nik**arden

Figure 7. Species richness SR (mean \pm SD) of stations categorized by sediment type (upper graph) and total sulfide (lower graph). Low/moderate, <100 mg/kg S; high, 100-500 mg/kg S; very high, >500 mg/kg S.

- Hilbir

Sand and silty-sand stations were separated from clay stations, and generally from mixed stations. Also, clay and mixed stations were often separated into distinct groups at higher similarity levels. Deep (80-200) clay stations formed a distinct group, regardless of location in the Puget Sound region. Shallow (≤ 20 m) clay stations were separated into north and south Puget Sound groups. A group of inlet end stations in south Puget Sound was distinct, especially for the two years (1990 and 1993) for which rotating stations were sampled in south Puget Sound. These clusters are identified in bold in Figures 8-12. In 1989, the deep clay station group included Devil's Head (Station 45), which is a moderately deep (52 m) station (Figure 8).

A few stations had low affinity with other stations Among these, Station 3 in the Strait of Georgia was consistently separated from all others Also, rotating stations in south Hood Canal (Station 305R), Holmes Harbor (Station 307R), and Sequim Bay (Station 208R) had low affinity with other stations. These rotating stations showed reduced faunal abundance and low species richness In addition, Green Point (Station 9R) was distinctly separated in cluster analysis (Figure 10). Green Point had 40% coarse sands and exhibited a distinct fauna unlike any other station in the MSMP.

In general, there was a relationship between total organic carbon (TOC) and sediment type, and hence, between TOC and station group separation. For example, most station groups with sand or mixed sediments had low TOC concentrations (<1.5%), and inlet ends in south Puget Sound generally exhibited high TOC values (>2.5%). No relationship between total sulfide and station group separation was found.

Inverse Classification and Station-by-Species Coincidence Tables

Twenty (1989) to 37 (1992) groups of species were distinguished in inverse classification analyses This distinction was based on the separation of species groups from other groups in the analysis, rather than on a predetermined level of similarity. Most group separations were clear in the dendograms, but in some cases subjective judgment was necessary in the identification of species groups. Because of their large size, the dendograms are not shown here. Instead, the species group separation was examined in station-by-species coincidence tables in terms of constancy and fidelity (nodal analysis). Constancy diagrams for 1989-1993 are shown in Figures 13 through 17 and fidelity diagrams are shown in Figures 18 through 22.

Some species showed clear affinities with some of the station groups. This is indicated by the high density pattern of some of the cells in the lower part of the constancy and fidelity diagrams. Other species had no particular affinity with any one station group but presented high constancy and low fidelity across most station groups. This is indicated by a band of high density pattern in the upper part of the constancy diagrams.

- 1-- والطلقان - 1-

Species groups displaying an overall high constancy (≥ 0.5) in the upper part of the constancy diagrams (Figures 13-17), consisted of eurytopic species of broad distribution in all sediment types. These species were categorized as occurring in "all substrates" in Table 10. They were abundant in both sand and mud. Most other species were present in a variety of sediments, but predominated numerically in specific substrate types. These species are indicated with "all" in parenthesis in Table 10 and were categorized as occurring in one of several substrates ("sand and silt", "sand to mixed", silt and clay", "mixed to clay", and "clay"). Thus, the distribution of most species in Puget Sound did not exhibit sharp boundaries, but were broad and overlapping, with peaks of abundance along the grain size gradient.

Species groups displaying high fidelity (Figures 18-22) provided partial explanation for the separation of clusters in the classification analysis. In particular, species groups displaying high fidelity and high constancy indicate species that occur in many or all the stations of a station group, but seldom occur elsewhere. Some of these species were restricted to specific habitat types such as "shallow sand" or "deep clay" (Table 10), or to specific locations within Puget Sound (*e.g.*, south Puget Sound). The identification of these species through nodal analysis significantly contributed to the characterization of particular assemblages in Puget Sound Because constancy and fidelity are based exclusively on presence/absence data, assemblages were also characterized by numerically dominant species. The results from this characterization are presented in the next section

Dominant and Characteristic Species

The top numerically dominant species by sediment type and water depth are shown in Table 11. Sediment type and water depth were chosen as criteria to group stations because they were consistently identified as major factors associated with the separation of stations in the classification analysis. The stations were arranged in four major habitat classes: sand, mixed, clay, and deep clay Silty-sand stations were combined with sand stations, as they formed the least distinct group in the classification analysis

Overall, sand stations were dominated by the ostracod Euphilomedes carcharodonta and the polychaete Prionospio jubata (Table 11). The bivalve Axinopsida serricata and the amphipod Rhepoxynius abronius/variatus were next in rank. Mixed stations were dominated by A. serricata, followed by the polychaete Aphelochaeta sp. and the cumacean Eudorella pacifica. Dominant species of clay stations were the ophiuroid Amphiodia urtica/periercta, the cumacean E_{-} pacifica, the polychaete Sigambra tentaculata, and the decapod Pinnixa occidentalis/schmitti. Deep clay stations were dominated by the bivalves Macoma carlottensis and A. serricata, and by the polychaete Pectinaria californiensis

For comparative purposes, the range and average in density and number of species of these four habitat classes are given in Table 12. As previously noted, sand substrates

supported higher number of species and abundance than clay substrates, with deep clay stations having the lowest abundance Commencement Bay (Station 41) and Sequim Bay (Station 208R) were considered outliers and excluded from these averages as indicated in Table 12 and explained below

Commencement Bay (Station 41) was considered an outlier because of the extremely high abundance of two species, the cirratulid polychaete Aphelochaeta sp. (mostly Aphelochaeta sp. C) and the thyasirid bivalve Axinopsida serricata. Aphelochaeta sp. was present at many stations in Puget Sound However, elevated densities of this species were found only at urban stations where organic enrichment or moderate contamination were identified (see Volume 1 of this report). Aphelochaeta was numerically dominant in Port Angeles (Station 8), Eagle Harbor (Station 30), Sinclair Inlet (Station 34), Dyes Inlet (Station 35), and Commencement Bay (Stations 40 and 41) Interestingly, Aphelochaeta did not make up a significant percentage of the fauna in Elliott Bay (Station 33), notwithstanding the extensive contamination detected at this station. The species, however, dominates areas in Elliott Bay near "hot spots" of chemical contamination (see Discussion) Aphelochaeta accounted for 50.9% of the fauna in Eagle Harbor in 1989, 53.3% of the fauna in Port Angeles in 1990, and 46.3% of the fauna in Commencement Bay (Station 41) in 1989 and 45.5% in 1990. At the other urban stations, Aphelochaeta accounted for less than 35%, although it ranked within the top five species in 23 out of 30 sampling cruises. One characteristic of this species was its large variability among replicates and across years.

Axinopsida serricata accounted for 40 5%-62% of the fauna in Commencement Bay (Station 41), 1989-1993. The density of Axinopsida at this station was the highest of any species recorded in Puget Sound In addition, Axinopsida was dominant in South Hood Canal Great Bend (Station 17), Oak Harbor (Station 18), Port Gardner (Station 21), Mukilteo (Station 22), and Station 40 in Commencement Bay Axinopsida accounted for 33 7%-62 9% of the fauna at Great Bend, with a record high of 80 9% in 1991. It accounted for 31%-55 6% in Oak Harbor, 17 2%-29 9% in Port Gardner, 16 6%-25% in Mukilteo, and 7 7%-21 3% in Station 40. Axinopsida was typical of organic enrichment in other studies and may be particularly tolerant of reducing sediment conditions.

Station 208R was considered an outlier because of the extremely low diversity and abundance of infaunal organisms The only species exhibiting any significant abundance at this station was the polychaete *Nephtys cornuta*.

Characteristic species (*i.e.*, those species that were mostly station group-specific but were not among the top-ranked dominants) were identified from the nodal diagrams. North Puget Sound clay stations were characterized by the polychaetes *Cossura* sp. and *Levinsenia gracilis*. South Puget Sound clay stations were characterized by the polychaete *Sigambra tentaculata* and the bivalves *Macoma nasuta* and *Macoma yoldiformis*. Echinoderms such as the holothurian *Molpadia intermedia* and the echinoid *Brisaster latifrons* characterized deep water stations.

Figure 8. Classification analysis of stations for 1989. Indicated in the dendogram is the station number and the sediment type at each station. The resemblance scale is in terms of dissimilarity; short connections in the dendogram indicate a higher similarity than longer connections.

Figure 9. Classification analysis of stations for 1990. Indicated in the dendogram is the station number and the sediment type at each station. The resemblance scale is in terms of dissimilarity; short connections in the dendogram indicate a higher similarity than longer connections.

Figure 10. Classification analysis of stations for 1991. Indicated in the dendogram is the station number and the sediment type at each station. The resemblance scale is in terms of dissimilarity; short connections in the dendogram indicate a higher similarity than longer connections.

Figure 11 Classification analysis of stations for 1992 Indicated in the dendogram is the station number and the sediment type at each station. The resemblance scale is in terms of dissimilarity; short connections in the dendogram indicate a higher similarity than longer connections.

1.0.000

Figure 13. Nodal analysis of constancy for 1989. The width of the rows and columns in the diagram is proportional to the number of stations and species in each group. The species and station groups identified by classification analysis of MSMP stations are listed in Appendix D.

- In the State of the

Figure 14. Nodal analysis of constancy for 1990. The width of the rows and columns in the diagram is proportional to the number of stations and species in each group. The species and station groups identified by classification analysis of MSMP stations are listed in Appendix D.

Figure 15. Nodal analysis of constancy for 1991. The width of the rows and columns in the diagram is proportional to the number of stations and species in each group. The species and station groups identified by classification analysis of MSMP stations are listed in Appendix D.

- I I Patrice I I -

Figure 16. Nodal analysis of constancy for 1992. The width of the rows and columns in the diagram is proportional to the number of stations and species in each group. The species and station groups identified by classification analysis of MSMP stations are listed in Appendix D.

المناطبا

Constancy	
>= 0.7	Very High
>= 0 5	High
>= 0.3	Moderate
< 03	Low

Figure 17. Nodal analysis of constancy for 1993. The width of the rows and columns in the diagram is proportional to the number of stations and species in each group. The species and station groups identified by classification analysis of MSMP stations are listed in Appendix D.

- 6-- Hillister i I-

Figure 18. Nodal analysis of fidelity for 1989. See Appendix D for a list of species and station groups.

··· [· [vel]]]

÷.

Figure 19. Nodal analysis of fidelity for 1990. See Appendix D for a list of species and station groups.

- International International

÷

Figure 20. Nodal analysis of fidelity for 1991 See Appendix D for a list of species and station groups

÷

÷

Figure 21. Nodal analysis of fidelity for 1992. See Appendix D for a list of species and station groups.

1. I. J. L. MARINE, I. L. M.

>= 4 Very High >= 3 High >= 2 Moderate < 2 Low

Figure 22. Nodal analysis of fidelity for 1993. See Appendix D for a list of species and station groups.

÷

Table 10. Species used in the classification analysis of MSMP stations categorized according to the type of substrate in which they were numerically dominant. The substrate range in which the species (with two or more individuals) was found is indicated in parenthesis. Also, indicated in parenthesis is whether the species was predominately or strictly found in shallow (<80 m) or deep (>80 m) water. See text (Results: Sediment Characteristics) for definition of sediment types. all = all sediment types, cl = clay, de = deep, mx = mixed, sa = sand, sh = shallow, si = silt.

Species/ Taxon	Order, Class or Phylum
All Substrates	
Alvania compacta	gastropoda
Ampelisca careyi	amphipoda
Ampelisca hancocki	amphipoda
Ampelisca lobata (sh)	amphipoda
Ampelisca sp.	amphipoda
Ampharete labrops (sh)	polychaeta
Amphiodia urtica/periercta	echinodermata
Aoridae/Corophiidae (sh)	amphipoda
Aphelochaeta sp.	polychaeta
Aricidea (Acmira) catherinae/lopezi	polychaeta
Aricidea (Allia) ramosa (sh)	polychaeta
Axinopsida serricata	bivalvia
Barantolla americana	polychaeta
Cirratulus cirratus	polychaeta
Compsomyax subdiaphana	bivalvia
Corophium sp (sh)	amphipoda
Cucumaria piperata (sa+cl)	echinodermata
Cylichnidae	gastropoda
Diastylis sp.	cumacea
Eteone sp.	polychaeta
Eudorellopsis longirostris	cumacea
Eumida longicornuta	polychaeta
Euphilomedes producta	ostracoda
Glycera nana	polychaeta
Glycinde picta	polychaeta
Glycinde sp.	polychaeta
Goniada brunnea	polychaeta
Harpiniopsis/Heterophoxus	amphipoda
Heterophoxus sp.	amphipoda
Laonice cirrata	polychaeta
Leitoscoloplos pugettensis	polychaeta
Lepidasthenia berkeleyae	polychaeta
Levinsenia gracilis	polychaeta
Lineidae	nemertina
Lirobittium attenuatum	gastropoda
Lumbrineris californiensis/cruzensis	polychaeta

- 14**161**4 4

Species/ Iaxon	Order, Class or Phylum
Lumbrineris cruzensis	polychaeta
Lumbrineris luti	polychaeta
Lyonsia californica	bivalvia
Macoma carlottensis	bivalvia
Macoma nasuta	bivalvia
Macoma sp.	bivalvia
Macoma yoldiformis (sh)	bivalvia
Malmgreniella sp.	polychaeta
Mediomastus sp.	polychaeta
Melita desdichada	amphipoda
Monoculodes sp.	amphipoda
Myriochele oculata	polychaeta
Myriochele sp	polychaeta
Mysella tumida	bivalvia
Nassarius mendicus (sh)	gastropoda
Nemertina	
Nephtys discors	polychaeta
Nephtys signifera	polychaeta
Nereis procera (sh)	polychaeta
Nitidella/Mitrella	gastropoda
Nucula tenuis	bivalvia
Nuculana minuta	bivalvia
Odostomia sp.	gastropoda
Oligochaeta	
Onuphis elegans	polychaeta
Onuphis iridescens	polychaeta
Ophiodromus pugettensis	polychaeta
Owenia fusiformis	polychaeta
Paraprionospio pinnata	polychaeta
Parvilucina tenuisculpta	bivalvia
Pectinaria californiensis	polychaeta
Pholoe minuta	polychaeta
Photis sp.	amphipoda
Phyllochaetopterus prolifica	polychaeta
Pilargis maculata	polychaeta
Pinnixa occidentalis/schmitti	decapoda
Pista bansei	polychaeta
Pista wui	polychaeta
Polycirrus sp	polychaeta
Polydora socialis	polychaeta
Polydora socialis/cardalia	polychaeta
Praxillella gracilis	polychaeta
Praxillella pacifica	polychaeta
Praxillella sp	polychaeta
Prionospio (Minuspio) lighti	polychaeta
Prionospio jubata	polychaeta
Protomedeia articulata	amphipoda
Protomedeia penates/prudens	amphipoda
Protomedeia prudens	amphipoda
Protomedeia sp	amphipoda

Species/ Taxon	Order, Class or Phylum
Psephidia lordi	bivalvia
Rictaxis punctocaelatus (sh)	gastropoda
Scalibregma inflatum	polychaeta
Scaphopoda	porychaeta
Spiophanes berkeleyorum	polychaeta
Terebellides californica	polychaeta
Terebellides reishi	polychaeta
Terebellides sp.	polychaeta
Thyasira flexuosa	bivalvia
Thysanocardia nigra	sipuncula
Tubulanus sp.	nemertina
Turbonilla sp.	gastropoda
Yoldia hyperborea/scissurata	bivalvia
Yoldia scissurata	bivalvia
Totata scissurata	Ulvalvla
Sand	
Astartidae (sh)	gastropoda
Cardiomya sp. (si)	bivalvia
Clymenura gracilis (sh)	polychaeta
Corophium crassicorne (sh)	amphipoda
Crenella decussata	bivalvia
Edwardsia sipunculoides (si)	cnidaria
Eulima/Balcis (sh)	gastropoda
Eyakia robusta (mx)	amphipoda
Foxiphalus obtusidens (sh)	amphipoda
Hemipodus borealis (sh)	polychaeta
Hesionura coineaui (sh)	polychaeta
Heteropodarke heteromorpha (sh)	polychaeta
Hippomedon cf coecus (sh) (si)	amphipoda
Kurtzia arteaga (sh)	gastropoda
Lamprops quadriplicata (sh)	cumacea
Magelona sacculata (sh)	polychaeta
Micropodarke dubia (sh)	polychaeta
Nebalia sp. (sh)	branchiopoda
Neosabellaria cementarium (sh) (all)	polychaeta
Olivella baetica (sh)	gastropoda
Pagurus sp. (sh) (all)	decapoda
Pentamera sp. (sh) (si)	echinodermata
Polygordius sp. (sh)	annelida
Rhepoxynius abronius (sh) (si+mx)	amphipoda
Rhepoxynius abronius/variatus (sh) (mx)	amphipoda
Scoloplos armiger (sh)	polychaeta
Tellina nuculoides (sh)	bivalvia
Sand and Silt	
Ampelisca pugetica (sh) (all)	amphipoda
Appensed pugenca (Sh) (an) Apistobranchus ornatus (Sh)	
Apisiobranchus ornalus (sh) Boccardia pugettensis (sh)	polychaeta
Soccarata pugetiensis (SII)	polychaeta

polychaeta polychaeta er (Horaan) is on one of the order of

------- ich diddilic d d-----

- normality -

Caulleriella sp. (sh) Caulleriella sp. A (sh)

Echiurus sp. (de) (si only) Eulalia (Eulalia) bilineata Megacrenella columbiana (mx) Mesochaetopterus taylori (sh) (mx) Nicomache personata (sh) Notomastus latericeus (sh) Ophiura sarsi (de) (si only) Pholoides asperus (sh) (all) Photis lacia Polydora sp. A (si only) Rutiderma lomae (sh) (all) Spiophanes bombyx Syllis (Ehlersia) heterochaeta/hyperioni

Sand to Mixed

Adontorhina cyclia (all) Amage anops (all) Amphipholis sp. (all) Amphipholis squamata Anarthruridae/Leptognathiidae (all) Anobothrus gracilis Artacama coniferi (sh) (all) Asabellides lineata (all) Boccardia sp (sh) Boccardiella hamata Byblis millsi Chaetozone sp (all) Cistenides granulata (all) Cyclocardia ventricosa (sa+mx only) Cylindroleberididae Decamastus gracilis (all) Delectopecten vancouverensis Diopatra ornata (all) Dorvillea (D.) pseudorubrovittata (all) Drilonereis falcata minor Eualus pusiolus (sh) Euclymene sp. (all) Euclymene zonalis (all) Euclymeninae (all) Euphilomedes carcharodonta (sh) (all) Exogone (E.) lourei Exogone dwisula Eyakia/Paraphoxus/Rhepoxynius (all) Foxiphalus similis/cognatus (sh) (all) Glycinde armigera (all) Lanassa sp. (sh) (all) Lanassa venusta (sh) (all) Leptochelia savignyi (sh) (all) Leptosynapta transgressor (all) Lucinoma annulata (all)

echiurida polychaeta bivalvia polychaeta polychaeta polychaeta echinodermata polychaeta amphipoda polychaeta ostracoda polychaeta polychaeta bivalvia polvchaeta echinodermata echinodermata tanaidacea polychaeta polychaeta polychaeta polychaeta polychaeta amphipoda polychaeta polychaeta bivalvia ostracoda polychaeta bivalvia polychaeta polychaeta polychaeta polychaeta polychaeta polychaeta polychaeta ostracoda polychaeta polychaeta amphipoda amphipoda polychaeta polychaeta polychaeta tanaidacea echinodermata

bivalvia

Order, Class or Phylum

Species/ Taxon	Order, Class or Phylum
Lumbrineris californiensis (all)	polychaeta
Macoma calcarea	bivalvia
Macoma calcarea/elimata (all)	bivalvia
Macoma elimata (all)	bivalvia
Magelona longicornis (all)	polychaeta
Musculus sp. (sh) (sa+mx only)	bivalvia
Myriochele heeri (all)	polychaeta
Natica clausa (de)	gastropoda
Nemocardium centifilosum (all)	bivalvia
Neotrypaea sp. (all)	decapoda
Notomastus sp. (all)	polychaeta
Notomastus sp. (all)	polychaeta
Odontosyllis phosphorea	polychaeta
Ophelina acuminata (all)	polychaeta
Orchomene pacifica	amphipoda
Parvamussium alaskensis (sa+mx only)	bivalvia
Pentamera pseudocalcigera	echinodermata
	polychaeta
Petaloproctus tenuis (sa+mx only)	= •
Pherusa plumosa (sa+mx only) Phoronida (all)	polychaeta
	amphinada
Photis brevipes (sa+mx only)	amphipoda
Phyllodoce sp. (all)	polychaeta
Platynereis bicanaliculata (sh) (all)	polychaeta
Polinices pallidus	gastropoda
Polydora cardalia (sh) (sa+mx only)	polychaeta
Prionospio (Minuspio) multibranchiata	polychaeta bivalvia
Protothaca staminea (all)	
Rhepoxynius cf barnardi	amphipoda
Rhepoxynius variatus	amphipoda
Rhodine bitorquata (sh)	polychaeta
Sipuncula (all)	bivalvia
Solen sicarius (sh)	
Spiochaetopterus costarum (all)	polychaeta
Sthenelais tertiaglabra (sh)	polychaeta
Streblosoma bairdi (sh)	polychaeta
Syllis (Typosyllis) harti (sh) (all)	polychaeta
Synchelidium shoemakeri (sh)	amphipoda
Synchelidium sp. (sh)	amphipoda
Tellina modesta (sh)	bivalvia
<i>Tellina</i> sp (sh)	bivalvia
Westwoodilla caecula (all)	amphipoda
Silt to Clay	
Ampelisca unsocalae	amphipoda
Ampharete acutifrons (all)	polychaeta
Ampharete sp. (all)	polychaeta
Ceriantharia	cnidaria
Clinocardium sp. (sh) (mx only)	bivalvia
Consura on (all)	nolvehaeta

polychaeta polychaeta 1-h-hilibhe-i-b

÷.

Cossura sp (all) Euchone incolor (sh)

Table 10. Concluded.

Species/ Taxon

Heteromastus filobranchus (all) Macroclymene sp. Maldane sarsi (all) Melinna sp. (all) Orchomene sp. (all) Pandora sp. (all) Pista brevibranchiata Sternaspis scutata (all) Trochochaeta multisetosa (mx only) Yoldia hyperborea

Mixed and Clay

Acila castrensis (all) Armandia/Ophelina (all) Brada sachalina (de) (si) Bylgides macrolepidus (de) Crangon alaskensis Dentalium sp. (all) Eudorella pacifica (all) Harpiniopsis fulgens Heteromastus sp. (all) Nephtys cornuta (all) Pachycerianthus fimbriatus Podarkeopsis glabrus (all) Polydora brachycephala (si) Polydora sp. 1 (sh) (all) Protomedeia grandimana (all) Sigambra tentaculata (all)

Clay

Artacamella hancocki (de) (si+cl) Bathymedon pumilis (de) Brisaster latifrons (de) Chaetoderma sp (de) (all) Cirrophorus branchiatus (de) Dorvillea (Schistomeringos) annulata (de) Eudorellopsis integra (de) Gattyana treadwelli Maera loveni (de) Molpadia intermedia (de) Nephtys punctata (de) Paraphoxus oculatus (de) (all) Sarsiella sp. (sh) Sarsiellidae (sh) Stylatula elongata (sh) Yoldia thraciaeformis (de) (si+mx)

Order, Class or Phylum

polychaeta polychaeta polychaeta polychaeta amphipoda bivalvia polychaeta polychaeta polychaeta bivalvia

bivalvia polychaeta polychaeta polychaeta decapoda scaphopoda cumacea amphipoda polychaeta polychaeta cnidaria polychaeta polychaeta polychaeta amphipoda polychaeta

polychaeta amphipoda echinodermata aplacophora polychaeta polychaeta cumacea polychaeta amphipoda echinoder mata polychaeta amphipoda ostracoda ostracoda cnidaria bivalvia

- h- - h h h - h -

Table 11. Fifteen dominant species in Puget Sound by sediment type. Rank values were obtained by assigning rank scores to the ten most abundant species in each station, summing scores over all years, averaging by year, and summing averages over all stations in a group. Maximum possible rank values are shown for each sediment type. Rank values are a reflection of the frequency with which a species is present in the community.

Species	Rank Value		Rank Value
Sand		Mixed	
	max = 300		max = 160
Euphilomedes carcharodonta	153.1	Axinopsida serricata	60 3
Prionospio jubata	141 3	Aphelochaeta sp	51.9
Axinopsida serricata	64.9	Eudorella pacifica	49.7
Rhepoxynius abronius/variatus	60.0	Amphiodia urtica/periercta	40.0
Amphiodia urtica/periercta	57.3	Euphilomedes carcharodonta	37 9
Phyllochaetopterus prolifica	48.8	Lumbrineris luti	32.5
Mediomastus sp.	48.7	Prionospio jubata	32.3
Spiochaetopterus costarum	48.6	Psephidia lordi	31 1
Euphilomedes producta	46.7	Levinsenia gracilis	31.0
Alvania compacta	40.1	Aricidea ramosa	28.5
Psephidia lordi	37.6	Macoma carlottensis	28.0
Leitoscoloplos pugettensis	34 7	Harpinopsis/Heterophoxus sp	23.6
Macoma sp.	28.6	Parvilucina tenuisculpta	23.6
Lumbrineris californiensis/cruzensis	28.1	Euphilomedes producta	23.0
Lumbrineris luti	26.3	Phyllochaetopterus prolifica	23.0

Clay		Deep Clay	
	max = 250		max = 70
Amphiodia urtica/periercta	99.5	Macoma carlottensis	35.6
Eudorella pacifica	93.5	Axinopsida serricata	34.9
Sigambra tentaculata	875	Pectinaria californiensis	33.8
Pinnixa occidentalis/schmitti	82.8	Eudorella pacifica	31.5
Paraprionospio pinnata	75.0	Euphilomedes producta	25.6
Pholoe minuta	519	Harpinopsis/Heterophoxus sp	25.5
Aphelochaeta sp.	51.3	Levinsenia gracilis	18.1
Harpinopsis/Heterophoxus sp.	48.8	Chaetoderma sp.	17.8
Nephtys cornuta	47.9	Cylichnidae	14 0
Prionospio (Minuspio) lighti	37.6	Spiophanes berkeleyorum	12.8
Psephidia lordi	36.6	Leitoscoloplos pugettensis	11.4
Protomedeia sp.	36.4	Sigambra tentaculata	10.4
Axinopsida serricata	35.8	Aricidea catherinae/lopezi	10.0
Nemertina	35.6	Thyasira flexuosa	10.0
Parvilucina tenuisculpta	31.8	Cossura sp	94

-11-24

Table 12. Abundance (mean number of individuals per 0.1 m^2 grab) and total number of species (five composite 0.1 m^2 grabs) of macrobenthos in Puget Sound. Numbers are ranges and averages (±SD) of stations grouped by sediment type and water depth over five years (1989-1993) of sampling.

	Sediment Type			
	Sand	Mixed	Clay	Deep Clay
Abundance ^(a)	527.2 (±245.4)	411.9 (±223.3)	331 2 (±216.4)	1893 (±124.6)
Range	164 0-1489 8	57.0-1203.8	62.6-1025.6	42 0-469 2
Number of species ^(b)	118.1 (±28.1)	83 0 (±21 2)	54 1 (±17 5)	52.4 (±12.0)
Range	47-187	27-128	23-103	35-76

^(a) Station 41 (mixed) excluded

^(b) Station 208R (clay) excluded

In addition to the above characterization, we examined similarities and differences in species composition between contaminated and non-contaminated stations Specifically, we compared Elliott Bay (Station 33) and Commencement Bay (Station 40) to Port Madison (Station 69) because these stations were clustered together 1990 through 1993. The comparison is presented in Table 13.

During the period 1990-1993, Port Madison had 22 more taxa than Elliott Bay, and 56 more taxa than Commencement Bay. However, on average, sediments in Port Madison were sandier (81.8% sand) than sediments in Elliott Bay (71.3% sand) and Commencement Bay (68.5% sand). Thus, the higher number of species recorded in Port Madison relative to the other two stations could be explained on the basis of differences in grain size.

Comparing species lists, 156 taxa (54.9%) were common to Port Madison and Elliott Bay, 53 taxa (18.7%) were restricted to Elliott Bay, and 75 taxa (26.4%) were restricted to Port Madison (Table 13). When Commencement Bay was added to the comparison, the number of taxa restricted to Port Madison was reduced to 54. The data were also compared by taxonomic group. Differences were manifested only through a decrease in the number of crustacea at contaminated stations (Table 13). With the exception of the gastropod *Lirobittium attenuatum* and the amphipod *Rhepoxynius abronius*, the 54 taxa characteristic of Port Madison were only recorded infrequently (Table 14). Because these taxa were not common or abundant, we cannot rule out chance as the determining factor explaining the observed differences. Strong patterns in the composition of common or dominant species distinguishing contaminated stations in Elliott Bay and Commencement Bay from the reference station in Port Madison were not observed.

Temporal Trends

Temporal patterns of variation in abundance at core stations are presented in Figure 23. The patterns reveal large inter-annual fluctuations in abundance at many stations. No significant trend of increase or decrease in total abundance was detected at 26 of the 33 stations examined (Mann-Kendall Test, $\alpha = 0.10$) At five stations (Oak Harbor, Shilshole, Point Pully, Carr Inlet, and Case Inlet) there was a significant upward trend, and at two stations (Magnolia Bluff and Commencement Bay Station 41) there was a significant downward trend. Commencement Bay Station 41 in particular was associated with high concentrations of sterols.

Examination of Figure 23 also reveals a large variability (large error bars) in abundance around the annual mean at many stations (e g, Semiahmoo Bay, Port Angeles, Sinclair Inlet, Dyes Inlet, Commencement Bay Station 41) This variability was typically associated with patchiness in a few species, and may confound patterns of temporal variation. For example, *Aphelochaeta* sp and *Axinopsida serricata* showed spatial variability in abundance that was of the same magnitude or greater than the

temporal variability This is illustrated by the large coefficient of variation frequently observed within years relative to the coefficient of variation computed among years (Figures 24 and 25) Five other dominant species exhibited similar patterns to a more or less degree (Figures 26-30).

To examine if the temporal variation in abundance of some species exhibited a consistent pattern that might be attributed to changes in contaminant concentrations, trends in abundance of fifteen dominant species were compared at four stations. Comparisons were made between pairs of stations differing in chemical contamination. Elliott Bay (Station 33) and Point Pully (Station 38) were each compared to Magnolia Bluff (Station 32) and Shilshole (Station 29), respectively. Elliott Bay and Point Pully showed contamination, while contaminants were no detected in Magnolia Bluff or Shilshole. Each pair of stations shared a common basin.

Species abundance patterns at these stations showed homogeneous trend directions within each comparison (Figures 31-34). For example, the abundance of *Macoma carlottensis* increased with time in both Point Pully and Shilshole All the species pairs compared exhibited trends that were not significantly different, *i.e.*, the trends were homogeneous (Mann-Kendall Test for homogeneity of stations, $\alpha = 0.05$). The species-specific patterns of temporal variation were basin-wide. Therefore, the patterns were not associated with chemical contamination at the stations examined.

Taxa	Elliott Bay	Station Commencement Bay	Port Madison
Total number	209	175	231
In common with Port Madison			
All Taxa	156	142	
Polychaeta	95	89	
Crustacea	25	20	
Bivalvia	21	18	
Gastropoda	6	7	
Echinodermata	2	1	
Other Phyla	6	6	
Unique			
All Taxa	53	33	54
Polychaeta	27	20	27
Crustacea	8	3	18
Bivalvia	5	. 3	3
Gastropoda	9	6	1
Echinodermata	3	0	4
Other Phyla	1	1	1

Table 13Number of species recorded from Elliott Bay (Station 33), CommencementBay (Station 40), and Port Madison (Station 69), 1990-1993, number of species incommon, and number of species unique to each station.

Table 14 Species recorded in Port Madison (Station 69), 1990-1993, and absent from Elliott Bay (Station 33) and Commencement Bay (Station 40) B = Bivalvia, C = Crustacea, E = Echinodermata, G = Gastropoda, O = Other Phyla, P = Polychaeta. Maximum possible frequency = 4.

Species	Frequency of Occurrence	Total Number of Individuals Recorded	Average Density (0.1 m ²) When Present
Ampelisca brevisimulata (C)	1	2	04
Autolytus sp. (P)	1	1	0.2
Campylaspis hartae (C)	1	1	0.2
Clymenura columbiana (P)	1	18	3.6
Cucumaria sp. (E)	1	1	02
Eteone spilotus (P)	1	1	02
Euchone incolor (P)	1	1	0.2
Eulalia (Eulalia) quadrioculata (P)	1	2	0.4
Eulalia (Eulalia) viridis (P)	2	1	0.2
Eupentacta quinquesemita (E)	1	1	0 2
Eusyllis blomstrandi (P)	1	4	08
Exogone dwisula (P)	2	2	02
Flabelligera affinis (P)	1	1	0.2
Foxiphalus similis/cognatus (C)	1	1	0.2
Gattyana cirrosa (P)	1	1	0.2
Halcampidae (O)	2	1	0 2
Laonice pugettensis (P)	1	1	0 2
Leptamphous sp. (C)	1	2	0.4
Leptostylis villosa (C)	1	1	0.2
Lirobittium attenuatum (G)	4	62	3.1
Lyonsia pugettensis (B)	1	2	0 4
Macoma obliqua (B)	1	1	0 2
Melita desdichada (C)	2	3	0.3
Melphisana sp. A (C)	1	1	0.2
Micropodarke dubia (P)	2	2	0.2
Myriochele sp M (P)	1	1	0.2
Nephtys caeca (P)	2	2	02
Nicomache personata (P)	1	1	0.2
Notophyllum tectum (P)	1	1	0.2
Opisa tridentata (C)	1	1	0.2
Orchomene obtusa (C)	1	1	0.2
	2	5	05
Orchomene pacifica (C)	1	4	0.8
Orchomene sp. (C)	1	4	0.2
Pardalisca cuspidata (C)	1	1	0.2
Pentamera (Cucumaria) populifera (E)	1	1	
Pentamera pseudopopulifera (E)	1	3	06
Phyllochaetopterus prolifica (P)	1	9	18
Phyllodoce (Anaitides) maculata (P)	1		0.2
Phyllodoce (Anaitides) papillosa (P)	1	1	0.2
Pilargis maculata (P)	1	1	0.2
Podocerus sp (C)	2	3	0.3

Table 14. Concluded.

Species	Frequency of Occurrence	Total Number of Individuals Recorded	Average Density (0 1 m ²) When Present
Polydora sp. 1 (P)	1	3	0.6
Pontogeneia inermis (C)	1	1	0.0
Pontogeneia intermedia (C)	1	1	02
Proceraea cornuta (P)	1	1	0.2
Protothaca staminea (B)	1	1	0.2
Pterocirrus macroceros (P)	1	3	06
Rhepoxynius abronius (C)	3	14	0.9
Sige macrocirrus (P)	1	1	0.2
Sphaerodorum papillifer (P)	1	1	02
Spiophanes missionensis (P)	1	1	02
Spirontocaris snyderi (C)	1	1	0.2
Tanais sp. (C)	1	1	0.2
Travisia brevis (P)	1	1	02

Arristan arriver

- et et talige et en en

÷

-

Figure 23. Temporal changes in mean (\pm SD) total abundance of benthic macrofauna at core stations.

Figure 23 Continued.

mean abundance / 0.1 m²

Figure 23 Continued.

year

Figure 23. Concluded.

Page 86

mean abundance / 0.1 m²

Figure 24 Temporal changes in mean abundance of *Aphelochaeta* sp. (Annelida: Polychaeta) at six stations in Puget Sound. The coefficient of variation is shown for each year and for the period 1989-1993.

Figure 25. Temporal changes in mean abundance of *Axinopsida serricata* (Mollusca: Bivalvia) at six stations in Puget Sound. The coefficient of variation is shown for each year and for the period 1989-1993.

Figure 26 Temporal changes in mean abundance of *Amphiodia urtica/periercta* (Echinodermata: Ophiuroidea) at six stations in Puget Sound The coefficient of variation is shown for each year and for the period 1989-1993.

Figure 27. Temporal changes in mean abundance of *Eudorella pacifica* (Crustacea: Cumacea) at six stations in Puget Sound. The coefficient of variation is shown for each year and for the period 1989-1993.

Figure 28 Temporal changes in mean abundance of *Euphilomedes carcharodonta* (Crustacea: Ostracoda) at six stations in Puget Sound The coefficient of variation is shown for each year and for the period 1989-1993.

Figure 29. Temporal changes in mean abundance of *Macoma* spp. (Mollusca: Bivalvia) at six stations in Puget Sound. The coefficient of variation is shown for each year and for the period 1989-1993. The value indicated with (1) is a mean of 4 replicates. All other values are means of 5 replicates. The vast majority of individuals at Stations 21, 29 and 38 are *Macoma carlottensis*. Stations 14, 40 and 41 include various species of *Macoma*.

Figure 30 Temporal changes in mean abundance of *Prionospio jubata* (Annelida: Polychaeta) at six stations in Puget Sound The coefficient of variation is shown for each year and for the period 1989-1993.

Figure 31. Temporal changes in mean abundance $(\pm SD)$ of eight species in Elliott Bay (Station 33).

Figure 32 Temporal changes in mean abundance (\pm SD) of eight species in Magnolia Bluff (Station 32).

Figure 33. Temporal changes in mean abundance (\pm SD) of eight species in Point Pully (Station 38).

Figure 34. Temporal changes in mean abundance (\pm SD) of eight species in Shilshole (Station 29). Note change in scale indicated by arrows.

Discussion

Correspondence with Contamination

Overall, there was no correspondence between benthic community measures and the low to moderate sediment contamination found at MSMP stations. For example, relatively high total abundance and species number of benthic macro-invertebrates were identified in both urban and rural sites. Thus, total abundance and species number were not predictors of sediment contamination at monitoring stations. The absence of clear effects is probably due to the generally low contaminant concentrations recorded in the MSMP Even so, and as presented in Volume 1 of this report, concentrations above threshold levels (ER-L, AET) indicative of acute biological effects were identified at several stations

The lack of correspondence between those stations exceeding contaminant threshold concentrations and benthic infaunal measures of abundance and diversity may be explained in several ways. First of all, the Effects Range-Low (ER-L, Long *et al.*, 1995) are incipient levels often based on the determination of mortality in sensitive organisms such as bacteria, larvae, and amphipods. Secondly, some Apparent Effect Thresholds (AET) are based on measures of benthic "effects" that have been derived from studies with small ranges of chemical concentrations. These effects may have been caused solely or in part by other factors or natural stresses related to physical sediment properties, high sulfide concentrations, or low dissolved oxygen in the overlaying water column. Lastly, benthic abundance and diversity may not be sensitive measures of toxic effects.

Nonetheless, some of the highest concentrations of hydrocarbons and metals measured in the MSMP are potentially toxic. Substrate physicochemical characteristics, however, may have contributed to a reduction of the toxicity. For example, silts, clays and the organic carbon content of sediments are known to influence the relative availability of organic contaminants to organisms (Plesha *et al.*, 1988). At similar contaminant concentrations, sands with low organic content can be substantially more toxic than clay sediments. Also, the bioavailability of some compounds such as metals can be influenced by factors such as the Redox potential of sediments and the pH of interstitial water (Arjonilla *et al.*, 1994). For example, Johnston (1993) measured high concentrations of acid volatile sulfides (AVS) in sediments from Sinclair Inlet, and suggested that most metals were bound to sulfides and were therefore unavailable to organisms. Sinclair Inlet (Station 34) exhibited the largest concentrations of metals in the MSMP, and high concentrations of sulfides (100 mg/kg) were also measured at this station in one year. Abundance and diversity measures may overlook changes in dominance from one group of organisms to another. Therefore, the analysis of species composition is essential to unravel changes in species distributions that may be related to pollution effects. Our results suggest that the presence of a few species at some monitoring stations may have been related to contamination In the MSMP, the polychaete Aphelochaeta sp (mostly sp C) was a dominant member of the community at urban stations where organic enrichment and/or moderate contamination were identified For example, Aphelochaeta was numerically dominant near the City of Tacoma WWTP outfall in Commencement Bay However, elevated densities of this species were not found in any residential or rural areas, as illustrated in Figure 35. Other monitoring programs in Puget Sound have found high densities of Aphelochaeta in severely contaminated areas, such as the Hylebos Waterway and the Harbor Island Superfund sites (Figure 35). Also, this species (which has been previously reported as Tharyx sp. A) is numerically dominant near sewage outfalls in California (Swartz et al, 1986) In addition, the polychaete Capitella capitata has been found in high densities near sources of pollution in Puget Sound (Armstrong et al., 1981; PTI, 1993) The association of these species with organic pollution could be useful as an indicator of environmental conditions in Puget Sound.

The presence of species in contaminated areas constitutes a reflection of their physiology and life history. Some species are tolerant to the effects of pollutants in the environment, while other species respond to organically-enriched material through high reproductive and recruitment potential (Pearson and Rosenberg, 1978). Organic enrichment effects on benthos in Puget Sound may turn out to be relatively common in shallow bays where log transport, storage, and processing are occurring. For example, sediments from Port Angeles Harbor (Station 8) in the vicinity of wood processing industries, contained large amounts of wood chips; they also exhibited some of the highest concentrations of organic carbon measured in the MSMP. Benthic assemblages at this station predominantly comprised deposit-feeding polychaete species (60%-80%of the species), some of which (*e.g.*, cirratulids) exhibit high reproductive potential

Organic enrichment may also result from effluents discharged by sewage treatment facilities or from leaking septic tanks. Effects from these sources were clearly manifested in sediments of Commencement Bay (Station 41), where high concentrations of β -coprostanol (a sewage tracer) were correlated with high abundance of the polychaete *Aphelochaeta* sp. (discussed above) and of the bivalve *Axinopsida serricata*. Large inter-annual fluctuations in the abundance of these species at this station were also observed, and remain unexplained. Changes in the abundance of opportunistic species, however, are common and can vary dramatically with time.

Organic detritus such as wood debris increases biochemical oxygen demand. This process will lead to decreased oxygen levels, and may lead to the accumulation of hydrogen sulfide in sediments. Puget Sound is already affected by coastal upwelling that cause low oxygen water masses to intrude into the estuary during summer

Figure 35. Top 2-3 numerically dominant species (1.0-mm mesh screen) at four sites in Puget Sound. The percent contribution of the polychaete *Aphelochaeta* sp. to the total station abundance is indicated in the plots. Quartermaster Harbor Station 303R is a rural/residential area. Commencement Bay Station 41 is located near the outfall of Tacoma Central Waste Water Treatment Plant. Hylebos Waterway Station 12 and North Harbor Island Station NH-08 are located in heavily contaminated areas. Selected stations have sediments with similar grain-size composition. Hylebos Waterway data collected by NOAA in 1994; North Harbor Island data collected by EPA's Elliott Bay Action Program in 1985. *Axinopsida serricata* is a bivalve, *Euphilomedes carcharodonta* and *Euphilomedes producta* are ostracods, and *Lumbrineris cruzensis* is a polychaete. (Newton *et al.*, 1994). The low dissolved oxygen problem may be exacerbated by the accumulation of organic matter in shallow bays of restricted water circulation For example, the upper reaches of Sequim Bay (Station 208R) exhibited high organic content in sediments resulting mostly from accumulation of wood debris from log storage operations. In combination with low dissolved oxygen concentrations in the water column (Hannach *et al.*, in preparation), the sediments accumulated high sulfide concentrations. Correlative effects on benthos were manifested through a dramatic reduction in abundance, where only few organisms, mostly belonging to the polychaete species *Nephtys cornuta*, were found to have established a population (this study; Hannach *et al.*, in preparation). *Nephtys cornuta* may have value as an indicator species, since other *Nephtys* species have been commonly observed in proximity to benthic disturbance (Grant *et al.*, 1995; Pearson *et al.*, 1983).

Conversely, hydrogen sulfide in sediments of Dyes Inlet (Station 35), and to a lesser extent in Sinclair Inlet (Station 34), may have fostered the proliferation of mats of the polychaete *Phyllochaetopterus prolifica*. *Phyllochaetopterus* was very abundant at stations in Sinclair Inlet and Dyes Inlet. In Sinclair Inlet, *Phyllochaetopterus* accounted for a large proportion of the organisms collected there. Abbiati *et al.* (1994) have found that a sibling species, *P. socialis*, is associated with sulfide-rich substrates, and suggest that the reason for this association is the presence of sulfur bacteria, which may constitute a major food component in the diet of these worms. The relationships between sulfide concentrations and high densities of *Phyllochaetopterus* in Sinclair and Dyes Inlets or in other bays of Puget Sound remain to be investigated

Relationships between sediment contamination and species composition at MSMP stations other than those described above could not be identified. A close examination of species presence/absence at two contaminated stations (Elliott Bay and Commencement Bay Station 40) and one reference clean station (Port Madison) did not reveal significant differences that could be attributed to chemical contamination. In addition, close examination of temporal patterns in abundance at four stations in Puget Sound sharing common dominant species and differing in sediment quality indicated that species increases or decreases in abundance are homogeneous within a basin, and thus unrelated to contamination. A caveat to these findings is that the MSMP was not designed to evaluate the areas of highest contaminated locations in Elliott Bay and Commencement Bay were not sampled. Differences in community measures may exist along stronger gradients of pollution. Such differences in Everett Harbor and reference areas in Port Susan, and have been attributed to pollution (PTI, 1993).

Community Structure

The analysis of MSMP stations revealed rich and diverse species assemblages of organisms that were mainly associated with sediment type and water depth, reinforcing

results from previous studies (Lie, 1974). The majority of species in Puget Sound were not restricted to one substrate, but were broadly distributed in different types of sediment with peaks of abundance in sand, mixed sediment, or mud. This result is in agreement with previous findings (Lie, 1968), which suggest that infaunal assemblages in Puget Sound represent a continuum along the environmental gradient. Therefore, benthic infaunal communities could only be loosely classified according to the type of substrate or water depth in which the species were dominant.

In addition to substrate, some assemblages were separated secondarily by geographical location. Clay stations in south Puget Sound consistently clustered together, and were separated from clay stations in the north Puget Sound region. In particular, Blaine (Station 1), Bellingham Bay (Station 4), Samish Bay (Station 5), and Port Townsend Bay (Station 12) formed a distinct group in the north.

One group of stations consisted of inlet ends in south Puget Sound Inlet ends were characterized by low species richness relative to other locations in Puget Sound. Although there was a tendency for stations with finer substrates to have a lower number of species than stations with coarser substrates, clay stations in south Puget Sound generally supported fewer species than many shallow clay locations elsewhere. In addition, stations in south Hood Canal (Stations 17, 304R, and 305R), Sequim Bay (Station 208R), Holmes Harbor (Station 305R), and the Strait of Georgia (Station 3) exhibited impoverished assemblages (low abundance and species richness) and were separated in cluster analysis.

One characteristic common to most of the above locations is their relative physical isolation from main basins that allow water exchange between the Puget Sound region and the continental shelf. Locations of restricted water circulation are prone to the development of seasonal episodes of low dissolved oxygen (DO) If in addition these locations are associated with major inputs of freshwater, the likelihood is for the formation of seasonal density stratification of the water column, which exacerbates the low DO problem with increasing depth. Both Holmes Harbor and the Strait of Georgia are influenced by the extensive fresh water plumes of the Skagit and the Fraser rivers, respectively. Also, Saratoga Passage (Station 19) is directly influenced by the freshwater plume of the Skagit River (Newton *et al.*, 1997), and showed very low abundance.

The occurrence of low DO in south Hood Canal, Holmes Harbor, Sequim Bay, and Budd Inlet has been identified by Ecology's Marine Waters Monitoring Program (Newton *et al*, 1997) and in previous studies (Collias *et al*, 1974; Chapman, 1988). Additional data collected by the MSMP in south Hood Canal on two dates in September 1994, suggest an association between low DO ($<2 \text{ mgl}^{-1}$) and reduced benthic abundance, with the greatest reduction in the crustacea (Figure 36)

Figure 36. Abundance (mean + SD; bars) and number of taxa (mean \pm SD; circles) of benthic macro-invertebrates at four stations in Hood Canal. The top diagram shows the near-bottom dissolved oxygen record. Benthic organisms were sampled 1 and 28 September 1994. Three van Veen garbs (0.1 m²) were taken at each station. Organisms (1.0-mm mesh screen) were consistently identified to family level (annelids and molluses) or higher (all other phyla). Water depth, silt-clay (s-c) and total organic carbon (toc) (top 2 centimeters of sediment) were as follows. Station 5, 116 m, 56% s-c, 1% toc; Station 11, 136 m, 98% s-c, 2.7% toc; Station 12, 82 m, 98% s-c, 2.1% toc; Station 14, 53 m, 51% s-c, 1.6% toc. Note the high abundance of molluses and the low abundance of crustacea at hypoxic stations. The bivalve *Axinopsida serricata* accounted for 57%-61% of all organisms at Station 12, and 49%-55% of all organisms at Station 14.

South Hood Canal stations exhibited some of the lowest abundances recorded in the MSMP. In addition, south Hood Canal at Great Bend (Station 17) was strongly dominated by *Axinopsida serricata*. This was also shown in the short-term study conducted in September 1994 (Figure 36). Changes in benthic macro-invertebrate abundance and composition in Hood Canal in relation to DO are in general agreement with findings from the ecological and physiological literature which suggest that polychaetes are more tolerant of hypoxia than crustaceans, and that bivalves are variously affected (Theede *et al.*, 1969; Harper *et al.*, 1981; Gaston, 1985). Some species exhibit physiological and behavioral adaptations to low DO and hydrogen sulfide (Llansó, 1991; 1992). Most bivalves of the family Thyasiridae, to which *Axinopsida serricata* belongs, form a symbiosis with sulfur-oxidizing bacteria (Southward, 1986). It is possible that *Axinopsida* harbors chemosynthetic bacteria, but bacterial associations in *Axinopsida* have not been investigated.

Of course, low DO can only be hypothesized as one factor structuring benthic infaunal communities in Puget Sound. Further monitoring in susceptible areas is needed. A gradual decline in species number is expected to occur along the estuarine gradient as natural factors such as changes in water circulation, salinity, temperature, and sedimentation rates impose physiological and ecological barriers to the establishment of species populations. High sedimentation rates and organic input, for example, would be expected in quiescent regions of south Puget Sound. Elevated concentrations of total organic carbon, relative to other stations in the MSMP, were generally measured in inlet ends of south Puget Sound.

Data presented in this report suggest that low DO may be an important but overlooked factor structuring some benthic assemblages in Puget Sound. Also, other factors such as reduced interstitial salinity at ground water seeps may be important (Jack Word, Battelle Marine Sciences Laboratory, pers comm.) and remain to be investigated. The identification of natural stresses in monitoring programs should constitute a priority because these factors may confound interpretation of pollution effects. Because contaminants tend to accumulate in fine sediments in urban areas typically associated with river mouths and bays, benthic communities in these areas are likely to be exposed to a variety of stresses, both natural and anthropogenic. Alterations to community structure cannot be unambiguously attributed to pollution without at least a rudimentary understanding of the natural processes that regulate benthic species abundance and composition in soft-sediments.

Evaluation of the MSMP and Recommendations

Design

In association with concurrent measures of sediment chemistry and toxicity, the benthic component of the MSMP provides valuable information on the general condition of benthic assemblages in Puget Sound. This information is essential to discern and

evaluate potential anthropogenic influences. The information also may be useful in establishing criteria and reference ranges to which data from polluted sites can be compared. In the following sections, we evaluate the design of the benthic monitoring component of the MSMP, suggest improvements, and provide recommendations

- The information generated by the present design of the MSMP was successful at characterizing benthic communities in Puget Sound. Also, the data were useful to evaluate community health at specific locations, *i.e.*, those stations sampled by the MSMP. However, the health of the community could not be evaluated on a system-wide basis because of limited spatial coverage and the non-random nature of the sampling design. To overcome these limitations, we recommend the use of a probabilistic design (*e.g.*, stratified random sampling) and increased spatial extent (see Volume 1).
- In general, the benthic data set may be used to calculate benthic community reference values representative of uncontaminated soft-bottom habitats in Puget Sound (*e.g.*, Striplin, 1996), with the following caveats. First, it must be kept in mind that the stations are not representative of the full range of biological, physical, chemical, and hydrodynamic characteristics of Puget Sound sediments. Bias may be introduced if stations that do not integrate a variety of oceanographic conditions are grouped on the basis of, say, one or two substrate characteristics. Classification analyses became essential to establishing groups of stations and elucidating which environmental factors were most strongly related to group separation. However, additional physical, chemical and biological parameters should be measured and included in the analysis.

Second, we should remember that benthic communities respond to multiple stressors, acting separately or in combination. For example, in this report we have identified water-column low DO and possibly hydrogen sulfide in sediments as potentially important natural factors affecting community structure. Therefore, variability due to natural factors is an integral part of the data set. Depressions in benthic measures should not be automatically equated with pollution effects. There is no reason to exclude this variability from the data set unless that natural stressors are measured and there is an explicit desire to partition the variability due to these stressors.

• One of the limitations of the present monitoring design is that it does not allow for the discrimination of the effects of pollution from the effects of natural phenomena. Should the program be expanded to cover gradients of pollution in urban sediments, the importance of natural stressors should be specifically evaluated. This will ensure that differences in the presence of human impacts are not merely due to environmental attributes differing between two areas.

- We need to discriminate between the effects of different types of human-induced stresses on benthic communities Responses to organic enrichment may differ substantially from those to chemical toxicity. For example, some species respond to organic enrichment through high reproductive output. While organic enrichment often elicits shifts in the dominance patterns of opportunistic species, chemical toxicity induces mortality of the most sensitive species in the community. The degree of tolerance to toxic compounds varies among species (*e.g.*, Eisler and Hennekey, 1977), depending on the presence or absence of physiological or behavioral adaptations to adverse sediment quality conditions. Sensitive species may disappear from the community in affected areas, resulting in a shift in favor of tolerant species.
- Changes in the abundance of opportunist species can vary dramatically with time. Environmental monitoring programs should therefore include a temporal component, where both reference and putatively impacted areas are sampled at appropriate small (e.g., months) to large (e.g., years) temporal scales. Estimating population size from samples taken at one sampling location once a year may result in differences in abundance between two areas that are due to intrinsic factors of variation in the population of a species, seasonal changes, or time lags, rather than to sediment quality. Results presented in this report suggest that species composition in Puget Sound is relatively stable, but that large fluctuations in abundance may be associated with the top dominant species.

Obtaining accurate density estimates is important to avoid confounding temporal patterns of variation in species abundance with spatial variation. For example, in the MSMP the spatial variation of some species was of similar or larger magnitude than the temporal variation. For these species, we cannot exclude the possibility that the observed annual trends in abundance are in fact artifacts associated with the choice of sampler or with the number of samples collected.

• Ecological processes structuring benthic communities are complex To begin to understand the myriad of interactions between the benthic organisms and the environment, we first need to describe the community In this context, the absence of especially sensitive species in areas affected by pollution may provide the first indication of impacts at the community level. The nodal analysis data presented in this report should be useful as a first step towards the identification of sensitive and tolerant species in the Puget Sound region. In the future, benthic data collected along stronger gradients of pollution should be compared to data in this report to delineate sensitive/tolerant species lists.

Sieve Size and Taxonomic Resolution

Benthic samples were collected with a van Veen grab and the sediments were sieved through a 1.0-mm screen. The animal size fraction investigated is important because it

generally influences the sensitivity of community measures, especially diversity indices. Taxa with small, opportunistic members tend to dominate in contaminated sediments Therefore, differences in community measures between contaminated and uncontaminated sites may become more evident when smaller macrofauna (0.25 or 0.5-mm sieve) are included in the samples.

Ferraro and Cole (1992) have assessed the taxonomic level and the mesh size sufficient for detecting impacts on benthic communities in Puget Sound Overall, moderate benthic impacts could be detected with 5-7 0 06-m² box-corers, samples sieved through a 1.0-mm mesh, and identification to family. Sampling unit area (*i.e.*, 0.06-m² box corer vs. 0.1-m² van Veen) appeared to have little effect on taxonomic sufficiency. For number of taxa, identification to family level and 1.0-mm mesh sieve were sufficient to identify pollution effects. However, species-level identification was required for diversity indices. Also, taxonomic identity may be useful when interpreting diversity indices because diversity is influenced by many additional factors.

Recent studies (Warwick and Clarke, 1993) also have shown that disturbance effects are detectable with multivariate methods at higher taxonomic levels than species. However, species-level data may be necessary to detect subtle changes in community measures in response to small pollution increases.

• We recommend that species-level identifications be continued, but that exploratory analyses be conducted to determine optimum cost-efficient sampling designs. Adopting a comprehensive approach to sediment monitoring will increase the range of contaminant concentrations. Differences between stations may then change from subtle or moderate to large impacts. With a stronger gradient of pollution, identification to higher taxonomic levels may be sufficient for detecting impacts. Nonetheless, designs that are sensitive to detecting small changes in community measures will be able to detect pollution effects before major changes in the community occur.

Replication

Based on data collected by the MSMP, we calculated the theoretical number of samples necessary to achieve a precision of 0.2 (the allowable size of the ratio of the standard error to the mean) in the estimate of total abundance. For most stations, the theoretical number of samples needed was less than four Fifty-nine percent of the stations had a precision smaller than 0.10, 35% had a precision of 0.10-0.19, and only 6% achieved a precision larger than 0.2. Therefore, five replicates appear to be adequate to characterize total population density. However, as suggested by data presented in this report, precise estimates of species abundances are likely to require increased sampling effort.

• The number of replicates will ultimately depend on the objectives and questions formulated in the revised program. If the aim of a monitoring program is to statistically identify changes in some community parameter along a gradient of pollution, the minimum sample size should be estimated from preliminary data collected along the gradient, and will depend on the minimum detectable difference desired, the population variance, and the power of the test Another objective may be to describe diversity patterns and monitor trends over time. In this case, we recommend that diversity curves be constructed to estimate the number of samples necessary to ensure that a majority of species are collected. Data presented in this report suggest that benthic communities in Puget Sound consist of many rare species. Therefore, diversity is probably underestimated with the current level of replication effort.

Biomass

Communities in Puget Sound are species-rich and comprise many organisms that are considered indicators of equilibrium conditions, such as terebellid and maldanid polychaetes, cerianthid anthozoans, and echinoderms Because these are relatively large invertebrates and may not be adequately sampled, their contribution to the community may be overlooked if only densities of organisms are examined.

• We recommend that the use of biomass measures (*e.g.*, ash-free dry weights in major taxonomic groups) be explored as an indicator of community health. Abundance-biomass comparisons such as those described by Warwick (1986) may prove to be useful tools for the detection of changes along the pollution gradient.

Conclusions

- Puget Sound exhibits rich infaunal assemblages that are primarily associated with sediment type and water depth, and secondarily with geographical location
- In general, patterns in species abundance and composition appeared to be unrelated to low or moderate contaminant concentrations at sampling locations. Instead, there was an association between low abundance or species number and locations prone to the development of low dissolved oxygen (DO) episodes.
- The identification of natural stresses such as low DO in monitoring programs should be made a priority because these factors may confound interpretation of pollution effects
- Twenty species showed large increases or decreases in abundance. The association of one of these species (the polychaete *Aphelochaeta* sp) with sediment contamination and organic enrichment may be useful as indication of pollution. Other tolerant/sensitive species in the Puget Sound region should be identified from more comprehensive monitoring programs with increased spatial coverage
- The study initiated in this report represents the first system-wide effort to characterize benthic assemblages in the Puget Sound region (Olympia to the Canadian border and west to Port Angeles), and constitutes a first step toward the development of reference standards for assessing benthic environmental conditions in Puget Sound

References

- Abbiati, M., L. Airoldi, A. Castelli, F. Cinelli, and A J. Southward, 1994.
 Preliminary observations on a dense population of *Phyllochaetopterus socialis* Claparède at the sulphurous water boundary in a Mediterranean submarine cave. Mém. Mus. natn. Hist. nat. 162: 323-329.
- Arjonilla, M., J.M. Forja, and A. Gómez-Parra, 1994. Sediment analysis does not provide a good measure of heavy metal bioavailability to *Cerastoderma glaucum* (Mollusca: Bivalvia) in confined coastal ecosystems. <u>Bull. Environ. Contam.</u> Toxicol. 52: 810-817.
- Armstrong, J.W., R.M Thom, and K.K. Chew, 1981. Impact of a combined sewer on the abundance, distribution and community structure of subtidal benthos. <u>Mar.</u> <u>Environ. Res.</u> 4: 3-23.
- Behrens, D.W., 1991 <u>Pacific Coast Nudibranchs</u>, 2nd edition. Sea Challengers, Monterey, CA., 107 pp.
- Boesch, D.F., 1973. Classification and community structure of macrobenthos in the Hampton Road area, Virginia. <u>Mar. Biol.</u> 21: 226-244.
- -----, 1977. Application of numerical classification in ecological investigations of water pollution. <u>Va. Inst. Mar. Sci. Spec. Sci. Rept.</u> No. 77.
- Bousfield, E.L., 1973 <u>Shallow-Water Gammaridean Amphipoda of New England</u> Cornell University Press, Ithaca, N.Y., 312 pp.
- Chapman, P.E., 1988 Summary of biological effects in Puget Sound- Past and present. p.169-183 In: D.G. Wolfe and T.P. O'Connor (eds.), Oceanic Processes in Marine Pollution, Volume 5, Urban Wastes in Coastal Marine Environments. Robert E. Krieger Publishing Co., Malabar, FL.
- Collias, E.E., N. McGary, and C.A. Barnes, 1974. <u>Atlas of Physical and Chemical</u> <u>Properties of Puget Sound and Approaches</u>. Washington Sea Grant 74-1, Seattle, WA.
- Eisler, R. and R.J. Hennekey, 1977 Acute toxicities of Cd²⁺, Cr⁶⁺, Hg²⁺, Ni²⁺ and Zn²⁺ to estuarine macrofauna <u>Arch. Environ. Contam. Toxicol.</u> 6: 315-323
- Ferraro, S.P. and F.A. Cole, 1992 Taxonomic level sufficient for assessing a moderate impact on macrobenthic communities in Puget Sound, Washington, USA. <u>Can. J. Fish. Aquat. Sci.</u> 49: 1184-1188

- Folk, R.L., 1980. <u>Petrology of Sedimentary Rocks</u>. Hemphill Publishing Co., Austin, TX.
- Gaston, G.R., 1985 Effects of hypoxia on macrobenthos of the Inner Shelf off Cameron, Louisiana Estuar. Coast. Shelf Sci. 20: 603-613
- Gilbert, R., 1987 <u>Statistical Methods for Environmental Pollution Monitoring</u> Van Nostrand Reinhold, New York, N.Y.
- Grant, J., A. Hatcher, D.B. Scott, P. Pocklington, C.T. Schafer, and G.V. Winters, 1995. A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. <u>Estuaries</u> 18: 124-144.
- Hannach, G., A. Thomson, J. Newton, and R. J. Llansó, In Preparation <u>1993 Sequim</u> <u>Bay Seasonal Monitoring Report.</u> Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA
- Harper, D.E., Jr., L.D. McKinney, R.R. Salzer, and R.J. Case, 1981. The occurrence of hypoxic bottom water off the upper Texas coast and its effects on the benthic biota. <u>Contr. Mar. Sci.</u> 24: 53-79.
- Jensen, G.C., 1995 <u>Pacific Coast Crabs and Shrimps</u> Sea Challengers, Monterey, CA., 87 pp.
- Johnston, R.K., 1993. Acid volatile sulfides and simultaneously extracted copper, lead and zinc in sediments of Sinclair Inlet, Washington <u>Naval Command, Control</u> <u>and Ocean Surveillance Center Technical Report</u> 1552.
- Kendal, D.R., 1983 <u>The Role of Physical-Chemical Factors in Structuring Subtidal</u> <u>Marine and Estuarine Benthos</u> Technical Report EL-83-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Kozloff, E.N., 1983. <u>Seashore Life of the Northern Pacific Coast</u>. University of Washington Press, Seattle, WA., 370 pp.
- -----, 1987 <u>Marine Invertebrates of the Pacific Northwest</u> University of Washington Press, Seattle, WA, 511 pp
- Lance, G N and T W. Williams, 1966. A generalized sorting strategy for computer classifications. <u>Nature</u> 212: 218.
- Lie, U., 1968 A quantitative study of the benthic infauna in Puget Sound, Washington, USA, in 1963-1964 <u>FiskDir. Skr. Ser. HavUnders.</u> 14: 229-556
- -----, 1974 Distribution and structure of benthic assemblages in Puget Sound, Washington, USA Mar. Biol. 26: 203-223

- Llansó, R.J., 1991. Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete *Streblospio benedicti* (Webster). J. Exp. Mar. Biol. Ecol. 153: 165-178.
- -----, 1992 Effects of hypoxia on estuarine benthos: The lower Rappahannock River (Chesapeake Bay), a case study Estuar. Coast. Shelf Sci. 35: 491-515.
- Llansó, R.J., S. Aasen, and K. Welch, 1998. <u>Marine Sediment Monitoring Program:</u> <u>I. Chemistry and Toxicity Testing 1989-1995.</u> Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA.
- Long, E.R., D.D. Macdonald, S.L. Smith, and F.D. Calder, 1995 Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments <u>Environ. Manag.</u> 19: 81-97
- Margalef, R., 1958. Information theory in ecology. Gen. Syst. 3: 36-71
- MMC (Monitoring Management Committee), 1988 <u>Puget Sound Ambient Monitoring</u> <u>Program, Final Report</u> Puget Sound Water Quality Authority, Seattle, WA
- Newton, J.A., S.L. Albertson, and A.L. Thomson, 1997 <u>Washington State Marine</u> <u>Water Quality in 1994 and 1995</u> Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA
- Newton, J.A., S.A. Bell, and M.A. Golliet, 1994. <u>Marine Water Column Ambient</u> <u>Monitoring Program: Wateryear 1993 Data Report</u> Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA
- Pearson, T.H., J.S. Gray, and P.J. Johannessen, 1983. Objective selection of sensitive species indicative of pollution-induced change in benthic communities 2. Data analyses <u>Mar. Ecol. Prog. Ser.</u> 12: 237-255.
- Pearson, T.H. and R. Rosenberg, 1978 Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. <u>Oceanogr. Mar.</u> <u>Biol. Ann. Rev.</u> 16: 229-311.
- Pielou, E.C., 1966. The measurement of diversity in different types of biological collections J. Theor. Biol. 13: 131-144.
- Plesha, P.D., J.E. Stein, M.H. Scheiwe, B.B. McCain, and U. Varanasi, 1988. Toxicity of marine sediments supplemented with mixtures of selected chlorinated and aromatic hydrocarbons to the infaunal amphipod *Rhepoxynius abronius*. <u>Marine Environ. Res.</u> 25: 85-97.

- PTI, 1989. <u>Contaminated Sediments Criteria Report</u>. Prepared for Washington State Department of Ecology by PTI Environmental Services, Bellevue, WA
- -----, 1993. <u>Recommendations for Adverse Benthic Effects in Puget Sound</u> Prepared for Washington Department of Ecology, Sediment Management Unit, by PTI Environmental Services, Bellevue, WA
- Ricketts, E.F., J. Calvin, and J.W. Hedgpeth, 1939. <u>Between Pacific Tides</u>. Stanford University Press, Stanford, CA., 652 pp.
- Shannon, C.E., 1948. A mathematical theory of communication. <u>Bell System Tech. J.</u> 27: 379-423 & 623-656.
- Smith, R.I. and J.T. Carlton, 1975. <u>Light's Manual: Intertidal Invertebrates of the</u> <u>Central California Coast.</u> 3rd edition University of California Press, CA., 717 pp.
- Sneath, P.H.A. and R.R. Sokal, 1973. <u>Numerical Taxonomy. The Principles and</u> Practice of Numerical Classification. Freeman, San Francisco, CA.

Southward, E.C., 1986 Gill symbionts in thyasirids and other bivalve molluscs <u>J.</u> <u>mar. biol. Ass. U.K.</u> 66: 889-914

- Stephenson, W., W.T. Williams, and S.D. Cook, 1972. Computer analysis of Petersen's original data on bottom communities <u>Ecol. Monogr.</u> 40: 459-494.
- Striplin, P.L., 1988 <u>Puget Sound Ambient Monitoring Program: Marine Sediment</u> <u>Quality Implementation Plan</u> Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA
- -----, 1996 <u>Development of Reference Value Ranges for Benthic Infauna Assessment</u> <u>Endpoints in Puget Sound.</u> Prepared for Washington Department of Ecology, Sediment Management Unit, by Striplin Environmental Associates, Olympia, WA
- Swartz, R.C., F.A. Cole, D.W. Schults, and W.A. Deben, 1986. Ecological changes in the Southern California Bight near a large sewage outfall: Benthic conditions in 1980 and 1983. <u>Mar. Ecol. Prog. Ser.</u> 31: 1-13.
- Tetra Tech, 1986. <u>Recommended Protocols for Measuring Selected Environmental</u> <u>Variables in Puget Sound</u>. Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, by Tetra Tech, Inc., Bellevue, WA

- -----, 1987. <u>Recommended Protocols for Sampling and Analyzing Subtidal Benthic</u> <u>Macro-invertebrate Assemblages in Puget Sound, Final Report</u>. Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, by Tetra Tech, Inc., Bellevue, WA.
- Theede, H., A. Ponat, K. Hiroki, and C. Schlieper, 1969. Studies on the resistance of marine bottom invertebrates in oxygen-deficiency and hydrogen sulphide. <u>Mar.</u> <u>Biol.</u> 2: 325-337.
- Underwood, A.J., 1981 Techniques of analysis of variance in experimental marine biology and ecology <u>Oceanogr. Mar. Biol. Ann. Rev.</u> 19: 513-605
- Warwick R.M., 1986 A new method for detecting pollution effects on marine macrobenthic communities. <u>Mar. Biol.</u> 92: 557-562
- Warwick, R M and K R. Clarke, 1993. Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. <u>Mar. Ecol. Prog. Ser.</u> 92: 221-231.
- Williams, W.T. and J.M. Lambert, 1961. Nodal analysis of associated populations. Nature 191: 202.
- Zar, J.H., 1984. Biostatistical Analysis Prentice-Hall, Inc., Englewood Cliffs, N.J.

Appendix A

Sediment Composition

Appendix A. Percent gravel (Gr), sand (Sa), silt (Si), clay (Cl), and sediment class at MSMP stations, 1989-1993. Replicate samples are averaged,
and values rounded. For sediment class criteria see text. Dominance of sand or silt in mixed sediments is indicated in parenthesis. Blanks denote stations
not sampled in a given year. For station location, see Table 1.

				1080		[1	1990					1901					1907				-	1002	
Station	Gr	Sa	Si	ច	Class	ß	Sa	Si		Class	G	Sa	Si	CI	Class	Gr	Sa	Si	CI	Class	ß	Sa	Si	2 2 2	Class
	-	r	01	ć		-	,	Ē	2		<	•	i de t	à		<u>،</u>		Ś	t c						
	> <	- 1	2 3	5	clay	>	n	17	07	clay	> <	1 !	2 :		ciay	>	0	20	17	clay	0	٥	00	87	clay
2K	>	20	38	71	mixed (sa)							42	41		mixed (sa+si)										
m	34	34	26	5	mixed (sa+gr)	24	31	31	14	mixed (s+s+g)	~	29	43	21	mixed (si)	16	33	34	17 r	mixed (s+s+g)	Ŀ	34	36	23 п	mixed (s+s+g)
4	0	Ĺ	. 71	23	clay	0	0	56	42	clay	0	2	52	46	clay	0	ŝ	54	43	clay	0	7	50	48	clay
5	0	4	71	25	clay	0	ς Γ	99		clay	0	4	60	35	clay	0	Ś	61	33	clay	0	4	63	34	clay
8	-	33	49	17	mixed (si)	0	36	45	19	mixed (si)	0	36	46	17	mixed (si)	0	28	51	21	mixed (si)	2	30	47	21	mixed (si)
9R					***						ŝ	96	0		sand+gravel										
10R	0	63	26	12	mixed (sa)						0	67	23	10	silty sand										
11R	0	75	15	6	silty sand						0	71	18	11	silty sand										
12	0	6	66	24	clay	0	ſ~	65	28	clay	0	∞	65	27	clay	0	Ľ	65	28	clay	0	×	63	29	clay
13R	0	90	9	ŝ	sand						0	90	٢	ς	sand										·
14	Ō	72	17	10	silty sand	0	63	23	14	mixed (sa)	0	62	24	14	mixed (sa)	0	52	31	17	mixed (sa)	0	75	16	6	silty sand
15	0	91	5	ŝ	sand	0	95	ŝ	7	sand	0	94	ŝ	ŝ	sand	0	95	ŝ	7	sand	0	93	б	4	sand
17	-	5	63	29	clay	0	0	68		clay	0	9	62	32	clay	0	ŝ	65	32	clay	0	ŝ	62	33	clay
18	0	40	38	22	mixed (sa+si)	0	8	54	38	clay	0	58	21	21	mixed (sa)	0	57	21	22	mixed (sa)	0	68	16	16	mixed (sa)
19	0	19	34	48	clay	0	17	37		clay	0	18	33	49	clay	0	19	32	50	clay	0	19	32	49	clay
20	Ò	9	73		clay	0	ŝ	66		clay	0	4	61	36	clay	0	4	64	31	clay	0	×	62	30	clay
21	0	48	46	9	mixed (sa+si)	0	39	49		mixed (si)	0	20	63	18	mixed (si)	0	38	48	14	mixed (si)	0	33	53	14	mixed (si)
22	0	96	ŝ	0	sand	,	94	ŝ	ŝ	sand	0	87	9	Ŀ	sand	0	92	2	9	sand	0	94	7	4	sand
23R	5	96	-		sand											1	96		7	sand					
24R	0	13	48		clay											0	10	52	38	clay					
25R	o	98	0	-	sand											0	97	Γ	ŝ	sand					
26	0	84	6	Ľ		0	79	11	1 10	(i)	53	30	6	8	(I)	0	73	14	13	silty sand	0	76	13	11	silty sand
27R	0	76	-		sand											0	76	Г	7	sand					
29	0	17	69		mixed	0	5		34	clay	0	16	51	33	clay	0	12	55	33	clay	0	21	49	30	clay
30	0	44	48		mixed (sa+si)	0	38			mixed (si)	0	LL	17	9	silty sand	0	64	25	11	mixed (sa)	0	49	37	14	mixed (sa)
32	0	93	ςΩ.	4	sand	0	93			sand	0	87	6	S	sand	0	94	ŝ	Э	sand	0	94	2	4	sand
33	Τ	75	19		silty sand	4	62	23		silty sand	0	93	'n	4	sand	7	65		6	silty sand	9	65	21		silty sand+gr
34	0	×	72			0	ŝ	62	33	clay	0	5	59	34	clay	٦	10		31	clay	×	10	54	28	clay
35	0 0	21	- 69	•	m	0	18	53		clay	0	20	4 8	32	clay	0	19		29	clay	0	20	51	29	clay
36K	⊃	98	-	6	sand										_	0	97	-	0	sand					

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Appendix A.	ix A		mtir	Continued.																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1989				1	066					991				•	1992				16	93	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Station	Ģ	Sa	Si	ច		Ġ	Sa	Si	ច	Class	ö	Sa	Si	ਹ	Class	ġ	Sa	Si	G					0	Class
	37R	, 	93	4	7	sand											16	81	-	5	sand+gravel					
	38	0	٢	50	42	clay	0	6	48	51	clay	0	S	44	51	clay	0	٢	47	46	clay		-		50	clay
	39	0	98	0	-	sand	0	98	Г	1	sand	0	70	Т	6	sand	0	97	٦	2	sand				ŝ	sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	I	84	11	4	sand	0	72	21	Ļ	silty sand	0	67	24	6	silty sand	٦	67	22	10	silty sand					silty sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	0	19	69		mixed (si)	0	34	56	10	mixed (si)	0	30	60		mixed (si)	0	25	59	16	mixed (si)					mixed (si)
	43	0	94	ŝ		sand	0	93	ε	4	sand	0	94	ŝ	m	sand	0	94	ę	n	sand		93	ŝ	4	sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44		84	10		sand	Т	85	8	٢	sand	0	83	6	8	sand	0	82	8	6	sand	-			6	sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	-	44	46		mixed (sa+si)	0	40	38	22	mixed (si)	0	40	41		uxed (sa+si)	0	44	39	17	mixed (sa)					mixed (sa)
	46R	7	83	ø		sand	0	81	13	9	sand												78			silty sand
3 16 45 36 clay 0 10 55 33 clay 0 10 60 30 10 12 58 30 clay 0 16 50 34 clay 0 15 53 clay 0 10 60 30 11 12 58 30 clay 0 15 53 clay 0 10 60 30 12 58 30 clay 0 32 43 clay 0 34 24 clay 0 15 53 32 13 13 6 33 41 26 clay 0 14 38 mxed(sa) 0 44 35 34 14 35 34 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24	47	0	LL	16		silty sand	4	84	9	9	sand+gravel	26	64	ŝ		and+gravel	13	73	5	9	sand+gravel		63	8		and+gravel
0 12 58 30 clay 0 15 50 34 clay 0 15 55 33 clay 0 16 50 34 1 26 31 24 clay 0 34 24 clay 0 12 55 33 clay 0 16 50 34 1 26 5 34 24 clay 0 44 38 18 mixed(sa) 0 45 35 31 26 33 31 26 33 31 26 33 31 26 33 31 32 34 35 31 26 33 31 32 34 35 31 34 35 31 34 35 31 34 35 31 34 35 31 35 32 33 32 33 33 32 33 33 32 34 36	48	m	16	45		clay	0	×	37	55	clay	0	10	55	35	clay	0	11	56	33	clay				30	clay
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	0	12	58		clay	0	ŝ	62	35	clay	0	16	50	34	clay	0	12	55	33	clay		16		34	clay
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	69						0	85	10	S	sand	0	79	15	9	silty sand	0	82	12	9	sand		81		9	sand
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70						0	36	40	24	clay	0	32	43	24	clay	0	33	41	26	clay		50			mixed (sa)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71						0	54	27	19	mixed (sa)	0	44	38	18	mixed (sa)	0	47	33	21	mixed (sa)		46			mixed (sa)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101R						0	10	63	27	clay												14		28	clay
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102R						0	12	54	34	clay							÷					26		25	clay
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103R						0	92	ŝ	ŝ	sand												91	4	5	sand
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104R						0	6	59	39	clay	_											6	57	34	clay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105R						, ,	24	46	29	clay												29	44	27	clay
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106R						-	13	55	31	clay												7	59	34	clay
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	109R						ľ	8	65	26	clay												16	62	22	clay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110R						0	6	58	33	clay												21		25	clay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111R						0	25	19	17	mixed (sa)												33		26	clay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112R						0	66	0		sand												76	0	ŝ	sand
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	113R						0	80	13	Ľ	sand											0	84	10	9	sand
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	114R						0	13	66	21	clay												14	63	23	clay
0 78 14 8 0 75 17 8 0 1 54 45 0 6 59 35 1 37 43 19 0 64 23 12	115R						0	28	53	19													25	57		mixed (si)
0 75 17 8 0 1 54 45 0 6 59 35 1 37 43 19 0 64 23 12	201R											0	78	14	×	silty sand										
0 1 54 45 0 6 59 35 1 37 43 19 0 64 23 12	202R											0	75	17	×	silty sand										
0 6 59 35 1 37 43 19 0 64 23 12	203R											0		54	45	clay										
0 64 23 12	204R											0	9	59	35	clay										
0 64 23 12	205R											-	37	43	19	mixed (si)										
_	206R											0	64	23	12	mixed (sa)										

Appendix A. Concluded.

1989 Station Gr Sa Si Cl	Class	Gr Sa Si Cl) Class	Ę.	Š	1991 Si Cl)] Class	Gr	2	<i>i</i>	1992 CI	Class	G.	a V	1993 Si CI	1 Class
				5				5	5		5					
				0	26	48 26		<u></u>								
				-		51 39	9 clay									
				0	. 99	27 7										
								~	87	ę	ŝ	sand				
								0	31	47	21	mıxed (si)		,		
								0	23		19	mixed (si)				
								0	ŝ	43	54	clay				
								0	6	54	40	clay				
		2-						0	91	4	S	sand				
								0	4	47	49	clay				
								0	89	ŝ	9	sand				

⁽¹⁾ Station 26 not used in classification analysis 1989-1991.

Appendix B

Taxonomic Listing of Macro-invertebrates

Appendix B. Taxonomic listing of macro-invertebrates found in the MSMP, 1989-1993. Unid. = unidentified to genus or species level. The hierarchical arrangement of phyla and classes follows Kozloff's (1987) "Marine Invertebrates of the Pacific Northwest". Families and species are listed alphabetically. Species names and authorship are based primarily on SCAMIT's "Taxonomic Listing of Soft Bottom Macro- and Megainvertebrates" (Third Edition, June 1998), but other sources have also been used. Synonyms are given only in the case of names that have recently been changed and the new name was not included in database files at the time of report preparation.

hylum/Class/Family	Species	
ORIFERA		
Calcarea		
Leucosoleniidae		
	Leucosolenia sp.	
Demospongiae (unid.)		
CNIDARIA		
Hydrozoa Aglaopheniidae		
Agiaopheinidae	Aglaophenia sp.	
Bougainvilliidae		
Douganitimude	Perigonimus sp	Sars, 1846
	Perigonimus yoldiarcticae	Birula, 1897
Campanulariidae		
Campanan	Campanularia sp	Lamarck, 1816
	Obelia bidentata	Clark, 1875
	Obelia dichotoma	(Linnaeus, 1758)
Campanulinidae	(unid.)	
Cladonematidae		
	Cladonema sp. A	
Corymorphidae		
	Euphysa ruthae	Norenburg & Morse, 1983
Corynidae		
	Coryne sp	Gaertner, 1774
Eudendriidae		
	Eudendrium sp	Ehrehberg, 1834
Haleciidae		
	Halecium sp	Oken, 1815
Hydractiniidae		
	Hydractinia aggregata	Fraser, 1922
	Stylactis sp	Allman, 1864

hylum/Class/Family	Species	
Lafoeidae		
200000000	Grammaria sp.	
	Lafoea sp.	Lamouroux, 1821
·	Lafoea fruticosa	Sars, 1863
Sertulariidae		
	Abietinaria sp	Kirchenpauer, 1884
	Hydrallmania sp	
	Hydrallmania distans	Nutting, 1899
	Selaginopsis mirabilis	(Verrill, 1872)
	Sertularella sp	Gray, 1848
	Thuiaria sp	Fleming, 1828
Tubulariidae		
	Tubularia sp	Linnaeus, 1758
Anthozoa		
Actiniidae		
	Urticina coriacea	(Cuvier, 1798)
Cerianthidae		
	Pachycer ianthus fimbriatus	McMurrich, 1910
	Ceriantharia sp	0 1040
	Ceriantharia sp E	Swainson, 1840
Diadumenidae	Dischurgen	Stanbarger 1020
51 1 1 1 1	Diadumene sp	Stephenson, 1920
Edwardsiidae	Edwardsia sp	Quatrefages, 1842
	-	(Stimpson, 1853)
77-1	Edwardsia sipunculoides	(Sumpson, 1855)
Halcampidae	Halcampa sp.	
	Halcampa decemtentaculata	Hand, 1954
	Halcampoides purpurea	(Studer, 1878)
Limnactiniidae	Hacampolaes purpured	(514451, 1070)
L minactimuae	Limnactiniidae sp. A	SCAMIT, 1989
Metridiidae	2mmaommaa op. 11	, _ , _ , _ , _ , _ , _ , _ , _
Mentanade	Metridium sp	Oken, 1815
	Metridium senile	(Linnaeus, 1767)
Pennatulidae		
i emiatundae	Ptilosarcus gurneyi	(Gray, 1860)
Virgulariidae		
, ngului mado	Acanthoptilum sp	Kolliker, 1870

Phylum/Class/Family	Species		
	Stylatula elongata	(Gabb, 1862)	
	Stylatula sp. A	Ljubenkov, 1991	
	Virgularia sp	Lamarck, 1816	
	Virgularia bromleyi	Kolliker, 1880	
PLATYHELMINTHES			
Turbellaria			
Euryleptidae			
J 1	Acerotisa alba	(Freeman, 1933)	
Leptoplanidae	(unid)		
Notoplanidae	· · · ·		
1	Notoplana sp.	Laidlaw, 1903	
Planoceridae			
	Planoceridae sp. A		
Stylochidae	-		
	Stylochus exiguus	Hyman, 1953	
NEMERTINA			
Anopla			
Carinomidae			
	Carinoma sp.	Oudemans, 1885	
	Carinoma mutabilis	Griffin, 1898	
Lineidae			
	Cerebratulus sp.	Renier, 1804	
	Lineus sp.	Sowerby, 1806	
	Micrura sp	Ehrenberg, 1831	
Iubulanidae		-	
	Tubulanus sp.	Renier, 1804	
	Tubulanus capistratus	(Coe, 1901)	
	Tubulanus frenatus	(Coe, 1904)	
	Tubulanus nothus	(Berger, 1892)	
	Tubulanus polymorphus	(Renier, 1804)	
Enopla			
Amphiporidae			
	Amphiporus sp.	Ehrenberg, 1831	
	Zygonemertes sp.	Montgomery	
	Zygonemertes virescens	(Verrill, 1879)	

ļ

Phylum/Class/Family	Species	
Emplecton	ematidae	
•	Paranemertes sp.	Coe, 1901
	Paranemertes californica	Coe, 1904
	Paranemertes peregrina	Coe, 1901
Prosorhoch	imidae	
	Oerstedia dorsalis	(Abildgaard, 1806)
	Prosorhochmus albidus	(Coe, 1905)
Tetrastemn	natidae	
	Tetrastemma sp.	Ehrenberg, 1831
	Tetrastemma nigrifions	Coe, 1904
PRIAPULIDA		
Priapulidae		
	Priapulus sp	1 1017
	Priapulus caudatus	Lamarck, 1816
ANNELIDA		
Polychaeta		
Ampharetic		
	Amage sp.	Malmgren, 1866
	Amage anops	(Johnson, 1901)
	Ampharete sp.	Malmgren, 1866
	Ampharete acutifrons	(Grube, 1860)
	Ampharete arctica	Malmgren, 1866
	Ampharete finmarchica	(M Sars, 1865)
	Ampharete goesi	Malmgren, 1866
	Ampharete labrops	Hartman, 1961
	Ampharetinae (unid.)	- 1 10 - 0
	Amphicteis sp.	Grube, 1850
	Amphicteis glabra	Moore, 1905
	Amphicteis mucronata	Moore, 1923
	Amphicteis scaphobranchiata	Moore, 1906
	Anobothrus gracilis	(Malmgren, 1866)
	Asabellides sp.	Annenkova, 1929
	Asabellides lineata	(Berkeley & Berkeley, 1943)
	Asabellides sibirica	(Wiren, 1883)
	Lysippe sp.	Malmgren, 1866
	Lysippe labiata	Malmgren, 1866

ylum/Class/Family	Species	
	Melinna sp	Malmgren, 1866
	Melinna elisabethae (= M. cristata)	McIntosh, 1922
	Melinna oculata	Hartman, 1969
	Mooresamytha bioculata	(Moore, 1906)
	Samytha californiensis	Hartman, 1969
	Schistocomus hiltoni	Chamberlin, 1919
Aphroditidae		
-	Aphrodita sp	Linnaeus, 1758
	Aphrodita japonica	Marenzeller, 1879
	Aphrodita parva	Moore, 1905
Apistobranchia	dae	
	Apistobranchus ornatus	Hartman, 1965
Capitellidae		
_	Barantolla americana	Hartman, 1963
	Capitella capitata	(Fabricius, 1780)
	Decamastus gracilis	Hartman, 1963
	Heteromastus sp	Eisig, 1887
	Heteromastus filiformis	(Claparède, 1864)
	Heteromastus filobranchus	Berkeley & Berkeley, 1932
	Mediomastus sp.	Hartman, 1944
	Mediomastus ambiseta	(Hartman, 1947)
	Mediomastus californiensis	Warren & Hutchings, 1994
	Notomastus sp	M Sars, 1851
	Notomastus latericeus	M Sars, 1851
	Notomastus tenuis	Moore, 1909
	Notomastus variegatus	Berkeley & Berkeley, 1950
Chaetopteridae		
	Chaetopterus sp.	Cuvier, 1827
	Chaetopterus variopedatus	(Renier, 1804)
	Mesochaetopterus taylori	Potts, 1914
	Phyllochaetopterus sp	Grube, 1863
	Phyllochaetopterus prolifica	Potts, 1914
	Spiochaetopterus costarum	(Claparède, 1870)
Chrysopetalida	e	
	Paleanotus bellis	(Johnson, 1897)
Cirratulidae		
	Aphelochaeta spp	
2	Aphelochaeta monilaris	(Hartman, 1960)

......

Phylum/Class/Family	Species	
	Caulleriella sp	Chamberlin, 1919
	Caulleriella pacifica (= C alata)	,
	Caulleriella sp A	
	Chaetozone spp.	
	Cirratulus sp.	Lamarck, 1801
	Cirratulus cirratus	(O. F. Müller, 1776)
	Cirratulus spectabilis	(Kinberg, 1866)
	Cirr ifor mia spir abranchia	(Moore, 1904)
	Monticellina sp	Laubier, 1961
	Monticellina dorsobranchialis	(Kirkegaard, 1959)
	Monticellina tesselata	(Hartman, 1960)
Cossuridae		
	Cossura sp.	Webster & Benedict, 1887
	Cossura bansei [as C modica in files]	Hilbig, 1996
	Cossura longocirrata	Webster & Benedict, 1897
	Cossur a pygodactylata	Jones, 1956
Dorvilleidae		
	Dorvillea (D) sp	
	Dorvillea (D) pseudorubrovittata	E Berkeley, 1927
	Dorvillea (Schistomeringos) annulata	(Moore, 1906)
	Dorvillea (Schistomeringos) rudolphi	(delle Chiaje, 1828)
	Dorvilleidae sp Z	
	Parougia caeca	(Webster & Benedict, 1884)
	Protodorvillea gracilis	(Hartman, 1938)
Flabelligeridae		
	Brada sp.	Stimpson, 1854
	Brada sachalina	Annenkova, 1922
	Brada villosa	(Rathke, 1843)
	Flabelligera affinis	M Sars, 1829
	Pherusa sp.	Oken, 1807
	Pherusa plumosa	(O F. Müller, 1776)
Glyceridae		
-	Glycera sp	Savigny, 1818
	Glycera americana	Leidy, 1855
	Glycera nana	Johnson, 1901
	Glycera oxycephala	Ehlers, 1887
	Glycera robusta	Ehlers, 1868
	Glycera sp 1	

Phylum/Class/Family	Species	
	Hemipodus borealis	Johnson, 1901
Goniadidae	F	
	Glycinde sp	F Müller, 1858
	Glycinde armigera	Moore, 1911
	Glycinde picta	E Berkeley, 1927
	Glycinde polygnatha	Hartman, 1950
	Goniada sp.	Audouin & Milne-Edwards, 1833
	Goniada annulata	Moore, 1905
	Goniada brunnea	Treadwell, 1906
	Goniada maculata	Ørsted, 1843
	Goniada zonata	
Hesionidae		
	<i>Gyptis</i> sp.	
	Hesionidae sp. 1	
	Heteropodarke heteromorpha	Hartmann-Schröder, 1962
	Kefersteinia cirrata	(Keferstein, 1862)
	Microphthalmus sp	Mecznikow, 1865
	Microphthalmus aberrans	
	Microphthalmus sczelkowii	Metschnikow, 1865
	Micropodarke dubia	(Hessle, 1925)
	Ophiodromus pugettensis	(Johnson, 1901)
	Podarkeopsis glabrus	(Hartman, 1961)
Lumbrineridae		
	Lumbrineris sp.	De Blainville, 1828
	Lumbrineris bicirrata	Treadwell, 1929
	Lumbrineris californiensis	Hartman, 1944
	Lumbrineris cruzensis	Hartman, 1944
	Lumbrineris inflata	Moore, 1911
	Lumbrineris lagunae	Fauchald, 1970
	Lumbrineris latreilli	Audouin & Milne-Edwards, 1834
	Lumbrineris limicola	Hartman, 1944
	Lumbriner is luti	Berkeley & Berkeley, 1945
	Lumbriner is pallida	Hartman, 1944
	Lumbriner is zonata	(Johnson, 1901)
	Ninoe gemmea	Moore, 1911
	Ninoe palmata Scoletoma fragilis	

hylum/Class/Family	Species	
Magelonidae		
U	Magelona sp	F Müller, 1858
	Magelona berkeleyi	Jones, 1971
	Magelona longicornis	Johnson, 1901
	Magelona sacculata	Hartman, 1961
	Magelona sp. 1	
Maldanidae		
	Axiothella sp.	Verrill, 1900
	Axiothella rubrocincta	(Johnson, 1901)
	Chirimia sp	Light, 1991
	Chirimia biceps	(Sars, 1861)
	Chirimia similis	(Moore, 1906)
	Clymenella sp.	Verrill, 1873
	Clymenella complanata	Hartman, 1969
	Clymenella torquata	(Leidy, 1855)
	Clymenura sp.	Verrill, 1900
	Clymenura columbiana	(E. Berkeley, 1929)
	Clymenura gracilis	Hartman, 1969
	Euclymene sp.	Verrill, 1900
	Euclymene reticulata	Moore, 1923
	Euclymene zonalis	(Verrill, 1874)
	Euclymeninae (unid.)	
	Isocirrus longiceps	(Moore, 1923)
	Macroclymene sp	Verrill, 1900
	Maldane sp.	Grube, 1840
	Maldane sarsi	Malmgren, 1865
	Maldanella robusta	Moore, 1906
	Metasychis disparidenta	(Moore, 1904)
	Nicomachinae (unid)	
	Nicomache sp.	Malmgren, 1865
	Nicomache lumbricalis	(Fabricius, 1780)
	Nicomache personata Notoproctus sp	Johnson, 1901
	Notoproctus pacificus	(Moore, 1906)
	Petaloproctus sp.	Quatrefages, 1865
	Petaloproctus tenuis	(Théel, 1879)
	Petaloproctus tenuis borealis	Arwidsson, 1907
	Praxillella gracilis	(M Sars, 1861)

Phylum/Class/Family	Species	
	Praxillella pacifica	E. Berkeley, 1929
	Praxillella sp A	
	Rhodine bitorquata	Moore, 1923
Nepht	-	
ľ	Nephtys sp	Cuvier, 1917
	Nephtys assignis	Hartman, 1950
	Nephtys brachycephala	Moore, 1903
	Nephtys caeca	(Fabricius, 1780)
	Nephtys caecoides	Hartman, 1938
	Nephtys californiensis	Hartman, 1938
	Nephtys ciliata	(O.F. Müller, 1776)
	Nephtys cornuta	Berkeley & Berkeley, 1945
	Nephtys discors	Ehlers, 1868
	Nephtys glabra	Hartman, 1950
	Nephtys longosetosa	Ørsted, 1843
	Nephtys punctata	Hartman, 1938
	Nephtys signifera	Hilbig, 1992
	Nephtys sp. A (Commenc. Bay or	ly)
Nereic	ae	
	Cheilonereis cyclurus	(Harrington, 1897)
	Eunereis wailesi	Berkeley & Berkeley, 1954
	Neanthes brandti	(Malmgren, 1866)
	Neanthes virens	(M Sars, 1835)
	Nereis sp.	Linnaeus, 1758
	Nereis procera	Ehlers, 1868
	Nereis vexillosa	Grube, 1851
	Platynereis bicanaliculata	(Baird, 1863)
Oenon	idae	
	Drilonereis sp.	Claparède, 1870
	Drilonereis falcata	Moore, 1911
	Drilonereis falcata minor	Hartman, 1956
	Drilonereis longa	Webster, 1879
	Drilonereis nuda	Moore, 1909
	Notocirrus californiensis	Hartman, 1944
Onuph	idae	
	Diopatra sp	Audouin & Milne-Edwards, 1833
	Diopatra ornata	Moore, 1911
	<i>Epidiopatra</i> spi	Augener, 1918

.....

į.

hylum/Class/Family	Species		
	Epidiopatra hupferiana	Berkeley, 1956	
	Nothria sp	Malmgren, 1867	
	Nothria occidentalis	Fauchald, 1968	
	Onuphis sp.	Audouin & Milne-Edwards, 1833	
	Onuphis elegans	(Johnson, 1901)	
	Onuphis geophiliformis	Moore, 1903	
	Onuphis iridescens	Johnson, 1901	
Opheliidae	Chapters a Moreens		
Oplicinduc	Armandia brevis	(Moore, 1906)	
	Ophelia limacina	(Rathke, 1843)	
	Ophelina acuminata	Ørsted, 1843	
	Ophelina breviata	(Ehlers, 1913)	
	Travisia sp	Johnston, 1840	
	Travisia brevis	Moore, 1923	
	Travisia pupa	Moore, 1906	
Orbiniidae		,	
010mmuuu	Leitoscoloplos panamensis	(Monro, 1933)	
	Leitoscoloplos pugettensis	(Pettibone, 1957)	
	Nainer is quadricuspida	(Fabricius, 1780)	
	Nainer is uncinata	Hartman, 1957	
	Orbinia sp		
	Phylo felix	Kinberg, 1866	
	Scoloplos sp	Blainville, 1828	
	Scoloplos acmeceps	Chamberlin, 1919	
	Scoloplos armiger	(O. F. Müller, 1776)	
Oweniidae			
	Galathowenia oculata (= M. oculata)	(Zachs, 1923)	
	Myriochele sp.	Malmgren, 1867	
	Myriochele heeri	Malmgren, 1867	
	Myriochele sp M	SCAMII, 1985	
	Owenia fusiformis	delle Chiaje, 1841	
Paraonidae			
	Aricidea sp.	Webster, 1879	
	Aricidea (Acmira) cathérinae	(Laubier, 1967)	
	Aricidea (Acmira) lopezi	Berkeley & Berkeley, 1956	
	Aricidea (Allia) nolani	Webster & Benedict, 1887	
	Aricidea (Allia) quadrilobata	Webster & Benedict, 1887	
	Aricidea (Allia) ramosa	Annenkova, 1934	

ġ.

Phylum/Class/Family	Species		
	Aricidea (Aricidea) minuta Southward, 1956		
	Aricidea neosuecica	Hartman, 1965	
	Aricidea wassi	Pettibone, 1965	
	Cirrophorus branchiatus	Ehlers, 1908	
	Levinsenia gracilis	(Tauber, 1879)	
	Levinsenia oculata	(Hartman, 1957)	
		(Southern, 1914)	
	Paradoneis lyra Ber genelle platiki grakia	(Hartman, 1961)	
De este estide e	Paraonella platybranchia	(mainian, 1901)	
Pectinariidae		(Linnaeus, 1767)	
	Cistenides granulata Pectinaria sp	Savigny, 1818	
	Pectinaria californiensis	Hartman, 1941	
Pholoidae		(Johnson 1907)	
	Pholoides asperus	(Johnson, 1897)	
Phyllodocidae		(Maara 1999)	
	Bergstroemia nigrimaculata	(Moore, 1909)	
	Eteone sp.	Savigny, 1822	
	Eteone californica	Hartman, 1936 Hartman, 1936	
	Eteone pacifica	Hartman, 1936	
	Eteone pigmentata	Blake, 1992	
	Eteone spilotus	Kravitz & Jones, 1979	
	Eulalia (Eulalia) sp	Savigny, 1822	
		ulalia (Eulalia) sp. undescribed [as E levicornuta in files]	
	Eulalia (Eulalia) bilineata	(Johnston, 1840)	
	Eulalia (Eulalia) quadrioculata	Moore, 1906	
	Eulalia (Eulalia) viridis	(Linnaeus, 1767)	
	Eumida sp.	Malmgren, 1865	
	Eumida longicornuta	(Moore, 1906)	
	Hesionura coineaui difficilis Nereiphylla sp	(Banse, 1963)	
	Nereiphylla castanea	(Marenzeller, 1879)	
	Notophyllum tectum	(Chamberlin, 1919)	
	Paranaitis sp	Southern, 1914	
	Paranaitis polynoides	(Moore, 1909)	
	Paranaitis wahlbergi		
	Phyllodoce sp	Lamarck, 1818	
	Phyllodoce (Anaitides) cuspidata	McCammon & Montagne, 1979	
	Phyllodoce (Anaitides) groenlandica	Ørsted, 1843	

Phylum/Class/Family	Species		
	Dimillodoco (Angitidos) longinos	Kinberg, 1866	
	Phyllodoce (Anaitides) longipes	(Linnaeus, 1767)	
	Phyllodoce (Anaitides) maculata	Moore, 1909	
	Phyllodoce (Anaitides) medipapillata	Ørsted, 1843	
	Phyllodoce (Anaitides) mucosa	Uschakov & Wu, 1959	
	Phyllodoce (Anaitides) papillosa	(Hartman, 1936)	
	Phyllodoce (Anaitides) williamsi	Blake & Walton, 1977	
	Phyllodoce (Aponaitides) hartmanae	(Grube, 1860)	
	Pterocinus macroceros	(Glube, 1800) Moore, 1909	
	Sige bifoliata	Moore, 1909	
	Sige macrocirrus		
	Steggoa sp. 1		
Pilargidae	D	(Berkeley & Berkeley, 1941)	
	Parandalia fauveli	(Berkeley & Berkeley, 1941) Pettibone, 1966	
	Pilargis maculata	(Treadwell, 1941)	
	Sigambra tentaculata	(Ileadwell, 1941)	
Pisionidae	Pisione sp.		
	Pisione sp. 1		
	Tistone sp. 1		
Polygordiidae	Polygordius sp		
	Totygoratus sp		
Polynoidae	A a Thu and a subbaration	(McIntosh, 1874)	
	Arcteobia anticostiensis Arctonoe sp	Chamberlin, 1920	
	- · · · · · · · · · · · · · · · · · · ·	(Johnson, 1897)	
	Arctonoe pulchra	(Moore, 1905)	
	Bylgides macrolepidus Eunoe sp.	Malmgren, 1865	
	- · ·	Moore, 1905	
	Eunoe depressa	Banse & Hobson, 1968	
	Eunoe uniseriata Gathana sp	Mcintosh, 1900	
	Gattyana sp. Gattyana silista	Moore, 1902	
	Gattyana ciliata	(Pallas, 1766)	
	Gattyana cirrosa	(Panas, 1760) Pettibone, 1949	
	Gattyana treadwelli		
	Grubeopolynoe tuta	(Grube, 1855)	
	Harmothoinae sp. A	Kinhara 1955	
	Harmothoe sp.	Kinberg, 1855	
	Harmothoe externuata	(Grube, 1840)	
	Harmothoe fragilis	Moore, 1910	
	Harmothoe imbricata	(Linnaeus, 1767)	
Phylum/Class/Family	Species		
---------------------	---	--------------------	
	Harmothoe multisetosa Harmothoe sp A	(Moore, 1902)	
	Hesperonoe sp.	Chamberlin, 1919	
	Hesperonoe adventor	(Skogsberg, 1928)	
	Hesperonoe complanata	(Johnson, 1901)	
	Hesperonoe laevis	Hartman, 1961	
	Lepidasthenia sp	Malmgren, 1867	
	Lepidasthenia berkeleyae	Pettibone, 1948	
	Lepidasthenia longicirrata	E. Berkeley, 1923	
	Lepidonotus squamatus	(Linnaeus, 1767)	
	Malmgreniella sp	Hartman, 1967	
	Malmgreniella bansei	Pettibone, 1993	
	Malmgreniella liei	Pettibone, 1993	
	Malmgreniella macginitiei	Pettibone, 1993	
	Malmgreniella nigralba	(E Berleley, 1923)	
	Malmgreniella scriptoria	(Moore, 1910)	
	Tenonia priops	(Hartman, 1961)	
Sabellariidae			
	Idanthyrsus saxicavus	(Baird, 1863)	
	Neosabellaria cementarium	(Moore, 1906)	
Sabellidae			
	Chone sp	Kröyer, 1856	
	Chone duneri	Malmgren, 1867	
	Chone ecaudata	(Moore, 1923)	
	Chone magna	(Moore, 1923)	
	Chone minuta	Hartman, 1944	
	Chone mollis	(Bush, 1904)	
	Demonax sp	Kinberg, 1867	
	Demonax medius	(Bush, 1904)	
	Demonax pacifica		
	Euchone incolor	Hartman, 1965	
	Euchone limnicola	Reish, 1959	
	Eudistylia sp.	Bush, 1905	
	Eudistylia catherinae	Banse, 1979	
	Eudistylia vancouveri	(Kinberg, 1867)	
	Laonome kroyeri	Malmgren, 1866	
	Megalomma sp.	Johansson, 1927	
	Megalomma pigmentum	Reish, 1963	

Phylum/Class/Family	Species	
	Megalomma splendida	(Moore, 1905)
	Myxicola infundibulum	(Renier, 1804)
	Potamethus sp.	· · ·
	Potamethus sp. A	SCAMIT, 1986
	Potamilla sp	Malmgren, 1866
	Potamilla intermedia	Moore, 1905
	Potamilla myriops	Marenzeller, 1884
	Potamilla neglecta	(M Sars, 1851)
	Potamilla nr. neglecta	
	Potamilla occelata	Moore, 1905
	Sabellastarte sp. A	
	Sabellastarte sp. B	
	Sabellinae (unid.)	
Saccocirridae		
	Saccocirrus eroticus	Gray, 1969
Scalibregmidae		
	Asclerocheilus beringianus	Ushakov, 1955
	Scalibregma inflatum	Rathke, 1843
Serpulidae		
	Hyalopomatus biformis	(Hartman, 1960)
	Pseudochitinopoma occidentalis	(Bush, 1904)
	Serpula sp.	Linnaeus, 1767
	Serpula vermicularis	Linnaeus, 1767
Sigalionidae		
	Pholoe minuta	(Fabricius, 1780)
	Sigalion mathildae	Audouin & Milne-Edwards, 1830
	Sthenelais sp	Kinberg, 1855
	Sthenelais berkeleyi	Pettibone, 1971
	Sthenelais tertiaglabra	Moore, 1910
	Thalenessa spinosa	
Sphaerodoridae	~	(117-1
	Sphaerodoropsis minuta	(Webster & Benedict, 1887)
	Sphaerodoropsis sphaerulifer	(Moore, 1909)
	Sphaerodorum papillifer	Moore, 1909
Spionidae		(Sec. 1962)
	Aonides oxycephala	(Sars, 1862)
	Aonides sp. 1 Recommendations p	Canazzi 1802
	Boccardia sp	Carazzi, 1893

Phylum/Class/Family	Species	
	Boccardia pugettensis	Blake, 1979
	Boccardiella hamata	(Webster, 1879)
	Carazziella sp.	
	Laonice sp.	Malmgren, 1867
	Laonice cirrata	(M Sars, 1851)
	Laonice pugettensis	Banse & Hobson, 1968
	Malacoceros (Rhynchospio) glutaeus	(Ehlers, 1897)
	Microspio pigmentata	(Reish, 1959)
	Parapi ionospio pinnata	(Ehlers, 1901)
	Polydora sp	Bosc, 1802
	Polydora aggregata	
	Polydora armata	Langerhans, 1880
	Polydora armillaris	_
	Polydora brachycephala	Hartman, 1936
	Polydora cardalia	E Berkeley, 1927
	Polydora cornuta	Bosc, 1802
	Polydor a limicola	Annenkova, 1934
	Polydor a pygidialis	Blake & Woodwick, 1972
	Polydor a quadrilobata	Jacobi, 1883
	Polydor a socialis	(Schmarda, 1861)
	Polydora sp. 1	
	Polydora sp. A	
	Polydora sp. G	
	Polydora spongicola	Berkeley & Berkeley, 1950
	Prionospio sp	Malmgren, 1867
	Prionospio (Minuspio) lighti	Maciolek, 1985
	Prionospio (Minuspio) multibranchiata	E Berkeley, 1927
	Prionospio pygmaea	Hartman, 1961
	Prionospio jubata	Blake, 1996
	Pseudopolydora kempi japonica	Imajima & Hartman, 1964
	Pseudopolydora paucibranchiata	(Okuda, 1937)
	Pygospio elegans	Claparède, 1863
	Scolelepis squamata	(O. F. Müller, 1806)
	Spio sp.	Fabricius, 1785
	Spio butleri	Berkeley & Berkeley, 1954
	Spio cirrifera	(Banse & Hobson, 1968)
	Spio filicornis	(O. F. Müller, 1766)
	Spio sp. 1	

Phylum/Class/Family	Species	
	Spiophanes sp.	Grube, 1860
	Spiophanes berkeleyorum	Pettibone, 1962
	Spiophanes bombyx	(Claparède, 1870)
	Spiophanes missionensis	Hartman, 1941
	Streblospio benedicti	Webster, 1879
Spirorbidae	•	
1	Circeis sp	Saint-Joseph, 1894
	Circeis armoricana	Saint-Joseph, 1894
	Spirorbis sp.	Daudin, 1800
Sternaspidae		
1	Sternaspis scutata	(Renier, 1807)
Syllidae	-	
	Autolytus sp	Grube, 1850
	Eusyllis sp.	Malmgren, 1867
	Eusyllis assimilis	Marenzeller, 1875
	Eusyllis blomstrandi	Malmgren, 1867
	Eusyllis habei	Imajima, 1966
	Eusyllis japonica	Imajima & Hartman, 1964
	Exogone sp.	Ørsted, 1845
	Exogone (E.) lourei	Berkeley & Berkeley, 1938
	Exogone (Parexogone) molesta	Banse, 1972
	Exogone dwisula	Kudenov & Harris, 1995
	Odontosyllis sp	Claparède, 1863
	Odontosyllis phosphorea	Moore, 1909
	Pionosyllis sp.	Malmgren, 1867
	Pionosyllis gigantea	Moore, 1908
	Pionosyllis sp. 1	
	Pionosyllis uraga	Imajima, 1966
	Proceraea sp	Ehlers, 1864
	Proceraea cornuta	(Agassiz, 1863)
	Sphaerosyllis brandhorsti	Hartmann-Schröder, 1965
	Sphaerosyllis californiensis Sphaerosyllis sp F	Hartman, 1966
	Streptosyllis sp A	a . 1 1845
	Syllides longocirtata Syllis sp 1 (Commenc Bay only)	Ørsted, 1845
	Syllis sp II (Commenc Bay only)	
	Syllis (Ehlersia) heterochaeta	Moore, 1909

Phylum/Class/Family	Species	
	Syllis (Ehlersia) hyperioni Syllis (Ehlersia) sp 1	Dorsey & Phillips, 1987
	Syllis (Typosyllis) armillaris	(O. F. Müller, 1771)
	Syllis (Typosyllis) harti	Berkeley & Berkeley, 1942
	Syllis (Typosyllis) hyalina	Grube, 1863
	Syllis (Typosyllis) stewarti	Berkeley & Berkeley, 1942
	Syllis (Typosyllis) variegata	Grube, 1860
	Trypanosyllis sp.	Claparède, 1864
Terebellidae		* •
101000111000	Amaeana occidentalis	(Hartman, 1944)
	Amphitrite sp.	O. F. Müller, 1771
	Amphitrite cirrata	O F Müller, 1776
	Amphitritinae (unid)	
	Amphitritinae sp. 1	
	Artacama coniferi	Moore, 1905
	Artacamella hancocki	Hartman, 1955
	Eupolymnia sp	Verrill, 1900
	Eupolymnia heterobranchia	(Johnson, 1901)
	Lapolymma neresoor anema Lanassa nordenskioldi	Malmgren, 1865
	Lanassa nordenskiolai Lanassa sp.	Malmgren, 1866
	Lanassa venusta	(Malm, 1874)
		(Pallas, 1776)
	Lanice conchilega	Malmgren, 1866
	Laphania boecki Amalitaita aduardai	(Quatrefages, 1865)
	Amphitrite edwardsi	Johnson, 1901
	Amphitrite robusta Neoamphitrite sp	Hessle, 1917
	Nicolea sp.	Malmgren, 1866
	Nicolea sp. A	Wallingten, 1800
	-	(Churche d. 1944)
	Nicolea zostericola Bista an	(Ørsted, 1844)
	Pista sp	Malmgren, 1866
	Pista bansei	Safronova, 1988
	Pista brevibranchiata	Moore, 1923
	Pista elongata	Moore, 1909
	Pista moorei	Berkeley & Berkeley, 1942
	Pista pacifica	Berkeley & Berkeley, 1943
	Pista paracristata	
	Pista sp. A	
	Pista sp B	

hylum/Class/Family	Species	······································	
	Pista sp. I		
	Pista wui	Safronova, 1988	
	Polycirrinae (unid)		
	Polycirrus sp.	Grube, 1850	
	Polycirrus californicus	Moore, 1909	
	Polycirrus sp. A	SCAMIT, 1995	
	Polycirrus sp. I	Banse, 1980	
	Polycirrus sp. III	Banse, 1980	
	Polycirrus sp. V	Banse, 1980	
	Proclea graffii	(Langerhans, 1880)	
	Scionella japonica	Moore, 1903	
	Streblosoma sp	Sars, 1872	
	Streblosoma bairdi	(Malmgren, 1866)	
	Thelepus sp	Leuckart, 1849	
	Thelepus crispus	Johnson, 1901	
	Thelepus setosus	(Quatrefages, 1865)	
Trichobranchidae			
	Terebellides sp	M. Sars, 1835	
	Terebellides californica	Williams, 1984	
	Terebellides horikoshii		
	Terebellides japonica		
	Terebellides kobei	Hessle, 1917	
	Terebellides reishi	Williams, 1984	
	Terebellides stroemi	M. Sars, 1835	
	Trichobranchus glacialis	Malmgren, 1866	
Trochochaetidae			
	Trochochaeta multisetosa	(Ørsted, 1844)	
Oligochaeta			
Enchytraeidae			
	Enchytraeidae sp B		
Tubificidae			
	Limnodriloides victoriensis	Brinkhurst & Baker, 1979	
	Tubificoides sp	Lastockin, 1937	
	Tubificoides brownae	Brinkhurst & Baker, 1979	
	Tubificoides sp. A		
	Tubificoides sp. B		
Hirudinea (unid)			

Phylum/Class/Family	Species	
		······································
ECHIURA		
Echiurida		
Bonelliidae		
	Nellobia eusoma	Fisher, 1946
Echiuridae		
	Echiurus sp	
	Echiurus echiurus	Fisher, 1946
Thalassematid	lae	
	Arhynchite pugettensis	Fisher, 1949
SIPUNCULA		
Phascolosomida		
Phascolosoma	tidae	
	Phascolosoma agassizii	Keferstein, 1867
Sipunculida		
Golfingiidae		
	Golfingia margaritacea	(M. Sars, 1851)
	Golfingia vulgaris	(Blainville, 1827)
	Nephasoma sp	Pergament, 1946
	Nephasoma diaphanes	(Gerould, 1913)
	Thysanocardia nigra	(Ikeda, 1904)
Sipunculidae ((unid.)	
MOLLUSCA		
Aplacophora		
Chaetodermat		
	Chaetoderma sp	Lovén, 1844
Polyplacophora		
Lepidochitoni	dae	
	Lepidochitona dentiens	(Gould, 1846)
Gastropoda: Prosobr	anchia	
Acmaeidae		
	Collisella sp	Dall , 1871
Batillariidae		
	Cerithidea sp	
Buccinidae		
	Buccinum sp	Linnaeus, 1758
	Buccinum plectrum	Stimpson, 1865

÷.

Phylum/Class/Family	Species	
	Searlesia dira	(Reeve, 1846)
Caecidae (unid.)		(1.00.0, 10.00)
Calyptraeidae		
	Calyptraea fastigiata	Gould, 1846
	Crepidula sp.	Lamarck, 1799
	Crepidula sp. A	
	Crepipatella sp	Lesson, 1830
	Crepipatella dorsata (= C lingulata)	(Broderip, 1834)
Cancellariidae		
	Admete gracilior	(Carpenter, 1869)
Cerithiidae		
	Lirobittium attenuatum	(Carpenter, 1864)
	Lirobittium munitum	(Carpenter, 1864)
Cerithiopsidae		
	Cerithiopsis sp	Forbes & Hanley, 1849
	Cerithiopsis signa	Battsch, 1921
Columbellidae		
	Alia carinata	(Hinds, 1844)
	Amphissa sp	H. & A. Adams, 1853
	Amphissa columbiana	Dall, 1916
	Astyris gausapata (= Nitidella gouldi)	(Gould, 1850)
	Mitrella tuberosa	(Carpenter, 1864)
Epitoniidae		
	Epitonium sp (= Nitidiscala sp)	
	Epitonium caamanoi (= N. caamanoi)	(Dall & Bartsch, 1910)
	Epitonium indianorum	(Carpenter, 1864)
	(= Nitidiscala indianorum)	
	Epitonium tinctum (= N tincta)	(Carpenter, 1864)
Eulimidae		
	Balcis sp.	Leach, 1847
	Eulima sp.	Risso, 1926
	Melanella sp.	Bowdish, 1822
Fasciolariidae		
	Fusinus sp.	Rafinesque, 1815
Lacunidae		
	Lacuna sp	Turton, 1827
Littorinidae		
	Littorina sp	Ferussac, 1822

ł

.

hylum/Class/Family	Species	
Muricidae		
	Ocenebra sp.	Gray, 1847
Nassariidae		
	Nassarius mendicus	(Gould, 1849)
Naticidae		
	Amauropsis sp	Morch, 1857
	Cryptonatica affinis (= Natica clausa)	(Gmelin, 1791)
	Euspira pallida (= Polinices pallidus)	(Broderip & Sowerby, 1829)
	Polinices sp.	Montfort, 1810
	Polinices lewisii	(Gould, 1847)
Neptuneida		
	Colus halli	Dall, 1873
	Mohnia sp	Friele, 1878
	Mohnia freilei	(Dall, 1891)
	Neptunea phoenicia	(Dall, 1891)
	Pyrulofusus harpa	Mörch, 1858
Olividae		
	Olivella baetica	Carpenter, 1864
	Olivella biplicata	(G. B. Sowerby I, 1825)
Rissoidae		
	Alvania compacta	(Carpenter, 1864)
Trichotropi		17' 1 1042
	Trichotropis cancellata	Hinds, 1843
Trochidae	Manageritas an	Current 1847
	Margarites sp	Gray, 1847
	Margarites pupillus Solariella sp.	(Gould, 1841) S. V. Wood, 1842
		(Couthouy, 1838)
	Solariella obscura	(E. A. Smith, 1887)
	Solariella vancouverensis	(Mighels & C. B. Adams, 1842)
T	Solariella varicosa	(imigness & C. D. Adams, 1072)
Turridae	cf. Elaeocyma sp.	
	Kurtzia sp.	Bartsch, 1944
	Kurtzia arteaga	(Dall & Bartsch, 1910)
	Kurtziella sp.	Dall, 1918
	Kurtziella plumbea	(Hinds, 1843)
	Oenopota sp.	Morch, 1852
	Course of the	(O. Fabricius, 1780)

um/Class/Family	Species	·······
Vermetidae		
	Petaloconchus sp.	H C Lea, 1843
	Petaloconchus compactus	(Carpenter, 1864)
Vitrinellidae		
	Vitrinella sp.	C. B. Adams, 1850
	Vitrinella columbiana	(Bartsch, 1921)
Gastropoda: Opisthobi	anchia	
Acteonidae		
	Rictaxis punctocaelatus	(Carpenter, 1864)
Aeolidiidae		
	Aeolidea sp	
Aglajidae		
	Aglaja sp.	Renier, 1807
	Aglaja ocelligera	(Bergh, 1893)
	Melanochlamys diomedea	(Bergh, 1894)
Arminidae		(1, 0, 0) and $(10(2))$
	Armina californica	(J G Cooper, 1863)
Atyidae	Haminoga sp	Turton & Kingston, 1830
	Haminoea sp	Gould, 1855
	Haminoea vesicula	Gould, 1855
Bullidae	Bulla sp	Linnaeus, 1758
	Bulla gouldiana	Pilsbry, 1895
	Bullomorpha sp.	1 11001 9, 1075
	Bullomorpha sp. A	Ljubenkov, 1994
	Cephalaspidea sp. A	
Corambidae		
	Corambe thompsoni	Millen & Nybakken, 1991
Cylichnidae	*	
-,	Acteocina sp	Gray, 1847
	Acteocina culcitella	(Gould, 1853)
	Cylichna sp	Loven, 1846
	Cylichna alba	(Carpenter, 1864)
	Cylichna attonsa	(Brown, 1827)
Dendronotidae		
	Dendronotus sp.	Alder & Hancock, 1845
Diaphanidae		
	Diaphana sp	Brown, 1837

ylum/Class/Family	Species	
	Diaphana californica	Dall, 1919
Dotoidae		
	Doto sp	Oken, 1815
Fionidae	Fiona pinnata	(Eschscholtz, 1831)
Flabellinidae (u		(,,,
Gastropteridae		
	Gastropteron pacificum	Bergh, 1893
Goniodorididae		
	Ancula sp.	Loven, 1846
	<i>Okenia</i> sp.	Menke, 1830
Onchidorididae	e Onchidoris hystricina	(Bergh, 1878)
Philinidae	Onentuor is nysintentu	(201 <u>5</u> , 1010)
1 mmmuu	Philine sp.	Ascanius, 1772
	Philine bakeri	Dall, 1919
Pleurobranchid	lae	
	Berthella californica	(Dall, 1900)
Polyceratidae	Delvery and	Que in 1817
Demonsidallidaa	Polycera sp	Cuvier, 1817
Pyramidellidae	Odostomia spp.	
	Turbonilla spp	
Retusidae (unic	1)	
Tergipedidae		
	Cuthona sp	Alder & Hancock, 1855
	Cuthona concinna	(Alder & Hancock, 1843)
Umbraculidae	Umbraculum sp	
Bivalvia	Omoracanam sp.	
Anomiidae		
1	Pododesmus cepio	(Gray, 1850)
Astartidae		
	Astarte compacta	Carpenter, 1864
	Astarte esquimalti	(Baird, 1863)
Cardiidae	Clineser dium or	Karra 1026
	Clinocardium sp	Keen, 1936 (Fabricius, 1780)
	Clinocardium ciliatum	(radicius, 1700)

Phylum/Class/Family	Species	
	Clinocardium fucanum	(Dall, 1907)
	Clinocardium nuttallii	(Conrad, 1837)
	Nemocardium centifilosum	(Carpenter, 1864)
Cardiliidae (u		
Carditidae	,	
	Cyclocardia sp	Conrad, 1867
	Cyclocardia ventricosa	(Gould, 1850)
Cuspidariidae		
	Cardiomya sp.	A. Adams, 1864
	Cardiomya pectinata	(Carpenter, 1864)
Glycymeridid		
	Glycymeris sp	Da Costa, 1778
Hiatellidae		
	Hiatella sp.	Bosc, 1801
	Hiatella arctica	(Linnaeus, 1767)
	Panomya sp.	Gray, 1857
	Panomya ampla	Dall, 1898
· · · · ·	Panopea abrupta	(Conrad, 1849)
Lasaeidae	Lasaea sp	Brown, 1827
	Lasaea subviridis	Dall, 1899
	Mysella sp	Angas, 1877
	Neaeromya compressa	(Dall, 1899)
	Orobitella sp	(, ,
	Orobitella compressa	
	Pseudopythina sp	P Fischer, 1884
	Rochefortia coani (= Mysella sp. A)	Valentich Scott, 1998
	Rochefortia tumida (= Mysella tumida)	(Carpenter, 1864)
Lucinidae		
	Lucinoma sp.	Dall, 1901
	Lucinoma annulata	(Reeve, 1850)
	Parvilucina tenuisculpta	(Carpenter, 1864)
Lyonsiidae		
	Agriodesma saxicola	(Baird, 1863)
	Lyonsia sp	Turton, 1822
	Lyonsia bracteata (= L. pugetensis)	(Gould, 1850)
	Lyonsia californica	Conrad, 1837

Phylum/Class/Family	Species	······
Mactridae		
	Spisula falcata	(Gould, 1850)
	Tresus sp.	Gray, 1853
	Tresus capax	(Gould, 1850)
Myidae		
	Cryptomya californica	(Conrad, 1837)
	<i>Mya</i> sp	Linnaeus, 1758
	Mya arenaria	Linnaeus, 1758
	Platyodon sp	Conrad, 1837
Mytilidae		
	Crenella decussata	(Montagu, 1808)
	Megacrenella columbiana	(Dall, 1879)
	Modiolus sp	Lamarck, 1799
	Modiolus modiolus	(Linnaeus, 1758)
	Modiolus rectus	(Conrad, 1837)
	Musculista senhousia	(Benson, 1842)
	Musculus sp.	Roding, 1798
	Musculus discors	(Linnaeus, 1767)
	Mytilus sp	Linnaeus, 1758
	Mytilus trossulus	Gould, 1850
Nuculanidae		
	Nuculana sp.	Link, 1807
	Nuculana hamata	(Carpenter, 1864)
	Nuculana minuta	(Fabricius, 1776)
	Nuculana penderi	(Dall & Bartsch, 1910)
	Nuculana taphi ia	(Dall, 1896)
Nuculidae		
	Acila castrensis	(Hinds, 1843)
	Nucula tenuis	(Montagu, 1808)
Pandoridae		
	Pandora sp.	Bruguiere, 1797
	Pandora bilirata	Conrad, 1855
	Pandora filosa	(Carpenter, 1864)
	Pandora glacialis	(Leach, 1819)
	Pandora wardiana (= P_grandis)	A. Adams, 1859
Pectinidae		
	Chlamys sp	Roding, 1798
	Chlamys hastata	(G. B. Sowerby II, 1842)

Phylum/Class/Family	Species	
	Chlamys rubida	(Hinds, 1845)
	Delectopecten sp.	Stewart, 1930
	Delectopecten vancouverensis	(Whiteaves, 1893)
Pharidae	Delectopeelen valkourerensis	(
T Har Kao	Siliqua patula	(Dixon, 1789)
Propeamussidae	Surgen Porter	
Topeannassiane	Parvamussium alaskensis	(Dall, 1871)
Sareptidae		
	Yoldia sp.	Moller, 1842
	Yoldia hyperborea	Torell, 1859
	Yoldia myalis	(Couthouy, 1838)
	Yoldia seminuda (= Y scissurata)	Dall, 1871
Α.	Yoldia thraciaeformis	(Storer, 1838)
Semelidae		
	Semele rubropicta	Dall, 1871
Solemyidae		
	Solemya reidi	Bernard, 1980
Solenidae		
	Solen sicarius	Gould, 1850
Tellinidae		
	Macoma sp.	Leach, 1819
	Macoma acolasta	Dall, 1921
	Macoma balthica	(Linnaeus, 1758)
	Macoma calcarea	(Gmelin, 1791)
	Macoma carlottensis	Whiteaves, 1880
	Macoma elimata	Dunnill & Coan, 1968
	Macoma indentata	Carpenter, 1864
	Macoma inquinata	(Deshayes, 1854)
	Macoma lipara	Dall, 1916
	Macoma moesta	(Deshayes, 1855)
	Macoma nasuta	(Conrad, 1837)
	Macoma obliqua	(Sowerby, 1817)
	Macoma yoldiformis	Carpenter, 1864
	<i>Tellina</i> sp	Linnaeus, 1758
	Tellina carpenteri	Dall, 1900
	Tellina modesta	(Carpenter, 1864)
	Tellina nuculoides	(Reeve, 1854)
	<i>Tellina</i> sp. A	SCAMII, 1995

i

.

hylum/Class/Family	Species	
Teredinidae		
	Bankia setacea	(Iryon, 1863)
	Teredo sp.	Linnaeus, 1758
Thraciidae		
	Thracia devexa	G. O. Sars, 1878
	Thracia trapezoides	Conrad, 1849
Thyasiridae		
·	Adontorhina cyclia	Berry, 1947
	Axinopsida serricata	(Carpenter, 1864)
	Thyasira sp.	Lamarck, 1818
	Thyasir a flexuosa	(Montagu, 1803)
Ungulinidae		
	Diplodonta sp.	Bronn, 1831
Veneridae		
	Compsomyax subdiaphana	(Carpenter, 1864)
	Humilaria kennerlyi	(Reeve, 1863)
	Liocyma sp	Dall, 1870
	Protothaca sp.	Dall, 1902
	Protothaca staminea	(Conrad, 1837)
	Psephidia lordi	(Baird, 1863)
	Saxidomus giganteus	(Deshayes, 1839)
	Transenella tantilla	(Gould, 1853)
Scaphopoda		
Gadilidae		
	Cadulus sp.	Philippi, 1844
Rhabdidae		
	Rhabdus sp. (= Dentalium sp.)	Pilbury & Sharp, 1897
	Rhabdus rectius (= Dentalium rectius)	(Carpenter, 1864)
Cephalopoda		
Octopodidae		
-	Octopus rubescens	Berry, 1953
Sepiolidae		
	Rossia pacifica	Berry, 1911
ARTHROPODA		
Pycnogonida		
Ammotheidae		
	Achelia sp	

hylum/Class/Family	Species	
	Achelia chelata	(Hilton, 1939)
	Achelia latifrons	(Cole, 1904)
Nymphonidae		
· · J ···· F ······	Nymphon pixellae	Scott, 1913
Phoxichilidiida		
	Anoplodactylus sp.	Wilson, 1878
	Anoplodactylus erectus Phoxichilidium sp	Cole, 1904
	Phoxichilidium femoratum	(Rathke, 1799)
Pycnogonidae		
	Pycnogonum sp.	
Arachnida		
Halacaridae (u	nid)	
Crustacea		
Ostracoda		
Cylindroleberi		· · ·
	Bathyleber is sp	
	Bathyleberis cf hancocki	
	Diasterope pilosa Parasterope sp	Poulsen 1065
		Poulsen, 1965 Baker, 1978
Philomedidae	Parasterope barnesi	Datoi, 1770
rmomedidae	Euphilomedes sp.	Poulsen, 1962
	Euphilomedes carcharodonta	(Smith, 1952)
	Euphilomedes producta	Poulsen, 1962
:	Scleroconcha trituberculatum	(Lucas, 1931)
Rutidermatidae		
	Rutiderma lomae	(Juday, 1907)
Sarsiellidae		
	Eusarsiella sp.	
	Sarsiella sp.	Norman, 1869
Trachyleberidi	dae	
	Cythereis sp.	Jones, 1849
Cirripedia		
Balanidae		
	Balanus sp.	De Costa, 1778
	Balanus crenatus	Bruguière, 1789
	Balanus hesperius	Pilsbry, 1916

Phylum/Class/Family	Species	
Phyllocarida		
Nebaliidae		
	Nebalia spp.	
Mysidacea		
Mysidae		
,	Acanthomysis sp	Czerniavsky, 1882
	Alienacanthomysis macropsis	(W. M. Tattersall, 1932)
	Heteromysis odontops	Walker, 1898
	Inusitatomysis insolita	Ii, 1940
	Meterythrops 1 obusta	S. I. Smith, 1879
	Mysidella americana	Banner, 1948
	Neomysis sp	
	Neomysis kadiakensis	Ortmann, 1908
	Neomysis mercedis	Holmes, 1897
	Pacifacanthomysis nephrophthalma	(Banner, 1948)
	Pseudomma sp.	G. O. Sars, 1869
	Pseudomma berkeleyi	W M Tattersall, 1933
	Pseudomma truncatum Xenacanthomysis sp	Smith, 1879
	Xenacanthomysis pseudomacropsis	(W M. Tattersall, 1933)
Cumacea		
Diastylidae		
	Diastylis sp	Say, 1818
	Diastylis hirsuta	
	Diastylis nucella	Calman, 1912
	Diastylis paraspinulosa	Zimmer, 1926
	Diastylis pellucida	Hart, 1930
	Diastylis santamariensis	Watling & McCann, 1997
	Diastylopsis tenuis	Zimmer, 1936
	Leptostylis sp.	G. O. Sars, 1869
	Leptostylis villosa	(G. O. Sars, 1869)
	Oxyurostylis pacifica	Zimmer, 1936
Lampropidae		
	Hemilamprops sp	Sars, 1883
	Hemilamprops californicus	Zimmer, 1936
	Lamprops sp.	Sars
	Lamprops quadriplicata	Smith, 1879

÷

The summer of the

hylum/Class/Family	Species	
Leuconiidae		
	Eudorella sp.	Norman, 1867
	Eudorella pacifica	Hart, 1930
	Eudorellopsis sp	Sars, 1883
	Eudorellopsis integra	S. I. Smith, 1880
	Eudorellopsis longirostris	Given, 1961
	Leucon sp.	Krøyer, 1846
	Leucon subnasica	Given, 1961
	Nippoleucon hinumensis	
Nannastacidae		
	Campylaspis sp.	Sars, 1865
	Campylaspis biplicata	Watling & McCann, 1997
	Campylaspis canaliculata	Zimmer, 1936
	Campylaspis hartae	Lie, 1969
	Campylaspis rubicunda	(Lilljeborg, 1855)
	Campylaspis rubi omaculata	Lie, 1971
	Campylaspis rufa	Hart, 1930
	Cumella californica (= Cumella sp A)	Watling & McCann, 1997
	Cumella vulgaris	Hart, 1930
Tanaidacea		
Anarthruridae		
	Araphura sp.	Bird & Holdich, 1984
	Chauliopleona dentata	Dojiri & Sieg, 1997
	(= <i>Leptognathia</i> sp. E)	
	Leptognathia sp.	G. O. Sars, 1882
	Leptognathia brevimanus	(Lilljeborg, 1864)
	Leptognathia gracilis	(Krøyer, 1842)
	Leptognathia longiremus	(Lilljeborg, 1864)
	Scoloura phillipsi	Sieg & Dojiri, 1991
Leptocheliidae		
	Leptochelia savignyi	(Krøyer, 1842)
Tanaidae		7 / 11 1001
_	Tanais sp	Latreille, 1831
Isopoda		
Aegidae		Distandson 1005
	Aega symmetrica Rocinela cf. americana	Richardson, 1905
		(Otimuson 1964)
	Rocinela belliceps	(Stimpson, 1864)

Phylum/Class/Family	Species	
Authoridae		
Anthuridae	Haliophasma geminata	Menzies & Barnard, 1959
Bopyridae	nutophusmu gemnatu	
Борунаас	Argeia pugettensis	Dana, 1853
Gnathiidae		,
	Gnathia sp	Leach, 1814
Idoteidae		
	Edotea sublittoralis	Menzies & Barnard, 1959
	Idotea sp	Fabricius, 1799
	Synidotea sp	Harger, 1878
	Synidotea nebulosa	Benedict, 1897
	Synidotea nodulosa	(Krøyer, 1848)
Janiridae		
	Caecianiropsis psammophila	Menzies & Pettit, 1956
Limnoriidae		
	Limnoria sp	
	Limnoria lignorum	Rathke, 1799
Munnidae		
	Munna sp.	Krøyer, 1839
	Munna ubiquita	Menzies, 1952
Munnopsidae		
	Eurycope sp.	G. O. Sars, 1864
Paramunnidae		
	Munnogonium sp	George & Strömberg, 1968
	Munnogonium tillerae	(Menzies & Barnard, 1959)
	Pleurogonium rubicundum	(G.O. Sars, 1864)
Sphaeromatidae		D 1054 55
	Gnorimosphaeroma oregonensis	Dana, 1854-55
Amphipoda: Gam	maridea	
Ampeliscidae	Ampalisaas	V von 101 1942
	Ampelisca sp.	Krøyer, 1842 (hydd, 1896)
	Ampelisca agassizi	(Judd, 1896) Bornovd, 1954
	Ampelisca brevisimulata	Barnard, 1954 Dickinson, 1982
	Ampelisca careyi	Holmes, 1908
	Ampelisca cristata	Barnard, 1954
	Ampelisca hancocki	Holmes, 1908
	Ampelisca lobata	Stimpson, 1864
	Ampelisca pugetica	5000p500, 1004

hylum/Class/Family	Species	
	Ampelisca sp. A	
	Ampelisca unsocalae	Barnard, 1960
	Byblis millsi	Dickinson, 1983
	Haploops tubicola	Lilljeborg, 1856
Ampithoidae		
k	Peramphithoe sp.	Bouzelius, 1859
Anisogammaric	lae	
Ŭ	Eogammarus sp	
	Eogammarus confervicolus	(Stimpson, 1856)
	Eogammarus oclairi	Bousfield, 1979
Aoridae	5	
	Aoroides sp	Walker, 1898
	Aoroides columbiae	Walker, 1898
	Aoroides inermis	Conlan & Bousfield, 1982
	Aoroides intermedius	Conlan & Bousfield, 1982
	Aoroides spinosus	Conlan & Bousfield, 1982
Argissidae	-	
Ũ	Argissa hamatipes	(Norman, 1869)
Calliopiidae	-	
·	Calliopius sp.	Lilljeborg, 1865
	Leptamphous sp.	Sars, 1895
Corophiidae		
•	Corophium sp	Latrelle, 1806
	Corophium acherusicum	Costa, 1857
	Corophium baconi	Shoemaker, 1934
	Corophium crassicorne	Bruzelius, 1859
	Cotophium insidiosum	Crawford, 1937
Eusiridae		
	Accedomoera vagor	Barnard, 1969
	Eusirus sp	Krøyer, 1845
	Eusirus cuspidatus	Krøyer, 1845
	Oradarea longimana	(Boeck, 1871)
	Pontogeneia sp	Boeck, 1871
	Pontogeneia inermis	(Krøyer, 1838)
	Pontogeneia intermedia	Gurjanova, 1938
	Pontogeneia rostrata	Gurjanova, 1938
	Pontoporeia femorata	Krøyer, 1842
	Rhachotropis sp	Boeck, 1871

Phylum/Class/Family	Species	
÷	Rhachotropis clemens	Barnard, 1967
	Rhachotropis oculata	(Hansen, 1888)
Gammaridae		
	Maera danae	(Stimpson, 1854)
	Maera Ioveni	(Bruzelius, 1859)
	<i>Melita</i> sp	Leach, 1814
	Melita californica	Alderman, 1936
	Melita dentata	(Krøyer, 1842)
	Melita desdichada	Barnard, 1962
	Melita oregonensis	Barnard, 1954
	Melita sulca	(Stout, 1913)
Isaeidae		
	Cheirimedeia sp	Barnard, 1962
	Cheir imedeia zotea	(Barnard, 1962)
	Gammar opsis thompsoni	(Walker, 1898)
	Photis sp.	Krøyer, 1842
	Photis bifurcata	Barnard, 1962
	Photis brevipes	Shoemaker, 1942
	Photis lacia	Barnard, 1962
	Photis macrotica	Barnard, 1962
	Photis oligochaeta	Conlan, 1983
	Photis parvidons	Conlan, 1983
	Photis cf. spasskii	Gurjanova, 1951
	Protomedeia sp.	Krøyer, 1842
	Protomedeia articulata	Barnard, 1962
	Protomedeia grandimana	Bruggen, 1905
	Protomedeia prudens	Barnard, 1966
Ischyroceridae		
	Ericthonius sp.	Milne-Edwards, 1830
	Ericthonius brasiliensis	(Dana, 1853)
	Ericthonius hunteri	(Bate, 1862)
	Ericthonius rubricornis	(Stimpson, 1853)
	Ischyrocerus sp	Krøyer, 1842
	Ischyrocerus anguipes	Krøyer, 1838
	Microjassa litotes	Barnard, 1954
Lysianassidae		
	Acidostoma sp	Lilljeborg, 1865
	Acidostoma hancocki	Hurley, 1963

Phylum/Class/Family	Species	
	Allogaussia sp	Schellenberg, 1926
	Anonyx sp	Krøyer, 1838
	Anonyx lilljeborgi	Boeck, 1871
	Aruga holmesi (= Lysianassa holmesi)	(Barnard, 1955)
	Cyphocaris challengeri	Stebbing, 1888
	Hippomedon sp.	Boeck, 1871
	Hippomedon cf. coecus	(Holmes, 1908)
	Hippomedon columbianus	Jarrett & Bousfield, 1982
	Hippomedon subrobustus	Hurley, 1963
	Lepidepecreum garthi	Hurley, 1963
	Lepidepecreum gurjanovae	Hurley, 1963
	Lepidepecreum sp. A	SCAMIT, 1985
	Lysianassa sp	Milne-Edwards, 1830
	Opisa tridentata	Hurley, 1963
	Orchomene decipiens	(Hurley, 1963)
	Orchomene obtusa	(Sars, 1895)
	Orchomene pacifica	(Gurjanova, 1938)
	Orchomene pinguis	(Boeck, 1861)
	Pachynus barnardi	Hurley, 1963
	Prachynella lodo	Barnard, 1964
	Schisturella cocula	Barnard, 1966
Melphidippidae		
	Melphidippa sp	Boeck, 1871
	Melphidippa goesi	Stebbing, 1899
	Melphisana bola	Barnard, 1962
	Melphisana sp A	
Oedicerotidae		
	Arrhis sp.	Boeck, 1861
	Bathymedon sp	G. O. Sars, 1895
	Bathymedon pumilis	Barnard, 1962
	Monoculodes sp.	Stimpson, 1853
	Monoculodes norvegicus	(Boeck, 1861)
	Monoculodes zernovi	Gurjanova, 1938
	Synchelidium sp.	G. O. Sars, 1895
	Synchelidium rectipalmum	Mills, 1962
	Synchelidium shoemakeri	Mills, 1962
	Westwoodilla sp.	Bate, 1857
	Westwoodilla caecula	(Bate, 1857)

Phylum/Class/Family	Species	
Pardaliscidae		
	Rhynohalicella halona	(Barnard, 1971)
	Pardalisca cuspidata	Krøyer, 1842
	Pardalisca tenuipes	G. O Sars, 1895
Phoxocephali	dae	
	Eobrolgus spinosus	(Holmes, 1905)
	Eyakia robusta	(Holmes, 1908)
	Foxiphalus sp	Barnard, 1979
	Foxiphalus cognatus	(Barnard, 1960)
	Foxiphalus obtusidens	(Alderman, 1936)
	Foxiphalus similis	(Barnard, 1960)
	Grandifoxus dixonensis	Jarrett & Bousfield, 1994
	Harpiniopsis sp	Stephensen, 1925
	Harpiniopsis fulgens	Barnard, 1960
	Heterophoxus sp	Shoemaker, 1925
	Heter ophoxus affinis	(Holmes, 1908)
	Heterophoxus conlanae	Jarrett & Bousfield, 1994
	Heter ophoxus ellisi	Jarrett & Bousfield, 1994
	Heter ophoxus oculatus	(Holmes, 1908)
	Metaphoxus frequens	Barnard, 1960
	Parametaphoxus quaylei	Jarrett & Bousfield, 1994
	Paraphoxus sp.	G. O. Sars, 1895
	Paraphoxus gracilis	Jarrett & Bousfield, 1994
	Paraphoxus oculatus	G. O. Sars, 1879
	Rhepoxynius sp	Barnard, 1979
	Rhepoxynius abronius	(Barnard, 1960)
	Rhepoxynius barnardi	Jarrett & Bousfield, 1994
	Rhepoxynius daboius	(Barnard, 1960)
	Rhepoxynius pallidus	(Barnard, 1960)
	Rhepoxynius variatus	(Barnard, 1960)
Pleustidae		
	Parapleustes sp.	Buchholz, 1874
	Parapleustes pugettensis	(Dana, 1853)
	Pleusymtes sp	Barnard, 1969
	Pleusymtes subglaber Thorlaksonius sp	(Barnard & Given, 1960)
	Thorlaksonius depressus (= Pleustes depres	(Alderman, 1936)

Phylum/Class/Family	Species	
Podoceridae		
	Dulichia sp	Krøyer, 1845
	Dulichia rhabdoplastis Dyopedos sp	McCloskey, 1970 Bate, 1857
	Dyopedos arcticus	(Murdoch, 1885)
	Dyopedos bispinis Paradulichia sp	(Gurjanova, 1930) Boeck, 1871
	Paradulichia typica	Boeck, 1871
	Podocerus sp	Leach, 1814
	Podocerus cristatus	(Thomson, 1879)
Stenothoidae		•
	Metopa sp.	Boeck, 1871
	Metopa proboldes Metopella sp.	G. O. Sars, 1895
	Parametopella sp	Gurjanova, 1938
	Probolisca sp	Gurjanova, 1938
	Proboloides sp.	Della Valle, 1893
	Stenothoe sp	Dana, 1852
	Stenula sp.	Barnard, 1962
Synopiidae		
	Bruzelia tuberculata	G. O. Sars, 1883
	Syrrhoe longifrons	Shoemaker, 1964
	Tiron biocellata	Barnard, 1962
Amphipoda: Ca	prellidea	
Caprellidae		
	Caprella sp.	Lamarck, 1801
	Caprella irregularis	Mayer, 1890
	Caprella laeviuscula	Mayer, 1903
	Caprella mendax	Mayer, 1903
Protellidae		T 10 1070
	Mayerella banksia	Laubitz, 1970
	Tritella pilimana	Mayer, 1890
Amphipoda: Hy	periidea	
Hyperiidae	Parathemisto pacifica	

Acanthaxius spinulicaudus	(Rathbun, 1902)
(= Axiopsis spinulicauda)	
Neotrypaea sp	
Neotrypaea gigas	(Dana, 1852)
Cancer sp	
Cancer branneri	Rathbun, 1926
Cancer gracilis	Dana, 1852
Cancer oregonensis	(Dana, 1852)
Cancer productus	Randall, 1839
Crangon sp.	Fabricius, 1798
Crangon alaskensis	Lockington, 1877
-	Rathbun, 1902
-	Stimpson, 1856
-	(Walker, 1898)
Neocrangon communis	(Rathbun, 1899)
(= Crangon communis)	
	(Dama 1951)
Hemigrapsus oregonensis	(Dana, 1851)
Euclus on	Thelluvity 1902
-	Thallwitz, 1892 (Rathbun, 1899)
	(Krøyer, 1841)
-	(Kløyer, 1841) Holmes, 1900
•	(Dana, 1852)
	(Rathbun, 1902)
_	Holthuis, 1947
	Bate, 1888
-	Holthuis, 1947
-	(Stimpson, 1864)
	Rathbun, 1902
spirotuocaris suyaeri	
Oregonia sp	
	(= Axiopsis spinulicauda) Neotrypaea sp. Neotrypaea gigas Cancer sp Cancer branner i Cancer gracilis Cancer oregonensis Cancer oregonensis Cancer productus Crangon sp. Crangon sp. Crangon dalli Crangon franciscorum Mesocrangon munitella

Oregonia sp

Phylum/Class/Family	Species	
	Oregonia gracilis Pugettia sp	Dana, 1851
	Pugettia producta	(Randall, 1839)
Paguridae		
	Discorsopagurus schmitti Elassochirus sp	(Stevens, 1925)
	Elassochirus tenuimanus Pagurus sp.	(Dana, 1851)
	Pagurus aleuticus	(Benedict, 1892)
	Pagurus armatus	(Dana, 1851)
	Pagurus beringanus	(Benedict, 1892)
	Pagurus capillatus	(Benedict, 1892)
	Pagurus caurinus	Hart, 1971
	Pagurus dalli	(Benedict, 1892)
	Pagurus ochotensis	Brandt, 1851
	Pagurus setosus	(Benedict, 1892)
	Pagurus stevensae	Hart, 1971
Pandalidae	0	
	Pandalus danae	Stimpson, 1857
Pasiphaeidae		
Å	Parapasiphae sp	Smith, 1884
	Pasiphaea pacifica	Rathbun, 1902
Pinnotheridae		
	Fabia sp.	
	Fabia subquadrata Pinnixa sp.	Dana, 1851
	Pinnixa eburna	Wells, 1928
	Pinnixa occidentalis	Rathbun, 1893
	Pinnixa schmitti	Rathbun, 1918
	Scleroplax granulata	Rathbun, 1893
Upogebiidae		
-1 0	Upogebia sp	
Xanthidae		
	Lophopanopeus bellus	(Stimpson, 1860)

PHORONIDA

Phoronidae

Phoronis sp

Phylum/Class/Family	Species		
	Phoronopsis sp.		
	Phoronopsis harmeri	Pixell, 1912	
BRACHIOPODA			
Articulata			
Cancellothyrid	idae		
	Terebratulina sp	d'Orbigny, 1847	
	Terebratulina unguicula	(Carpenter, 1865)	
Laqueidae			
	Terebratalia sp	Beecher, 1893	
	Terebratalia transversa	(Sowerby, 1846)	
ENIOPROCTA			
Barentsiidae			
	Barentsia sp	Hincks, 1880	
Loxosomatidae	2		
	Loxosoma davenporti	Nickerson, 1898	
Pedicellinidae			
	Myosoma spinosa	Robertson, 1900	
	Pedicellina sp.	M. Sars, 1835	
	Pedicellina cernua	(Pallas, 1771)	
ECTOPROCIA			
Stenolaemata			
Crisiidae			
	Crisia sp	Lamouroux, 1812	
Iubuliporidae			
	Tubulipora sp	Lamarck, 1916	
Gymnolaemata			
Alcyonidiidae		1010	
	Alcyonidium sp	Lamouroux, 1812	
	Alcyonidium polyoum Alcyonidium sp. B	(Hassall, 1841)	
Bugulidae			
-	Caulibugula sp		
	Caulibugula californica	(Robertson, 1905)	
	Caulibugula ciliata	(Robertson, 1905)	
	Dendrobeania murrayana	(Johnston, 1847)	

hylum/Class/Family	Species	
Calloporidae		
-	Tegella sp	Levinsen, 1909
Candidae		· · · ·
	Caberea sp.	
	Scrupocellaria sp	Van Beneden, 1845
	Tricellaria sp	Fleming, 1828
Cellariidae		
	Cellaria diffusa	Robertson, 1905
Celleporidae		
	Celleporina sp	Gray, 1848
	Celleporina souleae (= C. costazi)	Morris, 1979
Chaperiidae		
	Chaperiopsis patula	(Hincks, 1881)
	(= Chapperia patula)	
Hippothoidae		
	Celleporella sp.	
	Celleporella hyalina	(Linnaeus, 1767)
	(= Hippothoa hyalina)	
Smittinidae	D 11	0 1040
	Porella sp.	Gray, 1848
Triticellidae	Titically on	Dalaali 1949
	Triticella sp	Dalyell, 1848
	Triticella pedicellata	(Alder, 1857)
ECHINODERMATA		
Asteroidea		
Asteriidae		
Asternuae	Pisaster sp.	Mueller & Troschel, 1840

(Grube, 1857)

Grube, 1866

(Linnaeus, 1767)

Forbes, 1839 Verrill, 1880

Appendix B. Continued.

Asteropseidae

Luidiidae

Solasteridae

Dermasterias imbricata

Luidia foliolata

Crossaster sp.

Solaster sp

Crossaster papposus

Solaster stimpsoni

hylum/Class/Family	Species	
Ophiuroidea		
Amphiuridae		
1	Amphiodia sp	Verrill, 1899
	Amphiodia per iercta	H L Clark, 1911
	Amphiodia urtica	(Lyman, 1860)
	Amphioplus sp	Verrill, 1899
	Amphipholis sp	Ljungman, 1966
	Amphipholis pugetana	(Lyman, 1860)
	Amphipholis squamata	(delle Chiaje, 1828)
	Amphiura sp	Forbes, 1942
	Amphiura carchara	H. L. Clark, 1911
Ophiuridae		
	<i>Ophiura</i> sp	Lamarck, 1816
	Ophiura luetkenii	(Lyman, 1860)
	Ophiura sarsi	Lütken, 1855
Echinoidea		
Dendrasteridae		
	Dendraster excentricus	(Eschscholtz, 1831)
Schizasteridae		
	Brisaster latifrons	(A. Agassiz, 1898)
Strongylocentrot		
	Strongylocentrotus sp.	Brandt, 1835
	Strongylocentrotus droebachiensis	(O. F. Müller, 1776)
	Strongylocentrotus purpuratus	(Stimpson, 1857)
Holothuroidea		
Caudinidae		
	Paracaudina chilensis	(J. Müller, 1850)
Chiridotidae		- 1 1 1 1000
	Chiridota sp	Eswchscholtz, 1829
Cucumariidae		
	Cucumaria sp	Blainville, 1834
	Cucumaria fallax	Ludwig, 1881
	Cucumaria miniata	(Brandt, 1835) (Stimpson, 1864)
	Cucumaria piperata Pseudocnus sp.	(Sumpson, 1884) Panning, 1949
		(H. L. Clark, 1901)
	Pseudocnus lubricus (= Cucumaria lubrica)	-

hylum/Class/Family	Species	
Molpadiidae		
-	Molpadia intermedia	(Ludwig, 1894)
Phyllophoridae		
	Havelockia benti	(Deichmann, 1937)
	Pentamera sp	Ayres, 1852
	Pentamera lissoplaca	(H. L. Clark, 1924)
	Pentamera populifera	(Stimpson, 1857)
	Pentamera pseudocalcigera	Deichmann, 1938
	Pentamera pseudopopulifera	Deichmann, 1938
	Pentamera trachyplaca	(H. L. Clark, 1924)
	Thyone sp	Jaegger, 1833
Psolidae		
	Psolus sp.	Oken, 1815
	Psolus chitinoides	H L Clark, 1901
Sclerodactylidae		
	Eupentacta sp.	Deichmann, 1938
	Eupentacta pseudoquinquesemita	Deichmann, 1938
	Eupentacta quinquesemita	(Selenka, 1867)
Synaptidae		
	Leptosynapta sp	Verrill, 1867
	Leptosynapta clarki	Heding, 1928
	Leptosynapta transgressor	Heding, 1928

CHORDATA

Ascidiacea

Enteropneusta (unid.)

Agnesiidae		
	Agnesia septentrionalis	Huntsman, 1912
Ascidiidae		
	Ascidia sp.	Linnaeus, 1767
	Ascidia paratropa	(Huntsman, 1912)
Cionidae		
	Ciona intestinalis	(Linnaeus, 1767)
Molgulidae		
	Eugyra arenosa	Alder & Hancock, 1848

Phylum/Class/Family	Species	
Pyuridae		
	Boltenia sp.	Savigny, 1816
	Boltenia villosa	(Stimpson, 1864)
	Pyura haustor	(Stimpson, 1864)
	Pyura mirabilis	(von Drasche, 1884)
Rhodosoma	tidae	
	Chelyosoma columbianum	Huntsman, 1912
	Chelyosoma productum	Stimpson, 1864
	Corella willmeriana	Herdman, 1898
Styelidae		
	<i>Styela</i> sp	Fleming, 1822
	Styela gibbsii	(Stimpson, 1864)

Appendix B. Concluded.

year

year

station 20

90 50 10 20 20 10

year

🖿 Annelida 🖾 Bivalvia 🖾 Gastropoda 🖂 Crustacea 🎛 Echinodermata 🗆 Other

percent abundance

year

■Annelida ⊠Bivalvia ⊠Gastropoda ⊡Crustacea ⊞Echinodermata □Other

year

■Annelida ⊠Bivalvia ⊠Gastropoda ⊡Crustacea ⊞Echinodermata □Other

Station 209R station 305R

🔳 Annelida 🖾 Bivalvia 🖾 Gastropoda 🗔 Crustacea ⊞Echinodermata 🗋 Other

Appendix D

Species and Station Groups Identified by Classification Analysis Appendix D Species and station groups identified by classification analysis of MSMP stations and used in nodal analysis (see figures 13-22).

Year: 1989 **Species Groups** Group 1 Acila castrensis Laonice cirrata Lumbrineris cruzensis Odostomia sp Group 2 Alvania compacta Praxillella sp Turbonilla sp. Group 3 Ampelisca sp Parvilucina tenuisculpta Axinopsida serricata Glycera nana Mediomastus sp. Glycinde sp Nemertina Mysella tumida Nephtys signifera Nucula tenuis Lumbrineris luti Paraprionospio pinnata Group 4 Aphelochaeta sp Amphiodia urtica/periercta Pholoe minuta Pinnixa occidentalis/schmitti Prionospio (Minuspio) lighti Group 5 Polycirrus sp. Polydora socialis/cardalia Compsomyax subdiaphana Nitidella/Mitrella Psephidia lordi Euclymene sp

Group 6

Eudorella pacifica Harpiniopsis/Heterophoxus Levinsenia gracilis Terebellides sp Euphilomedes producta Pectinaria californiensis

Group 7 Macoma calcarea/elimata Cylichnidae Yoldia scissurata Nephtys cornuta Spiophanes berkeleyorum Podarkeopsis glabrus Heteromastus sp Macoma carlottensis Group 8 Aricidea (Acmira) catherinae/lopezi Lyonsia californica Rutider ma lomae Cylindroleberididae Eteone sp Group 9 Byblis millsi Megacrenella columbiana Diopatra ornata Eumida longicornuta Spiochaetopterus costarum Macoma yoldiformis Platynereis bicanaliculata Chaetozone sp Cistenides granulata Onuphis iridescens Leitoscoloplos pugettensis Sipuncula Westwoodilla caecula Euphilomedes carcharodonta Notomastus sp Prionospio jubata Lumbrineris californiensis Phyllochaetopterus prolifica Magelona longicornis Group 10 Amage anops Sthenelais tertiaglabra Thyasira flexuosa Lucinoma annulata Nemocardium centifilosum Pista bansei Nassarius mendicus

Group 11 Caulleriella sp Dorvillea (D) pseudorubrovittata Pentamera sp Exogone dwisula Pholoides asperus Neosabellaria cementarium Odontosyllis phosphorea Cirratulus cirratus Mesochaetopterus taylori Group 12 Cardiomya sp. Exogone (E.) lourei Musculus sp. Lirobittium attenuatum Hippomedon cf coecus Rhepoxynius abronius/variatus Leptochelia savignyi Olivella baetica Group 13 Adontorhina cyclia Myriochele heeri Cyclocardia ventricosa Eualus pusiolus Foxiphalus similis/cognatus Polydora brachycephala Ampharete acutifrons Phoronida Amphipholis sp Pista wui Anarthruridae/Leptognathiidae Corophium sp. Eyakia robusta Prionospio (Minuspio) multibranchiata Group 14 Artacamella hancocki Paraphoxus oculatus Yoldia thraciaeformis Brada sachalina Chaetoderma sp Molpadia intermedia Eudorellopsis longirostris Barantolla americana Melita desdichada Diastylis sp. Malmgreniella sp.

Group 15

Oligochaeta Dentalium sp. Pandora sp Sternaspis scutata Lanassa venusta Nuculana minuta Nereis procera Group 16 Boccardia pugettensis Decamastus gracilis Macoma nasuta Group 17 Aricidea (Allia) ramosa Lepidasthenia berkeleyae Edwardsia sipunculoides Group 18

Cossura sp.

Astartidae Scoloplos armiger

Spiophanes bombyx Tellina modesta Tellina nuculoides

Group 19

Protomedeia grandimana Protomedeia penates/prudens Boccardiella hamata Nicomache personata Sigambra tentaculata Echiurus sp Maldane sarsi

Year: 1990 Species Groups Group 1

Acila castrensis Aricidea (Acmira) catherinae/lopezi Armandia/Ophelina Cossura sp. Sternaspis scutata Yoldia scissurata Oligochaeta Heteromastus sp. Group 2 Alvania compacta Polycirrus sp. Terebellides sp Turbonilla sp Eteone sp.

Group 20 Delectopecten vancouverensis Cirrophorus branchiatus Eudorellopsis integra Station Groups Group A 1 Semiahmoo Bay, Blaine 4 Bellingham Bay 5 Samish Bay 2R Cherry Point 12 Port Townsend Bay Group B 34 Sinclair Inlet 35 Dyes Inlet Group C 18 Oak Harbor 21 Port Gardner 30 Eagle Harbor 41 Commencement Bay 20 Port Susan Group D 8 Port Angeles 10R Dungeness Bay **11R** Discovery Bay Group E 14 Hood Canal, Bangor 15 Dabob Bay

Group 3

Amphiodia urtica/periercta Eudorella pacifica Heterophoxus sp. Levinsenia gracilis Group 4 Aphelochaeta sp Glycinde sp Mysella tumida Nephtys signifera Parvilucina tenuisculpta

Group F 32 Magnolia Bluff 37R North Vashon Island 27R West Central Basin 33 Elliott Bay 40 Commencement Bay Group G 43 Carr Inlet 44 East Anderson Island 46R West Nisqually 47 Case Inlet Group H 22 Mukilteo 23R East Central Basin 39 Dash Point 36R Brace Point 25R West Central Basin 13R North Hood Canal Group I 3 Strait of Georgia Group J 48 Outer Budd Inlet 49 Inner Budd Inlet Group K 17 S Hood Canal, Great Bend 29 Shilshole 38 Point Pully 24R East Central Basin 19 Saratoga Passage 45 Devil's Head

Group 5

Lumbrineris luti Nemertina Paraprionospio pinnata Odostomia sp Nephtys cornuta Prionospio (Minuspio) lighti Pholoe minuta Pinnixa occidentalis/schmitti Group 6 Spiophanes berkeleyorum Lumbrineris cruzensis Group 7 Axinopsida serricata Euphilomedes producta Glycera nana

Nucula tenuis

Group 8 Leitoscoloplos pugettensis Prionospio jubata Mediomastus sp Praxillella sp Group 9 Euphilomedes carcharodonta Compsomyax subdiaphana Pectinaria californiensis Psephidia lordi Group 10 Ampelisca careyi Cylichnidae Podarkeopsis glabrus Sigambra tentaculata Nassarius mendicus Nitidella/Mitrella Macoma carlottensis Group 11 Aricidea (Allia) ramosa Phyllochaetopterus prolifica Group 12 Amage anops Ampharete sp Synchelidium shoemakeri Streblosoma bairdi Macoma calcarea/elimata Onuphis iridescens Group 13 Ampelisca hancocki Protomedeia articulata Anarthruridae/Leptognathiidae Clinocardium sp Photis sp. Group 14 Ampelisca lobata

Neosabellaria cementarium Corophium sp Exogone dwisula Diopatra ornata Edwardsia sipunculoides Ophiodromus pugettensis

Group 15

Byblis millsi Megacrenella columbiana Lumbrineris californiensis Notomastus tenuis Lyonsia californica Cistenides granulata Notomastus latericeus Chaetozone sp. Leptochelia savignyi Lanassa venusta Exogone (E) lourei Group 16 Eumida longicornuta Platynereis bicanaliculata Westwoodilla caecula Macoma yoldiformis Laonice cirrata Thysanocardia nigra Polydora socialis/cardalia Spiochaetopterus costarum Magelona longicornis Group 17 Mesochaetopterus taylori Pholoides asperus Group 18 Amphipholis squamata Odontosyllis phosphorea Pherusa plumosa Cirratulus cirratus Pachycerianthus fimbriatus Artacama coniferi Nereis procera Pilargis maculata Chaetoderma sp Dorvillea (D) pseudorubrovittata Group 19 Apistobranchus ornatus Boccardia pugettensis Prionospio (Minuspio) multibranchiata Clymenura gracilis Syllis (Ehlersia) heterochaeta/hyperioni Rhepoxynius abronius Thyasira flexuosa Group 20 Decamastus gracilis Delectopecten vancouverensis Phoronida Myriochele sp

Nephtys discors

Protothaca staminea Rhepoxynius variatus Tellina modesta Maldane sarsi Group 22 Barantolla americana Pista wui Scalibregma inflatum Natica clausa Polydora brachycephala Group 23 Bathymedon pumilis Eudorellopsis integra Paraphoxus oculatus Harpiniopsis fulgens Molpadia intermedia Protomedeia penates/prudens Lirobittium attenuatum Dorvillea (Schistomeringos) annulata Group 24 Evakia robusta Sarsiella sp Group 25 Protomedeia grandimana Scaphopoda Group 26 Foxiphalus obtusidens Magelona sacculata Olivella baetica Macoma nasuta Station Groups Group A 1 Semiahmoo Bay, Blaine 12 Port I ownsend Bay 4 Bellingham Bay 5 Samish Bay Group B 14 Hood Canal, Bangor 30 Eagle Harbor 71 Fidalgo Bay 8 Port Angeles Group C 34 Sinclair Inlet 35 Dyes Inlet Group D 20 Port Susan

Group 21

Group E

113R Willochet Bay 33 Elliott Bay 43 Carr Inlet 32 Magnolia Bluff 44 East Anderson Island 47 Case Inlet 46R West Nisqually Group F 21 Port Gardner 40 Commencement Bay 41 Commencement Bay 69 Port Madison Group G 103R Mid Totten Inlet 15 Dabob Bay 22 Mukilteo

Year: 1991 **Species Groups** Group 1 Acila castrensis Lumbrineris cruzensis Polydora socialis/cardalia Group 2 Alvania compacta Nitidella/Mitrella Amphiodia urtica/periercta Odostomia sp Group 3 Aphelochaeta sp Nemertina Praxillella sp Mediomastus sp Glycera nana Lumbrineris luti Parvilucina tenuisculpta Glycinde sp Mysella tumida Pholoe minuta Pinnixa occidentalis/schmitti Group 4

stoup 4

Eudorella pacifica Heterophoxus sp. Prionospio (Minuspio) lighti Paraprionospio pinnata Terebellides sp

Group H

101R North Oakland Bay 70 Oakland Bay, Shelton 102R Inner Totten Inlet 104R Inner Eld Inlet 49 Inner Budd Inlet 18 Oak Harbor Group I 105R Outer Eld Inlet 48 Outer Budd Inlet 106R Mid Budd Inlet

106R Mid Budd Inlet 109R Henderson Inlet 111R Mid Case Inlet 115R Outer Filucy Bay 45 Devil's Head 110R Inner Case Inlet

Group 5

Axinopsida serricata Euphilomedes producta Macoma carlottensis Nucula tenuis Leitoscoloplos pugettensis Prionospio jubata Spiophanes berkeleyorum Group 6 Psephidia lordi Compsomyax subdiaphana Macoma elimata Euclymene zonalis Group 7 Ampelisca careyi Yoldia scissurata Cylichnidae Aricidea (Acmira) catherinae/lopezi Cossura sp Laonice cirrata Levinsenia gracilis

Group J 114R Henderson Bay Group K 17 S Hood Canal, Great Bend 19 Saratoga Passage 29 Shilshole 38 Point Pully Group L 112R Nisqually Delta 39 Dash Point Group M

3 Strait of Georgia

Group 8

Chaetozone sp Megacrenella columbiana Lucinoma annulata Nephtys signifera Turbonilla sp. Sipuncula Westwoodilla caecula Diopatra ornata Magelona longicornis Eumida longicornuta Spiochaetopterus costarum Pectinaria californiensis Eteone sp. Polycirrus sp Nephtys cornuta Podarkeopsis glabrus Group 9 Euphilomedes carcharodonta Barantolla americana Lanassa sp Melita desdichada Leptochelia savignyi Notomastus tenuis Platynereis bicanaliculata Tellina modesta Pista wui

Group 10 Adontorhina cyclia Anarthruridae/Leptognathiidae Rhodine bitorquata Oligochaeta Onuphis iridescens Ampharete acutifrons Diastylis sp. Goniada brunnea Drilonereis falcata minor Maldane sarsi Melinna sp Pista bansei Pista brevibranchiata Group 11 Artacama coniferi Pilargis maculata Chaetoderma sp Heteromastus filobranchus Group 12 Decamastus gracilis Exogone (E) lourei Myriochele heeri Phyllochaetopterus prolifica Group 13 Amage anops Macoma voldiformis Ophiodromus pugettensis Aricidea (Allia) ramosa Cirratulus cirratus Corophium sp Mesochaetopterus taylori Cistenides granulata Edwardsia sipunculoides Exogone dwisula Pholoides asperus Lumbrineris californiensis Syllis (Ehlersia) heterochaeta/hyperioni Group 14 Cylindroleberididae Synchelidium sp. Macoma nasuta Nassarius mendicus Group 15 Amphipholis squamata Macoma calcarea Phoronida

Group 16 Dentalium sp Nuculana minuta Pandora sp Myriochele oculata Sternaspis scutata Ophelina acuminata Protothaca staminea Group 17 Lirobittium attenuatum Rhepoxynius abronius Rhepoxynius variatus Group 18 Ampelisca pugetica Asabellides lineata Foxiphalus similis/cognatus Cyclocardia ventricosa Boccardia sp Euchone incolor Rhepoxynius cf barnardi Group 19 Ampelisca unsocalae Stylatula elongata Pentamera pseudocalcigera Group 20 Astartidae Hemipodus borealis Polygordius sp. Hesionura coineaui Heter opodarke heter omorpha Tellina nuculoides Natica clausa Owenia fusiformis Spiophanes bombyx Group 21 Cucumaria piperata Dorvillea (D) pseudorubrovittata Nebalia sp Olivella baetica Streblosoma bairdi Group 22 Eyakia robusta Scalibregma inflatum Protomedeia grandimana

Group 23 Brada sachalina Bylgides macrolepidus Nephtys discors Parvamussium alaskensis Eudorellopsis integra Molpadia intermedia Paraphoxus oculatus Protomedeia prudens Gattyana treadwelli Group 24 Leptosynapta transgressor Ophiura sarsi Sigambra tentaculata Station Groups Group A 1 Semiahmoo Bay, Blaine 204R East Sound Group B 48 Outer Budd Inlet 49 Inner Budd Inlet 70 Oakland Bay, Shelton Group C 17 S Hood Canal, Great Bend 19 Saratoga Passage 29 Shilshole 38 Point Pully Group D 30 Eagle Harbor 32 Magnolia Bluff 44 East Anderson Island 33 Elliott Bay 40 Commencement Bay 69 Port Madison 47 Case Inlet 43 Carr Inlet Group E 10R Dungeness Bay 11R Discovery Bay Group F 13R North Hood Canal 15 Dabob Bay 22 Mukilteo 39 Dash Point Group G 12 Port Townsend Bay 4 Bellingham Bay 5 Samish Bay

Group H 205R NW Blakely Island 8 Port Angeles 206R Friday Harbor 207R West Beach 2R Cherry Point 71 Fidalgo Bay Group I 14 Hood Canal, Bangor 45 Devil's Head 201R Roberts Bank 202R Point Roberts

Year: 1992 **Species Groups** Group 1 Acila castrensis Group 2 Alvania compacta Nitidella/Mitrella Group 3 Aphelochaeta sp. Paraprionospio pinnata Odostomia sp. Pholoe minuta Pinnixa occidentalis/schmitti Lumbrineris luti Group 4 Axinopsida serricata Glycinde sp Nemertina Prionospio (Minuspio) lighti Mysella tumida Parvilucina tenuisculpta Prionospio jubata Mediomastus sp Nephtys signifera Polycirrus sp Phyllodoce sp. Westwoodilla caecula Polvdora socialis/cardalia Group 5 Glvcera nana Spiophanes berkeleyorum Group 6 Amphiodia urtica/periercta Eudorella pacifica

Heterophoxus sp

Group J 18 Oak Harbor 20 Port Susan 209R Skagit Bay 21 Port Gardner 41 Commencement Bay Group K 203R Bellingham Bay 34 Sinclair Inlet 35 Dyes Inlet Group L 3 Strait of Georgia

Group 7 Podarkeopsis glabrus Levinsenia gracilis

Terebellides sp Nucula tenuis Praxillella sp. Group 8 Cylichnidae Macoma carlottensis

Euphilomedes producta Pectinaria californiensis Group 9 Euclymene sp Leitoscoloplos pugettensis Lanassa sp Macoma calcarea/elimata Nemocardium centifilosum Group 10 Euphilomedes carcharodonta Psephidia lordi Group 11 Cossura sp Heteromastus filobranchus Macoma nasuta Nephtys cornuta Group 12 Amage anops Rhodine bitorquata

Group 13 Anobothrus gracilis Megacrenella columbiana Byblis millsi Lumbrineris californiensis Cistenides granulata Leptochelia savignyi Diopatra ornata Eumida longicornuta Spiochaetopterus costarum

Group M 9R East of Green Point Group N 208R Sequim Bay

Group 14 Onuphis iridescens Phoronida Group 15 Barantolla americana Chaetozone sp Notomastus tenuis Syllis (Typosyllis) harti Thysanocardia nigra Laonice cirrata Magelona longicornis Group 16

Caulleriella sp. Syllis (Ehlersia) heterochaeta/hyperioni Edwardsia sipunculoides Eulalia (Eulalia) bilineata Mesochaetopterus taylori

Group 17

Cylindroleberididae Hippomedon cf coecus Platynereis bicanaliculata Tellina modesta Rhepoxynius abronius

Group 18

Exogone dwisula Phyllochaetopterus prolifica Pholoides asperus Group 19

Nassarius mendicus

Group 20 Ampelisca hancocki Ophelina acuminata Aricidea (Acmira) catherinae/lopezi Myriochele oculata Nuculana minuta Anarthruridae/Leptognathiidae Cardiomya sp. Asabellides lineata Exogone (E) lourei Eudorellopsis longirostris Group 21 Ampharete acutifrons Malmgreniella sp Pista bansei Pista wui Chaetoderma sp Diastylis sp. Solen sicarius Melita desdichada Group 22 Brada sachalina Yoldia thraciaeformis Yoldia hyperborea Photis brevipes Group 23 Neotrypaea sp Scalibregma inflatum Rictaxis punctocaelatus Polinices pallidus Group 24 Aricidea (Allia) ramosa Lumbrineris cruzensis Nereis procera Polydora sp. 1 Group 25 Ampelisca careyi Scaphopoda Pachycerianthus fimbriatus Sternaspis scutata Group 26 Cirratulus cirratus Dorvillea (D) pseudorubrovittata Eulima/Balcis Olivella baetica Corophium crassicorne Monoculodes sp Group 27 Orchomene pacifica Spiophanes bombyx

Group 28 Lirobittium attenuatum Group 29 Adontorhina cvclia Onuphis elegans Thyasira flexuosa Myriochele heeri Polydora sp. A Group 30 Crangon alaskensis Protothaca staminea Trochochaeta multisetosa Eudorellopsis integra Micropodarke dubia Streblosoma bairdi Group 31 Cucumaria piperata Eyakia robusta Decamastus gracilis Delectopecten vancouverensis Group 32 Maldane sarsi Group 33 Macroclymene sp Photis lacia Rhepoxynius cf barnardi Rhepoxynius variatus Group 34 Boccardiella hamata Protomedeia articulata Group 35 Sigambra tentaculata Petaloproctus tenuis Group 36 Bathymedon pumilis Brisaster latifrons Maera loveni Harpiniopsis fulgens Molpadia intermedia Paraphoxus oculatus Group 37 Protomedeia prudens Astarte esquimalti Crenella decussata Protomedeia grandimana Lamprops quadriplicata

Station Groups Group A 1 Semiahmoo Bay, Blaine 4 Bellingham Bay 5 Samish Bay 12 Port Townsend Bay Group B 45 Devil's Head Group C 8 Port Angeles 71 Fidalgo Bay 302R Oak Bay 30 Eagle Harbor 308R Liberty Bay Group D 34 Sinclair Inlet 35 Dyes Inlet 303R Quartermaster Harbor Group E 14 Hood Canal, Bangor 26 Central Basin Group F 18 Oak Harbor 20 Port Susan Group G 21 Port Gardner 22 Mukilteo 41 Commencement Bay Group H 15 Dabob Bay Group I 32 Magnolia Bluff 27R West Central Basin 37R North Vashon Island 44 East Anderson Island 47 Case Inlet 33 Elliott Bay 40 Commencement Bay 69 Port Madison 43 Carr Inlet 306R Seahurst Group J 39 Dash Point 36R Brace Point 23R East Central Basin 25R West Central Basin 301R Cherry Point Group K 48 Outer Budd Inlet 49 Inner Budd Inlet 70 Oakland Bay, Shelton

Group L 3 Strait of Georgia Group M 305R Hood Canal, Lynch Cove 307R Holmes Harbor Group N 304R Quartermaster Harbor

Year: 1993 **Species Groups** Group 1 Acila castrensis Protomedeia sp Group 2 Alvania compacta Lumbrineris californiensis/cruzensis Group 3 Amphiodia urtica/periercta Pholoe minuta Paraprionospio pinnata Pinnixa occidentalis/schmitti Prionospio (Minuspio) lighti Eudorella pacifica Harpiniopsis/Heterophoxus Group 4 Aphelochaeta sp L ineidae Tubulanus sp Nitidella/Mitrella Lumbrineris luti Macoma sp Nephtys signifera Mysella tumida Parvilucina tenuisculpta Glycera nana Mediomastus sp Leitoscoloplos pugettensis Prionospio jubata Spiochaetopterus costarum Group 5 Glycinde picta Nephtys cornuta Odostomia sp. Podarkeopsis glabrus Group 6 Cylichnidae

Group O 17 S Hood Canal, Great Bend 19 Saratoga Passage 29 Shilshole 24R East Central Basin 38 Point Pully

Group 7

Axinopsida serricata Euphilomedes producta Pectinaria californiensis Nucula tenuis Cossura sp. Levinsenia gracilis Group 8 Aricidea (Acmira) catherinae/lopezi Compsomyax subdiaphana Psephidia lordi Polydora socialis Terebellides californica Spiophanes berkeleyorum Group 9 Euphilomedes carcharodonta Eyakia/Paraphoxus/Rhepoxynius Group 10 Amage anops Byblis millsi Mesochaetopterus taylori Group 11 Chaetozone sp Glycinde armigera Westwoodilla caecula Euclymeninae Turbonilla sp. Lyonsia californica Polycirrus sp Megacrenella columbiana Notomastus tenuis Syllis (Ehlersia) heterochaeta/hyperioni Group 12 Leptochelia savignyi Phoronida Group 13 Aoridae/Corophiidae Diopatra ornata Eumida longicornuta Edwardsia sipunculoides Platynereis bicanaliculata Magelona longicornis Phyllochaetopterus prolifica

Group 14 Ampelisca hancocki Neotrypaea sp. Chaetoderma sp Laonice cirrata Pilargis maculata Group 15 Aricidea (Allia) ramosa Lepidasthenia berkeleyae Praxillella gracilis Terebellides reishi Praxillella pacifica Group 16 Heteromastus filobranchus Onuphis iridescens Yoldia scissurata Group 17 Ampelisca careyi Nassarius mendicus Sigambra tentaculata Group 18 Ceriantharia Yoldia hyperborea Oligochaeta Sternaspis scutata Group 19 Ampelisca lobata Caulleriella sp A Kurtzia arteaga Pholoides asperus Cistenides granulata Pista bansei Eulalia (Eulalia) bilineata Group 20 Ampharete acutifrons Syllis (Typosyllis) harti Pista wui Barantolla americana Lanassa sp. Dorvillea (D) pseudorubrovittata Exogone (E.) lourei

Group 21 Cylindroleberididae Synchelidium sp. Rictaxis punctocaelatus Notomastus latericeus Olivella baetica Group 22 Diastylis sp Melita desdichada Orchomene sp Pagurus sp Photis sp. Tellina sp Group 23 Lirobittium attenuatum Group 24 Apistobranchus ornatus Myriochele heeri Cardiomya sp Nuculana minuta Decamastus gracilis Delectopecten vancouverensis Myriochele oculata Group 25 Prionospio (Minuspio) multibranchiata Group 26 Cyclocardia ventricosa Ophelina acuminata Euchone incolor Maldane sarsi Group 27 Brada sachalina Nephtys punctata Molpadia intermedia Eudorellopsis integra Group 28 Polydora cardalia Group 29 Ampharete labrops Sarsiellidae Protothaca staminea Group 30 Cucumaria piperata Magelona sacculata

Station Groups Group A 1 Semiahmoo Bay, Blaine 34 Sinclair Inlet 35 Dyes Inlet 4 Bellingham Bay 5 Samish Bay 12 Port Townsend Bay 45 Devil's Head 115R Outer Filucy Bay Group B 8 Port Angeles 71 Fidalgo Bay 20 Port Susan Group C 14 Hood Canal, Bangor 26 Central Basin 18 Oak Harbor 30 Eagle Harbor 40 Commencement Bay 69 Port Madison 41 Commencement Bay 32 Magnolia Bluff 33 Elliott Bay 43 Carr Inlet 44 East Anderson Island 47 Case Inlet 113R Willochet Bay 46R West Nisqually Group D 15 Dabob Bay 22 Mukilteo 21 Port Gardner Group E 39 Dash Point 103R Mid I otten Inlet 112R Nisqually Delta Group F 3 Strait of Georgia Group G 48 Outer Budd Inlet 105R Outer Eld Inlet 106R Mid Budd Inlet 109R Henderson Inlet 110R Inner Case Inlet 111R Mid Case Inlet 114R Henderson Bay

Group H

49 Inner Budd Inlet 104R Inner Eld Inlet 102R Inner Totten Inlet 70 Oakland Bay, Shelton 101R North Oakland Bay **Group I** 17 S Hood Canal, Great Bend 19 Saratoga Passage 29 Shilshole 38 Point Pully