

1998 Sediment Trap Monitoring of Suspended Particulates in Stormwater Discharges to Thea Foss Waterway

Abstract

In-line sediment traps were deployed between December 1997 and April 1998 in several stormwater discharges to Thea Foss Waterway, located in Commencement Bay, Tacoma, Washington. The primary objective of this investigation was to determine contaminant concentrations associated with suspended particulate matter (SPM) entering the waterway. These data were obtained to supplement and compare to monitoring results collected in 1997. The overall goal of the project is to evaluate source control efforts and determine the potential for recontamination of bottom sediments in Thea Foss Waterway.

The data collected indicated that concentrations of 28 individual chemicals exceeded the Commencement Bay Sediment Quality Objectives (SQOs) in SPM. The majority of SQO violations were for polynuclear aromatic hydrocarbons (PAHs) and phthalates. The greatest number of SQO violations (22) were measured in the 15th Street drain (230), which discharges to the central portion of the waterway. High concentrations of mercury, zinc, and tributyltin were also measured in a catch basin adjacent to the Picks Cove Marina.

Comparisons of data from 1997 and 1998 indicated that low molecular weight PAH (LPAH) and high molecular weight PAH (HPAH) levels were similar in both years with the exception of the 15th street drain. Both LPAH and HPAH concentrations appear to be higher in 1998, at this location. For bis(2-ethyl hexyl) phthalate slightly higher levels were measured in 1998 in the Nalley Valley and 15th street discharges. Pentachlorophenol and 4-methyl phenol levels were substantially higher in 1998 compared to 1997 in the three major discharges to the waterway.

Background

Water Quality Analysis Simulation Program (WASP) modeling conducted for the round 2 data evaluation report indicated that very low concentrations (in some cases below detection limits) of several contaminants in stormwater discharges could cause recontamination of bottom sediments in the waterway to unacceptable levels following cleanup activities (Hart Crowser, 1996). The primary contaminants of concern from this evaluation – mercury, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalates, chlorinated aromatics, DDD, and DDE – are all considered hydrophobic compounds, which tend to partition into particulates.

Between September 1996 and January 1997 in-line sediment traps were installed in the three largest stormwater discharges to Thea Foss Waterway to collect suspended particulate matter (SPM). The primary objective of this work by Ecology and the City of Tacoma was to determine actual contaminant levels associated with SPM entering the waterway. These data were needed to refine source loading terms for the WASP modeling effort described above.

The results of the 1996-97 monitoring indicated that concentrations of 19 individual chemicals exceeded the Commencement Bay Sediment Quality Objectives (SQOs) in SPM. The majority of SQO violations were for polynuclear aromatic hydrocarbons (PAH) and phthalates. The greatest number of individual SQO violations were measured in the 15th street drain (drain no. 230), which discharges to the central portion of the waterway (Norton, 1997).

Project Description

As a follow-up to monitoring completed in early 1997, the City of Tacoma and Ecology again collaborated on a study to collect SPM data from several Thea Foss Waterway drains. Responsibilities of each agency were as follows: Ecology prepared a study plan, constructed and provide the sediment traps, oversaw the field work, performed the laboratory analyses, and prepared a report documenting the study results. The City of Tacoma assisted in site selection and field work, supplied crews to install and retrieve the traps in the storm drains, and prepared a base map of the sampling locations.

The primary objective of the follow-up monitoring was to verify contaminant levels associated with SPM at the sites sampled in 1997 (Norton, 1997). Secondary objectives of the monitoring were to: 1) isolate potential upstream contaminant sources; and 2) increase spatial coverage of stormwater discharges to Thea Foss Waterway by establishing baseline information on additional drains.

The data generated from this project will be used to compare 1997 and 1998 contaminant levels associated with SPM in the three major stormwater discharges (East 96", Nalley Valley, and 15th Street Drain) entering the waterway. In addition, the data will be used to focus on-going source control efforts by the City of Tacoma in several of the drainage systems and provide a starting point for trend monitoring.

Methods

Site Selection

All sites sampled during the 1997 study were re-occupied during the current study. In addition, several new locations were sampled. New sites were chosen in an attempt to isolate suspected contaminant sources identified during source inspections. Each of the sampling locations and the reason for its selection is described in Table 1. The approximate location of each site is shown in Figure 1. Detail descriptions of each location are listed in Appendix A, Table A1 and Figures A1-A6.

Table 1: Summary of 1998 Stormwater Sediment Trap Sampling Locations and Analysis, Thea Foss Waterway.

			•	
Station ID	Drainage No.	Description	Target Analyses	Purpose of Site
FD1	237B	East twin 96" near mouth	%S, TOC, Metals, Semiv.	Previous Location- Major stormwater discharge
FD2	237A	West twin 96" (Nalley Valley) near mouth	%S, TOC, GS, Metals, Semiv.	Previous Location- Major stormwater discharge
FD2-A	237A	Vault outside pump station	Composited with FD2	Previous Location- Lateral line to west twin 96"
FD3	230	15th street drain main trunk at 15th and A	%S, TOC, GS, Metals, Semiv., OC Pest	Previous Location- Major stormwater discharge
FD3-A	230	Vault at 15th and A	Composited with FD3	Previous Location-Lateral line to 15th street drain
FD3-B	230	Vault at Pacific Av. and Hood St.	Composited with FD3	Previous Location- Lateral line to 15th street drain
FD3-C	230-upstream	South 11th and Yakima	%S, TOC, Hydrocarbon ID	Source Tracing
FD3-D	230-upstream	South Market between 12th and 13th streets	%S, TOC, Hydrocarbon ID	Source Tracing
FD4	237A- upstream	Sprague and South Tacoma WY.	%S, TOC, Metals,	Previous Location- Evaluate highway runoff
FD5	237A- upstream	South 18th and Cedar St.	%S, TOC, GS, Metals, Semiv.	Previous Location- Background
FD-6	235-end of pipe	21st and Dock St.	%S, TOC, Semiv., Hydrocarbon ID	Source Tracing
FD-8	Tributary to 245	Picks Cove Drain	%S, TOC, Metals, Semiv., Butyltins	Source Tracing

%S= percent solids

TOC= total organic carbon

GS= grain size

Metals= lead, mercury, and zinc

Semiv. = semivolatile organics (primarily PAH and phthalates)

OC Pest= organochlorine pesticides (primarily DDD, DDE, and DDT)

Analyses focused on contaminants measured above the Commencement Bay SQOs during the 1996-97 monitoring or identified as contaminants of concern in specific source investigations by the City of Tacoma and Ecology.

Sampling Procedures

SPM samples were collected with the use of in-line stormwater sediment traps. Construction details and performance of these traps are described in *Stormwater Sediment Trap Pilot Study* (Wilson and Norton, 1996). A diagram of the construction details of the traps is included in Appendix A, Figure A7.

Sampling was initiated on December 10, 1997 and completed April 22, 1998. Weather conditions dictated the exact timing of deployment and retrieval of the traps. Specific deployment periods for each of the sediment traps are listed in Appendix A, Table A1.

At each location an attempt was made to install two independent traps. The traps were installed near the bottom of junction boxes where possible. Alternately, the traps were mounted where eddies occurred within a pipe. Under the guidance of Ecology and the City of Tacoma project leads, City of Tacoma sewer utility crews, certified for confined space entry, installed the traps at each of the sampling locations.

At the end of the deployment period the collection bottles were removed from the mounting brackets, capped with screw closures, packaged, and placed in coolers on ice for transport the Ecology Headquarters Building. All samples were held frozen pending processing.

Processing consisted of first thawing the samples and decanting off a portion of the overlaying water. The remaining slurry was then centrifuged to isolate the particulate fraction. Manipulation of the samples during processing was accomplished using stainless steel utensils. All utensils were cleaned prior to use with sequential washes with hot tap water/liquinox® detergent, 10% HNO₃, distilled/deionized water, and acetone. The utensils were then dried in an oven to remove any solvent residual.

After processing, all replicates from individual sites, plus lateral line samples if applicable, were composited into a single sample for analysis. The following samples were submitted for analysis: FD1, FD2 (includes FD2-A), FD3 (includes FD3-A and FD3-B), FD-3C, FD-3D, FD4, FD5, FD-6, and FD-8. Due to an insufficient volume of material, the list of planned analyses was reduced at some locations. A summary of samples submitted for analysis is presented in Appendix A, Table A2.

All sample containers were glass jars with Teflon lid liners, cleaned to EPA Quality Assurance/Quality Control (QA/QC) specifications (EPA, 1990).

Quality Assurance

A summary of analytical methods and laboratories conducting analysis for the project is shown in Table 2. All samples were processed at the Ecology Headquarters Laboratory prior to being delivered to the Manchester Environmental Laboratory (MEL) for analysis. Quality of the data set was assessed with the following sample types: field and laboratory duplicates, matrix spikes, internal standards, surrogate spikes, method blanks, and laboratory control samples. Staff at MEL performed a detailed quality assurance review of the data package produced. A copy of the case narratives for these reviews is included in Appendix B.

Overall precision (sampling + laboratory analysis) of the data set was evaluated by calculating the relative percent difference (range in concentrations/mean concentration expressed in percent) between blind field duplicates (a single sample homogenized and split in the field). These data indicate that precision of the data set was excellent, being <10% in all instances.

In general, no major analytical problems were encountered in the analysis of samples for the project, with the exceptions noted below. Consequently the data generated are considered acceptable for use with the qualifiers listed in the data tables.

Mercury results were qualified as estimates based on high matrix spike recoveries. Butyltins were qualified as estimates, since it was not possible to calculate spike recoveries due to the low spiking levels relative to high native sample concentrations.

Unless otherwise noted all concentrations in this document are reported on a <u>dry weight</u> <u>basis</u>. For reference, copies of the laboratory report sheets are included in Appendix C.

Results

Contaminant Distribution

Sampling was conducted between December 10, 1997 and April 22, 1998. Rainfall records from the National Weather Service meteorological station located at the Tacoma Central Treatment Plant are shown in Figure 2. Measurable rainfall was recorded on 83 out of 133 days during the deployment period. Total precipitation for the sampling period was 19.5 inches.

Results of analysis of SPM collected from discharges to Thea Foss Waterway during the monitoring period are summarized in Table 3. Total organic carbon (TOC) concentrations were somewhat variable, ranging from 0.5% at the background site to 12% upstream in the 15th street drain (FD-3C). Grain size results indicated that at the three locations analyzed (FD2, FD3, and FD5), >70% of the sample was composed of sand size particles. Visual examination of other samples indicated that this grain size distribution is not representative of all samples collected. Several of the other samples appeared to have a much higher percentage of fines.

Lead, mercury, and zinc concentrations were relatively low in all discharges, with the exception of high concentrations of mercury (1.9 mg/kg) and zinc (740 mg/kg) in the Picks Cove catch basin (FD-8). The lowest metal concentrations were consistently measured upstream in the Nalley Valley drain at the background site (FD-5).

Thirty-nine semivolatile organics were quantified in SPM. Peak concentrations of polynuclear aromatic hydrocarbons (PAH) were measured in the 15th Street drain followed by the sample from 21st and Dock Street. The lowest PAH concentrations were present at the background station (FD-5). In all instances, the sum of high molecular weight PAH (HPAH) exceeded the sum of low molecular weight PAH (LPAH). This enrichment of HPAH relative to LPAH is commonly observed in environmental samples since weathering processes such as evaporation, photochemical oxidation, dissolution, and microbial degradation can preferentially remove PAHs with molecular weights less than that of Fluoranthene (Merrill and Wade, 1985). The distribution of PAHs observed indicates that the particulates present in each of the discharges sampled have had time to undergo some weathering.

In an attempt to evaluate potential hydrocarbon sources, three samples (FD-3C, FD-3D, and FD6) were subjected to a hydrocarbon identification procedure. All three samples showed the same basic structure of an unresolved envelope of compounds eluting in the lube oil range, with a series of small discrete peaks riding on this envelope. Lube oil is a generic term which encompasses hydraulic fluids, mineral oils, motor oils, and lubricating oils (Carrell, 1998)

In addition to the PAHs, 13 other semivolatiles were detected at concentrations exceeding 1000 ug/kg, dry. Peak concentrations of seven of these compounds were present at 21st and Dock Street (FD6). This location is tidally influenced which raises the possibility that some of the contamination observed may have originated from Thea Foss Waterway.

Low levels of DDT were detected in the 15th Street drain (8.0 ug/kg). In most instances the lowest organics concentrations were typically present at the background site which is located in the upper portion of the Nalley Valley drainage system. Fewer potential contaminant sources and a relatively low TOC content are two important factors contributing to the low contaminant levels seen at the background site.

High concentrations of tributyltin chloride (TBT), 48 mgTBTCL/kg, were present in the catch basin adjacent to the Picks Cove Marina. Reported as the TBT ion, this equates to a concentration of 43 mgTBT/kg. In 1988, the United States severely restricted the use of tributyltins in formulating antifouling paints (EPA, 1996). Monobutyltin chloride (7.8mg/kg) and dibutyltin chloride (14mg/kg) were also high in the Picks Cove sample. Mono and di-butyl tin are released into the environment through a variety of sources. Usually, their occurrence is related to degradation pathways of TBT. However, there is increasing evidence that MBT and DBT may be released directly into the environment via discharge pipes and sewage treatment discharges (Quevauviller et al., 1991). It is thought that the butyltins leach to the water in pipes (such as PVC) and are later discharged to the

environment. In addition MBT and DBT are used as a catalyst in the manufacture of polyurethane foams (EPA, 1996). Field notes for the Picks Cove sample indicated that the water surface within the catch basin was covered with broken pieces of styrofoam at the time the trap was recovered.

Contaminant Trends and Comparison to Sediment Quality Objectives

Of particular concern to source control and sediment cleanup activities in Thea Foss Waterway are chemicals which exceed the Commencement Bay SQOs. The SQOs represent contaminant concentrations above which deleterious effects would always be observed in benthic communities (EPA, 1989).

In Table 4 concentrations of selected chemicals associated with SPM from monitoring conducted in 1997 and 1998 are compared to the SQOs. In general, more chemicals were measured above the SQOs in 1998 compared to 1997 at similar locations. Twenty-eight individual chemicals exceeded the SQOs in SPM during monitoring completed in 1998. The majority of SQO violations observed were for PAHs and phthalates. Four additional organics – benzoic acid, phenol, 4-methyl phenol, and pentachlorophenol – were routinely detected above their respective SQOs in the majority of drains tested. A summary of individual chemicals exceeding the SQOs for the 1998 monitoring period is shown in Table 5. In general, a similar distribution of contaminants was seen in 1997 and 1998 with the greatest number of SQO exceedences occurring at FD-3, 15th street drain, and the fewest at FD-5 (background site).

The toxicity and bioaccumulation of TBT is a complex process that is affected by a number of factors, including organic carbon levels in sediment and water, pH, salinity, clay content, and the presence of inorganic constituents such as iron oxides (EPA, 1996). Due to its complex behavior in the aquatic environment, no sediment quality criteria have been adopted for TBT in Puget Sound sediments. Based on a review of the available literature EPA has selected a site-specific cleanup level for Hylebos Waterway. This cleanup level is based on a interstitial water concentration of 0.7ug TBT/L, which is believed to be protective of many organisms from most acute and chronic effects (EPA, 1996). Applying the EPA equilibrium partitioning approach to this interstitial water level yields a bulk sediment cleanup concentration of 17,560ug TBT/kg OC. On an organic carbon normalized basis, TBT levels in the Picks Cove catch basin were 534,000ug TBT/kg OC, which is approximately 30 times higher than the Hylebos cleanup criteria.

Figures 3-5, show a direct comparison of 1997 and 1998 levels of LPAH, HPAH, butyl benzyl phthalate, bis(2EH)phthalate, pentachlorophenol, and 4-methyl phenol collected at the same location. Similar concentrations of LPAH and HPAH were seen in 1997 and 1998. An exception to this pattern occurred at FD3 where 1998 levels of both LPAH and HPAH were higher. Butylbenzyl phthalate concentrations were similar at most sites between 1997 and 1998, but dropped substantially at the background station (FD5). For bis(2EH) phthalate, a general upward trend was observed from 1997 to 1998.

Pentachlorophenol and 4-methyl phenol levels were substantially higher in 1998 compared to 1997 in the three major discharges to the waterway. The differences in concentrations between 1997 and 1998 might be the result of variability in stormwater quality and/or discrepencies in analytical results from the two laboratories.

For these reasons, additional monitoring would be needed to verify the temporal trends noted. Preferably analysis for future monitoring would be performed by either the City of Tacoma or Manchester Laboratory which have both analyzed data sets for this project in the past.

Conclusions

In-line sediment traps were successfully deployed between December 1997 and April 1998 in several priority stormwater discharges to Thea Foss Waterway. Results of metals and organics analysis of suspended particulates indicated that concentrations of 28 individual chemicals exceeded the Commencement Bay Sediment Quality Objectives. The majority of these exceedence were for polynuclear aromatic hydrocarbons and phthalates. The greatest number of exceedences (22) were measured in the 15th Street drain which discharges to the central portion of the waterway. High concentrations of mercury, zinc, and tributyltin were also measured in the catch basin adjacent to Picks Cove Marina.

Comparisons of data from 1997 and 1998 indicated that LPAH and HPAH levels were similar in both years with the exception of the 15th street drain. Both LPAH and HPAH concentrations appear to be higher in 1998 at this location. For bis(2EH) phthalate slightly higher levels were measured in 1998 in the Nalley Valley and 15th street discharges. In contrast, slight reductions were measured between 1997 and 1998 at the background station (FD5). Pentachlorophenol and 4-methyl phenol levels were substantially higher in 1998 compared to 1997 in the three major discharges to the waterway. Additional monitoring would be needed to verify the temporal trends noted.

Recommendations

Based on data collected during the present study, the following recommendations are made:

- Investigate ongoing contaminant sources at the Picks Cove Marina, especially for mercury, zinc, and tributyltin.
- Remove sediments from the Picks Cove catch basin and implement source control
 measures to eliminate the release of contaminants from the site, with special emphasis
 on mercury, zinc, and tributyltin. Follow-up sampling should also be considered to
 monitor the effectiveness of source control measures implemented at the site.
- Consider conducting a loading analysis for pentachlorophenol and 4-methylphenol to the waterway, due to the high frequency of criteria violations (5 of 6 samples in 1998) for these chemicals.

Based on loading potential, sediment trap monitoring should be continued in the three
largest discharges to the waterway (East Twin 96", Nalley Valley, and 15th street
drain) to evaluate changes in suspended particulate quality. For consistency, metals
and organics analyses for this monitoring should be performed by either the City of
Tacoma Laboratory or the Manchester Environmental Laboratory, which have both
analyzed samples for this project.

Acknowledgments

Many individuals made significant contributions to the success of this project. The author would especially like to thank the people listed below whose help was invaluable:

- Installation of the sediment traps was performed by Pete Brannock, Dale Sanborn, and Rick Wolters with the City of Tacoma, Plant Maintenance Division.
- Coordination of the sampling crews and field support was provided by Troy Naccarato with the City of Tacoma, Sewer Utilities Division.
- Analytical services at the Manchester Laboratory were coordinated Karin Fedderson, Dickey Huntamer, Jim Ross, Bob Carrell, Debbie LaCroix, and Pam Covey.
- Joyce Mercuri, Troy Naccarato, Dave Serdar, and Larry Goldstein reviewed the report and provided many valuable comments.
- Shirley Rollins formatted the document for publication.

References

Carrell, B., 1998. Personal communication. Manchester Environmental Laboratory.

- Ecology, 1994. <u>Manchester Environmental Laboratory Users Manual-Method WTPH-HCID.</u> Washington State Department of Ecology, Olympia, WA.
- EPA, 1989. <u>Commencement Bay Nearshore/Tideflats-Record of Decision</u>. U.S. Environmental Protection Agency, Region 10, Seattle, WA.
- EPA, 1990. Specifications and Guidance for Obtaining Contaminant-Fre Sample

 Containers. Office of Solid Waste and Emergency Response Directive #9240.0-05.
- EPA, 1995. <u>Test Methods for Evaluating Solid Waste</u>. <u>Laboratory Manual Physical/Chemical Methods</u>. SW-846. 3rd ed., Update IIB. Office of Solid Waste and Emergency Response, Washington D.C.

- EPA, 1996. Recommendations for Screening Values for Tributyltin in Sediments at Superfund Sites in Puget Sound, Washington. DCN 4000-09-013-AADS, 13-01-AADK, and 33-01-AAAV. Prepared for EPA Region 10 Superfund Program by Roy F. Weston, Seattle, WA.
- Hart Crowser, 1996. Round 2 Data Evaluation Report for Thea Foss and Wheeler-Osgood Waterways. Draft Report, Prepared for the City of Tacoma.
- Merrill, E. G., and T. L. Wade, 1985. Carbonized Coal Products as a Source of Aromatic Hydrocarbons to Sediments from a Highly Industrialized Estuary. <u>Environmental Science and Technology</u>. Vol. 19:597-603.
- Norton, D., 1997. Stormwater Sediment Trap Monitoring of Discharges to Thea Foss Waterway. Washington State Department of Ecology, Olympia, WA. Publication No. 97-322.
- PSEP, 1996. Recommended Protocols and Guidelines for Measuring Selected

 Environmental Variables in Puget Sound. Prepared by Tetra Tech, Inc., for EPA
 Region 10, Seattle, WA. Selected sections revised and updated April 1996 by
 METRO, Seattle, WA.
- Quevauviller, P., A. Bruchet, and O.F.X. Donard, 1991. Leaching of Organtin Compounds from Polyvinyl Chloride (PVC) Material. <u>Applied Organometallic Chemistry</u> 5:125-129.
- Wilson, C. and D. Norton, 1996. <u>Stormwater Sediment Trap Pilot Study.</u> Publication No. 96-347. Washington State Department of Ecology, Olympia, WA.

Contacts

Dale Norton

Washington State Department of Ecology Environmental Assessment Program Water Ecology Section (360) 407-6765

For additional copies of this publication, please contact Ecology's Publications Distribution Office at (360) 407-7472 and refer to publication number 98-336.

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sec, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact Shirley Rollins at (360) 407-6696 (voice). Ecology's telecommunication device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

FIGURES

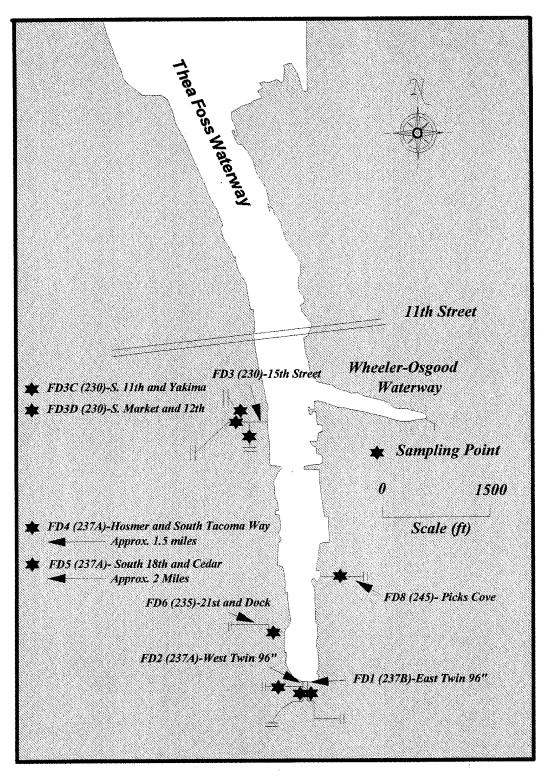


Figure 1: Approximate Locations of Sediment Trap Monitoring Sites in Thea Foss Stormwater Discharges (See Appendix A for Detailed Location Maps)

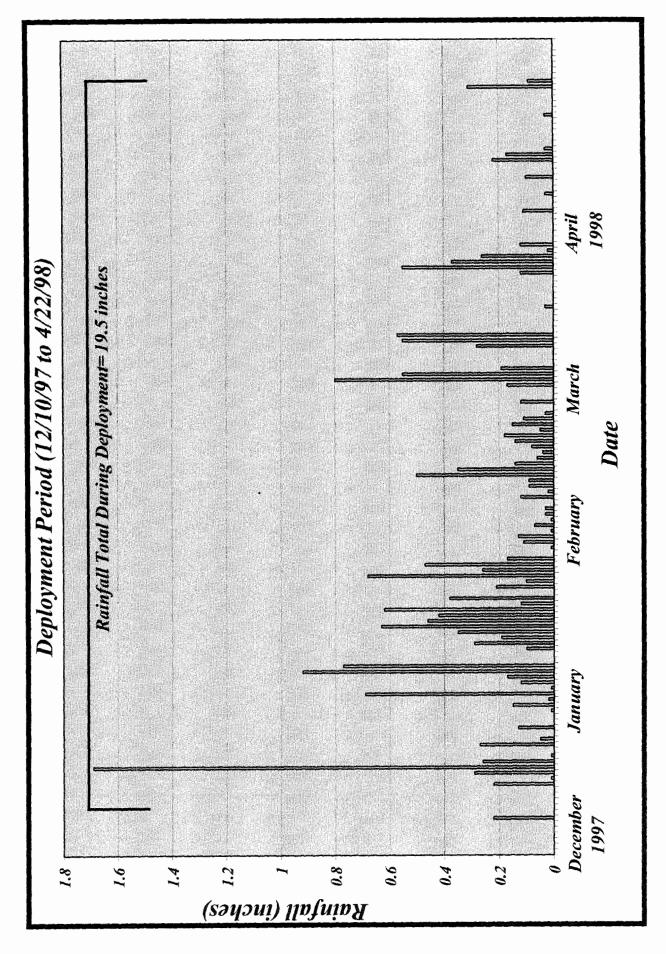


Figure 2: Rainfall Record for Sediment Trap Deployment Period.

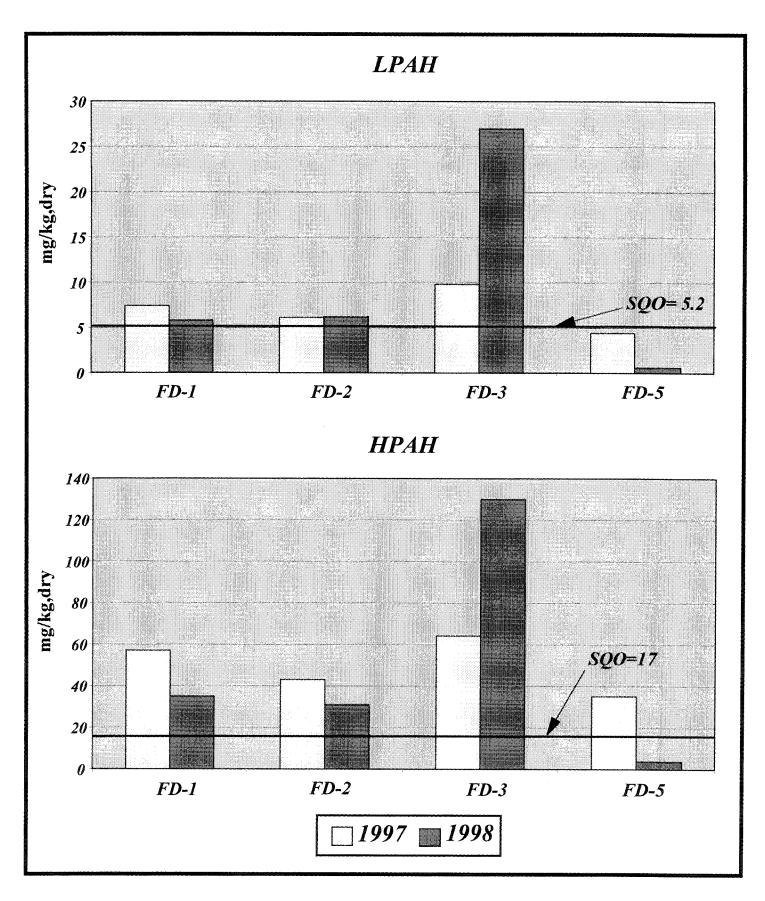


Figure 3: Comparision of PAH Levels in Stormdrain Particulates from 1997 and 1998.

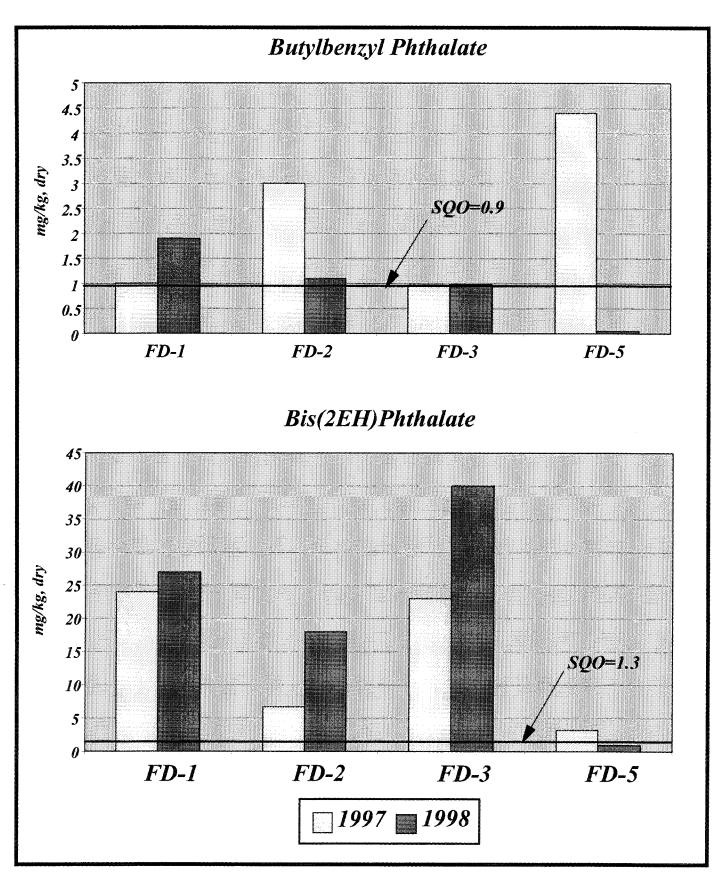


Figure 4: Comparison of Phthalate Levels in Stormdrain Particulates from 1997 and 1998.

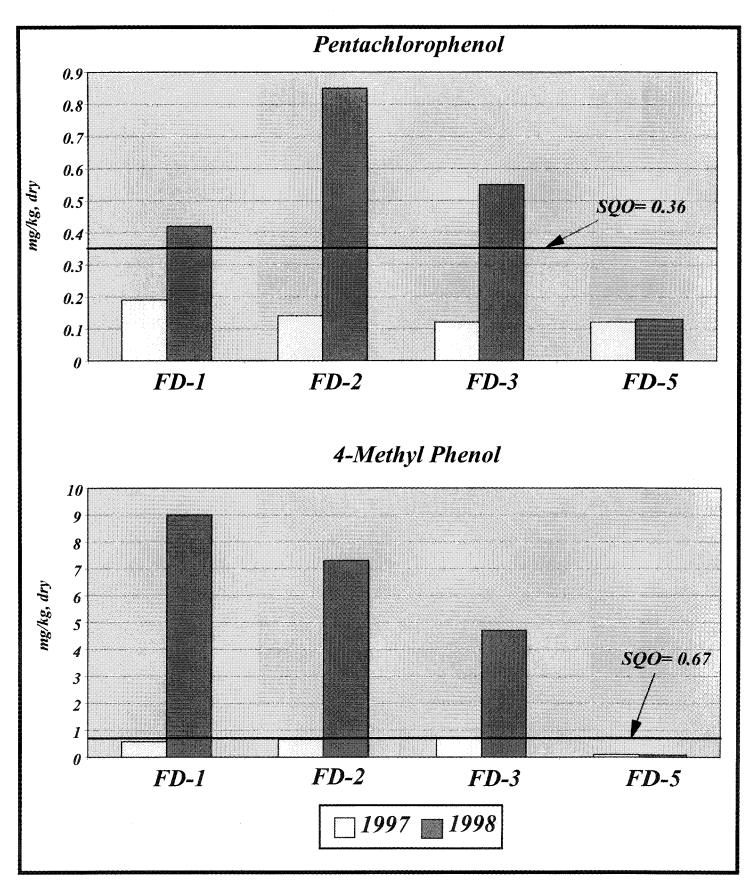


Figure 5: Comparison of Phenols Levels in Stormdrain Particulates from 1997 and 1998.

						•	
	•			•			
		·					
	•						
		•			•		
							•
•							
	•						
•							
•							

Table 2: Summary of Analytical Methods and Laboratories for the Foss Waterway Stormwater Particulates Study.

Analysis	Method	Reference	Laboratory
Conventionals (%)			
Percent Solids	Dry @ 104°C	PSEP, 1996	Ecology/EPA Manchester
Total Organic Carbon	Combustion/CO ₂ Measurement	PSEP, 1996	Ecology/EPA Manchester
Grain Size	Seive and Pipet	PSEP, 1996	Soil Technology, Inc.
Metals (mg/kg, dry)			
Lead, Zinc	ICP	PSEP, 1996	Ecology/EPA Manchester
Mercury	CVAA	PSEP, 1996	Ecology/EPA Manchester
Organics (ug/kg, dry)			
Semivolatiles	GC/MS #8270	EPA, 1995	Ecology/EPA Manchester
PAHs			
Phthalates			
Hydrocarbon ID	WTPH-HCID	Ecology, 1994	Ecology/EPA Manchester
Butyltins	GC/MS-SIM	PSEP, 1996	Ecology/EPA Manchester
Organochlorine Pesticides	GC/ECD #8080	EPA, 1995	Ecology/EPA Manchester
DDD/DDE/DDT			

ICP= Inductively Coupled Plasma

CVAA= Cold Vapor Atomic Absorption

GC/MS= Gas Chromatography/Mass Spectroscopy

GC/ECD= Gas Chromatography/Electron Capture Detector

GC/MS-SIM= Gas Chromatography/Mass Spectroscopy- Selective Ion Monitoring

Table 3: Summary of Compounds Detected in 1998 Particulate Samples for Foss Waterway Stormwater Discharges.

Location	East Twin		Twin	-		15th Stree	t	S. 11th and	S. Market	Hosmer and	18th and Cedar	2	1st and		Picks	
Duniu Ma	96" 237B	90	ь 7А			230		Yakima 230	and 12th 230	S. Tac. Wy. 237A	Background 237A		Dock 235		Cove 245	
Drain No. Station ID	FD1		7A D2	FD2(dup	.\	FD3		FD3C	FD3D	FD4	FD5		233 FD6		FD8	
Sample No. 17-	8080	80		8082))	8083		8085	8086	8087	8088		8089		8090	
	8080		101	8082		8083			8000	8087	3088		0007	-	0030	
Conventionals (%) Total Solids	51.1	-	7.1	66.3		52.1		27.8	23,3	_	79.1		23,4		35.2	
TOC @ 70°C	5,1		.4	3.4		5.6		12	23.3 5.6	-	0.5		23. 4 -		33.2	
TOC @ 104°C	5.0		.5	3.4		5.6		12	8.6		j 0.5			i	8.0	j
Grain Size	5.0	4	ر.	3,4		5,0		12	8.0	15	3 0.5 .		J. 4	J	8.0	J
Gravel (>2mm)		1	3	_		12					9					
Sand (2mm-62um)			71	-		76		-	-	•	90		•		_	
Silt (62-4um)	-		5	-		11		_	-	-	1		_		_	
Clay (<4mm)	-		1	_		1			_	_	0		_		_	
Metals (mg/kg, dry)						•					·					
Lead	140	1	10	110		170		_	-	-	77		` . .		190	
Mercury	0.11			j 0.13	i	0.18	j	_	_	_		j			1.9	j
Zinc	270		70	250	J	290	J	_	_	-	110	,	_		740	J
Semivolatiles (ug/kg, dry		_														
Acenapthene	180	20	00	170		610		-	-	-	17	j	500	j	140	
Acenapthylene	59			j 76	j	140	j	~	-	-		j		j	190	
Napthalene	180	-	10	190	i	350	,	~	-	_		j		j	400	
Fluorene	290		60	270	,	1000		.	-	-	30	,		j	330	
Anthracene	710		10	670		3000		-	•	-	78			i	740	
Phenanthrene	4400		200	4000		22000		-	-	-	470		11000	J	3800	
Sum LPAH	5800		000	j 5400	i	27000	i				610	i	16000	j	5600	
Fluoranthene	11000		00	6200	ىئىد	33000		-		-	820		15000		4000	
Benzo(a)anthracene	2500	28	00	2000		9500		-		-	250		4600		790	
Chrysene	3900	40	000	3200		12000		-	-	-	400		9600		1900	
Pyrene	5900	68	100	5200		30000	j	-	-	-	680		15000		3600	
Benzofluoranthenes	3500	34	00	5000		23000	•	-	-	-	710		14000		2100	
Benzo(a)pyrene	3400	35	00	2400		11000		-	-	~	320		6000		720	
Dibenzo(a,h)anthracene	680	63	30	420		2100			-	~	71		2500	u	180	j
Indeno(1,2,3-cd)pyrene	2700	28	00	1900		7900		-	-	~	280		5700	j	650	
Benzo(g,h,i)perylene	1900	21	00	1100		5000		-	-	-	260		5000	j	730	j
Sum HPAH	35000	340	000	27000		130000	j				3800		75000	j	15000	j
1-methylnapthalene			•	j 200	j	160	j	-	-	•		j		j	320	
2-methylnapthalene	140		90	270		250		-		-		j		j	480	
2,6 Dimethylnapthalene	120		80	210		160		-	-	-		j	590	j	310	
1,6,7 Trimethylnapthalen		•	•	j 140		91	j	~	-	-		j		j	150	
1-methylphenanthrene	320		10	. 360		990		~	-	-	42			j	480	
2-methylphenanthrene	500		60	600		1600		-	-	-	50			j	700	
Dibenzofuran	180		80	140		550		-	-	-		j		j	200	
Carbazole	1100		:00	970		4200		-	~	-	110			j	580	
Dibenzothiophene	250		70	220		970		-	-	-		j		j	270	
Benzyl alcohol	80			u 120	u	160	u	• .	-	-		j	3000		1300	
Benzoic acid		5	.00	•	j	4900	j	-	-	-		j		u	9600	j
Retene	310		10	210	j	360		-	-	-		j		j	700	
Caffeine				u 110	j	230		-	-	-	84			j	360	
1,1 Biphenyl				u 120	น	84	j	-	-	-		u		u	110	
N-Nitrosodiphenylamine		j 29		u 240	и	320	u	-	-	-		u		j	180	u
Phenol	770			u 890		700		-	-	-		u		u	880	
2-methylphenol		•	9	•	j	49	j	-	-	-		u		j	90	j
4-methylphenol		j 67		7800		4700		•	-	-	81		3600		800	
Pentachlorophenol	420		00	900		550	j	•	•	-		u		j	630	
Dimethyl phthalate		-	00	190	j	320	u	-	-	-		u		u	13000	
Butylbenzyl phthalate	1900	13		910		980		•	-	-		u	8800		3400	
Di-n-butyl phthalate		u 47		6000	u	1100	u	-	-	-	7100			u	4400	u
Di-n-octyl phthalate	2100		00	600	u	1100		-	-	-		u		u	450	u
Bis(2EH)phthalate	27000	200	000 j	j 15000		40000		•	-	-	930		96000		17000	j
Chlorinated Pesticides (u	g/kg, dry)					2.0										
Endrin	-		•			2.0	j	-	-	-	-				-	
4,4' DDD	-	-	-	-		8.1	u	-		-	-				•	
4,4' DDT	-	-	-	-		8.0	j	-	-	-	-				•	
Butyltins (ug/kg, dry)															#0 00	
										_	_				7800	j
Monobutyltin chloride	-	-	•	-		-		-	-	-	-					
Monobutyltin chloride Dibutyltin chloride	-	-	-	-		-		-	-	-	-				14000	j
Monobutyltin chloride	- - -	-	•					-	-	-	- -				14000 48000 13	j j j

u= Not detected at detection limit shown

j= Estimated concentration

⁻⁼ Not analyzed

Table 4: Comparison of Compounds Exceeding the Commencement Bay Sediment Quality Objectives in Particulate Samples Collected in 1997 and 1998 from Stormwater Discharges to Thea Foss Waterway.

יכם ווו זייי מווא	1776 HOLL SCHIMACE DISC	water Dis	1101	11104 1 033	יו מנכו או	٠٤٠				-	
Location	East Twin	=	West Iwin	wın	Toth	15th Street	Back	Background	71st and		
	96		96						Dock		Commencement
Station ID	FD-1	- 	FD-2	2		FD-3		FD-5	FD-6	FD-8	Bay
Year	1998	1661	8661	1661	1998	1997	1998	1997	6808	8090	800
Metals (mg/kg, dry)											
Mercury	0.11 j	0.13	0.11 j	0.15	0.18	j 0.19	0.03	j 0.021	,	.i. 6:I	0.59
Zinc	270	340 j	260	330 j	290	420 j	110	99 j	,	740	410
Semivolatiles (ug/kg, dry)											
Acenaphthene	180	300	190	230	019	490	17	j 150	500 j	140	200
Fluorene	290	450	320	370	0001	640	30	270	j 016	330	540
Anthracene	710	720	790	290	3000	1100	78	480	1800 j	740	096
Phenanthrene	4400	5800	4600	4800	22000	7200	470	3500	11000	3800	1500
Sum LPAH	5800 j	7400	6200 j	0019	27000	. 9800 j	919	j 4400	16000 j	2600	5200
Fluoranthene	11000	9019	7300	5500	33000	7100	820	4400	15000	4000	2500
Benzo(a)anthracene	2500	3700]	2400	2900	9500	4500 j	250	2600 j	4600	790	1600
Chrysene	3900	4800 j	3600	4100 j	12000	5500 j	400	3200 j	0096	1900	2800
Pyrene	5900	23000 j	0009	18000 j	30000	j 25000 j	089	13000	15000	3600	3300
Benzofluoranthenes	3500	10000	4200	9069	23000	11000 j	710	5800 j	14000	2100	3600
Benzo(a)pyrene	3400	3900	3000	2800	11000	4600 j	320	2600 j	0009	720	1600
Dibenzo(a,h)anthracene	089	610 j	530	410	2100	700 j	71	440 j	2500 ս	180 j	230
Indeno(1,2,3-cd)pyrene	2700	2100	2400	1300 j	7900	2400 j	280	. 1500 j	5700 j	650	069
Benzo(g,h,i)perylene	1900	2900 j	1600	1500 j	2000	3000 j	790	1800 j	5000	730 j	720
Sum HPAH	35000	57000 j	31000	43000 j	130000	j 64000	3800	35000 j	75000 j	15000 j	17000
Dibenzofuran	180	240	160	160	550	310	15	n 96 j	450 j	200	540
Benzył alcohol	n 08	20 u	130 u	46	160	u 31	61	n 91 j	3000	1300	73
Benzoic acid	.3600 j	490 u	4200 j	490 u	4900	j 530	700	j 480 u	32000 u	j 0096	650
N-nitrosodiphenylamine	12	n 66	270 u		320	u 20 u	52	n 19 u	730 j	180 u	28
Phenol	770	ND ON	640 j	QN QN	700	QN	52	u ND	2600 ս	880	420
2-methylphenol	50 j	QN	38 j	QN ON	49	j. ON	52	u ND	360 j	j 06	63
4-methylphenol	. 9006	570	7300	099	4700	069	81	n 96	3600	800	029
Pentachlorophenol	420	190 j	850	. 140 j	550	j 120 u	130	u 120 u	4100 j	630	360
Dimethyl phthalate	72 j	001	350 j	200 j	320	n 66 n	52	n 96 n	2500 u	13000	160
Butylbenzylphthalate	1900	1000 j	1100	3000	086	970 j	52	u 4400 j	8800	3400	006
Di-n-butyl phthalate	n 00 <i>L</i>	270	5400 u	400	1100	n 870	7100	n 96	n 0069		1400
Bis(2EH)phthalate	27000	24000 j	18000 j	6700 j	40000	23000 j	930	3200 j	00096	17000 E	1300
Chlorinated Pesticides (ug/kg, dry)											
4,4' DDD			,	8.0 u		u 16		7.4 u		,	91
4,4' DDT		ı	,	8.0 u	8.0	j 320 j		7.4 u	,	,	34
in Not detected of detection the state											

u= Not detected at detection limit shown

j= Estimated concentrations E= Result exceeded calibration range

⁻⁼ Not analyzed

ND= Not detected

Table 5: Summary of Compounds Exceeding the Commencement Bay Sediment Quality Objectives by Station.

FD-1	FD-2	FD-3	FD-5	FD-6	FD-8
(East Twin 96")	(West Twin 96")	(15th Street)	(Background)	21st and Dock Street	Picks Cove
Sum LPAH	Sum LPAH	Sum LPAH	Benzoic Acid	Sum LPAH	Mercury
Phenanthrene	Phenanthrene	Acenaphthene	Di-n-butyl phthalate	Acenaphthene	Zinc
Sum HPAH	Sum HPAH	Flourene		Flourene	Sum LPAH
Flouranthene	Flouranthene	Anthracene		Anthracene	Phenanthrene
Benzo(a)anthracene	Benzo(a)anthracene	Phenanthrene		Phenanthrene	Flouranthene
Chrysene	Chrysene	Sum HPAH		Sum HPAH	Pyrene
Pyrene	Pyrene	Flouranthene		Flouranthene	Benzo(g,h,i)perylene
Benzo(a)pyrene	Benzoflouranthenes	Benzo(a)anthracene		Benzo(a)anthracene	Dimethyl Phthalate
Dibenzo(a,h)anthracene	Benzo(a)pyrene	Chrysene		Chrysene	Butylbenzyl Phthalate
Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Pyrene		Pyrene	Bis(2 ethyl hexyl) Phthalate
Benzo(g,h,i)perylene	Indeno(1,2,3-cd)pyrene	Benzoflouranthenes		Benzoflouranthenes	Benzyl Alcohol
Butylbenzyl Phthalate	Benzo(g,h,i)perylene	Benzo(a)pyrene		Benzo(a)pyrene	Benzoic Acid
Bis(2 ethyl hexyl) Phthalat Dimethyl Phthalate	Dimethyl Phthalate	Dibenzo(a,h)anthracene		Indeno(1,2,3-cd)pyrene	Phenol
Benzoic Acid	Butylbenzyl Phthalate	Indeno(1,2,3-cd)pyrene		Benzo(g,h,i)perylene	2-Methylphenol
N-Nitrosophenylamine	Bis(2 ethyl hexyl) Phthalate	Benzo(g,h,i)perylene		Butylbenzyl Phthalate	4-Methylphenol
Phenol	Benzoic Acid	Dimethy! Phthalate		Bis(2 ethyl hexyl) Phthalate	Pentachlorophenol
4-Methylphenol	Phenol	Butylbenzyl Phthalate		Benzyl Alcohol	
Pentachlorophenol	4-Methylphenol	Bis(2 ethyl hexyl) Phthalate		N-Nitrosophenylamine	
	Pentachlorophenol	Dibenzofuran		2-Methylphenol	
		Benzoic Acid		4-Methylphenol	
	-	Phenol		Pentachlorophenol	
		4-Methyl Phenol			
18	19	22	2	21	16

Sediment Quality Objectives based on environmental risk (EPA, 1989)

APPENDICES

Appendix A

Sampling Site Descriptions and Sediment Trap Information

Table A1: Station Descriptions for 1998 Foss Waterway Stormdrain Evaluation.

Station	Drain No.	Station Drain No. Description	Latitude	Latitude Longitude Deployed Retreived Days	Deployed	Retreived	Days
FD-1 237B	237B	East Twin 96" near Mouth	47.14.45	47.14.45 122.25.81 2/24/98 4/22/98	2/24/98	4/22/98	57
FD-2 237A	237A	Nalley Valley near Mouth	47.14.49	47.14.49 122.25.85 2/24/98	2/24/98	4/22/98	57
FD-2A 237A	237A	Nalley Valley Lateral near Mouth 47.14.47 122.25.84	147.14.47	122.25.84	1/2/98	3/20/98	9/
FD-3 230	230	15th St. Drain @ 15th and A St. 47.14.95 122.26.14 1/2/987	47.14.95	122.26.14	1/2/987	4/22/98	109
FD-3A 230	230	15th St. Drain North Lateral	47.14.95	47.14.95 122.26.15 12/10/97	12/10/97	3/20/98	100
FD-3B 230	230	15th St. Drain South Lateral	t .	ı	1/2/98	3/20/98	9/
FD-3C 230	230	S 11th and Yakima	47.15.17	47.15.17 122.26.84 12/10/97	12/10/97	3/20/98	100
FD-3D 230	230	S. Market between 12th and 13th 47.15.16 122.26.45 12/10/97	47.15.16	122.26.45	12/10/97	3/20/98	100
FD-4 237A	237A	Hosmer and S. Tacoma Way	47.13.95	47.13.95 122.27.71	1/2/98	4/22/98	109
FD-5 237A	237A	South 18th and Cedar St.	47.14.51	47.14.51 122.28.50	1/2/98	3/20/98	9/
FD-6 235	235	21st and Dock St.	1		2/24/98	4/22/98	57
FD-8 245	245	Picks Cove Marina Catchbasin	47.14.70	47.14.70 122.25.84 12/10/97 3/20/98	12/10/97		100

Latitude and Longitude in Degrees/Minutes

Table A2: Samples submitted for Analysis April 1998 for the Foss Waterway Stormdrain Project.

Station	Sample #	Station Sample # Description	% Solids	OC Pest	OC Pest Semivolatiles*	Butyltins	Butyltins Hydrocarbon II	Hg	TOC	Pb/Zn	Grain Size
FD-1	178080	178080 237B Composite (E. 96")	×		X			×	×	×	
FD-2	178081	178081 237A Composite (Nalley)	×		×			×	×	×	×
FD-2D	178082	178082 Dup of 8081	×		×			×	×	×	×
FD-3	178083	178083 15th St Composite	×	×	×			×	×	×	×
FD-3P	178084	178084 Dup of 8083 (Pest)	×	×							
FD-3C	178085	178085 S. 11th and Yakima	×				×		×		
FD-3D	178086	178086 S. Market	×				×		×		
FD-4	178087 DOT	DOT	×						×	×	
FD-5	178088	178088 S. 18th and Cedar	×	-	×			×	×	×	×
FD-6	178089	178089 21st and Dock St.	×		×		×		×		
FD-8	178090	178090 Picks Cove Drain	×		×	X		X	X	X	
*Semiyo	Matiles= Ta	*Semivolatiles= Target Compounds include PAI		tes and	ohthalates and chlorinated arom	atics					

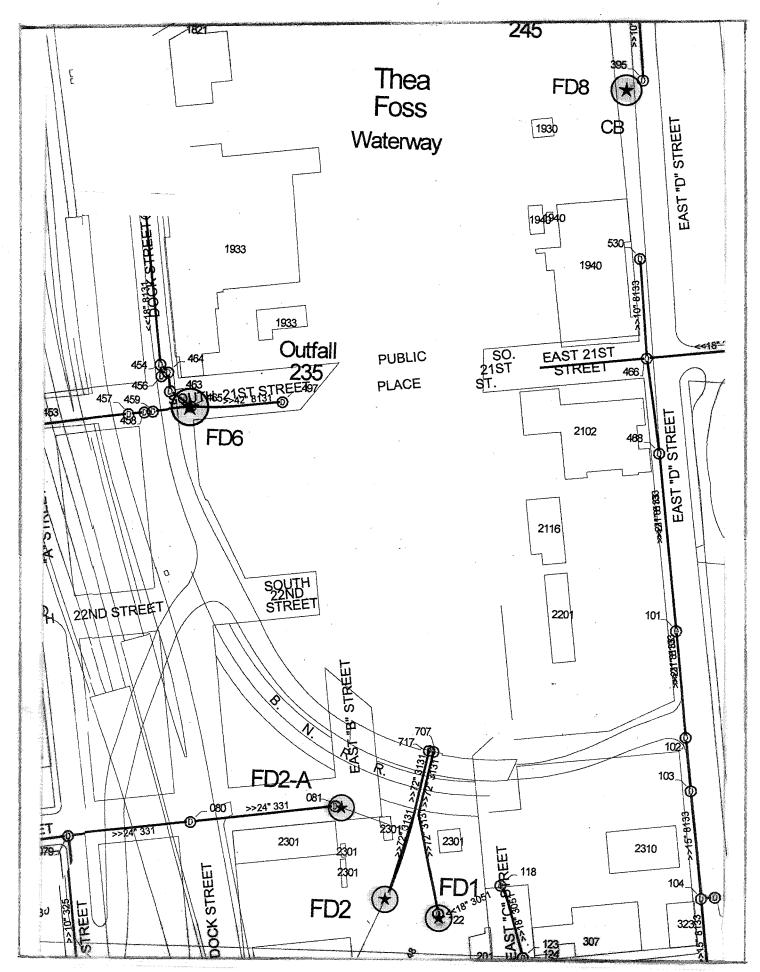


Figure A1: 1998 Sediment Trap Station Locations in Discharges to Thea Foss Waterway.

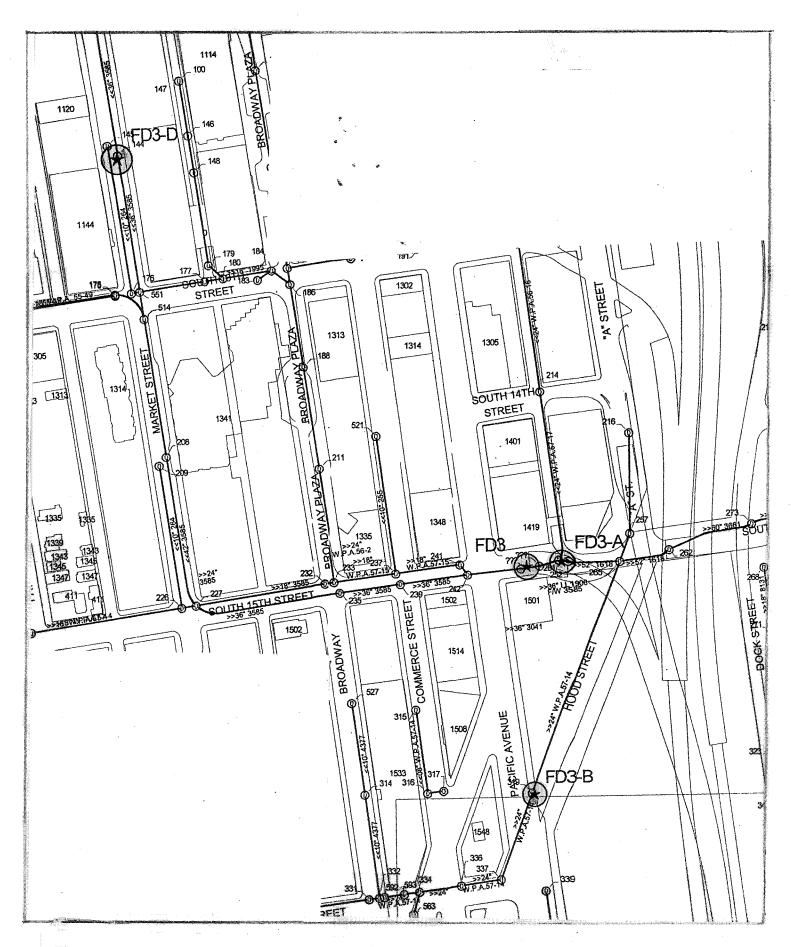


Figure A2: 1998 Sediment Trap Station Locations in Discharges to Thea Foss Waterway.



Figure A3: 1998 Sediment Trap Station Locations in Discharges to Thea Foss Waterway.

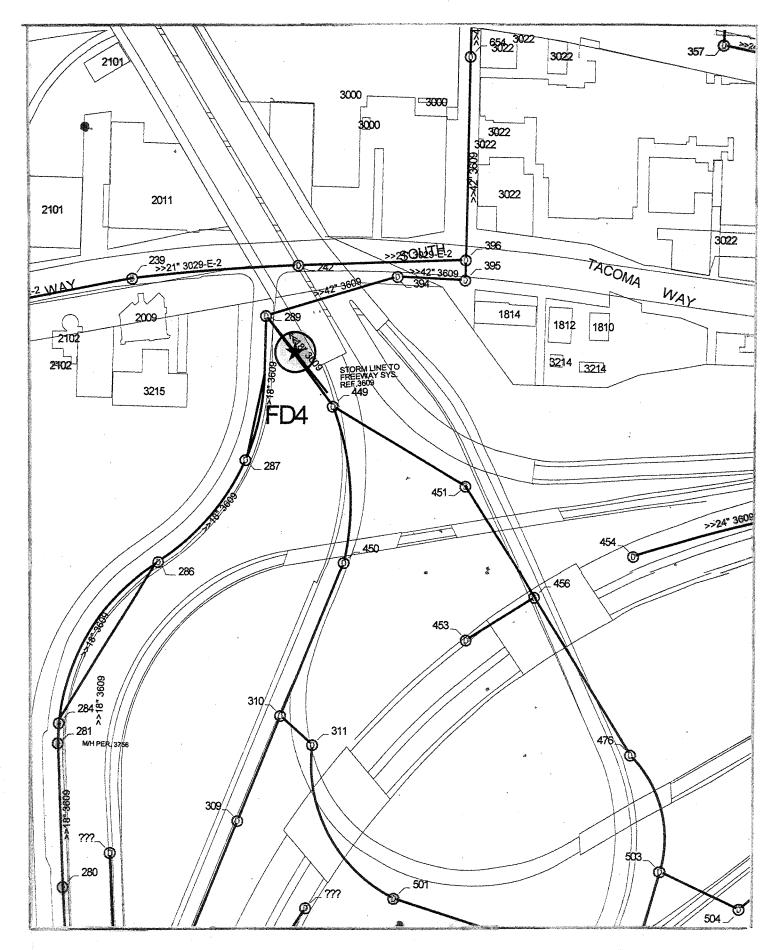


Figure A4: 1998 Sediment Trap Station Locations in Discharges to Thea Foss Waterway.

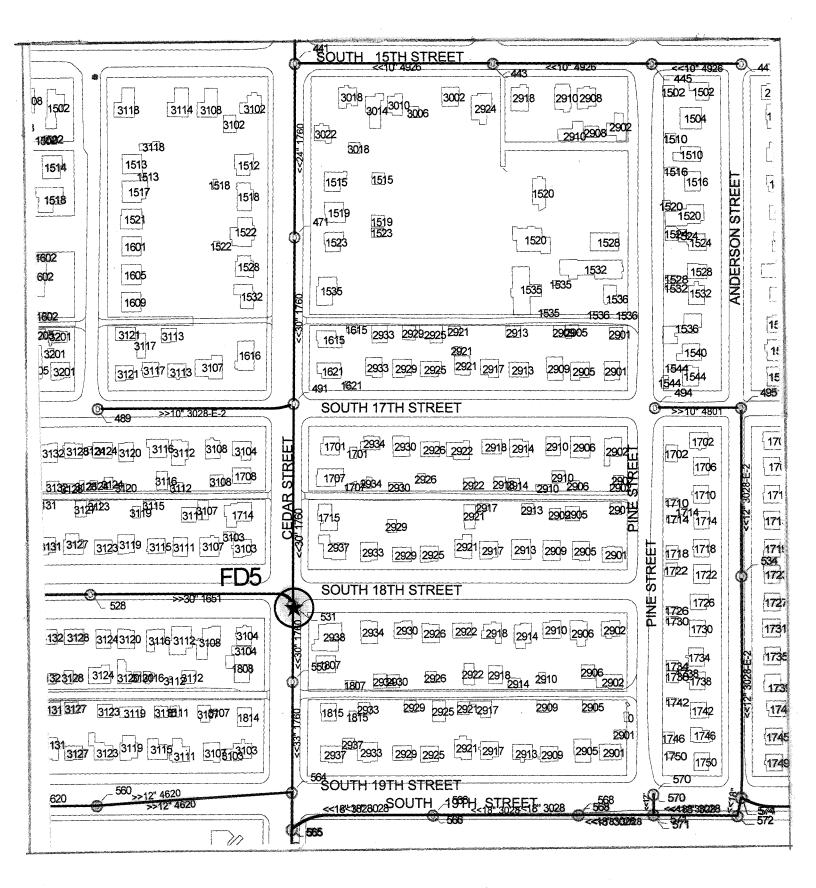


Figure A5: 1998 Sediment Trap Station Locations in Discharges to Thea Foss Waterway.

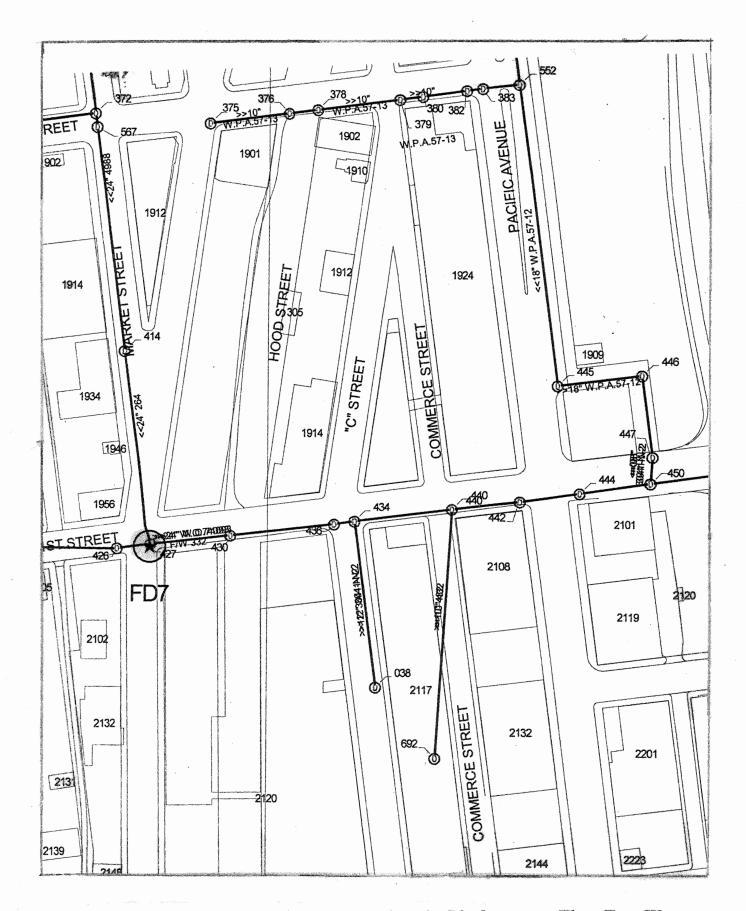


Figure A6: 1998 Sediment Trap Station Locations in Discharges to Thea Foss Waterway.

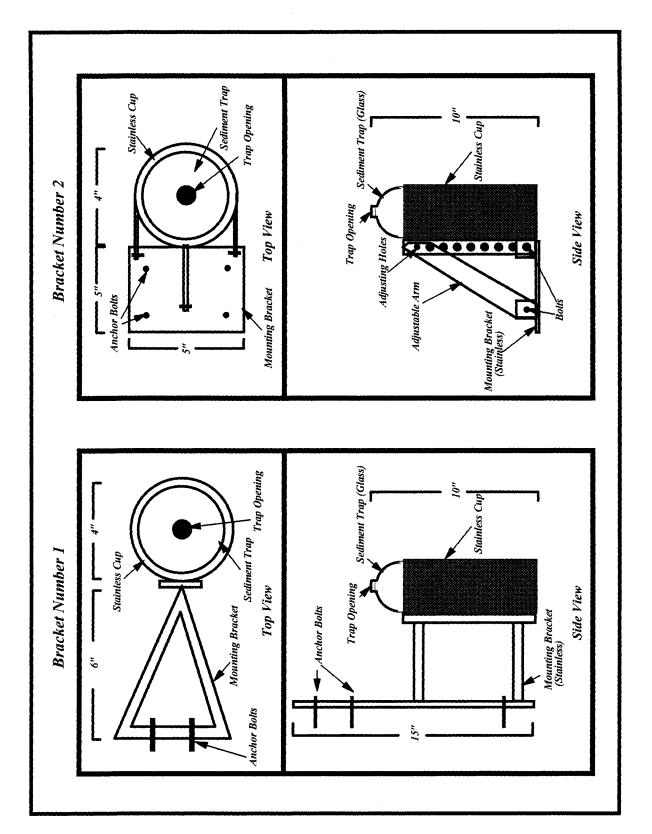


Figure A7: Construction Details of Stormwater Sediment Trap.

	·				
1					
				,	

Appendix B

Case Narratives for Laboratory Analyses

Washington State Department of Ecology Manchester Laboratory

June 11, 1998

TO:

Dale Norton

FROM:

Debbie Lacroix, Chemist

SUBJECT:

General Chemistry Quality Assurance memo for the CMB In-line Sed. Traps

Project

SUMMARY

The data generated by the analysis of these samples can be used noting the qualifications discussed in this memo. TOC 104°C samples 98178086, 178087, 178089, and 1780890 have been qualified as estimates. TOC 70°C samples 98178087, 178089 and 178090 were not analyzed for.

SAMPLE INFORMATION

Samples 98178080-90 from the CMB In-line Sed. Traps project were received by the Manchester Laboratory on 4-24-98 in good condition.

HOLDING TIMES

All analyses were performed within applicable EPA holding times.

ANALYSIS PERFORMANCE

Instrument Calibration

Where applicable, instrument calibration was performed before each analysis and verified by initial and verification standards and blanks. All initial and continuing calibration verification standards were within the relevant EPA control limits and a correlation of 0.995 or greater was met. All balances are calibrated yearly with calibration verification occurring monthly.

Procedural Blanks

All procedural blanks were within acceptable limits.

Precision Data

The results of the triplicate and duplicate analysis of these samples were used to evaluate the precision on this sample set. Triplicate and duplicate analyses were within their acceptance windows of \pm 0 %.

Laboratory Control Sample (LCS) Analyses

LCS analyses were within their acceptance windows of +/- 20 %.

Other Quality Assurance Issues

TOC 70°C samples 98178087, 178089 and 178090 were qualified as "NAF" for not analyzed for. There was insufficient sample to perform this analysis following the method. The percent solids analysis was performed instead as stated as the priority by the project officer. These three samples were, however analyzed after the percent solids analysis was performed at 104°C. The results of the analysis of these samples prepped at 104°C have been reported, but qualified as estimates at TOC 104°C since they were not calculated based upon the % solids analysis at 70°C as stated in the method.

TOC 104°C sample 98178086 is qualified as an estimate. The % solids analysis at 70°C and at 104°C differed greatly. The % solids at 70°C was performed two more times to verify the results. Although the resulting re-analysis provided closer results, the data should still be considered an estimate.

Please call Debbie Lacroix at 871-8812 with any questions or concerns about this project.

cc: Project File

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366

May 19, 1998

Project:

CMB In-line Sed. Traps

Samples:

17-8082-83, 88

Laboratory:

Soil Technology

By:

Pam Covey

Case Summary

These samples required four (4) Grain Size analyses on sediment using Puget Sound Estuary Protocol (PSEP) method. There was one duplicate analysis requested. Unfortunately, the samples the duplicate was requested on could not be analyzed due to insufficient sample size so sample 8088 was analyzed in duplicate instead.

The samples were received at the Manchester Environmental Laboratory on April 24, 1998 and transported to the contract lab on April 27, 1998 for Grain Size analyses.

The analyses were reviewed for qualitative and quantitative accuracy, validity and usefulness.

The results are acceptable for use as reported.

Department of Ecology CMB Traps Project

Case Narrative

Due to variations in water content, samples FD-31(17-8083) and FD-5(17-8088) required calculation of the weight of solids using Folk's method (*Petrology of Sedimentary Rocks*, R.L. Folk, 1974). Insufficient sample quantities prohibited representative resampling for determination using the standard method (based on subsample water content). Folk's weight of solids calculation adds the dry weight of the sample retained on the sieves (+ #230 sieve; > 62.5 microns) to the dry weight of the first pipet (4 phi) corrected for the volume of the cylinder and dispersant concentration.

Duplicate Analysis

Sample ED-2(17-8082) was requested for duplicate analysis, however due to very limited sample volume sample FD-5(17-8088) was used due to its greater sample volume.

May 27, 1998

To:

Dale Norton

From:

Randy Knox, Metals Chemist

Subject:

CMB In-line Sed. Traps Project.....

Sediment

QUALITY ASSURANCE SUMMARY

Data quality for this project met all quality assurance and quality control criteria with the exception that mercury spike data showed poor precision. No other significant quality assurance issues were noted with the data.

SAMPLE INFORMATION

The samples from the CMB In-line Sed. Traps Project were received by the Manchester Laboratory on 4/24/98 in good condition.

HOLDING TIMES

All analyses were performed within the specified method holding times for metals analysis (28 days for mercury, 180 days for all other metals).

INSTRUMENT CALIBRATION

Instrument calibration was performed before each analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10% during the run and again at the end of the analytical run. One group of fifteen mercury samples was run without intervening calibration verification samples. The instrument response before and after these samples showed instrument stability and the data was not qualified. All initial and continuing calibration verification standards were within the relevant method control limits. AA calibration gave a correlation coefficient (r) of 0.995 or greater, also meeting method calibration requirements. ICP data included satisfactory responses for initial interference check standards. No concluding determinations were made on the ICP interference check standards. Since the instrument was stable data was not qualified.

PROCEDURAL BLANKS

The procedural blanks associated with these samples showed no analytically significant levels of analyte.

SPIKED SAMPLES ANALYSIS

Spiked and duplicate spiked sample analyses were performed on this data set. All spike recoveries, with the exception of that for mercury and that for the duplicate lead spike, were within the acceptance limits of +/- 25%. Mercury data is qualified J as estimated due to high, 131%, spike recovery. Repeating determination of the mercury spike recovery gave 73% recovery with a somewhat higher result, 0.156 mg/Kg, for sample 98178080. The data indicates sample, mercury non-homogeneity. Recovery of the duplicate lead spike was 72%, slightly below the allowed limit. Since the average lead spike recovery of both lead duplicates was within allowed limits, lead data was not qualified.

PRECISION DATA

The results of the spiked and duplicate spiked samples were used to evaluate precision on this sample set. The relative percent difference (RPD) for all analytes was within the 20% acceptance window for duplicate analysis.

SERIAL DILUTION

A five times serial dilution of one sample was analyzed by ICP and the analytical results, corrected for dilution, compared to the original sample analysis. The RPD (relative % difference) for analytes at levels 50X greater than the detection level was acceptable, within $\pm 10\%$.

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

LCS analyses were within the windows established for each parameter.

Please call Randy Knox at SCAN 360-871-8811 or Jim Ross at SCAN 360-871-8808 to further discuss this project.

RLK:rlk

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

July 7, 1998

Subject:

Commencement Bay Sediment Traps, Week 17

Samples:

98178080 through 98178083, 98178088 through 98178090

Case No.

1290-98

Officer:

Dale Norton

By:

Karin Feddersen KF

SEMIVOLATILE ORGANICS

ANALYTICAL METHODS:

The samples were extracted following the EPA CLP and SW 846 8270 procedure. The extracts were cleaned up with Gel Permeation Chromatography (GPC) followed by silica gel chromatography. Analysis was by capillary GC/MS. Routine QA/QC procedures were performed with the analyses.

HOLDING TIMES:

The samples were stored at 4 degrees C until extraction. They were extracted and analyzed within the recommended holding times.

BLANKS:

Low levels of some analytes were detected in the laboratory blanks. An analyte is considered native to the sample when the on-column concentration is at least five times greater than in the associated method blanks. A phthalate is considered native to the sample when the concentration is at least ten times greater than in the associated method blanks.

SURROGATES:

The standard Manchester Laboratory surrogates were added to the sample prior to extraction. Surrogate recoveries were between 50 to 150% with one exception. D5-Phenol recovery was high in the dilution of sample 98178080. 4-Methylphenol may also be biased high in this sample, and the result was qualified as an estimate, ("J") in this sample.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

Sample 9817088 was spiked to evaluate recoveries in these samples. Most of the sample for one of the spikes was lost during the cleanup procedure. There was insufficient sample to perform another extraction. Therefore the results from only one of the spikes have been reported.

Results for analytes with recoveries below 50% in the remaining spike have been qualified "J" in the corresponding samples. (Aniline, 4-Chloroaniline and 3-Nitroaniline.)

Results for analytes with recoveries below 10% in the spike have been rejected (qualifier "REJ") in the corresponding samples. (Hexachlorocylopentadiene.)

ANALYTICAL COMMENTS:

Dilutions were performed for these samples. Use the dilution for all sample results qualified "E". No other dilution results have been reported.

Sample 98178090 was not diluted sufficiently to bring Bis-2-ethylhexylphthalate into the range of the calibration. This analyte is also qualified "E" in the dilution of this sample.

Bis-2-ethylhexylphthalate is qualified "J" in the dilution of sample 98178081 because the amount is slightly less than ten times the blank contamination.

The additional NOAA compounds were mistakenly analyzed for in these samples. These results have been provided at no extra charge.

The data is acceptable for use as reported.

DATA QUALIFIER CODES:

U,	-	The analyte was not detected at or above the reported value.
J		The analyte was positively identified. The associated numerical value is an estimate.
UJ	, -	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are unusable for all purposes.
NAF	-	Not analyzed for.
NC	-	Not Calculated.
N	<u>-</u> .	There is evidence the analyte is present in this sample.
NJ	-	There is evidence that the analyte is present. The associated numerical result is an estimate.
E	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range.
bold	-	The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E, Port Orchard Washington 98366

August 7, 1998

Subject:

Commencement Bay

Samples:

98178090

Case No.

1290-98

Officer:

Dale Norton

By:

Karin Feddersen KF

Analytical Management Unit

Organotins

ANALYTICAL METHODS:

The samples were extracted following the methods given in Puget Sound Estuary Program (PSEP) "Recommended Guidelines for Measuring Organic Compounds in Puget Sound Sediment and Tissue Samples" Recommended Methods for Organotin Compounds.

The samples were extracted by tumbling with sodium sulfate and methylene chloride/10% methanol and 0.1% by weight tropolone. After extraction the samples were solvent exchanged to hexane. The organotin compounds were hexylated using the Grignard reaction given in Krone et al (1989) including the silica gel/alumina cleanup.

Analysis was by capillary Gas Chromatography using Single Ion Monitoring (SIM) mode GC/MS. All samples are reported on a dry weight basis.

HOLDING TIMES:

The samples were stored frozen following PSEP Guidelines until extraction. All samples were analyzed within the recommended 40 days from extraction.

BLANKS:

Monobutyltin was detected in the laboratory blanks.

SURROGATES:

No surrogate recovery QC limits have been established for this method. Recovery of tripentyl tin ranged from 65% to 109%.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

Aliquots of samples 98248095 from Budd Inlet, and 98148253 from Gray's Harbor were used for matrix spikes and analyzed with the samples. Recoveries for Terabutyltin were below 5% in all

spikes. Non-detect results for this analyte have been rejected. Detected results may be biased low and have been qualified as estimates.

Tributyltin and Dibutyltin were detected at a higher native concentration in the sample 98248095 than in the spikes of this sample. Recoveries of these analytes in one of the spikes could not be calculated (NC).

Monobutyltin was detected at a higher native concentration in the sample 98148253 than in the spikes of this sample. Recoveries of this analyte in one of the spikes could not be calculated (NC).

Therefore, all results are qualified as estimates.

ANALYTICAL COMMENTS:

Dilutions were necessary for all analytes except Tetrabutyltin in this sample. Use the results from first dilution for Dibutyltin and Monobutyltin. Use the results from second dilution for Tributyltin, analytes in samples with results qualified with "E".

Sequim Bay Reference Sediments were analyzed with the samples. These are samples which presumably were spiked with 100 ng/gm (100ug/Kg) wet weight of Tributyltin. No value for Tributyltin has been established for the Sequim Bay Reference Sediment so the accuracy of the analysis cannot be precisely determined. However, the values appear to be fairly closely associated with the surrogate recoveries. These samples are identified as OCS8175A1 and OCS8175A2.

OCS8175A1	83 82	ug/Kg %	Tributyltin Chloride Tripentyltin surrogate recovery
OCS8175A2	89 90	ug/Kg %	Tributyltin Chloride Tripentyltin surrogate recovery

(Note that the data sheets report these values as dry weight. The percent solids has been determined to be 60.4% for this material.)

Duplicate samples of PACS-2 were also analyzed with the samples. The value for PACS-2 has been certified as 0.98 +/- 0.13 mg/Kg Tributyltin, and 1.09 +\- 0.15 mg\Kg Dibutyltin, as elemental Tin. These values are approximately equivalent to 2800 ug/Kg as chloride. The values obtained for these samples appear to be fairly closely associated with the surrogate recoveries. These samples are identified as OCS8175A3 and OCS8175A4.

OCS8175A3	2090	ug/Kg	Tributyltin Chloride
	2000	ug/Kg	Dibutyltin Chloride
	72	%	Tripentyltin surrogate recovery
OCS8175A4	1850 · 2010 65	ug/Kg ug/Kg %	Tributyltin Chloride Dibutyltin Chloride Tripentyltin surrogate recovery

DATA QUALIFIER CODES:

- U The analyte was not detected at or above the reported value.
- J The analyte was positively identified. The associated numerical value is an <u>estimate</u>.
- UJ The analyte was not detected at or above the reported estimated result.
- REJ The data are <u>unusable</u> for all purposes.
- E This qualifier is used when the concentration of the associated value exceeds the known calibration range.
- **bold** The analyte was present in the sample. (Visual Aid to locate detected compound on report sheet.)

HISS-1, MESS-2, PACS-2

Marine Sediment Reference Materials for Trace Metals and other Constituents

The following tables show those constituents for which certified and information values have been established. Certified values are based on the results of determinations by at least two independent methods of analysis. The uncertainties represent 95% confidence limits for an individual sub-sample of 250 mg or greater.

Trace Metals (milligrams per kilogram)

	HISS-1	MESS-2	PACS-2		
Antimony	(0.13)*	1.09 ± 0.13	11.3 ± 2.6		
Arsenic	0.801 ± 0.099	20.7 ± 0.8	26.2 ± 1.5		
Beryllium	0.129 ± 0.023	2.32 ± 0.12	1.0 ± 0.2		
Cadmium	0.024 ± 0.009	0.24 ± 0.01	2.11 ± 0.15		
Chromium	$30.0 \pm 6.8^{\dagger}$	106 ± 8	90.7 ± 4.6		
Cobalt	(0.65)*	13.8 ± 1.4	11.5 ± 0.3		
Copper	2.29 ± 0.37	39.3 ± 2.0	310 ± 12		
Lead	3.13 ± 0.40	21.9 ± 1.2	183 ± 8		
Lithium	2.83 ± 0.54	73.9 ± 0.7	32.2 ± 2.0		
Manganese	66.1 ± 4.2	365 ± 21	440 ± 19		
Mercury	(0.01)*	0.092 ± 0.009	3.04 ± 0.20		
Molybdenum	(0.13)*	2.85 ± 0.12	5.43 ± 0.28		
Nickel	2.16 ± 0.29	49.3 ± 1.8	39.5 ± 2.3		
Selenium	0.050 ± 0.007	0.72 ± 0.09	0.92 ± 0.22		
Silver	0.016 ± 0.002	0.18 ± 0.02	1.22 ± 0.14.		
Strontium	96.9 ± 11.2	125 ± 10	276 ± 30 .		
Thallium	(0.06)*	(0.98)*	(0.6)*		
Tin	(0.11)*	2.27 ± 0.42	19.8 ± 2.5		
Uranium	(0.26)*	***	(3.)*		
Vanadium	6.80 ± 0.78	252 ± 10	133 ± 5		
Zinc	4.94 ± 0.79	172 ± 16	364 ± 23		
			•		
Tributyltin (as Sn)	•••		0.98 ± 0.13		
Dibutyltin "	***		1.09 ± 0.15		
MonobutyItin "		***	(0.3)*		

*information value only

† see page 3

7411 Beach Dr E, Port Orchard Washington 98366

CASE NARRATIVE

May 7, 1998

Subject:

CMB In-line Sed. Traps

Sample(s):

98178085, 86 and 89

Officer(s):

Dale Norton

By:

Bob Carrell (13)

Organics Analysis Unit

HYDROCARBON IDENTIFICATION ANALYSIS

ANALYTICAL METHOD(S):

The sediment samples for hydrocarbon identification were extracted following Manchester Laboratory's standard operating procedure. A portion of each of the sediment samples was placed in disposable glass centrifuge tubes, methylene chloride was added and the samples were extracted on a vortex mixer. These extracts were then analyzed, along with various petroleum product standards, using capillary Gas Chromatography and with Flame Ionization Detection (GC/FID). To remove interfering co-extracted biogenic organic compounds these extracts were treated with concentrated sulfuric acid and silica gel and reanalyzed by GC/FID.

BLANKS:

No target compounds/products were detected in the method blanks. Hence, the blanks demonstrate the system was free from contamination.

HOLDING TIMES:

All samples were extracted and analyzed within the recommended holding times for the method.

RESULTS/COMMENTS:

All of these samples showed the same basic structure of an unresolved envelope of compounds (and a collection of small discrete peaks riding on this envelope) eluting in the lube oil range. After the cleanup using acid/silica gel, these samples lost most of their discrete peaks and the remaining compound envelope showed event greater similarity to that seen in the 30 wt. motor oil standard analyzed with them. The only appreciable difference between them was that the retention time of the apex of the envelope for the motor oil standard was slightly later than those of the samples. Given the compound fingerprint displayed by the

sample chromatograms, this means that the petroleum product seen in all samples is some type of lube oil, which is a generic term encompassing hydraulic fluids, mineral oils, motor oils and lubricating oils. It becomes quite problematic to distinguish between these petroleum products due to the similarity of their chromatographic signatures.

7411 Beach Drive E, Port Orchard Washington 98366

CASE NARRATIVE

August 18, 1998

Subject:

CMB In-line Sediment Traps

Samples:

98178083 and 98178084

Project ID:

1290-98

Project Officer:

Dale Norton

By:

Karin Feddersen KF

Chlorinated Pesticides

SUMMARY:

The data is usable as reported.

ANALYTICAL METHODS:

These samples were analyzed by EPA Method 8080 for chlorinated pesticides, employing the dual column confirmation technique.

BLANKS:

Methoxychlor was detected in one the laboratory blanks, but not in the samples.

SURROGATES:

Surrogate recoveries were within acceptable limits for all samples.

HOLDING TIMES:

The samples were extracted and analyzed within the method holding times.

SPIKED BLANK:

A blank spike, labeled OFS8119PP, was extracted and analyzed with these samples. All spike recoveries were within acceptable limits with one exception. Endrin Aldehyde was not recovered. Therefore all results for this analyte have been rejected ("REJ") in these samples.

REFERENCE SAMPLE:

Reference sample 1941a, labeled OCS8119, was extracted and analyzed with these samples. A copy of the certified concentrations is included with this report.

DATA QUALIFIER CODES:

U	-	The analyte was not detected at or above the reported value.
J	-	The analyte was positively identified. The associated numerical value is an estimate.
UJ	-	The analyte was not detected at or above the reported estimated result.
REJ	_	The data are unusable for all purposes.
NAF	-	Not analyzed for.
N .	-	There is evidence the analyte is present in the sample.
NJ	· -	There is evidence that the analyte is present. The associated numerical result is an estimate.
E	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range. The associated numerical result is an estimate.
bold	-	The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

98CMB_sed_traps.doc

APPENDIX B

Noncertified Concentrations of PCB Congeners and Chlorinated Pesticides in SRM 1941a

NOTE: The noncertified values have not been confirmed by an independent analytical technique as required for certification. Although bias has not been evaluated for the procedures used, the noncertified concentrations should be useful for comparison with results obtained using similar procedures (i.e., Soxhlet solvent extraction and GC-ECD or GC-MS on a similar column).

Polychlorinated Biphenyls ²	Concentration $\mu g/kg$ (dry weight) ^{b,c}
PCB 8 (2,4'-Dichlorobiphenyl) ^d PCB 18 (2,2',5-Trichlorobiphenyl) ^d PCB 28 (2,4,4'-Trichlorobiphenyl) ^d PCB 31 (2,4',5-Trichlorobiphenyl) ^d PCB 151 (2,2',3,5,5',6-Hexachlorobiphenyl) ^e PCB 183 (2,2',3,4,4',5',6-Heptachlorobiphenyl) ^e PCB 187 (2,2',3,4',5,5',6-Heptachlorobiphenyl) ^{d,e} 182 (2,2',3,4,4',5,6'-Heptachlorobiphenyl)	$ \begin{array}{r} 1.39 \pm 0.19 \\ 1.15 \pm 0.16 \\ 9.8 \pm 3.7 \\ 6.2 \pm 2.4 \\ 2.62 \pm 0.22 \\ 1.63 \pm 0.15 \\ 7.0 \pm 2.6 \end{array} $
Chlorinated Pesticides	
Oxychlordane ^d Dieldrin ^d 4,4'-DDT ^d	$\begin{array}{ccc} 2.59 & \pm & 0.19 \\ 1.26 & \pm & 0.37 \\ 1.25 & \pm & 0.10 \end{array}$

PCB congeners are numbered according to the scheme proposed by Ballschmitter and Zell [7] and later revised by Schulte and Malisch [8] to conform with IUPAC rules; for the specific congeners mentioned in this SRM, the Ballschmitter-Zell numbers correspond to those of Schulte and Malisch. When two or more congeners are known to coelute, the PCB congener listed first is the major component and the additional congeners may be present as minor components. The quantitative results are based on the response of the congener listed first.

^b Concentrations reported on dry weight basis; material as received contains approximately 2.2% moisture.

⁴ Concentration determined by GC-ECD on C-18 column.

Concentrations are the mean values determined by the technique(s) indicated; subsamples from six bottles were extracted and analyzed in duplicate; uncertainties for the measurements are a 95% confidence interval for the mean plus an allowance for differences between the analytical methods when two methods were used.

^c Concentration determined by GC-MS on DB-5 column.

Table 2. Certified Concentrations of PCB Congeners and Chlorinated Pesticides in SRM 1941a

Polychlorinated Biphenyls ²	Concentration μg/kg (dry weight) ^{b.c}
PCB 44 (2,2',3,5'-Tetrachlorobiphenyl)	4.80 ± 0.62
PCB 49 (2,2',4,5'-Tetrachlorobiphenyl)	9.5 ± 2.1
PCB 52 (2,2',5,5'-Tetrachlorobiphenyl)	6.89 ± 0.56
PCB 66 (2,3',4,4'-Tetrachlorobiphenyl)	6.8 ± 1.4
PCB 87 (2,2',3,4,5'-Pentachlorobiphenyl)	6.70 ± 0.37
PCB 95 (2,2',3,5',6-Pentachlorobiphenyl)	7.5 ± 1.1
PCB 99 (2,2',4,4',5-Pentachlorobiphenyl)	4.17 ± 0.51
PCB 101 (2,2',4,5,5'-Pentachlorobiphenyl)	11.0 ± 1.6
PCB 105 (2,3,3',4,4'-Pentachlorobiphenyl)	3.65 ± 0.27
PCB 110 (2,3,3',4',6-Pentachlorobiphenyl)	9.47 ± 0.85
PCB 118 (2,3',4,4',5-Pentachlorobiphenyl)	10.0 ± 1.1
PCB 128 (2,2',3,3',4,4'-Hexachlorobiphenyl)	1.87 ± 0.32
PCB 138 (2,2',3,4,4',5'-Hexachlorobiphenyl)	13.38 ± 0.97
163 (2,3,3',4',5,6-Hexachlorobiphenyl)	
164 (2,3,3',4',5',6-Hexachlorobiphenyl)	
PCB 149 (2,2',3,4',5',6-Hexachlorobiphenyl)	9.2 ± 1.1
PCB 153 (2,2',4,4',5,5'-Hexachlorobiphenyl)	17.6 ± 1.9
PCB 156 (2,3,3',4,4',5-Hexachlorobiphenyl)	0.93 ± 0.14
PCB 170 (2,2',3,3',4,4',5-Heptachlorobiphenyl)	3.00 ± 0.46
190 (2,3,3',4,4',5,6-Heptachlorobiphenyl)	
PCB 180 (2,2',3,4,4',5,5'-Heptachlorobiphenyl)	5.83 ± 0.58
PCB 194 (2,2',3,3',4,4',5,5'-Octachlorobiphenyl)	1.78 ± 0.23
PCB 206 (2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl)	3.67 ± 0.87
PCB 209 (Decachlorobiphenyl)	8.34 ± 0.49
Chlorinated Pesticides	
Hexachlorobenzene	70 ± 25
cis-Chlordane (\alpha-Chlordane)	2.33 ± 0.56
trans-Nonachlor	1.26 ± 0.13
2,4'-DDE	0.73 ± 0.11
4,4'-DDE	6.59 ± 0.56
A A 5 TM TM TM	

² PCB congeners are numbered according to the scheme proposed by Ballschmitter and Zell [7] and later revised by Schulte and Malisch [8] to conform with IUPAC rules; for the specific congeners mentioned in this SRM, the Ballschmitter-Zell numbers correspond to those of Schulte and Malisch. When two or more congeners are known to coelute, the PCB congener listed first is the major component and the additional congeners may be present as minor components. The quantitative results are based on the response of the congener listed first.

5.06

± 0.58

4,4'-DDD

b Concentrations reported on dry weight basis; material as received contains approximately 2.2% moisture.

^c The certified values are weighted means of results from two analytical techniques as described by Schiller and Eberhardt.[13] The uncertainty is based on a 95% confidence interval for the true concentration, and includes an allowance for differences between the analytical methods used.

Appendix C

Laboratory Data Sheets

General Chemistry

Percent Solids
Total Organic Carbon
Grain Size

Department of Ecology

Analysis Report for

Percent Solids

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton **Date Reported:** 05-MAY-98

Method: Matrix: EPA160.3 Sediment/Soil

Analyte: Solids

Sample	QC Field ID	Result	Qualifier Units	Received	Analyzed
98178080	FD-1	51.1	%	04/24/98	04/29/98
98178081	FD-2	57.1	%	04/24/98	04/29/98
98178082	FD-2D	66.3	%	04/24/98	04/29/98
98178083	FD-3	52.1	%	04/24/98	04/29/98
98178085	FD-3C	27.3	%	04/24/98	04/29/98
98178085	Duplicate	28.2	%	04/24/98	04/29/98
98178086	FD-3D	23.3	%	04/24/98	04/29/98
98178088	FD-5	78.3	%	04/24/98	04/29/98
98178088	Duplicate	79.9	%	04/24/98	04/29/98
98178088	Duplicate	79.1	%	04/24/98	04/29/98
98178089	FD-6	23.4	%	04/24/98	04/29/98
98178090	FD-8	35.2	%	04/24/98	04/29/98

Authorized By: Release Date: 6-11-98

Department of Ecology

Analysis Report for

Total Organic Carbon (70 C)

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton **Date Reported:** 22-MAY-98

Method: PSEP-TOC

Matrix:

Sediment/Soil

Analyte: Total Organic Carbon

Sample	QC	Field ID	Result	Qualifier	Units	Received	Analyzed
98178080		FD-1	5.13		%	04/24/98	05/18/98
98178081		FD-2	4.36	•	%	04/24/98	05/18/98
98178082		FD-2D	3.42		%	04/24/98	05/18/98
98178083	•	FD-3	5.57		%	04/24/98	05/18/98
98178085		FD-3C	11.9		%	04/24/98	05/18/98
98178086	,	FD-3D	5.62	3 T A 377	%	04/24/98	05/18/98
98178087		FD-4	0.54	NAF	% ~	04/24/98	05/18/98
98178088 98178088	Duplic	FD-5	0.54 0.52		% %	04/24/98 04/24/98	05/18/98 05/18/98
98178088	Replica		0.53		% %	04/24/98	05/18/98
98178089	корпо	FD-6	V.	NAF	%	04/24/98	05/18/98
98178090		FD-8		NAF	.%	04/24/98	05/18/98
GBR81387			3.05		%		05/18/98
GER8138			34.3	•	%		05/18/98
GER8138			34.7		%		05/18/98
GGL8138'	TOCA		40.8		%		05/18/98

Authorized By: Alle Herry

Release Date: 6-11-98

Department of Ecology

Analysis Report for

Total Organic Carbon (104 C)

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton **Date Reported:** 02-JUN-98

Method: **PSEP-TOCM** Matrix:

Sediment/Soil

Analyte: Total Organic Carbon

				,				
Sample	QC	Field ID	Result	Qualifier	Units	, ,	Received	Analyzed
			•					
98178080		FD-1	4.97		%		04/24/98	05/21/98
98178081		FD-2	4.47		%		04/24/98	05/21/98
98178082		FD-2D	3.43		%		04/24/98	05/21/98
98178083		FD-3	5.59		%		04/24/98	05/21/98
98178085		FD-3C	12.1		%		04/24/98	05/21/98
98178086	· ·	FD-3D	8.56	\mathbf{J}	%		04/24/98	05/21/98
98178087		FD-4	12.5	J	%		04/24/98	05/15/98
98178088		FD-5	0.54		%		04/24/98	05/21/98
98178088	Duplica	ite	0.51		%		04/24/98	05/21/98
98178088	Replica		0.52		%		04/24/98	05/21/98
98178089	. •	FD-6	5.41	\mathbf{J}	%		04/24/98	05/15/98
98178090		FD-8	8.07	${f J}$	%		04/24/98	05/15/98
1								

Authorized By:

Release Date: 6-11-95

Department of Ecology CMB Traps Project Apparent Sediment Grain Size Distribution

	9				e S				<u> </u>				a			
	Balance		0		Balance		0		Balance		0		Balance		, C	
	10	<0.9 microns	00		10	<0.9 microns	00		10	<0.9 microns	0 0		Ō.	<0.9 microns	00	
	ග	1.9-0.9 microns	00	~	OI.	1.9-0.9 microns	0	•	co	1.9-0.9 microns	ω. ©	O.	ග	9.0 Sms	00	0
	0	3.9-1.9 microns			. 00	3. j	- a		0 0	3.9-1.9 microns	00		ထ	9. Su	00	
	, ^	7.8-3.9 micrans			^	7.8-3.9 microns			۲-	7.8-3.9 microns	00			7.8-3.9 microns	00	
	œ	15.8-7.8 micrans	- 27		œ	15.6-7.8 microns	22	-	œ	15.6-7.8 microns	00		œ	15.6-7.8 microns	00	/
	un	31.2-15.6 microns	m co −	^	ĸ	31.2-15.8 microns	44	-	v	31.2-15.6 microns			ĸ	31.2-15.6 microns	0 0	
	4	62.5-31.2 microns	66 12		٧	62.5-31.2 microns	00 4		7	62.5-31.2 microns	0 -		4	62.5-31.2 micrans	o -	·
·	No. 230:	125-62.4 microns	10		No. 230:	125-82.4 microns	27 B		No. 230:	125-62.4 microns			No. 230:	125-62.4 micrans	← ←	
	No. 120:	250-125 microns	26 13		No. 120:	250-125 microns	20 12		No. 120:	250-125 microns	3.2		No. 120:	250-125 microns	26	
	No. 60:	500-250 microns	86 gt		No. 60:	500-250 microns	7232)	No. 60:	500-250 microns	φ \$;	250	No. 60:	500-250 microns	33	15
	No. 35:	1000-500 microns	58 17	`	No. 35:	1000-500 microns	, 20		No. 35:	1000-500 microns	38		No. 35:	1000-500 microns	888	
SONOS % 69	No. 18:	2000-1000 microns	75	SOLIDS %	No. 18:	2000-1000 microns	73	SOMOS % 82	No. 18:	2000-1000 microns	75	% sorids	No. 18:	2000-1000 microns	78	
69 69	No. 10:	4750-2000 micrans	11	7	No. 10:	4750-2000 microns	88 12		No. 10:	4750-2000 microns	90.	92 0)	No. 10:	> 4750 4750-2000 nicrons microns	9.5	~
	No. 4:	> 4750 microns	98		No. 4:	> 4750 microns	0 0	 - - - - - - - - - - - - - - - - - -	No. 4:	> 4750 microns	97 3		plicate 2 No. 4:	> 4750 microns	98	
5-07 Sample ID: 58-2	Ξ	Finer man Pril Size ~~> Grain Size ~~>	Percent Passing (%)> Fractional Percent (%)>	Sample ID: Engle	Sieve Size>	Finer than Phi Size> Grain Size>	Percent Passing (%)> Fractional Percent (%)>	Sample ID: FD-5*	Sieve Size> No. 4	Finer than Phi Size> Grain Size>	Percent Passing (%)> Fractional Percent (%)>	Sample ID: FD-5*	Sieve Size> No.4	Finer than Pril Size> Grain Size>	Percent Passing (%)> Fractional Percent (%)>	

1 Organics included. * For samples FD-31 and FD-5 see case narrative on page 2

Metals

Lead Mercury Zinc

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton Date Reported: 18-MAY-98

Method: EPA200.7 Matrix: Sediment/Soil

Analyte: Lead

Sample	QC Field ID	Result Qu	ualifier Units	Received	Analyzed
	FD-1 LMX1 - Matrix Spike LMX2 - Matrix Spike FD-2 FD-2D FD-3 FD-5 FD-8	137 81 % 72 % 111 113 171 77.0 186 2 90 % 7.7 8.0	mg/Kg dw	04/24/98 04/24/98 04/24/98 04/24/98 04/24/98 04/24/98 04/24/98	05/08/98 05/08/98 05/08/98 05/08/98 05/08/98 05/08/98 05/08/98 05/08/98 05/08/98 05/08/98

Authorized By: Kandy & Kny

Release Date: 5//

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton **Date Reported:** 13-MAY-98

Method: EPA200.7 Matrix: Sediment/Soil

Analyte: Zinc

Sample	QC Field ID	Result Qua	alifier Units	Received	Analyzed
	FD-1 Matrix Spike Matrix Spike FD-2 FD-2D	273 104 % 76 % 268 254	mg/Kg dw mg/Kg dw mg/Kg dw	04/24/98 04/24/98 04/24/98 04/24/98 04/24/98	05/08/98 05/08/98 05/08/98 05/08/98 05/08/98
98178082 98178083 98178088 98178090 M8121SB1	FD-2D FD-3 FD-5 FD-8	290 107 741	mg/Kg dw mg/Kg dw mg/Kg dw U mg/Kg dw	04/24/98 04/24/98 04/24/98	05/08/98 05/08/98 05/08/98 05/08/98
M8121SL1 M8121SL2 M8121SL3		87 % 30.2 31.6	mg/Kg dw mg/Kg dw		05/08/98 05/08/98 05/08/98

Authorized By: Sandy & Kney

Release Date: 5/15/9

Department of Ecology

Analysis Report for

Mercury

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton Date Reported: 08-MAY-98

Method: E Matrix: So

EPA245.5 Sediment/Soil

Analyte: Mercury

Sample	QC	Field ID	,	Result	Qualifier	Units	Received	Analyzed
98178080		FD-1	•,	0.112	J	mg/Kg dw	04/24/98	05/05/98
98178080	Duplicat	e		0.103	J	mg/Kg dw	04/24/98	05/05/98
98178080	Matrix S			131 %		. .	04/24/98	05/05/98
98178081		FD-2		0.098	J	mg/Kg dw	04/24/98	05/05/98
98178082		FD-2D		0.128	J	g/Kg dw	04/24/98	05/05/98
98178083		FD-3		0.180	J	mg/Kg dw	04/24/98	05/05/98
98178088		FD-5		0.029	J	mg/Kg dw	04/24/98	05/05/98
98178090	*	FD-8		1.88	J	mg/Kg dw	04/24/98	05/05/98
M8124SG	•			100		%		05/05/98
M8124SH			•	0.005	U	mg/Kg dw		05/05/98

Authorized By: Kandy & Knox

Release Date: 5/12/98

Organics

Semivolatiles
Organotins
Hydrocarbon Identification
Chlorinated Pesticides

	·		
. •			
	•		
		,	

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178080

Date Received: 04/24/98

Method: SW8270

Field ID: FD-1

Date Prepared: 05/01/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifie
Pyridine	160	U	Acenaphthylene	59	J
N-Nitrosodimethylamine	160	U	3-Nitroaniline	401	ŪJ
Aniline	80	UJ	Acenaphthene	178	
Phenol	766		2,4-Dinitrophenol	6420	U
Bis(2-Chloroethyl)Ether	160	U	4-Nitrophenol	401	Ū
2-Chlorophenol	160	U	1,6,7-Trimethylnaphthalene	63	J
1,3-Dichlorobenzene	160	U	Dibenzofuran	177	
1,4-Dichlorobenzene	160	U	2,4-Dinitrotoluene	401	U
1,2-Dichlorobenzene	160	U	Diethylphthalate	160	· U
Benzyl Alcohol	80	U	Fluorene	292	
2-Methylphenol	50	J	4-Chlorophenyl-Phenylether	160	U
2,2'-Oxybis[1-chloropropane]	80	Ŭ	4-Nitroaniline	401	Ū
N-Nitroso-Di-N-Propylamine	160	U	4,6-Dinitro-2-Methylphenol	1600	Ū
4-Methylphenol	6520	E	N-Nitrosodiphenylamine	72	Ĵ
Hexachloroethane	160	U	1,2-Diphenylhydrazine	80	Ŭ
Nitrobenzene	160	Ü	4-Bromophenyl-Phenylether	160	U
Isophorone	160	U	Hexachlorobenzene	160	· U
2-Nitrophenol	401	U	Pentachlorophenol	420	
2,4-Dimethylphenol	160	U	Dibenzothiophene	251	
Bis(2-Chloroethoxy)Methane	160	Ū	Phenanthrene	4430	
Benzoic Acid	3590	J	Anthracene	713	
2,4-Dichlorophenol	160	Ŭ	Caffeine	80	U.
1,2,4-Trichlorobenzene	160	U	Carbazole	1130	_
Naphthalene	178		Phenol, 4-Nonyl-	160	U
4-Chloroaniline	80	UJ	2-Methylphenanthrene	496	_
Hexachlorobutadiene	160	Ū	1-Methylphenanthrene	317	
4-Chloro-3-Methylphenol	160	Ū	Di-N-Butylphthalate	695	U
2-Methylnaphthalene	143	-	Fluoranthene	8270	E
1-Methylnaphthalene	92	${f J}$	Benzidine	803	ŪJ
Hexachlorocyclopentadiene		REJ	Pyrene	5930	
2,4,6-Trichlorophenol	160	Ū	Retene	309	
2,4,5-Trichlorophenol	160	Ŭ	Butylbenzylphthalate	1860	
1,1'-Biphenyl	49	Ĵ	Benzo(a)anthracene	2530	
2-Chloronaphthalene	80	Ŭ	3,3'-Dichlorobenzidine	160	U
2,6-Dimethylnaphthalene	117	_	Chrysene	3920	_
2-Nitroaniline	401	U	Bis(2-Ethylhexyl) Phthalate	19400	E
Dimethylphthalate	72	j	Di-N-Octyl Phthalate	2080	
2,6-Dinitrotoluene	401	Ŭ	Benzo(b)fluoranthene	3040	

Authorized By: All

Release Date: 7/6/91

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178080

Method: SW8270

Field ID: FD-1

Date Received: 04/24/98

Project Officer: Dale Norton

Date Prepared: 05/01/98

Matrix: Sediment/Soil

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	
Benzo(k)fluoranthene	3930		
Benzo[e]pyrene	2540		
Benzo(a)pyrene	3360		
Perylene	905		
3B-Coprostanol		NAF	
Indeno(1,2,3-cd)pyrene	2700		
Dibenzo(a,h)anthracene	684		
Benzo(ghi)perylene	1880		
2 Elyanarhanal	112	0%	
2-Fluorophenol	112	%	
D5-Phenol	120	%	
D4-2-Chlorophenol	101	%	
1,2-Dichlorobenzene-D4	74	%	
D5-Nitrobenzene	81	%	
2-Fluorobiphenyl	93	%	
D10-Pyrene	89	%	
D14-Terphenyl Benzo(e)pyrene-d12	91	% NAF	

Authorized By:	Thudel
•	

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178080 (Dilution - DIL1)

Date Received: 04/24/98 Date Prepared: 05/01/98

Method: SW8270 Matrix: Sediment/Soil

Field ID: FD-1

Project Officer: Dale Norton

Date Analyzed: 05/27/98

ug/Kg dw Units:

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine		NC	Acenaphthylene		NC
N-Nitrosodimethylamine		NC	3-Nitroaniline		NC
Aniline	•	NC	Acenaphthene		NC
Phenol		NC	2,4-Dinitrophenol		NC
Bis(2-Chloroethyl)Ether		NC	4-Nitrophenol		NC
2-Chlorophenol		NC	1,6,7-Trimethylnaphthalene		NC
1,3-Dichlorobenzene		NC	Dibenzofuran		NC
1,4-Dichlorobenzene		NC	2,4-Dinitrotoluene		NC
1,2-Dichlorobenzene		NC	Diethylphthalate		NC
Benzyl Alcohol		NC	Fluorene		NC
2-Methylphenol		NC	4-Chlorophenyl-Phenylether		NC
2,2'-Oxybis[1-chloropropane]		NC	4-Nitroaniline		NC
N-Nitroso-Di-N-Propylamine		NC	4,6-Dinitro-2-Methylphenol		NC
4-Methylphenol	8980	J	N-Nitrosodiphenylamine		NC
Hexachloroethane	•	NC	1,2-Diphenylhydrazine		NC
Nitrobenzene		NC	4-Bromophenyl-Phenylether		NC
Isophorone		NC	Hexachlorobenzene		NC
2-Nitrophenol		NC	Pentachlorophenol		NC
2,4-Dimethylphenol		NC	Dibenzothiophene		NC
Bis(2-Chloroethoxy)Methane		NC	Phenanthrene		NC
Benzoic Acid		NC	Anthracene		NC
2,4-Dichlorophenol		NC	Caffeine		NC
1,2,4-Trichlorobenzene	,	NC	Carbazole		NC
Naphthalene		NC	Phenol, 4-Nonyl-		NC
4-Ĉhloroaniline		NC	2-Methylphenanthrene		NC
Hexachlorobutadiene		NC	1-Methylphenanthrene		NC
4-Chloro-3-Methylphenol		NC	Di-N-Butylphthalate		NC
2-Methylnaphthalene		NC	Fluoranthene	11300	
1-Methylnaphthalene		NC	Benzidine		NC
Hexachlorocyclopentadiene		NC	Pyrene		NC
2,4,6-Trichlorophenol		NC	Retene		NC
2,4,5-Trichlorophenol		NC	Butylbenzylphthalate		NC
1,1'-Biphenyl		NC	Benzo(a)anthracene		NC
2-Chloronaphthalene	•	NC	3,3'-Dichlorobenzidine		NC
2,6-Dimethylnaphthalene		NC	Chrysene		NC
2-Nitroaniline		NC	Bis(2-Ethylhexyl) Phthalate	26600	
Dimethylphthalate	•	NC	Di-N-Octyl Phthalate		NC
2,6-Dinitrotoluene		NC	Benzo(b)fluoranthene		NC
					. 110

Authorized By:	htill_
ridillized Dj.	

Release Date:

7/6/98

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178080 (Dilution - DIL1)

Date Received: 04/24/98 Date Prepared: 05/01/98 Method: SW8270

Field ID: FD-1

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98

ug/Kg dw Units:

Analyte	Result	Qualifier
Benzo(k)fluoranthene		NC
Benzo[e]pyrene		NC
Benzo(a)pyrene		NC
Perylene		NC
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene		NC
Dibenzo(a,h)anthracene		NC
Benzo(ghi)perylene		NC.
Surrogate Recoveries		
2-Fluorophenol	149	%
D5-Phenol	161	%
D4-2-Chlorophenol	131	%
1,2-Dichlorobenzene-D4	100	%
D5-Nitrobenzene	108	%
2-Fluorobiphenyl	120	%
D10-Pyrene	135	%
D14-Terphenyl	128	%

Authorized By: _

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178081

Date Received: 04/24/98

Method: SW8270

Field ID: FD-2

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98

ug/Kg dw **Units:**

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	287	U	Acenaphthylene	109	J
N-Nitrosodimethylamine	287	U	3-Nitroaniline	717	UJ
Aniline	143	UJ	Acenaphthene	196	
Phenol	772	U	2,4-Dinitrophenol	11500	U
Bis(2-Chloroethyl)Ether	287	U	4-Nitrophenol	717	U
2-Chlorophenol	287	U	1,6,7-Trimethylnaphthalene	88	J
1,3-DichÎorobenzene	287	U	Dibenzofuran	176	
1,4-Dichlorobenzene	287	U	2,4-Dinitrotoluene	717	U
1,2-Dichlorobenzene	287	U	Diethylphthalate	287	U
Benzyl Alcohol	143	U	Fluorene	360	
2-Methylphenol	39	J	4-Chlorophenyl-Phenylether	287	U
2,2'-Oxybis[1-chloropropane]	143	Ŭ	4-Nitroaniline	717	Ŭ
N-Nitroso-Di-N-Propylamine	287	U	4,6-Dinitro-2-Methylphenol	2870	Ŭ
4-Methylphenol	6740		N-Nitrosodiphenylamine	287	U ·
Hexachloroethane	287	U	1,2-Diphenylhydrazine	143	Ŭ
Nitrobenzene	287	U	4-Bromophenyl-Phenylether	287	Ū
Isophorone	287	U .	Hexachlorobenzene	287	Ū
2-Nitrophenol	717	U	Pentachlorophenol	796	_
2,4-Dimethylphenol	287	U	Dibenzothiophene	274	
Bis(2-Chloroethoxy)Methane	287	U	Phenanthrene	5180	
Benzoic Acid	4240	J	Anthracene	912	
2,4-Dichlorophenol	287	Ū	Caffeine	143	U
1,2,4-Trichlorobenzene	287	U	Carbazole	1210	-
Naphthalene	211	J	Phenol, 4-Nonyl-	287	U
4-Chloroaniline	143	ŪJ	2-Methylphenanthrene	658	
Hexachlorobutadiene	287	U	1-Methylphenanthrene	413	
4-Chloro-3-Methylphenol	287	Ū	Di-N-Butylphthalate	4690	U
2-Methylnaphthalene	188	_	Fluoranthene	8310	•
1-Methylnaphthalene	147	J	Benzidine	1430	UJ
Hexachlorocyclopentadiene		ŘEJ	Pyrene	6800	00
2,4,6-Trichlorophenol	287	Ü	Retene	306	
2,4,5-Trichlorophenol	287	Ŭ	Butylbenzylphthalate	1270	
1,1'-Biphenyl	143	Ŭ	Benzo(a)anthracene	2810	
2-Chloronaphthalene	143	Ŭ	3,3'-Dichlorobenzidine	287	U
2,6-Dimethylnaphthalene	176	•	Chrysene	4020	
2-Nitroaniline	717	U	Bis(2-Ethylhexyl) Phthalate	19400	E
Dimethylphthalate	501	Ŭ	Di-N-Octyl Phthalate	1210	19
2,6-Dinitrotoluene	717	U	Benzo(b)fluoranthene	4830	

Authorized By	K	tedel_

Release	Date:	7/6/88

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178081

Date Received: 04/24/98 Method: SW8270

Field ID: FD-2

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Prepared: 04/29/98 Date Analyzed: 05/27/98

Units: ug/Kg dw

Analyte	Result	Qualifier
Benzo(k)fluoranthene Benzo[e]pyrene Benzo(a)pyrene Perylene 3B-Coprostanol Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	1990 2350 3450 1000 2770 633 2100	NAF
Surrogate Recoveries		
2-Fluorophenol D5-Phenol D4-2-Chlorophenol 1,2-Dichlorobenzene-D4 D5-Nitrobenzene 2-Fluorobiphenyl D10-Pyrene D14-Terphenyl	126 135 111 76 102 104 104 103	% % % % %

Authorized	Ву:	4	Uda	2

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178081 (Dilution - DIL1)

Project Officer: Dale Norton

Date Received: 04/24/98 Method: SW8270

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Date Analyzed: 05/28/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	•	NC	Acenaphthylene		NC
N-Nitrosodimethylamine		NC	3-Nitroaniline		NC
Aniline		NC	Acenaphthene		NC NC
Phenol		NC	2,4-Dinitrophenol		NC
Bis(2-Chloroethyl)Ether		NC	4-Nitrophenol		NC
2-Chlorophenol		NC	1,6,7-Trimethylnaphthalene		NC NC
1,3-Dichlorobenzene		NC	Dibenzofuran	•	NC
1,4-Dichlorobenzene		NC	2,4-Dinitrotoluene		NC
1,2-Dichlorobenzene		NC	Diethylphthalate		NC NC
Benzyl Alcohol		NC	Fluorene		NC
2-Methylphenol		NC	4-Chlorophenyl-Phenylether		NC NC
2,2'-Oxybis[1-chloropropane]		NC	4-Nitroaniline		NC
N-Nitroso-Di-N-Propylamine		NC	4,6-Dinitro-2-Methylphenol		NC NC
4-Methylphenol		NC	N-Nitrosodiphenylamine		NC NC
Hexachloroethane		NC	1,2-Diphenylhydrazine		NC NC
Nitrobenzene		NC	4-Bromophenyl-Phenylether		NC NC
Isophorone		NC	Hexachlorobenzene		NC NC
2-Nitrophenol		NC	Pentachlorophenol		NC NC
2,4-Dimethylphenol		NC	Dibenzothiophene		NC NC
Bis(2-Chloroethoxy)Methane	•	NC	Phenanthrene		NC NC
Benzoic Acid		NC	Anthracene		NC NC
2,4-Dichlorophenol		NC	Caffeine		NC NC
1,2,4-Trichlorobenzene		NC	Carbazole		NC NC
Naphthalene		NC	Phenol, 4-Nonyl-		
4-Chloroaniline		NC			NC
Hexachlorobutadiene		NC	2-Methylphenanthrene 1-Methylphenanthrene		NC
4-Chloro-3-Methylphenol		NC NC	Di-N-Butylphthalate		NC
2-Methylnaphthalene		NC NC	Fluoranthene		NC
1-Methylnaphthalene		NC NC	Benzidine		NC
					NC
Hexachlorocyclopentadiene		NC	Pyrene		NC
2,4,6-Trichlorophenol		NC	Retene		NC
2,4,5-Trichlorophenol		NC	Butylbenzylphthalate		NC
1,1'-Biphenyl		NC	Benzo(a)anthracene		NC
2-Chloronaphthalene		NC	3,3'-Dichlorobenzidine		NC
2,6-Dimethylnaphthalene		NC	Chrysene		NC
2-Nitroaniline		NC	Bis(2-Ethylhexyl) Phthalate	20000	J
Dimethylphthalate		NC	Di-N-Octyl Phthalate		NC
2,6-Dinitrotoluene		NC	Benzo(b)fluoranthene		NC

Authorized By: Release Date: 7/6/88 Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178081 (Dilution - DIL1)

Date Received: 04/24/98 Method: SW8270

Field ID: FD-2

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/28/98

Units: ug/Kg dw

Result	Qualifier
	NG
	NC
	NC
	NC
•	NC
	NAF
	NC
	NC
	NC
	%
149	%
119	%
90	%
106	%
	%
7.5.7	%
	%
	90

Authorized By:

Release Date: 7/6/98

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178082

Date Received: 04/24/98

Method: SW8270

Field ID: FD-2D

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	242	U	Acenaphthylene	76	J
N-Nitrosodimethylamine	242	U	3-Nitroaniline	605	ŪJ
Aniline	121	UJ	Acenaphthene	174	
Phenol	892		2,4-Dinitrophenol	9680	U
Bis(2-Chloroethyl)Ether	242	U	4-Nitrophenol	605	Ŭ
2-Chlorophenol	242	U	1,6,7-Trimethylnaphthalene	136	
1,3-Dichlorobenzene	242	U	Dibenzofuran	141	
1,4-Dichlorobenzene	242	U	2,4-Dinitrotoluene	605	U
1,2-Dichlorobenzene	242	U	Diethylphthalate	242	Ü
Benzyl Alcohol	121	U	Fluorene	267	-
2-Methylphenol	36	J	4-Chlorophenyl-Phenylether	242	U ·
2,2'-Oxybis[1-chloropropane]	121	Ŭ	4-Nitroaniline	605	Ŭ
N-Nitroso-Di-N-Propylamine	242	Ü	4,6-Dinitro-2-Methylphenol	2420	Ŭ
4-Methylphenol	7810	_	N-Nitrosodiphenylamine	242	Ŭ
Hexachloroethane	242	U	1,2-Diphenylhydrazine	121	Ŭ
Nitrobenzene	242	Ŭ	4-Bromophenyl-Phenylether	242	Ŭ
Isophorone	242	Ū	Hexachlorobenzene	242	Ŭ
2-Nitrophenol	605	Ŭ	Pentachlorophenol	904	
2,4-Dimethylphenol	242	Ū	Dibenzothiophene	220	•
Bis(2-Chloroethoxy)Methane	242	Ŭ	Phenanthrene	3980	
Benzoic Acid	4080	J	Anthracene	667	
2,4-Dichlorophenol	242	บ้	Caffeine	114	J
1,2,4-Trichlorobenzene	242	Ŭ.	Carbazole	971	J
Naphthalene	193	$oldsymbol{\check{J}}$	Phenol, 4-Nonyl-	242	U
4-Chloroaniline	121	ŬJ	2-Methylphenanthrene	600	U
Hexachlorobutadiene	242	Ü	1-Methylphenanthrene	356	
4-Chloro-3-Methylphenol	242	Ŭ	Di-N-Butylphthalate	6060	$\cdot \mathbf{U}$
2-Methylnaphthalene	274	O	Fluoranthene	6170	O
1-Methylnaphthalene	199	J	Benzidine	1210	UJ
Hexachlorocyclopentadiene	177	REJ	Pyrene	5160	OJ
2,4,6-Trichlorophenol	242	U	Retene	214	T
2,4,5-Trichlorophenol	242 242	Ü	Butylbenzylphthalate	911	J
	121	Ü		2000	
1,1'-Biphenyl	121	Ŭ	Benzo(a)anthracene		TT
2-Chloronaphthalene		U	3,3'-Dichlorobenzidine	242	U
2,6-Dimethylnaphthalene	211	**	Chrysene	3200	т.
2-Nitroaniline	605	Ũ	Bis(2-Ethylhexyl) Phthalate	15100	E
Dimethylphthalate	190	Ţ	Di-N-Octyl Phthalate	605	\mathbf{U}
2,6-Dinitrotoluene	605	U	Benzo(b)fluoranthene	3620	

Authorized By:	Match

Release Date: 7/6/98

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178082

Date Received: 04/24/98

Method: SW8270

Field ID: FD-2D
Project Officer: Dale Norton

D

Date Prepared: 04/29/98 Date Analyzed: 05/27/98 Matrix: Sediment/Soil Units: ug/Kg dw

Analyte	Result	Qualifier
Benzo(k)fluoranthene	1350	
Benzo[e]pyrene	1620	-
Benzo(a)pyrene	2360	
Perylene	675	-
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene	1920	
Dibenzo(a,h)anthracene	423	
Benzo(ghi)perylene	1110	J
Surrogate Recoveries		
2-Fluorophenol	146	%
D5-Phenol	148	%
D4-2-Chlorophenol	127	%
1,2-Dichlorobenzene-D4	95	%
D5-Nitrobenzene	112	%
2-Fluorobiphenyl	111	%
D10-Pyrene	105	%
D14-Terphenyl	111	%

Authorized By:

Release Date: 7/6/98

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178082 (Dilution - DIL1)

Project Officer: Dale Norton

Date Received: 04/24/98 Method: SW8270

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Date Analyzed: 05/28/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine		NC	Acenaphthylene	•	NC
N-Nitrosodimethylamine		NC	3-Nitroaniline		NC
Aniline		NC	Acenaphthene		NC
Phenol		NC ·	2,4-Dinitrophenol		NC
Bis(2-Chloroethyl)Ether		NC	4-Nitrophenol		NC
2-Chlorophenol	•	NC	1,6,7-Trimethylnaphthalene		NC
1,3-Dichlorobenzene		NC	Dibenzofuran		NC
1,4-Dichlorobenzene		NC	2,4-Dinitrotoluene		NC
1,2-Dichlorobenzene		NC	Diethylphthalate		NC
Benzyl Alcohol		NC	Fluorene		NC
2-Methylphenol		NC	4-Chlorophenyl-Phenylether		NC
2,2'-Oxybis[1-chloropropane]		NC	4-Nitroaniline		NC
N-Nitroso-Di-N-Propylamine		NC	4,6-Dinitro-2-Methylphenol		NC
4-Methylphenol		NC	N-Nitrosodiphenylamine		NC
Hexachloroethane	÷	NC	1,2-Diphenylhydrazine		NC
Nitrobenzene		NC	4-Bromophenyl-Phenylether		NC
Isophorone		NC	Hexachlorobenzene		NC
2-Nitrophenol		NC	Pentachlorophenol		NC
2,4-Dimethylphenol		NC	Dibenzothiophene		NC
Bis(2-Chloroethoxy)Methane		NC	Phenanthrene	•	NC
Benzoic Acid		NC	Anthracene		NC
2,4-Dichlorophenol		NC	Caffeine		NC
1,2,4-Trichlorobenzene		NC	Carbazole		NC
Naphthalene		NC	Phenol, 4-Nonyl-		NC
4-Chloroaniline		NC	2-Methylphenanthrene		NC
Hexachlorobutadiene		NC	1-Methylphenanthrene		NC
4-Chloro-3-Methylphenol		NC	Di-N-Butylphthalate		NC
2-Methylnaphthalene		NC	Fluoranthene		NC
1-Methylnaphthalene		NC	Benzidine		NC
Hexachlorocyclopentadiene		NC	Pyrene		NC
2,4,6-Trichlorophenol		NC	Retene		NC
2,4,5-Trichlorophenol		NC	Butylbenzylphthalate		NC
1,1'-Biphenyl		NC	Benzo(a)anthracene		NC
2-Chloronaphthalene		NC NC	3,3'-Dichlorobenzidine		NC NC
2,6-Dimethylnaphthalene		NC NC	Chrysene		NC NC
2-Nitroaniline		NC NC	Bis(2-Ethylhexyl) Phthalate	14700	INC
		NC NC	Di-N-Octyl Phthalate	14/00	NC
Dimethylphthalate		NC NC	Benzo(b)fluoranthene		NC
2,6-Dinitrotoluene	•	NC	benzo(b)Huorantnene		NC

Dimethylphthalate NC 2,6-Dinitrotoluene NC	Di-N-Octyl Phthalate Benzo(b)fluoranthene	14/00	NC NC
Authorized By:	Release Date: 7/6/88	Page:	3

Department of Ecology

Analysis Report for

BNA FOR NOAA

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Sample: 98178082 (Dilution - DIL1)

Date Received: 04/24/98

Method: SW8270

Field ID: FD-2D

Project Officer: Dale Norton

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Date Analyzed: 05/28/98

Units: ug/Kg dw

Analyte	Result	Qualifier
- d. d.		NO
Benzo(k)fluoranthene		NC
Benzo[e]pyrene		NC
Benzo(a)pyrene		NC
Perylene		NC
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene		NC
Dibenzo(a,h)anthracene		NC
Benzo(ghi)perylene		NC
Surrogate Recoveries		
2-Fluorophenol	150	%
D5-Phenol	154	%
D4-2-Chlorophenol	122	%
1,2-Dichlorobenzene-D4	109	%
D5-Nitrobenzene	116	%
2-Fluorobiphenyl	112	%
D10-Pyrene	135	%
D14-Terphenyl	135	%

Authorized By:

Release Date: 7/6/28

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Sample: 98178083

Date Received: 04/24/98

Method: SW8270

Field ID: FD-3

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifie
Pyridine	318	υ	Acenaphthylene	141	J
N-Nitrosodimethylamine	318	Ŭ	3-Nitroaniline	795	យ
Aniline	159	ŬJ	Acenaphthene	612	
Phenol	704		2,4-Dinitrophenol	12700	U
Bis(2-Chloroethyl)Ether	318	U	4-Nitrophenol	795	Ŭ
-Chlorophenol	318	Ŭ	1,6,7-Trimethylnaphthalene	91	Ĵ
,3-Dichlorobenzene	318	Ŭ	Dibenzofuran	552	
,4-Dichlorobenzene	318	Ū	2,4-Dinitrotoluene	795	U
,2-Dichlorobenzene	318	Ü	Diethylphthalate	318	Ŭ
enzyl Alcohol	159	Ŭ	Fluorene	1020	•
-Methylphenol	49	Ĵ	4-Chlorophenyl-Phenylether	318	U
,2'-Oxybis[1-chloropropane]	159	Ŭ	4-Nitroaniline	795	Ŭ
-Nitroso-Di-N-Propylamine	318	Ŭ	4,6-Dinitro-2-Methylphenol	3180	Ŭ
-Methylphenol	4720		N-Nitrosodiphenylamine	318	Ŭ
Iexachloroethane	318	U	1,2-Diphenylhydrazine	159	Ŭ
litrobenzene	318	Ŭ	4-Bromophenyl-Phenylether	318	Ŭ
sophorone	318	Ŭ	Hexachlorobenzene	318	
-Nitrophenol	795	ϋ	Pentachlorophenol	549	\mathbf{J}
,4-Dimethylphenol	318	Ŭ	Dibenzothiophene	974	J
is(2-Chloroethoxy)Methane	318	Ŭ.	Phenanthrene	19200	E
Senzoic Acid	4840	$\widetilde{\mathbf{J}}$	Anthracene	3030	
4-Dichlorophenol	318	Ŭ	Caffeine	227	
,2,4-Trichlorobenzene	318	Ŭ	Carbazole	4210	
Japhthalene	353	O	Phenol, 4-Nonyl-	318	U
-Chloroaniline	159	UJ	2-Methylphenanthrene	1600	U
Iexachlorobutadiene	318	Ü	1-Methylphenanthrene	991	
-Chloro-3-Methylphenol	318	ប័	Di-N-Butylphthalate	1070	บ
-Methylnaphthalene	252	O	Fluoranthene	29200	Ē
-Methylnaphthalene	155	J	Benzidine	1590	ប៊្វ
lexachlorocyclopentadiene	133	REJ	Pyrene	22000	E
,4,6-Trichlorophenol	318	U	Retene	356	10
,4,5-Trichlorophenol	318	Ü	Butylbenzylphthalate	976	
	84	$\ddot{\mathbf{J}}$	Benzo(a)anthracene	9500	
,1'-Biphenyl	159	U U	3,3'-Dichlorobenzidine	318	U
-Chloronaphthalene	164	U	Chrysene	11700	U
,6-Dimethylnaphthalene -Nitroaniline	795	U		33800	107
	793 318	Ŭ	Bis(2-Ethylhexyl) Phthalate		E
Dimethylphthalate			Di-N-Octyl Phthalate	1070	T 23
2,6-Dinitrotoluene	795	U	Benzo(b)fluoranthene	15000	\mathbf{E}

	0/1/11
Authorized By:	1 tell

Release Date: 7/6/18

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:	CMB In-line Sed, Traps	LIMS Project ID:	1290-98
---------------	------------------------	------------------	---------

Date Received: 04/24/98 Sample: 98178083 Method: SW8270

Date Prepared: 04/29/98 Matrix: Sediment/Soil Field ID: FD-3 Project Officer: Dale Norton

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier		
Benzo(k)fluoranthene	6560			
Benzo[e]pyrene	6850			
Benzo(a)pyrene	10700			c ¹
Perylene	2890			
3B-Coprostanol		NAF		
Indeno(1,2,3-cd)pyrene	7880			
Dibenzo(a,h)anthracene	2130			
Benzo(ghi)perylene	4980		·	
Surrogate Recoveries				
2-Fluorophenol	116	%		
D5-Phenol	128	%		
D4-2-Chlorophenol	105	%		
1,2-Dichlorobenzene-D4	79	%		
D5-Nitrobenzene	100	%		
	93	%		
2-Fluorobiphenyl				
2-Fluorobiphenyl D10-Pyrene	91	%		

Release Date: 7/6/98 Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178083 (Dilution - DIL1)

Pate Received: 04/24/98 Method: SW8270

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/28/98 Units: ug/Kg dw

Analyte Resu	lt Qualifier	Analyte	Result	Qualifier
Pyridine	NC	Acenaphthylene		NC
N-Nitrosodimethylamine	NC	3-Nitroaniline		NC
Aniline	NC	Acenaphthene		NC
Phenol	NC	2,4-Dinitrophenol		NC
Bis(2-Chloroethyl)Ether	NC	4-Nitrophenol		NC
2-Chlorophenol	NC	1,6,7-Trimethylnaphthalene		NC
1,3-Dichlorobenzene	NC	Dibenzofuran		NC
1,4-Dichlorobenzene	NC	2,4-Dinitrotoluene		NC
1,2-Dichlorobenzene	NC	Diethylphthalate		NC
Benzyl Alcohol	NC	Fluorene		NC
2-Methylphenol	NC	4-Chlorophenyl-Phenylether		NC
2,2'-Oxybis[1-chloropropane]	NC	4-Nitroaniline	•	NC
N-Nitroso-Di-N-Propylamine	NC	4,6-Dinitro-2-Methylphenol		NC
4-Methylphenol	NC	N-Nitrosodiphenylamine		NC
Hexachloroethane	NC	1,2-Diphenylhydrazine		NC
Nitrobenzene	NC	4-Bromophenyl-Phenylether		NC
Isophorone	NC	Hexachlorobenzene		NC
2-Nitrophenol	NC	Pentachlorophenol		NC
2,4-Dimethylphenol	NC	Dibenzothiophene		NC
Bis(2-Chloroethoxy)Methane	NC	Phenanthrene	22300	140
Benzoic Acid	NC	Anthracene	22500	NC
2,4-Dichlorophenol	NC	Caffeine		NC NC
1,2,4-Trichlorobenzene	NC	Carbazole		NC
Naphthalene	NC	Phenol, 4-Nonyl-		NC
4-Chloroaniline	NC	2-Methylphenanthrene		NC
Hexachlorobutadiene	NC	1-Methylphenanthrene		NC
4-Chloro-3-Methylphenol	NC	Di-N-Butylphthalate		NC
2-Methylnaphthalene	NC	Fluoranthene	32600	NC
1-Methylnaphthalene	NC	Benzidine	32000	NC
Hexachlorocyclopentadiene	NC	Pyrene	29500	J
2,4,6-Trichlorophenol	NC	Retene	27500	NC
2,4,5-Trichlorophenol	NC	Butylbenzylphthalate		NC NC
1,1'-Biphenyl	NC	Benzo(a)anthracene	•	NC NC
2-Chloronaphthalene	NC NC	3,3'-Dichlorobenzidine		NC NC
2,6-Dimethylnaphthalene	NC NC	Chrysene		NC NC
2.0-Dimetry maphinalene	NC NC	Bis(2-Ethylhexyl) Phthalate	39600	NC
	NC NC	Di-N-Octyl Phthalate	37000	NC
Dimethylphthalate	NC NC	Benzo(b)fluoranthene	1,6000	NC
2,6-Dinitrotoluene	NC	Denzo(b)Huorantnene	16000	

Authorized By: Release	Date: 4/6/98	Page:	3
------------------------	--------------	-------	---

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178083 (Dilution - DIL1)

Date Received: 04/24/98 Method: SW8270

Field ID: FD-3

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/28/98

Units:

ug/Kg dw

Analyte	Result	Qualifier
Dangadaffyamathana		NC
Benzo(k)fluoranthene		
Benzo[e]pyrene		NC
Benzo(a)pyrene		NC
Perylene		NC
3B-Coprostanol	•	NAF
Indeno(1,2,3-cd)pyrene		NC
Dibenzo(a,h)anthracene		NC
Benzo(ghi)perylene	•	NC
Surrogate Recoveries		
2-Fluorophenol	136	%
D5-Phenol	146	%
D4-2-Chlorophenol	124	%
1,2-Dichlorobenzene-D4	94	%
D5-Nitrobenzene	121	%
2-Fluorobiphenyl	109	%
D10-Pyrene	131	%
D14-Terphenyl	115	%

Authorized By:

Release Date:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178088 Date Received: 04/24/98 Method: SW8270

Field ID: FD-5

Project Officer: Dale Norton

Date Prepared: 04/29/98 Matrix: Sediment/Soil
Date Analyzed: 05/27/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	52	บ	Acenaphthylene	7.4	J
N-Nitrosodimethylamine	52	Ū	3-Nitroaniline	131	Ŭ
Aniline	26	. UJ	Acenaphthene	17	J
Phenol	52	U	2,4-Dinitrophenol	2090	Ŭ
Bis(2-Chloroethyl)Ether	52	Ū	4-Nitrophenol	131	Ū
2-Chlorophenol	52	Ū	1,6,7-Trimethylnaphthalene	7.5	J
1,3-Dichlorobenzene	52	Ū	Dibenzofuran	15	Ĵ
1,4-Dichlorobenzene	52	Ū	2,4-Dinitrotoluene	131	Ŭ
1,2-Dichlorobenzene	52	U	Diethylphthalate	52	Ū
Benzyl Alcohol	19	. J	Fluorene	30	
2-Methylphenol	52	Ū	4-Chlorophenyl-Phenylether	52	U
2,2'-Oxybis[1-chloropropane]	26	U	4-Nitroaniline	131	Ū
N-Nitroso-Di-N-Propylamine	52	U.	4,6-Dinitro-2-Methylphenol	523	Ū
4-Methylphenol	81		N-Nitrosodiphenylamine	52	U
Hexachloroethane	52	U	1,2-Diphenylhydrazine	26	Ū
Nitrobenzene	52	U	4-Bromophenyl-Phenylether	52	Ü
Isophorone	52	Ü	Hexachlorobenzene	52	Ŭ
2-Nitrophenol	131	U	Pentachlorophenol	131	U
2,4-Dimethylphenol	52	U	Dibenzothiophene	22	J
Bis(2-Chloroethoxy)Methane	52	U	Phenanthrene	470	•
Benzoic Acid	699	J	Anthracene	78	
2,4-Dichlorophenol	52	Ŭ	Caffeine	84	
1,2,4-Trichlorobenzene	52	Ū	Carbazole	111	
Naphthalene	12	J	Phenol, 4-Nonyl-	52	U
4-Chloroaniline	26	ŬJ	2-Methylphenanthrene	50	
Hexachlorobutadiene	52	Ü	1-Methylphenanthrene	42	
4-Chloro-3-Methylphenol	52	Ü .	Di-N-Butylphthalate	5300	E
2-Methylnaphthalene	15	Ĵ	Fluoranthene	824	
1-Methylnaphthalene	8.9	Ĵ	Benzidine	262	UJ
Hexachlorocyclopentadiene	3. 2	ŘEJ	Pyrene	679	00
2,4,6-Trichlorophenol	52	Ü	Retene	25	${f J}$
2,4,5-Trichlorophenol	52	Ŭ	Butylbenzylphthalate	52	Ŭ
1,1'-Biphenyl	26	Ŭ	Benzo(a)anthracene	252	0
2-Chloronaphthalene	26	Ŭ	3,3'-Dichlorobenzidine	52	U
2,6-Dimethylnaphthalene	7.9	J	Chrysene	400	J
2-Nitroaniline	131	Ü	Bis(2-Ethylhexyl) Phthalate	927	
Dimethylphthalate	52	Ŭ	Di-N-Octyl Phthalate	131	U
2,6-Dinitrotoluene	131	บั	Benzo(b)fluoranthene	513	. U

		7/11/10	
authorized By:	at the	Release Date: -//6/94	Page:
, , , , , , , , , , , , , , , , , , ,			

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178088

Date Received: 04/24/98

Method: SW8270

Field ID: FD-5

Project Officer: Dale Norton

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier
Benzo(k)fluoranthene	195	
Benzo[e]pyrene	255	
Benzo(a)pyrene	322	
Perylene	107	
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene	282	- 1- —
Dibenzo(a,h)anthracene	71	
Benzo(ghi)perylene	262	
Surrogate Recoveries		
2-Fluorophenol	85	%
D5-Phenol	97	%
D4-2-Chlorophenol	78	%
1,2-Dichlorobenzene-D4	59	%
D5-Nitrobenzene	82	%
2-Fluorobiphenyl	71	%
D10-Pyrene	77	%
D14-Terphenyl	79	%

Authorized By: ___

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178088 (Matrix Spike - LMX1) Date Received: 04/24/98 Method: SW8270

Field ID: FD-5
Project Officer: Dale Norton

Date Prepared: 04/29/98 Matrix: Sediment/Soil
Date Analyzed: 06/04/98 Units: % Recovery

Analyte	Result	Qualifier	Analyte	Result	Qualifie
Pyridine		NAF	Acenaphthylene	96	
N-Nitrosodimethylamine	63		3-Nitroaniline	43	
Aniline	17		Acenaphthene	89	
Phenol	81		2,4-Dinitrophenol	168	
Bis(2-Chloroethyl)Ether	64		4-Nitrophenol	92	
2-Chlorophenol	95		1,6,7-Trimethylnaphthalene	-	NAF
1,3-Dichlorobenzene	78		Dibenzofuran	87	* (1.11
1,4-Dichlorobenzene	80		2,4-Dinitrotoluene	102	
1,2-Dichlorobenzene	81		Diethylphthalate	102	
Benzyl Alcohol	80		Fluorene	98	
2-Methylphenol	96		4-Chlorophenyl-Phenylether	98	
2,2'-Oxybis[1-chloropropane]	54		4-Nitroaniline	57	
N-Nitroso-Di-N-Propylamine	67		4,6-Dinitro-2-Methylphenol	138	
4-Methylphenol	101	•	N-Nitrosodiphenylamine	94	
Hexachloroethane	85		1,2-Diphenylhydrazine	90	
Nitrobenzene	89		4-Bromophenyl-Phenylether	115	
Isophorone	85		Hexachlorobenzene	117	
2-Nitrophenol	106	•	Pentachlorophenol	101	
2,4-Dimethylphenol	96		Dibenzothiophene	20,2	NAF
Bis(2-Chloroethoxy)Methane	98		Phenanthrene	91	
Benzoic Acid	126		Anthracene	107	•
2.4-Dichlorophenol	104		Caffeine	20.	NAF
1,2,4-Trichlorobenzene	98		Carbazole		NAF
Naphthalene	88		Phenol, 4-Nonyl-		NAF
4-Chloroaniline	24		2-Methylphenanthrene		NAF
Hexachlorobutadiene	99		1-Methylphenanthrene		NAF
4-Chloro-3-Methylphenol	116		Di-N-Butylphthalate	129	7.17.77.
2-Methylnaphthalene	80		Fluoranthene	91	
1-Methylnaphthalene	00	NAF	Benzidine	<i>)</i>	NAF
Hexachlorocyclopentadiene	8	TALM.	Pyrene	78	MAL
2,4,6-Trichlorophenol	104		Retene	70	NAF
2,4,5-Trichlorophenol	107		Butylbenzylphthalate	96	TAME
1,1'-Biphenyl	IU)	NAF	Benzo(a)anthracene	90 85	
2-Chloronaphthalene	87	MAN.	3,3'-Dichlorobenzidine	03	NAF
2,6-Dimethylnaphthalene	U /	NAF	Chrysene	89	MAR
2,0-Dimethymaphthalene 2-Nitroaniline	71	NAL		89 104	
Dime thylphthalate	94		Bis(2-Ethylhexyl) Phthalate		
2,6-Dinitrotoluene	94 101	•	Di-N-Octyl Phthalate Benzo(b)fluoranthene	99 83	

Authorized By: Release Date: 46/98

Department of Ecology

Analysis Report for

BNA FOR NOAA

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Sample: 98178088 (Matrix Spike - LMX1) Date Received: 04/24/98

Method: SW8270

Field ID: FD-5

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 06/04/98 **Units:**

% Recovery

Analyte	Result	Qualifier			 	
Benzo(k)fluoranthene	101					
Benzo[e]pyrene		NAF			•	
Benzo(a)pyrene	104			*		
Perylene		NAF				
3B-Coprostanol		NAF				
Indeno(1,2,3-cd)pyrene	100		·			
Dibenzo(a,h)anthracene	101					
Benzo(ghi)perylene	91			4		
Surrogate Recoveries						
2-Fluorophenol	99	%				
D5-Phenol	94	%				
D4-2-Chlorophenol	87	%	. '			
1,2-Dichlorobenzene-D4	72	%		•		
D5-Nitrobenzene	85	%		*		
2-Fluorobiphenyl	82	%				
D10-Pyrene	89	%				
D14-Terphenyl	91	%	1			

Authorized By:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178088 (Duplicate - LDP1)

Date Received: 04/24/98 Method: SW8270

Field ID: FD-5

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 06/03/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	226	U	Acenaphthylene	226	U
N-Nitrosodimethylamine	226	U	3-Nitroaniline	566	UJ
Aniline	113	U	Acenaphthene	57	J
Phenol	81	J	2,4-Dinitrophenol	9060	Ŭ.
Bis(2-Chloroethyl)Ether	226	Ū	4-Nitrophenol	566	U
2-Chlorophenol	226	U	1,6,7-Trimethylnaphthalene	12	J
1,3-Dichlorobenzene	226	U	Dibenzofuran	37	Ĵ
1,4-Dichlorobenzene	226	U	2,4-Dinitrotoluene	566	Ŭ
1,2-Dichlorobenzene	226	U	Diethylphthalate	226	U
Benzyl Alcohol	113	U .	Fluorene	87	J
2-Methylphenol	226	U	4-Chlorophenyl-Phenylether	226	Ū
2,2'-Oxybis[1-chloropropane]	113	Ū	4-Nitroaniline	566	Ū
N-Nitroso-Di-N-Propylamine	226	U	4,6-Dinitro-2-Methylphenol	2260	U
4-Methylphenol	83	J	N-Nitrosodiphenylamine	226	Ū
Hexachloroethane	226	Ŭ	1,2-Diphenylhydrazine	113	Ū
Nitrobenzene	226	Ŭ [.]	4-Bromophenyl-Phenylether	226	Ŭ
Isophorone	226	Ŭ	Hexachlorobenzene	226	Ū
2-Nitrophenol	566	Ū	Pentachlorophenol	566	$ar{\mathbf{U}}$
2,4-Dimethylphenol	226	Ū	Dibenzothiophene	74	J
Bis(2-Chloroethoxy)Methane	226	Ū	Phenanthrene	1110	•
Benzoic Acid	2550	Ŭ	Anthracene	184	J
2,4-Dichlorophenol	226	Ū	Caffeine	82	Ĵ
1,2,4-Trichlorobenzene	226	Ŭ	Carbazole	240	•
Naphthalene	226	บั	Phenol, 4-Nonyl-	226	U
4-Chloroaniline	113	ŭı	2-Methylphenanthrene	117	Ü
Hexachlorobutadiene	226	Ü	1-Methylphenanthrene	72	J
4-Chloro-3-Methylphenol	226	Ŭ	Di-N-Butylphthalate	5890	Ŭ
2-Methylnaphthalene	13	Ĵ	Fluoranthene	1900	. •
1-Methylnaphthalene	10	j	Benzidine	1130	UI
Hexachlorocyclopentadiene	10	REJ	Pyrene	1170	O3
2,4,6-Trichlorophenol	226	Ü	Retene	226	U
2,4,5-Trichlorophenol	226	บ	Butylbenzylphthalate	226	Ü
	113	บ	Benzo(a)anthracene	50 4	U
1,1'-Biphenyl 2-Chloronaphthalene	113	Ü	3,3'-Dichlorobenzidine	226	U
	113	${f J}$	Chrysene	669	U
2,6-Dimethylnaphthalene	566	J U		914	U
2-Nitroaniline	226		Bis(2-Ethylhexyl) Phthalate	566	U
Dimethylphthalate		U	Di-N-Octyl Phthalate		U
2,6-Dinitrotoluene	566	U	Benzo(b)fluoranthene	902	•

Authorized By:

Release Date: 7/6/97

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178088 (Duplicate - LDP1)

Date Received: 04/24/98

Method: SW8270

Field ID: FD-5

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 06/03/98

Units: ug/Kg dw

Analyte	Result	Qualifier		
Benzo(k)fluoranthene	344			
Benzo[e]pyrene	421	•		
Benzo(a)pyrene	635			
Perylene	216			
3B-Coprostanol		NAF		
Indeno(1,2,3-cd)pyrene	506	J		
Dibenzo(a,h)anthracene	147	Ĵ		
Benzo(ghi)perylene	481	Ĵ		
Samuel Basewaring				
Surrogate Recoveries				
2-Fluorophenol	96	%		
D5-Phenol	95	%		
D4-2-Chlorophenol	88	%		
1,2-Dichlorobenzene-D4	60	%		
D5-Nitrobenzene	76	%		
	78	%		•
2-Fluorobiphenyl				
2-Fluorobiphenyl D10-Pyrene	86	%		

Authorized By:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178088 (Dilution - DIL1)

Date Received: 04/24/98 Method: SW8270

Field ID: FD-5
Project Officer: Dale Norton

Date Prepared: 04/29/98 Matrix: Sediment/Soil Date Analyzed: 05/28/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine		NC	Acenaphthylene		NC
N-Nitrosodimethylamine		NC	3-Nitroaniline		NC
Aniline		NC	Acenaphthene	,	NC
Phenol		NC	2,4-Dinitrophenol		NC
Bis(2-Chloroethyl)Ether		NC	4-Nitrophenol		NC
2-Chlorophenol		NC	1,6,7-Trimethylnaphthalene		NC
1,3-Dichlorobenzene	-	NC	Dibenzofuran		NC
1,4-Dichlorobenzene		NC	2,4-Dinitrotoluene		NC
1,2-Dichlorobenzene		NC	Diethylphthalate		NC
Benzyl Alcohol		NC	Fluorene		NC
2-Methylphenol		NC	4-Chlorophenyl-Phenylether		NC
2,2'-Oxybis[1-chloropropane]	7	NC	4-Nitroaniline		NC
N-Nitroso-Di-N-Propylamine		NC	4,6-Dinitro-2-Methylphenol		NC
4-Methylphenol		NC	N-Nitrosodiphenylamine		NC
Hexachloroethane		NC	1,2-Diphenylhydrazine		NC
Nitrobenzene		NC	4-Bromophenyl-Phenylether		NC
Isophorone		NC	Hexachlorobenzene		NC
2-Nitrophenol		NC	Pentachlorophenol		NC
2,4-Dimethylphenol		NC	Dibenzothiophene		NC
Bis(2-Chloroethoxy)Methane		NC	Phenanthrene		NC
Benzoic Acid		NC	Anthracene		NC
2,4-Dichlorophenol	•	NC	Caffeine		NC
1,2,4-Trichlorobenzene		NC	Carbazole		NC
Naphthalene		NC	Phenol, 4-Nonyl-		NC
4-Chloroaniline		NC	2-Methylphenanthrene		NC
Hexachlorobutadiene		NC	1-Methylphenanthrene	·	NC
4-Chloro-3-Methylphenol		NC	Di-N-Butylphthalate	7080	
2-Methylnaphthalene	•	NC	Fluoranthene		NC
1-Methylnaphthalene		NC	Benzidine		NC
Hexachlorocyclopentadiene		NC	Pyrene		NC
2,4,6-Trichlorophenol		NC	Retene		NC
2,4,5-Trichlorophenol		NC	Butylbenzylphthalate		NC
1,1'-Biphenyl		NC	Benzo(a)anthracene		NC
2-Chloronaphthalene		NC	3,3'-Dichlorobenzidine		NC
2,6-Dimethylnaphthalene		NC	Chrysene		NC
2-Nitroaniline		NC	Bis(2-Ethylhexyl) Phthalate	•	NC
Dimethylphthalate		NC	Di-N-Octyl Phthalate		NC
2,6-Dinitrotoluene		NC	Benzo(b)fluoranthene		NC
					-10

Authorized By:	hatter the second	

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178088 (Dilution - DIL1)

Date Received: 04/24/98

Method: SW8270

Field ID: FD-5

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/28/98

Units:

ug/Kg dw

Analyte	Result	Qualifier
Benzo(k)fluoranthene		NC
		NC NC
Benzo[e]pyrene		NC NC
Benzo(a)pyrene		
Perylene		NC
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene		NC
Dibenzo(a,h)anthracene		NC
Benzo(ghi)perylene		NC
Surrogate Recoveries		
2-Fluorophenol	111	%
D5-Phenol	117	%
D4-2-Chlorophenol	99	%
1,2-Dichlorobenzene-D4	77	%
D5-Nitrobenzene	102	%
2-Fluorobiphenyl	91	%
D10-Pyrene	109	%
D14-Terphenyl	108	%

Authorized By:

Release Date:

Department of Ecology

Analysis Report for

BNA FOR NOAA

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Sample: 98178089

Method: SW8270 Date Received: 04/24/98

Field ID: FD-6

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98 ug/Kg dw Units:

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	2520	U	Acenaphthylene	399	J
N-Nitrosodimethylamine	2520	U	3-Nitroaniline	6300	UJ
Aniline	1260	UJ	Acenaphthene	495	\mathbf{J}
Phenol	2610	U	2,4-Dinitrophenol	101000	U
Bis(2-Chloroethyl)Ether	2520	U	4-Nitrophenol	6300	U
2-Chlorophenol	2520	U	1,6,7-Trimethylnaphthalene	348	$\frac{\mathbf{J}}{\mathbf{J}}$
1,3-Dichlorobenzene	2520	U	Dibenzofuran	451	
1,4-Dichlorobenzene	2520	U	2,4-Dinitrotoluene	6300	U
1,2-Dichlorobenzene	2520	U	Diethylphthalate	2520	U
Benzyl Alcohol	2950		Fluorene	912	J
2-Methylphenol	356	${f J}$	4-Chlorophenyl-Phenylether	2520	U
2,2'-Oxybis[1-chloropropane]	1260	U	4-Nitroaniline	6300	U
N-Nitroso-Di-N-Propylamine	2520	U	4,6-Dinitro-2-Methylphenol	25200	U
4-Methylphenol	3610		N-Nitrosodiphenylamine	729	J
Hexachloroethane	2520	U	1,2-Diphenylhydrazine	1260	U
Nitrobenzene	2520	U	4-Bromophenyl-Phenylether	2520	U
Isophorone	2520	U	Hexachlorobenzene	2520	U.
2-Nitrophenol	6300	U	Pentachlorophenol	4060	J
2,4-Dimethylphenol	2520	U	Dibenzothiophene	942	J
Bis(2-Chloroethoxy)Methane	2520	U	Phenanthrene	11000	_
Benzoic Acid	32000	U	Anthracene	1760	J
2,4-Dichlorophenol	2520	U	Caffeine	634	J
1,2,4-Trichlorobenzene	2520	U	Carbazole	2050	Ĵ
Naphthalene	1030	J	Phenol, 4-Nonyl-	2520	Ŭ
4-Chloroaniline	1260	ŬĴ	2-Methylphenanthrene	1950	
Hexachlorobutadiene	2520	Ü	1-Methylphenanthrene	1170	J
4-Chloro-3-Methylphenol	2520	Ū	Di-N-Butylphthalate	6870	Ŭ
2-Methylnaphthalene	909	Ĵ	Fluoranthene	15200	•
1-Methylnaphthalene	464	Ĵ	Benzidine	12600	UJ
Hexachlorocyclopentadiene		REJ	Pyrene	14500	
2,4,6-Trichlorophenol	2520	Ü	Retene	1500	J
2,4,5-Trichlorophenol	2520	Ŭ	Butylbenzylphthalate	8840	U
1,1'-Biphenyl	1260	Ŭ	Benzo(a)anthracene	4610	
2-Chloronaphthalene	1260	Ü	3,3'-Dichlorobenzidine	2520	U
2,6-Dimethylnaphthalene	594	Ĵ	Chrysene	9600	
2-Nitroaniline	6300	U	Bis(2-Ethylhexyl) Phthalate	95500	
	2520	Ŭ	Di-N-Octyl Phthalate	6300	U
Dimethylphthalate 2,6-Dinitrotoluene	6300	บ	Benzo(b)fluoranthene	10300	U

Authorized By:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178089

Date Received: 04/24/98

Method: SW8270

Field ID: FD-6

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98

Units: ug/Kg dw

Analyte	Result	Qualifier
Benzo(k)fluoranthene	3640	
Benzo[e]pyrene	5500	
Benzo(a)pyrene	6000	
Perylene	1920	
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene	5740	J
Dibenzo(a,h)anthracene	2520	Ŭ
Benzo(ghi)perylene	4960	J
Surrogate Recoveries		
2-Fluorophenol	132	%
D5-Phenol	142	%
D4-2-Chlorophenol	118	%
1,2-Dichlorobenzene-D4	80	%
D5-Nitrobenzene	102	%
2-Fluorobiphenyl	110	%
D10-Pyrene	116	%
D14-Terphenyl	115	%

Authorized By:

Release Date:

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178090

Method: SW8270

Field ID: FD-8

Date Received: 04/24/98 Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98 Units:

ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	179	U	Acenaphthylene	185	
N-Nitrosodimethylamine	179	Ū	3-Nitroaniline	447	UJ
Aniline	89	UJ	Acenaphthene	138	
Phenol	877		2,4-Dinitrophenol	7150	U
Bis(2-Chloroethyl)Ether	179	U	4-Nitrophenol	447	Ŭ
2-Chlorophenol	179	Ū	1,6,7-Trimethylnaphthalene	153	
1,3-Dichlorobenzene	179	U	Dibenzofuran	196	
1,4-Dichlorobenzene	179	U	2,4-Dinitrotoluene	447	U
1,2-Dichlorobenzene	179	Ū	Diethylphthalate	447	Ū
Benzyl Alcohol	1300		Fluorene	330	
2-Methylphenol	90	J	4-Chlorophenyl-Phenylether	179	U
2,2'-Oxybis[1-chloropropane]	89	Ŭ	4-Nitroaniline	447	Ŭ
N-Nitroso-Di-N-Propylamine	179	Ŭ	4,6-Dinitro-2-Methylphenol	1790	Ŭ
4-Methylphenol	797	-	N-Nitrosodiphenylamine	179	Ŭ
Hexachloroethane	179	Ū	1,2-Diphenylhydrazine	89	Ŭ
Nitrobenzene	179	Ŭ	4-Bromophenyl-Phenylether	179	Ŭ
Isophorone	179	Ŭ	Hexachlorobenzene	179	Ŭ
2-Nitrophenol	447	Ŭ	Pentachlorophenol	632	Ü
2,4-Dimethylphenol	179	Ū	Dibenzothiophene	271	•
Bis(2-Chloroethoxy)Methane	179	Ŭ	Phenanthrene	3790	
Benzoic Acid	7770	Ē	Anthracene	738	
2,4-Dichlorophenol	179	$\overline{\mathbf{v}}$	Caffeine	355	
1,2,4-Trichlorobenzene	179	Ŭ	Carbazole	576	
Naphthalene	400	_	Phenol, 4-Nonyl-	179	U
4-Chloroaniline	89	UJ	2-Methylphenanthrene	703	
Hexachlorobutadiene	179	Ü	1-Methylphenanthrene	484	
4-Chloro-3-Methylphenol	179	Ŭ	Di-N-Butylphthalate	4420	U
2-Methylnaphthalene	483	Ŭ,	Fluoranthene	4000	•
1-Methylnaphthalene	316		Benzidine	894	UJ
Hexachlorocyclopentadiene		REJ	Pyrene	3590	O.
2,4,6-Trichlorophenol	179	Ü	Retene	698	
2,4,5-Trichlorophenol	179	Ŭ	Butylbenzylphthalate	3410	
1,1'-Biphenyl	113	O	Benzo(a)anthracene	794	
2-Chloronaphthalene	89	U	3,3'-Dichlorobenzidine	179	U
2.6-Dimethylnaphthalene	306	J	Chrysene	1890	U
2,0-Diniethymaphthalene 2-Nitroaniline	447	U	Bis(2-Ethylhexyl) Phthalate	17500	E
Dimethylphthalate	12600	E	Di-N-Octyl Phthalate	447	U
2,6-Dinitrotoluene	447	Ü	Benzo(b)fluoranthene	895	U
2,0-Diminologuene	~~ /	U	Denzo(D)Huul antiitene	075	

Authorized By:

Department of Ecology

Analysis Report for

BNA FOR NOAA

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Sample: 98178090

Date Received: 04/24/98

Method: SW8270

Field ID: FD-8

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98

Units: ug/Kg dw

Analyte	Result	Qualifier		 					
Benzo(k)fluoranthene	1160								
Benzo[e]pyrene	1040								
	721								
Benzo(a)pyrene									
Perylene	230	NIAT							
3B-Coprostanol		NAF							
Indeno(1,2,3-cd)pyrene	649								
Dibenzo(a,h)anthracene	175	J							
Benzo(ghi)perylene	726	J							
Surrogate Recoveries									· ·
Surrogate Recoveries					,	•	•	•	•
2-Fluorophenol	101	%	}						
D5-Phenol	105	%							
D4-2-Chlorophenol	89	%	,						
1,2-Dichlorobenzene-D4	69	%							
D5-Nitrobenzene	89	%							
2-Fluorobiphenyl	78	%	3						
D10-Pyrene	79	%	- 1						
D14-Terphenyl	82	%							

Authorized By:

Release Date:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Page:

3

Sample: 98178090 (Dilution - DIL1) Field ID: FD-8

Date Received: 04/24/98 Method: SW8270 Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton Date Analyzed: 05/28/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine		NC	Acenaphthylene		NC
N-Nitrosodimethylamine		NC	3-Nitroaniline		NC
Aniline		NC	Acenaphthene		NC
Phenol		NC	2,4-Dinitrophenol		NC
Bis(2-Chloroethyl)Ether		NC	4-Nitrophenol		NC
2-Chlorophenol		NC	1,6,7-Trimethylnaphthalene		NC
1,3-Dichlorobenzene		NC	Dibenzofuran	•	NC
1,4-Dichlorobenzene		NC	2,4-Dinitrotoluene		NC
1,2-Dichlorobenzene		NC	Diethylphthalate		NC
Benzyl Alcohol		NC	Fluorene		NC
2-Methylphenol		NC	4-Chlorophenyl-Phenylether		NC
2,2'-Oxybis[1-chloropropane]		NC	4-Nitroaniline		NC
N-Nitroso-Di-N-Propylamine		NC	4,6-Dinitro-2-Methylphenol		NC
4-Methylphenol		NC	N-Nitrosodiphenylamine		NC
Hexachloroethane		NC	1,2-Diphenylhydrazine	•	NC
Nitrobenzene		NC	4-Bromophenyl-Phenylether		NC
Isophorone		NC	Hexachlorobenzene	•	NC
2-Nitrophenol		NC	Pentachlorophenol		NC
2,4-Dimethylphenol		NC	Dibenzothiophene	•	NC
Bis(2-Chloroethoxy)Methane		NC	Phenanthrene		NC
Benzoic Acid	9550	J	Anthracene		NC
2,4-Dichlorophenol		NC	Caffeine		NC
1,2,4-Trichlorobenzene		NC	Carbazole		NC
Naphthalene		NC ·	Phenol, 4-Nonyl-	•	NC
4-Ĉhloroaniline		NC	2-Methylphenanthrene		NC
Hexachlorobutadiene		NC	1-Methylphenanthrene		NC
4-Chloro-3-Methylphenol		NC	Di-N-Butylphthalate		NC
2-Methylnaphthalene		NC	Fluoranthene		NC
1-Methylnaphthalene		NC	Benzidine		NC
Hexachlorocyclopentadiene		NC	Pyrene		NC
2.4.6-Trichlorophenol		NC	Retene		NC
2,4,5-Trichlorophenol		NC	Butylbenzylphthalate		NC
1,1'-Biphenyl		NC	Benzo(a)anthracene		NC
2-Chloronaphthalene		NC	3,3'-Dichlorobenzidine		NC
2,6-Dimethylnaphthalene		NC	Chrysene		NC
2-Nitroaniline		NC	Bis(2-Ethylhexyl) Phthalate	17200	${f E}$
Dimethylphthalate	13200		Di-N-Octyl Phthalate		NC
2,6-Dinitrotoluene		NC	Benzo(b)fluoranthene		NC
					_

2,6-Dinitrotoluene	NC	Benzo(b)fluor	anthene	
Authorized By:		Release Date:	7/6/28	

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178090 (Dilution - DIL1)

Date Received: 04/24/98

Method: SW8270

Field ID: FD-8

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/28/98

Units:

ug/Kg dw

Analyte	Result	Qualifier
Benzo(k)fluoranthene		NC
Benzo[e]pyrene		NC
Benzo(a)pyrene		NC
Perylene		NC
3B-Coprostanol	•	NAF
Indeno(1,2,3-cd)pyrene		NC
Dibenzo(a,h)anthracene		NC
Benzo(ghi)perylene		NC
Surrogate Recoveries		
2-Fluorophenol	103	%
D5-Phenol	108	%
D4-2-Chlorophenol	89	%
1,2-Dichlorobenzene-D4	69	%
D5-Nitrobenzene	94	%
2-Fluorobiphenyl	78	%
D10-Pyrene	86	%
D14-Terphenyl	85	%

Authorized By:

Release Date:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: OBS8119A1

Method: SW8270

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	166	U	Acenaphthylene	166	U
N-Nitrosodimethylamine	166	Ū	3-Nitroaniline	416	Ŭ
Aniline	83	Ū	Acenaphthene	83	Ŭ
Phenol	67	Ĵ	2,4-Dinitrophenol	6660	Ū
Bis(2-Chloroethyl)Ether	166	Ŭ	4-Nitrophenol	416	Ŭ
2-Chlorophenol	166	Ŭ	1,6,7-Trimethylnaphthalene	83	Ŭ
1,3-Dichlorobenzene	166	Ū	Dibenzofuran	83	Ū
1,4-Dichlorobenzene	166	Ū	2,4-Dinitrotoluene	416	Ū
1,2-Dichlorobenzene	166	Ū	Diethylphthalate	166	Ü
Benzyl Alcohol	83	Ū	Fluorene	83	Ū
2-Methylphenol	166	Ū	4-Chlorophenyl-Phenylether	166	Ŭ
2,2'-Oxybis[1-chloropropane]	83	Ū	4-Nitroaniline	416	Ŭ
N-Nitroso-Di-N-Propylamine	166	Ū	4,6-Dinitro-2-Methylphenol	1660	Ŭ
4-Methylphenol	166	Ū	N-Nitrosodiphenylamine	166	Ŭ
Hexachloroethane	166	Ŭ	1,2-Diphenylhydrazine	83	Ŭ
Nitrobenzene	166	Ŭ	4-Bromophenyl-Phenylether	166	Ŭ
Isophorone	166	Ŭ	Hexachlorobenzene	166	Ŭ
2-Nitrophenol	416	Ŭ	Pentachlorophenol	416	Ŭ.
2,4-Dimethylphenol	166	Ü	Dibenzothiophene	83	Ü
Bis(2-Chloroethoxy)Methane	166	Ŭ	Phenanthrene	83	Ŭ
Benzoic Acid	1850	Ĵ	Anthracene	166	Ŭ
2,4-Dichlorophenol	166	Ŭ	Caffeine	83	Ŭ
1,2,4-Trichlorobenzene	166	Ŭ	Carbazole	166	Ŭ
Naphthalene	166	Ŭ	Phenol, 4-Nonyl-	166	Ŭ
4-Chloroaniline	83	ับั	2-Methylphenanthrene	83	Ŭ
Hexachlorobutadiene	166	Ŭ	1-Methylphenanthrene	83	Ŭ
4-Chloro-3-Methylphenol	166	Ŭ	Di-N-Butylphthalate	332	U
2-Methylnaphthalene	83	Ŭ	Fluoranthene	83	U
1-Methylnaphthalene	166	ŭ	Benzidine	832	ŬJ
Hexachlorocyclopentadiene	416	Ŭ	Pyrene	166	บั
2,4,6-Trichlorophenol	166	Ü	Retene	166	Ŭ
2,4,5-Trichlorophenol	166	Ŭ	Butylbenzylphthalate	166	บั
1,1'-Biphenyl	7.1	j	Benzo(a)anthracene	166	บั
2-Chloronaphthalene	83	Ü	3,3'-Dichlorobenzidine	166	Ū
2,6-Dimethylnaphthalene	83	Ŭ	Chrysene	166	บั
2-Nitroaniline	416	Ŭ	Bis(2-Ethylhexyl) Phthalate	59	j
Dimethylphthalate	166	Ü	Di-N-Octyl Phthalate	416	U
2.6-Dinitrotoluene	416	Ü	Benzo(b)fluoranthene	166	Ü
2,0-Dimitologuene	410	U	DOILZO(U)HUOLAHUICIIC	100	U

Authorized By:

Release Date: 7/6/98

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OBS8119A1

Method: SW8270

Project Officer: Dale Norton

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	
D (1) (1)	166	T?	
Benzo(k)fluoranthene	166	<u>u</u>	
Benzo[e]pyrene	83	U	·
Benzo(a)pyrene	83	U	
Perylene	83	U	
3B-Coprostanol		NAF	
Indeno(1,2,3-cd)pyrene	416	U	
Dibenzo(a,h)anthracene	54	J	
Benzo(ghi)perylene	832	Ū	
Surrogate Recoveries			
2-Fluorophenol	108	%	
D5-Phenol	118	%	
D4-2-Chlorophenol	99	%	
1,2-Dichlorobenzene-D4	91	%	
D5-Nitrobenzene	108	%	
2-Fluorobiphenyl	89	%	
D10-Pyrene	95	%	
D14-Terphenyl	93	%	
			•

Authorized By:

Release Date: 9/6/98

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Method: SW8270

Sample: OBS8119A2

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Prepared: 04/29/98 Date Analyzed: 05/27/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	166	U	Acenaphthylene	166	U
N-Nitrosodimethylamine	166	Ū	3-Nitroaniline	416	Ŭ
Aniline	83	Ū	Acenaphthene	83	Ū
Phenol	63	J	2,4-Dinitrophenol	6660	Ü
Bis(2-Chloroethyl)Ether	166	Ŭ	4-Nitrophenol	416	Ū
2-Chlorophenol	166	U	1,6,7-Trimethylnaphthalene	83	Ū
1,3-Dichlorobenzene	166	U	Dibenzofuran	83	Ū
1,4-Dichlorobenzene	166	U	2,4-Dinitrotoluene	416	U
1,2-Dichlorobenzene	166	U	Diethylphthalate	19	J '
Benzyl Alcohol	83	U	Fluorene	83	Ū
2-Methylphenol	166	U	4-Chlorophenyl-Phenylether	166	U
2,2'-Oxybis[1-chloropropane]	83	U	4-Nitroaniline	416	Ü
N-Nitroso-Di-N-Propylamine	166	U	4,6-Dinitro-2-Methylphenol	1660	Ū
4-Methylphenol	166	Ū	N-Nitrosodiphenylamine	166	Ü
Hexachloroethane	166	U	1,2-Diphenylhydrazine	83	Ü
Nitrobenzene	166	U	4-Bromophenyl-Phenylether	166	Ū
Isophorone	166	\mathbf{u}	Hexachlorobenzene	166	Ü
2-Nitrophenol	416	U	Pentachlorophenol	416	Ū
2,4-Dimethylphenol	166	U	Dibenzothiophene	83	Ū
Bis(2-Chloroethoxy)Methane	166	U	Phenanthrene	83	Ū
Benzoic Acid	1660	Ū	Anthracene	166	Ū··
2,4-Dichlorophenol	166	U	Caffeine	83	Ū
1,2,4-Trichlorobenzene	166	U	Carbazole	166	Ŭ
Naphthalene	166	Ū	Phenol, 4-Nonyl-	166	Ü
4-Chloroaniline	83	Ū	2-Methylphenanthrene	83	Ŭ
Hexachlorobutadiene	166	Ü	1-Methylphenanthrene	83	Ŭ
4-Chloro-3-Methylphenol	166	Ŭ	Di-N-Butylphthalate	459	-
2-Methylnaphthalene	83	Ŭ	Fluoranthene	83	U
1-Methylnaphthalene	166	Ŭ	Benzidine	832	ប៊្វ
Hexachlorocyclopentadiene	416	Ū	Pyrene	166	·Ū
2,4,6-Trichlorophenol	166	Ū	Retene	166	Ü
2,4,5-Trichlorophenol	166	Ŭ	Butylbenzylphthalate	166	Ŭ
1,1'-Biphenyl	9	$oldsymbol{ ilde{J}}$	Benzo(a)anthracene	166	Ŭ
2-Chloronaphthalene	83	Ü	3,3'-Dichlorobenzidine	166	Ŭ
2,6-Dimethylnaphthalene	83	Ŭ	Chrysene	166	Ŭ
2-Nitroaniline	416	Ŭ	Bis(2-Ethylhexyl) Phthalate	251	, •
Dimethylphthalate	166	Ü	Di-N-Octyl Phthalate	416	U
2,6-Dinitrotoluene	416	Ŭ	Benzo(b)fluoranthene	166	Ü

uthorized By	: La	ted	1

Release Date: <u>7/6/98</u>

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton

Method: SW8270

Sample: OBS8119A2

Date Prepared: 04/29/98 Date Analyzed: 05/27/98

Matrix: Sediment/Soil

Units: ug/Kg dw

Analyte	Result	Qualifier
	166	**
Benzo(k)fluoranthene	166	U
Benzo[e]pyrene	83	· U
Benzo(a)pyrene	83	Ū
Perylene	83	U
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene	416	U ·
Dibenzo(a,h)anthracene	166	U
Benzo(ghi)perylene	832	U
Surrogate Recoveries		
2-Fluorophenol	108	%
D5-Phenol	119	%
D4-2-Chlorophenol	99	%
1,2-Dichlorobenzene-D4	90	%
D5-Nitrobenzene	105	%
2-Fluorobiphenyl	86	%
D10-Pyrene	93	%
D14-Terphenyl	93	%

uthorized By:

Release Date: 7/6/98

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OBS8152A1

Method: SW8270

Date Prepared: 04/29/98 Matrix: Sediment/Soil

Project Officer: Dale Norton Date Analyzed: 05/27/98 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	83	U	Acenaphthylene	83	U
N-Nitrosodimethylamine	83	Ū	3-Nitroaniline	208	Ü
Aniline	42	Ŭ	Acenaphthene	42	Ü
Phenol	64	J	2,4-Dinitrophenol	3330	Ŭ
Bis(2-Chloroethyl)Ether	83	Ŭ	4-Nitrophenol	208	Ŭ
2-Chlorophenol	83	Ŭ	1,6,7-Trimethylnaphthalene	42	Ŭ
1,3-Dichlorobenzene	83	Ū	Dibenzofuran	42	Ü
1,4-Dichlorobenzene	83	Ū	2,4-Dinitrotoluene	208	Ŭ
1,2-Dichlorobenzene	83	Ū	Diethylphthalate	7	$\tilde{\mathbf{J}}$
Benzyl Alcohol	42	Ū	Fluorene	42	Ŭ
2-Methylphenol	83	Ū	4-Chlorophenyl-Phenylether	83	Ŭ
2,2'-Oxybis[1-chloropropane]	42	Ū	4-Nitroaniline	. 208	Ŭ
N-Nitroso-Di-N-Propylamine	83	Ū	4,6-Dinitro-2-Methylphenol	832	Ü
4-Methylphenol	83	Ū	N-Nitrosodiphenylamine	83	Ŭ
Hexachloroethane	83	Ū	1,2-Diphenylhydrazine	42	Ū
Nitrobenzene	83	Ū	4-Bromophenyl-Phenylether	83	Ŭ
Isophorone	83	Ū	Hexachlorobenzene	83	Ū
2-Nitrophenol	208	Ŭ	Pentachlorophenol	208	Ŭ
2,4-Dimethylphenol	83	Ū	Dibenzothiophene	42	Ū
Bis(2-Chloroethoxy)Methane	83	Ŭ	Phenanthrene	42	Ŭ
Benzoic Acid	1020	Ĵ	Anthracene	83	Ŭ
2,4-Dichlorophenol	83	Ŭ	Caffeine	42	Ŭ
1,2,4-Trichlorobenzene	83	Ŭ	Carbazole	83	Ŭ
Naphthalene	83	Ü	Phenol, 4-Nonyl-	83	Ŭ
4-Chloroaniline	42	Ü	2-Methylphenanthrene	42	Ŭ
Hexachlorobutadiene	83	Ŭ	1-Methylphenanthrene	42	Ŭ
4-Chloro-3-Methylphenol	83	Ŭ	Di-N-Butylphthalate	2730	
2-Methylnaphthalene	42	Ŭ	Fluoranthene	42	U
1-Methylnaphthalene	83	Ū	Benzidine	416	ŬJ
Hexachlorocyclopentadiene	208	Ŭ	Pyrene	83	Ü
2,4,6-Trichlorophenol	83	Ū	Retene	83	Ŭ
2,4,5-Trichlorophenol	83	Ŭ	Butylbenzylphthalate	83	Ŭ
1,1'-Biphenyl	7.5	Ĵ	Benzo(a)anthracene	83	Ŭ
2-Chloronaphthalene	42	บ้	3,3'-Dichlorobenzidine	83	Ŭ
2,6-Dimethylnaphthalene	42	Ŭ	Chrysene	83	Ŭ
2-Nitroaniline	208	Ŭ	Bis(2-Ethylhexyl) Phthalate	42	J
Dimethylphthalate	83	Ü	Di-N-Octyl Phthalate	208	Ü
2,6-Dinitrotoluene	208	Ŭ	Benzo(b)fluoranthene	83	Ü
2,0 Diminotorio		Ü			

Authorized By:

Release Date: 7/6/98

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OBS8152A1

Method: SW8270

Project Officer: Dale Norton

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Date Analyzed: 05/27/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier
Para delinamenthana	83	U
Benzo(k)fluoranthene		_
Benzo[e]pyrene	42	Ŭ
Benzo(a)pyrene	42	U
Perylene	42	U
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene	208	U
Dibenzo(a,h)anthracene	83	U
Benzo(ghi)perylene	416	U
Surrogate Recoveries		y.
2-Fluorophenol	107	%
D5-Phenol	100	%
D4-2-Chlorophenol	94	%
1,2-Dichlorobenzene-D4	81	%
D5-Nitrobenzene	91	%
2-Fluorobiphenyl	77	%
D10-Pyrene	89	%
D14-Terphenyl	88	%

Authorized By:

Release Date: 7/6/88

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

Project Officer: Dale Norton

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OBS8152A2

Method: SW8270

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Date Analyzed: 05/27/98 ug/Kg dw Units:

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Pyridine	64	U	Acenaphthylene	64	U
N-Nitrosodimethylamine	64	U	3-Nitroaniline	160	U
Aniline	32	U	Acenaphthene	32	U
Phenol	39	J	2,4-Dinitrophenol	2560	U
Bis(2-Chloroethyl)Ether	64	Ū	4-Nitrophenol	160	U
2-Chlorophenol	64	U	1,6,7-Trimethylnaphthalene	32	U
1,3-Dichlorobenzene	64	U	Dibenzofuran	32	U
1,4-Dichlorobenzene	64	U	2,4-Dinitrotoluene	160	U
1,2-Dichlorobenzene	64	U	Diethylphthalate	64	U
Benzyl Alcohol	32	· U	Fluorene	32	U
2-Methylphenol	64	U	4-Chlorophenyl-Phenylether	64	U
2,2'-Oxybis[1-chloropropane]	32	U	4-Nitroaniline	160	U
N-Nitroso-Di-N-Propylamine	64	U	4,6-Dinitro-2-Methylphenol	640	U
4-Methylphenol	5.2	J	N-Nitrosodiphenylamine	64	${f U}$
Hexachloroethane	64	U	1,2-Diphenylhydrazine	32	U
Nitrobenzene	64	U	4-Bromophenyl-Phenylether	64	Ū
Isophorone	64	U	Hexachlorobenzene	64	U
2-Nitrophenol	160	U	Pentachlorophenol	160	U
2,4-Dimethylphenol	64	U	Dibenzothiophene	32	${f U}$
Bis(2-Chloroethoxy)Methane	64	U	Phenanthrene	32	U
Benzoic Acid	640	U	Anthracene	64	U
2,4-Dichlorophenol	64	U	Caffeine	32	U
1,2,4-Trichlorobenzene	64	U	Carbazole	64	U
Naphthalene	64	U	Phenol, 4-Nonyl-	64	\mathbf{U}
4-Chloroaniline	32	Ü	2-Methylphenanthrene	32	U
Hexachlorobutadiene	64	U	1-Methylphenanthrene	32	U
4-Chloro-3-Methylphenol	64	U	Di-N-Butylphthalate	786	
2-Methylnaphthalene	32	\mathbf{U}	Fluoranthene	32	U
1-Methylnaphthalene	64	U	Benzidine	320	UJ
Hexachlorocyclopentadiene	160	Ū	Pyrene	64	U
2,4,6-Trichlorophenol	64	U	Retene	64	${f U}$
2,4,5-Trichlorophenol	64	Ü	Butylbenzylphthalate	64	Ū
1,1'-Biphenyl	4.7	Ĵ	Benzo(a)anthracene	64	Ū
2-Chloronaphthalene	32	Ŭ	3,3'-Dichlorobenzidine	64	Ŭ
2,6-Dimethylnaphthalene	32	Ŭ	Chrysene	64	Ŭ.
2-Nitroaniline	160	Ŭ	Bis(2-Ethylhexyl) Phthalate	28	Ĵ
Dimethylphthalate	64	Ū	Di-N-Octyl Phthalate	160	Ŭ
2,6-Dinitrotoluene	160	Ü	Benzo(b)fluoranthene	64	Ŭ
		_	(-)		

	121	
Authorized By:	Ulas	

Release Date:

Page:

Department of Ecology

Analysis Report for

BNA FOR NOAA

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Method: SW8270

Sample: OBS8152A2

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 05/27/98

Units: ug/Kg dw

Analyte	Result	Qualifier
Danga (Iv) flu amonth and	64	U
Benzo(k)fluoranthene		-
Benzo[e]pyrene	32	<u>U</u>
Benzo(a)pyrene	32	U
Perylene	32	\mathbf{U}^{\perp}
3B-Coprostanol		NAF
Indeno(1,2,3-cd)pyrene	160	\mathbf{u}
Dibenzo(a,h)anthracene	64	U
Benzo(ghi)perylene	320	U
Surrogate Recoveries		,
2-Fluorophenol	71	%
D5-Phenol	66	%
D4-2-Chlorophenol	64	%
1,2-Dichlorobenzene-D4	56	%
D5-Nitrobenzene	62	%
2-Fluorobiphenyl	57	%
D10-Pyrene	65	%
D14-Terphenyl	64	%

Authorized By:

Release Date: 7/6/98

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Sample: 98178090

Date Received: 04/24/98

Method: NOAA-TBT

Field ID: FD-8

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Date Analyzed: 07/23/98

Project Officer: Dale Norton

Units: ug/Kg dw

Analyte	Result	Qualitier	
Tetrabutyltin Chloride	100	J	
Tributyltin Chloride	302000	E	
Dibutyltin Chloride	27100	${f E}$	
Monobutyltin Chloride	6620	E	
Surrogate Recoveries			
Tripentyltin Chloride	61	%	

Authorized By:

Release Date:

8/6/28

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: 98178090 (Dilution - DIL1)

Date Received: 04/24/98 Method: NOAA-TBT

Field ID: FD-8

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 07/23/98 Units: ug/Kg dw

Analyte	Result	Qualifier	 	·	·····
Tetrabutyltin Chloride	13 74300	J F			
Tributyltin Chloride Dibutyltin Chloride	74300 14100	E J	•		
Monobutyltin Chloride	7750	j			
Surrogate Recoveries					
Tripentyltin Chloride	 	NC			
·.				1	

Authorized By:

8/6/98 Release Date:

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178090 (Dilution - DIL2)

Method: NOAA-TBT

Field ID: FD-8

Date Received: 04/24/98

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 07/23/98

Units:

ug/Kg dw

Analyte	Result	Qualifier

Tetrabutyltin Chloride	·	REJ
Tributyltin Chloride	47800	J
Dibutyltin Chloride	9680	J
Monobutyltin Chloride	2080	J

Surrogate Recoveries

Tripentyltin Chloride NC

Authorized By:

Release Date:

8/6/28

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OBS8175A1

Method: NOAA-TBT

Blank ID: BLNK

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 07/22/98

Units:

ug/Kg dw

Analyte	Result	Qualifier
Tetrabutyltin Chloride	7	U
Tetrabutyltin Chloride Tributyltin Chloride	7	U
Dibutyltin Chloride	7.2	U
Monobutyltin Chloride	17	

Surrogate Recoveries

Tripentyltin	Chloride	94	%

Authorized By: Market

Release Date:

8/6/28

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OBS8175A2

Method: NOAA-TBT

Blank ID: BLNK

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Prepared: 06/24/98 Date Analyzed: 07/22/98

Units: ug/Kg dw

Analyte	Result	Qualifier	
Tetrabutyltin Chloride	7	U	
Tributyltin Chloride	7	Ŭ	
Dibutyltin Chloride	7.2	Ŭ	
Tributyltin Chloride Dibutyltin Chloride Monobutyltin Chloride	12	Ĵ	•
Surrogate Recoveries			
Tripentyltin Chloride	109	%	

Authorized By:

Release Date: 8/6/98

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OCS8175A1

Method: NOAA-TBT

Blank ID: SBRM

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 07/23/98

Units:

ug/Kg dw

Analyte	Result	Qualifier
Tetrabutyltin Chloride Tributyltin Chloride Dibutyltin Chloride Monobutyltin Chloride	137 5.7 51	REJ J J J
Surrogate Recoveries		
Tripentyltin Chloride	82	%

Release Date: ___

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OCS8175A2

Method: NOAA-TBT

Blank ID: SBRM

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 07/23/98

Units:

ug/Kg dw

Anal	vte

Result Qualifier REJ 147 5

50

90

Surrogate Recoveries

Monobutyltin Chloride

Tetrabutyltin Chloride

Tributyltin Chloride

Dibutyltin Chloride

Tripentyltin Chloride

Authorized By:

Release Date:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OCS8175A3

Method: NOAA-TBT

Blank ID: PCS2

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Prepared: 06/24/98 Date Analyzed: 07/23/98

Units:

ug/Kg dw

Analyte	Result	Qualifier
Totanhutultin Chlorido		REI
Tetrabutyltin Chloride		KE
Tributyltin Chloride	2090	J
Dibutyltin Chloride	2000	J
Monobutyltin Chloride	1700	J

Surrogate Recoveries

Tripentyltin Chloride 72

Authorized By:

Release Date: 8/6/98

Page:

Department of Ecology

Analysis Report for

Tri-butyl Tin

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Sample: OCS8175A4

Method: NOAA-TBT

Blank ID: PCS2

Date Prepared: 06/24/98

Matrix: Sediment/Soil

Project Officer: Dale Norton

Date Analyzed: 07/23/98

Units: ug/Kg dw

Analyte		
---------	--	--

Tetrabutyltin Chloride Tributyltin Chloride Dibutyltin Chloride Monobutyltin Chloride

	Kesuit	Quamie
		REJ
•	1850	J
	2010	J
	2300	Ĵ

Surrogate Recoveries

Tripentyltin	Chloride	65	%

Authorized By:

Release Date: 8/6/87

Department of Ecology

Analysis Report for

Hydrocarbon Identification

Project Name: CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Project Officer: Dale Norton

Method:

HYDRO-ID

Date Reported: 07-MAY-98

Matrix: Sediment/Soil

Analyte: Hydrocarbon identification

Sample	QC	Field ID	Result	Qualifier	Units	Received	Analyzed
*98178085 *98178086 *98178089 OBS8119H0	C	FD-3C FD-3D FD-6		NC NC NC NC	mg/Kg ww mg/Kg ww mg/Kg ww mg/Kg ww	04/24/98 04/24/98 04/24/98	04/29/98 04/29/98 04/29/98 04/29/98

Comments:

98178085 - Appears to be some type of lube oil

98178086 - Appears to be some type of lube oil

98178089 - Appears to be some type of lube oil

* See comments

Page: 1

Authorized By: Release Date: 5-7-98

Department of Ecology

Analysis Report for

Organochlorine Pesticides and Polychlorinated Biphenyls

Project Name: CMB In-line Sed. Traps	LIMS Project ID:	1290-98
--------------------------------------	------------------	---------

Sample: 98178083 Date Collected: 04/22/98 Method: SW8080

Field ID: FD-3

Project Officer: Dale Norton

Date Prepared: 04/29/98 Matrix: Sediment/Soil
Date Analyzed: 06/02/98 Units: ug/Kg dw

Analyte	Result	Qualifier				
		·		 		
Alpha-BHC	7.7	\mathbf{U}_{-}				
Beta-BHC	7.7	U				
Gamma-BHC (Lindane)	7.7	U				
Delta-BHC	7.7	U				
Heptachlor	7.7	U				
Aldrin	7.7	U				
Heptachlor Epoxide	7.7	U				
Endosulfan I	7.7	U				
4,4'-DDE	7.7	U				
Dieldrin	7.7	U				
Endrin	7.7	U				
Endosulfan II	7.7	U				
4,4'-DDD	7.7	U				
Endrin Aldehyde		REJ				
4,4'-DDT	9.2	J				
Endosulfan Sulfate	7.7	U				
Endrin Ketone	7.7	U				
Methoxychlor	7.7	U				
						•
Surrogate Recoveries						,
Tetrachloro-m-xylene	82	%				
Dibutylchlorendate	90	%				

Fetrachloro-m-xylene Dibutylchlorendate		
	÷	
uthorized By:		Release Date: 8/18/97 Page: 1

Department of Ecology

Analysis Report for

Organochlorine Pesticides and Polychlorinated Biphenyls

Project Name: CMB In-line Sed. Traps LIMS Project ID: 1290-98

Sample: 98178084 Date Collected: 04/22/98 Method: SW8080

Date Prepared: 04/29/98 Matrix: Sediment/Soil Field ID: FD-3D Project Officer: Dale Norton Date Analyzed: 06/02/98 **Units:** ug/Kg dw

Result Qualifier Analyte 8.5 U Alpha-BHC 8.5 U Beta-BHC 8.5 U Gamma-BHC (Lindane) 8.5 U Delta-BHC 8.5 U Heptachlor 8.5 U Aldrin 8.5 U Heptachlor Epoxide 8.5 U Endosulfan I 4,4'-DDE 8.5 U Dieldrin 8.5 U 2 J Endrin 8.5 U Endosulfan II 8.5 U 4,4'-DDD REJ Endrin Aldehyde 4,4'-DDT 6.7 J 8.5 Ū Endosulfan Sulfate 8.5 U Endrin Ketone 8.5 Methoxychlor **Surrogate Recoveries** 77 % Tetrachloro-m-xylene % 98 Dibutylchlorendate

uthorized B			Release Date:	8/18	 19 L	Page:	1
·							
	e.	t.					
		•					

Department of Ecology

Analysis Report for

Organochlorine Pesticides and Polychlorinated Biphenyls

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Lab ID: OBS8119A1

QC Type: Laboratory Method Blank Project Officer: Dale Norton

Method: SW8080

Date Prepared: 04/29/98

Matrix: Sediment/Soil

Date Analyzed: 06/02/98

Units: ug/Kg dw

Analyte	Result	Qualifier		····		
Alpha-BHC	7.7	U				
Beta-BHC	7.7	Ŭ	•			
Gamma-BHC (Lindane)	7.7	Ŭ				
Delta-BHC	7.7	. Ü				
	7.7	Ü		•		
Heptachlor						
Aldrin	7.7	U				
Heptachlor Epoxide	7.7	U				
Endosulfan I	7.7	U			•	
4,4'-DDE	7.7	Ŭ				
Dieldrin	7.7	U				
Endrin	7.7	U			• •	
Endosulfan II	7.7	U				
4,4'-DDD	7.7	U				
Endrin Aldehyde		REJ		•		
4,4'-DDT	7.7	U				
Endosulfan Sulfate	7.7	U				
Endrin Ketone	7.7	Ū				
Methoxychlor	8.4	Ĵ				
		Ū				
Surrogate Recoveries						
Tetrachloro-m-xylene	74	%				
Dibutylchlorendate	110	%				

Authorized By:	Mall-
rumonized by.	for const

Release Date: 8/18/98

Department of Ecology

Analysis Report for

Organochlorine Pesticides and Polychlorinated Biphenyls

CMB In-line Sed. Traps **Project Name:**

LIMS Project ID: 1290-98

Lab ID: OBS8119A2

Method: SW8080

QC Type: Laboratory Method Blank Project Officer: Dale Norton

Matrix: Sediment/Soil Date Prepared: 04/29/98

Date Analyzed: 06/02/98 **Units:** ug/Kg dw

Analyte	Result	Qualifier	•				
Al-t- DIIC	77					. •	
Alpha-BHC	7.7	U					
Beta-BHC	7.7	U					
Gamma-BHC (Lindane)	7.7	U			4		
Delta-BHC	7.7	U					
Heptachlor	7.7	\mathbf{U}					
Aldrin	7.7	U					÷
Heptachlor Epoxide	7.7	U		•			
Endosulfan I	7.7	U	•				
4,4'-DDE	7.7	U					
Dieldrin	7.7	U					
Endrin	7.7	U					
Endosulfan II	7.7	Ū					
4,4'-DDD	7.7	Ŭ					
Endrin Aldehyde	•••	REJ			•		
4,4'-DDT	7.7	Ŭ.					
Endosulfan Sulfate	7.7	Ŭ					
Endrin Ketone	7.7	Ŭ					
Methoxychlor	7.7	บั					
Methoxychioi	1.1	O					
Surrogate Recoveries							
Tetrachloro-m-xylene	77	%					
Dibutylchlorendate	112	%					

'etrachloro-m-xylene Dibutylchlorendate	77 112	% %				
						·
				·	· ·	
						,
thorized By:	//_		Release Date: _	8/18/98	Page	: 1

Authorized By:	Mr tell	

Department of Ecology

Analysis Report for

Organochlorine Pesticides and Polychlorinated Biphenyls

Project Name:

CMB In-line Sed. Traps

LIMS Project ID: 1290-98

Lab ID: OCS8119

Method: SW8080

QC Type: NIST SRM 1941a Project Officer: Dale Norton

Date Prepared: 04/29/98 Date Analyzed: 06/02/98 Matrix: Sediment/Soil **Units:** ug/Kg dw

Alpha-BHC 13 U Beta-BHC 13 U Gamma-BHC (Lindane) 13 U Delta-BHC 13 U Heptachlor 13 U Aldrin 13 U Heptachlor Epoxide 13 U Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Analyte	Result	Qualifier
Beta-BHC 13 U Gamma-BHC (Lindane) 13 U Delta-BHC 13 U Heptachlor 13 U Aldrin 13 U Heptachlor Epoxide 13 U Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 13 U Endrin 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries		4.5	
Gamma-BHC (Lindane) 13 U Delta-BHC 13 U Heptachlor 13 U Aldrin 13 U Heptachlor Epoxide 13 U Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries			
Delta-BHC 13 U Heptachlor 13 U Aldrin 13 U Heptachlor Epoxide 13 U Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U Endrin 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries			_
Heptachlor 13 U Aldrin 13 U Heptachlor Epoxide 13 U Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries			-
Aldrin 13 U Heptachlor Epoxide 13 U Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Delta-BHC		-
Heptachlor Epoxide	Heptachlor		_
Endosulfan I 13 U 4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Aldrin	-	U
4,4'-DDE 6.3 J Dieldrin 3.3 J Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Heptachlor Epoxide		U
Dieldrin 3.3 J Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Endosulfan I	13	U
Endrin 13 U Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	4,4'-DDE	6.3	J
Endosulfan II 13 U 4,4'-DDD 4.9 J Endrin Aldehyde 13 U 4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Dieldrin	3.3	J
4,4'-DDD Endrin Aldehyde 4,4'-DDT 1.5 Endosulfan Sulfate Endrin Ketone Methoxychlor Surrogate Recoveries	Endrin	13	U
Endrin Aldehyde 4,4'-DDT 1.5 Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	Endosulfan II	-13	U
Endrin Aldehyde 4,4'-DDT 1.5 Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries	4.4'-DDD	4.9	J
4,4'-DDT 1.5 J Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries		13	Ū
Endosulfan Sulfate 13 U Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries		1.5	J
Endrin Ketone 13 U Methoxychlor 13 U Surrogate Recoveries		13	
Methoxychlor 13 U Surrogate Recoveries		13	U
	· ·	13	U
Tetrachloro-m-xylene 86 %	Surrogate Recoveries	•	
1 1	Tetrachloro-m-xylene	86	%
Dibutylchlorendate 130 %		130	%

Authorized By:

Release Date:

8/18/98

Page:

Department of Ecology

Analysis Report for

Organochlorine Pesticides and Polychlorinated Biphenyls

CMB In-line Sed. Traps LIMS Project ID: 1290-98 **Project Name:**

Lab ID: OFS8119PP Method: SW8080

QC Type: Laboratory Control Sample Project Officer: Dale Norton Date Prepared: 04/29/98 Date Analyzed: 06/02/98 Matrix: Sediment/Soil **Units:** ug/Kg dw

Analyte	Result	Qualifier	 	 		
Alpha-BHC	78					
Beta-BHC	67	-				
Gamma-BHC (Lindane)	88	ě				
Delta-BHC	64					
Heptachlor	72			,		
Aldrin	91					
Heptachlor Epoxide	110					
Endosulfan I	110					
4,4'-DDE	100					
Dieldrin	100					
Endrin	84		* * *			*
Endosulfan II	<i>75</i>		•			
4,4'-DDD	82					
Endrin Aldehyde	. 0					
4,4'-DDT	113					
Endosulfan Sulfate	72					
Endrin Ketone	128	·				
Methoxychlor	160				٠.	
•			*			
Surrogate Recoveries						
Tetrachloro-m-xylene	71	%				
Dibutylchlorendate	97	%				

orized By:	Release Date:	8/18/88	Page: 1
·			
	•		