

PUGET SOUND REFERENCE VALUE PROJECT

TASK 3: Development of Benthic Effects Sediment Quality Standards

April 1999

Submitted To:

Washington State Department of Ecology 520 Desmond Drive SE Lacey, Washington 98503

Submitted By:

Striplin Environmental Associates, Inc. 222 Kenyon St. NW Olympia, Washington 98502

Roy F. Weston, Inc. 700 Fifth Avenue, Suite 5700 Seattle, Washington 98104-5057

PUGET SOUND REFERENCE VALUE PROJECT

Submitted To:

Washington State Department of Ecology 520 Desmond Drive SE Lacey, Washington 98503

April 1999

Submitted By:

Striplin Environmental Associates 222 Kenyon Street NW Olympia, Washington 98502

And

Roy F. Weston, Inc. 700 Fifth Avenue, Suite 5700 Seattle, Washington 98104-5057

Funded By:

U.S. Environmental Protection Agency Region 10

TABLE OF CONTENTS

Sectio	Section				
ACKNOWLEDGEMENTSvii					
1.	INT	RODUCTION1-1			
	1.1	REVIEW OF PREVIOUS WORK			
	1.2	REPORT ORGANIZATION			
2.	SEL	SELECTION OF BENTHIC ENDPOINTS FOR EVALUATION			
	2.1	TOTAL RICHNESS			
		2.1.1 Major Taxa Richness			
		2.1.2 Total Abundance			
		2.1.3 Major Taxa Abundance			
		2.1.4 Shannon-Weiner Diversity (H')			
		2.1.5 Pielou's Evenness (J')			
		2.1.6 Swartz's Dominance Index (SDI)			
		2.1.7 Infaunal Trophic Index (ITI)			
	2.2	RECOMMENDATIONS OF THE 1993 BENTHIC EXPERTS			
		WORKSHOP			
	2.3	PRIORITY ENDPOINTS BASED ON CASE STUDIES			
	2.4	PRIORITY ENDPOINTS BASED ON PRELIMINARY REFERENCE			
		RANGE RESULTS			
÷	2.5	REFINEMENT OF BENTHIC INFAUNA ENDPOINTS FOR THE			
		PUGET SOUND REFERENCE VALUE PROJECT			
3.	REF	FINEMENT OF THE REFERENCE DATABASE			
5.	3.1	IDENTIFICATION OF ANOMALOUS REFERENCE VALUES			
	2.1	3.1.1 Identification of Anomalous or Extreme Values Based on Percentiles			
		3.1.2 Identification of Anomalous Values Based on Regressions			
-		3.1.2 Identification of Anomatous Values based on Regressions 3.1.3 Outlier Method Comparison 3-3			
	3.2	REFINED REFERENCE AREA VALUES			
	5.2	ALPINED ALPENERA VALOES			
4.	TES	TING OF BENTHIC INFAUNA ENDPOINTS			
	4.1	DATA SET COMPILATION			
	TES	TING ENDPOINTS			
	4.3	EVALUATION OF ENDPOINT EFFECTIVENESS			
	4.4	INITIAL RANKING OF BENTHIC ENDPOINTS			
5.	REC	COMMENDATIONS			
6.	LIT	ERATURE CITED			

iii

LIST OF TABLES

Tab	ole	Title
1	L	Priority Endpoints, Major Effects, and Method of Comparison Selected for Further Evaluation
2	2	Results of Regression Analysis Between Benthic Endpoints and Habitat Characteristics
57 J	3	Revised Reference Ranges for Puget Sound Habitats in Water Depths Less Than 150 Feet
4	4	Results of Phase 1 Screening to Identify Impacted Grouped by SMS Category
4	5	Results of Phase 1 Screening to Identify Impacted Grouped by BAET Category
e	5	Results of Comparisons Based on One Half the Reference Mean for Stations Grouped by SMS Category
5	7	Results of Comparisons Based on One Half the Reference Mean for Stations Grouped by BAET Category
8		Results of Comparisons Based on Reference Range Exceedances for Stations Grouped by SMS Category
, S	9	Results of Comparisons Based on Reference Range Exceedances for Stations Grouped by BAET Category
. 1	10	Results of Comparisons Based on 95th CL for Stations Grouped by SMS Category
1	11	Results of Comparisons Based on 95th CL for Stations Grouped by BAET Category
]	12	Results of Comparisons Based on the t-test for Stations Grouped by SMS Category
	13	Results of Comparisons Based on the t-test for Stations Grouped by BAET Category
]	14a	Summary of Ranks for Benthic Endpoints Evaluated by SMS Category
·]	14b	Summary of the Benthic Endpoints Evaluated by SMS Category Based on Percent Impacted
]	15a	Summary of Ranks for Benthic Endpoints Evaluated by BAET Category
ļ	156	Summary of the Benthic Endpoints Evaluated by BAET Category Based on Percent Impacted

Comparison to Reference Ranges

LIST OF TABLES (Continued)

v

TableTitle16Proposed Decision Rules for the Recommended Benthic Endpoints Based on

99-0167.doc

26 April 1999

LIST OF FIGURES

	CT34 . 4
Figure	Title
rivinc.	

- 1. Process for the Phased Identification of Impacted Stations Effective Endpoints
- 2. Generalized Relationship Among Test Endpoints
- 3. Benthic Community Response to Contamination

APPENDICES

- 1. Stations and Samples Comprising the Revised Reference Values
- 2. Summary Statistics for Revised Reference Value Ranges
- 3. Summary Results of Numerical Comparisons and Statistical Tests by Station and Habitat Category

ACKNOWLEDGMENTS

Peter Striplin of Striplin Environmental Associates (SEA) and Nancy Musgrove of Roy F. Weston, Inc. (WESTON) prepared this report. The authors would like to acknowledge the contributions, guidance, and support provided by Brett Betts, the Washington State Department of Ecology's contract manager, and Roberto Llanso, Ecology's project manager.

Additionally, we thank Betsy Striplin (SEA) and Dena Hughes (WESTON) for their review and suggestions regarding this document.

SECTION 1

INTRODUCTION

Striplin Environmental Associates (SEA), under contract to the Washington State Department of Ecology (Ecology), conducted studies in 1995 to refine the use of benthic infaunal community data in decision making under the Sediment Management Standards (SMS) Rule (Chapter 173-204 WAC). That project was an outgrowth of recommendations made by the National Benthic Experts Workshop (February 1993) panel members, as presented in Recommendations for Assessing Adverse Benthic Effects in Puget Sound [PTI Environmental Services (PTI) 1993]. In support of that effort, SEA compiled and analyzed historical Puget Sound data for the purpose of developing and testing programmatic reference ranges for 14 ecological endpoints representing benthic infaunal communities in four different shallow water (less than 150 feet MLLW) softbottom habitats. This work was presented in the 1996 report Development of Reference Ranges for Benthic Infauna Assessment Endpoints in Puget Sound (SEA 1996). SEA's subcontractor, Roy F. Weston, Inc. (WESTON), independently evaluated the effectiveness of these same endpoints in identifying potentially impacted stations when compared to site-specific reference stations using a series of statistical approaches in a case study based on the Elliott Bay Action Program data. WESTON's results were reported in the Task 3 Evaluation of Analytical Methods and Benthic Community Endpoints for Potential Inclusion in the Sediment Management Standards (WESTON 1995). In this same case study, WESTON compared the effectiveness of using reference ranges in lieu of site-specific reference data to identify benthic community impacts.

In both reports, the authors made recommendations regarding the most effective benthic community endpoints and types of comparisons (e.g., statistical versus numeric) to potentially include in the SMS Rule. However, because of differences in approach and the types of evaluations conducted, recommended endpoints and comparative methods differed. The purpose of this report is to consolidate the recommendations by refining the reference ranges for a set of benthic endpoints and testing the effectiveness of those endpoints in identifying benthic impacts. It is anticipated that these final recommendations will be evaluated and discussed as part of a Regional Benthic Experts Workshop to be held in 1999.

1.1 REVIEW OF PREVIOUS WORK

The project for refining the use of benthic endpoints in the SMS Rule began in 1993 and was divided into three phases, with each phase consisting of several tasks. Phase I contained three tasks: compiling chemical and biological data from Puget Sound, dividing station data from multiple sampling events or studies into two matrices representing potentially impacted and unimpacted stations using the Washington State chemical Sediment Quality Standards (SQS) to demarcate the two groups, and further dividing each matrix into habitat categories (e.g., shallow water/fine-grained sediment; shallow water/coarse-grained sediment). This phase of the project

culminated in a report titled Status Report: Benthic Infauna Reference Value Project (SEA 1993).

Phase II consisted of two major tasks. The first task included statistical evaluations of infaunal data among and within habitat categories, statistical testing between uncontaminated and contaminated habitat categories, and determining whether habitat categories varied geographically within Puget Sound. The appropriateness of the reference range values as representations of reference conditions and their effectiveness in identifying an impacted station for each habitat category were discussed in the 1996 report prepared by SEA. The second task of this phase of the project involved conducting an additional case study, based on the Elliott Bay Action Program data, which was reported in WESTON (1995). This case study, which used investigation-specific reference stations, examined the effectiveness of both benthic community endpoints and analytical approaches in identifying impacted versus unimpacted stations. When the preliminary reference range means became available, a numeric comparison of the various endpoints to the matching habitat reference range mean was included in the evaluation. Because the two evaluations used different approaches to identify reference conditions, the resulting priority of the recommended endpoints differed.

The final phase of the project and the subject of this report consists of two elements. The first element was the refinement of the reference value ranges by identifying and excluding potentially anomalous values. Anomalous values were assessed using several statistical methods that evaluated the distribution of the data and the effects of percent fines (combined percentage of silt and clay), total organic carbon, and total sulfides on each habitat category and benthic infaunal endpoint. The second element was the recommendation of benthic infaunal endpoints by testing their efficiency to detect benthic impacts using the procedure outlined in the Sediment Management Standards, as well as several alternative approaches that may be recommended for inclusion in the SMS Rule.

1.2 REPORT ORGANIZATION

The remainder of this report describes the methods and results used to refine the reference range values and to arrive at a final recommendation of benthic endpoints for possible incorporation into the SMS Rule. Section 2 describes the selection of benthic infaunal endpoints for further evaluation. It includes a summary of the recommendations of the benthic experts workshop and the priority endpoints based on the previous case studies and the reference range results. Section 3 discusses the methods used to refine the reference range values. Section 4 describes the process used to separate the chemically-contaminated stations into categories based on the level of contamination, and provides the results of the testing of the benthic infauna endpoints using the reference area database. Lastly, Section 5 presents the recommendations for the benthic infaunal endpoints along with a discussion of analytical techniques and statistical design.

SECTION 2

SELECTION OF BENTHIC ENDPOINTS FOR EVALUATION

Most of the endpoints used to describe benthic communities are based on expressions of abundance (i.e., the number of individuals in a given area) and diversity (i.e., the number of types and relative abundance of organisms in a given area). The Washington State Sediment Management Standards for benthic infaunal communities currently relies solely on measures of abundance. It uses both a 50 percent reduction in the mean abundance of one of the major taxa groups (polychaetes, crustaceans, and molluscs) relative to a site-specific reference station, and statistically significant difference between the reference and test station to identify an impact. A 50 percent reduction in the abundance of the major taxa groups was selected in the SMS because prior studies showed that seasonal changes in abundance of major taxa groups can vary by a factor of two. In addition, the typical sampling design (five replicate samples per station) used in Puget Sound benthic community investigations often has a statistical power that is only capable of detecting a change in abundance greater than 50 percent because of the inherent variability in these measures. In contrast, recent studies have suggested that measures based on diversity (i.e., numbers of species) may be equally, if not more, sensitive than abundance measures (Rakocinski et al. 1995, SEA 1996), in part, because of the lower statistical variability associated with these measures.

Fourteen endpoints were initially selected for inclusion in this project: total richness, major taxa richness (i.e., polychaetes, crustaceans, amphipods, and molluscs), total abundance, major taxa abundance (polychaetes, crustaceans, amphipods, and molluscs), Shannon-Wiener diversity (H' Pielou 1966), Pielou's evenness (J', Pielou 1966), Swartz's dominance index (SDI, Swartz et al. 1985), and the infaunal trophic index (ITI, Word 1982). Each endpoint is briefly described below, along with some of the associated statistical properties.

2.1 TOTAL RICHNESS

Total richness is the simplest and most direct measure of diversity and is defined as the total number of individual species or taxa identified to the lowest practical taxonomic level in a sample. From a statistical perspective, measures based on diversity (or richness) tend to be normally-distributed with lower variability than abundance-based measures. The lower variability tends to improve the statistical power of a comparison outcome, given a typical benthic sampling design.

2.1.1 Major Taxa Richness

Major taxa richness is the number of species or taxa within each major phylogenetic group identified from a sample (polychaetes, molluscs, crustaceans, amphipods, echinoderms, and the miscellaneous phyla). The richness of each phylogenetic group contributes the total taxa richness measure and therefore tends to reflect the statistical properties of total taxa richness.

2.1.2 Total Abundance

Total abundance is a measure of density and is defined as the number of individual organisms found in a sample with a specified area or volume. Abundance measures tend to be highly variable and are often log-normally distributed. The variability often affects the ability to detect a true difference between site and reference conditions when sample replication is limited.

2.1.3 Major Taxa Abundance

Major taxa abundance is defined as the number of individual organisms within each major phylogenetic group (polychaetes, molluscs, crustaceans, amphipods, echinoderms, and the miscellaneous phyla) found in a sample. These endpoints also tend to be highly variable, and share similar statistical characteristics as total abundance. Currently, the SMS Rule incorporates decisions based on the three most prevalent groups: polychaetes, molluscs, and crustaceans.

2.1.4 Shannon-Weiner Diversity (H')

The Shannon-Wiener diversity index is one of the more common diversity indices used worldwide and represents the distribution of individuals among the species or taxa present (Shannon and Weaver 1964). This index has an advantage for use in regulatory programs in that it is normally distributed, relatively independent of sample size, and statistically testable (Tetra Tech 1990). Values of H'can range from 0 up to 4, depending on the number of species in the sample (H'max = log number of species), and tend to have minimal statistical variability. Theoretically, in habitats with no pollution or environmental stress, the H' values should be large; conversely, where pollution is present or where environmental stress is high, the H' value should be low. However, because H' is affected by the distribution of individuals among species, it may actually increase in conditions of slight to moderate pollution (stress) when the total number of species may be reduced but the distribution of individuals is still relatively even, resulting in a false indicator of an unstressed community (i.e., a false positive).

2.1.5 Pielou's Evenness (J')

Pielou's evenness is expressed as the observed diversity of a sample as a proportion of the maximum possible diversity (Pielou 1966, Zar 1984). Evenness values range from 0 to 1.0, with values close to 1.0 indicative of a homogeneously distributed population with little or no dominance by only a few taxa. Because of minimal variability among the measures, this index can be used statistically to identify small differences among site and reference conditions. However, this index can also falsely indicate an unstressed community under conditions of moderate contamination.

2.1.6 Swartz's Dominance Index (SDI)

Swartz's Dominance Index is defined as the minimum number of taxa that comprises 75 percent of the total sample abundance (Swartz et al. 1985). Values of 5.0 or less have been used to identify stressed communities (PTI 1993). Similar to other diversity and related dominance indices, this index also has fairly high power to correctly identify differences between site and reference conditions when used in a statistical pair-wise test.

2.1.7 Infaunal Trophic Index (ITI)

The infaunal trophic index is a functional measure of benthic community structure based on feeding strategy (Word 1982). Values range from 0 to 100, with low values indicating a community dominated by surface or subsurface detrital/deposit feeders and high values indicating a community dominated by suspension feeders. Surface detrital and subsurface deposit feeders tend to be dominant groups present in fine-grained, organically enriched sediments, whereas suspension feeders are common coarser-grained, higher energy habitats. This index tends to exhibit fairly low variability compared to abundance measures, and thus can be used to identify small differences between samples.

Each of the above endpoints was evaluated by the National Benthic Experts Workshop (1993), by WESTON in their analysis of data for the case studies (WESTON 1996), and by SEA in the reference range project (SEA 1996). The outcome of those evaluations is summarized in the following sections.

2.2 RECOMMENDATIONS OF THE 1993 BENTHIC EXPERTS WORKSHOP

In 1993, Ecology convened a group of nationally recognized experts to review a case study based on Everett Harbor Action Program benthic data for the purposes of recommending endpoints and analytical approaches for assessing adverse benthic effects in Puget Sound (PTI 1993). The recommendations of the panel laid the groundwork for the reference value development project.

The general recommendations of the panel following review of the initial case study included:

- Reference conditions should be defined for Puget Sound.
- More than one benthic endpoint should be used to assess adverse benthic effects.
- Primary benthic endpoints that should be used to evaluate impacts include:
 - Total richness (requires species-level taxonomy)
 - Total abundance
 - Infaunal Trophic Index (requires species-level taxonomy)
 - Dominance (requires species-level taxonomy)
 - Biomass as a function of depth
- Secondary endpoints that may also provide some information include:
 - Indicator species
- Species abundance (i.e., community composition)

- Univariate statistical tests (i.e., *t*-tests and ANOVAs) should be performed to compare the study area and reference conditions. If an ANOVA is performed, *a posteriori* contrasts should be used to determine significant differences from reference conditions.
- Alternative analytical techniques should be considered, including nonparametric univariate statistics and multivariate techniques that do not rely on assumptions of normality (no one specific approach was recommended).
- The relative sensitivity among various benthic community endpoints should be tested using more than one case study.

Of the above recommendations, this report focuses primarily on the selection of endpoints and the identification of reference conditions for benthic invertebrates in Puget Sound. Although the endpoints based on individual species abundance (secondary endpoints listed above) were also highly recommended, indicator species have not been fully developed for Puget Sound. In addition, no agreement was reached by the experts regarding selection of a single multivariate analytical technique that incorporates species abundance data and can also be clearly interpreted by sediment program managers. Additional work will be needed to develop an evaluation approach based on individual species abundance and indicator species endpoints prior to incorporation in the SMS.

2.3 PRIORITY ENDPOINTS BASED ON CASE STUDIES

WESTON prepared the first case study (PTI 1993), participated in the National Benthic Experts Workshop, and subsequently performed the second case study in response to the experts' recommendations. The second case study used data from the Elliott Bay Action Program to evaluate the effectiveness of the recommended benthic endpoints using site-specific reference stations (WESTON 1996). A second component of that evaluation compared the results of the Elliott Bay and Everett Harbor case studies to the preliminary Puget Sound reference range results (SEA 1996). Comparisons were made using the mean reference range value and were numeric only (i.e., no statistical tests using the reference data set were performed). Based on the results of the study, WESTON recommended that priority be given to the following endpoints for incorporation in the SMS Rule:

- Diversity, measured as total richness.
- Swartz's Dominance Index.
- Major taxa abundance, with potential modifications to the polychaete endpoint (enhanced abundance).

Shannon-Wiener Diversity (H') also performed well in identifying impacted versus unimpacted stations; however, it was not included in the recommended endpoints because the same information is inherent in the SDI, which is easier to interpret. Molluscan richness also was effective at identifying differences between reference and moderately impacted stations, but was not included in WESTON's recommendations because it did not provide any additional

capabilities beyond that provided by total richness. Major taxa abundance was retained as a recommended endpoint because of the value in maintaining comparability with the large body of Puget Sound data that currently exist.

2.4 PRIORITY ENDPOINTS BASED ON PRELIMINARY REFERENCE RANGE RESULTS

The reference range project (SEA 1996) evaluated all benthic endpoints in relation to four habitat categories for shallow water environments (water depths less than 150 feet MLLW) based on the amount of fine-grained sediment present. The habitat categories as defined by percent fines (combined percentage of silt and clay) ranged from 0 to 20 percent, 20 to 50 percent, 50 to 80 percent and 80 to 100 percent fines. Within each of these habitat categories, summary statistics (e.g., mean, standard deviation, coefficient of variation) were calculated for each of the 14 benthic community endpoints and a range of one standard deviation around the reference data set mean was selected as the reference range.

Endpoints that reflected the following characteristics were considered good reference endpoints and were subsequently subjected to statistical tests:

- Low variability within habitat categories
 - Statistically significant separation among habitat categories,
 - Ability to statistically differentiate between stations exceeding and not exceeding chemical criteria.

Following statistical testing, the results were scored with endpoints reflecting the three characteristics receiving the highest scores. The details of the analysis and the scoring are provided in SEA (1996). In order of rank (i.e., highest to lowest scoring out of a possible 22 points), results were as follows:

Endpoint	Score
Molluscan richness	15
Shannon-Wiener diversity index, Infaunal Tropic Index	14
Total richness, Swartz's Dominance Index	13
Crustacean richness, Pielou's evenness	9
Amphipod richness	8
Polychaete richness	7
Polychaete abundance, Amphipod abundance	5
Total abundance	4
Molluscan abundance, Crustacean abundance	0

2.5 REFINEMENT OF BENTHIC INFAUNA ENDPOINTS FOR THE PUGET SOUND REFERENCE VALUE PROJECT

The endpoints evaluated in this report were selected based on a synthesis of the recommendations made in the prior three reports. While there was much agreement among the recommendations, the major dissimilarity was in the retention of the abundance of the major taxa groups by the experts panel and the case study compared to the low priority assigned to this endpoint in the reference range value report. Inclusion of major taxa abundance endpoints in WESTON's and the experts panel recommendations was due to the value in maintaining consistency with the current regulations and much of the historical data in Puget Sound.

In meetings among WESTON, SEA, and Ecology staff, a consensus was reached regarding prioritization of the benthic endpoints to be evaluated. The following three endpoints were removed from further consideration:

- Shannon-Wiener Diversity—While this index was highly ranked in the reference range report, there was a general consensus that it should be removed because of the potential for false positives (PTI 1993). Under the conditions of both low and moderate levels of contamination, the index can be high if the individuals are evenly distributed across the few species present.
- Pielou's evenness—Similar to the Shannon-Wiener diversity measure, this index was also dropped because of the potential for false positives.
- Amphipod richness and abundance—These two endpoints were dropped because in an environment lacking chemical contamination (including excess organic carbon), there can be samples that naturally contain no amphipods as a function of habitat constraints or predator-prey interactions (Barnard and Ziesenhenne 1963).

The endpoints that were retained for further consideration are presented in Table 1 and include total richness and total abundance, richness and abundance of the major taxa groups (polychaetes, crustaceans, and molluscs), SDI, and the ITI.

Additionally, the types of comparisons that would be considered were also agreed to during meetings with Ecology and included both statistical and numeric comparisons. Table 1 indicates the type of comparison that was evaluated for each endpoint. A single pair-wise test (t-test) between site and reference values comprised the statistical comparison evaluated for each endpoint. Several approaches to numeric comparisons for each endpoint were evaluated including reference ranges, confidence limits, and reference means.

For all but one of these benthic endpoints (polychaete abundance), depressions in the values relative to a reference condition were used to indicate potential benthic community impacts. For the purposes of this study, enhancement in the abundance of polychaetes relative to reference was also evaluated as an endpoint for possible inclusion in the SMS Rule. In most cases, declines in polychaete abundance appear to occur at higher chemical concentrations than at those causing loss of molluscs or crustaceans from the benthic community. Therefore, under the SMS Rule, reduced polychaete abundance tends to be a redundant measure of impacts because both mollusc

and crustacean abundances will generally be reduced relative to reference prior to a reduction in polychaete abundance. However, polychaetes are known to increase in abundance under conditions of low to moderate chemical contamination or organic enrichment and typically do not decrease in abundance until contaminant concentrations result in toxicity (Pearson and Rosenberg 1978). Therefore, increases in polychaete abundance may be a more sensitive endpoint under conditions of minor to moderate contamination. To investigate the effectiveness of this endpoint, enhancements in polychaete abundance were also tabulated as a measure of potential impact.

.

·

SECTION 3

REFINEMENT OF THE REFERENCE DATABASE

Prior to conducting comparisons based on reference ranges, the ranges were refined, in part, to address concerns raised by some reviewers of the reference range report (SEA 1996). It was suggested that some of the reference ranges may have included stations that were contaminated by chemicals other than those addressed by the SMS or were physically disturbed, because some of the reference ranges had extremely low values. Specifically, the low end of the reference ranges for the following endpoints was equal to or less than 1.

Habitat Category

<u>Endpoint</u>

20-50 percent fines 50-80 percent fines

80-100 percent fines

Amphipod abundance Crustacean abundance Amphipod abundance Amphipod richness Amphipod abundance Amphipod richness

Reference ranges were refined by removing extreme values from the reference data set for each endpoint and habitat category. Extreme values were distinguished based on identification of statistical outliers and upper (95th) and lower (5th) percentiles. A regression analysis of the relationship between benthic endpoints and conventional parameters (total organic carbon, total sulfides, percent fines) was also used to identify samples that may have been strongly influenced by organic enrichment. Details of the refinement process are discussed in the following sections.

Other refinements recommended by reviewers included the possibility of combining habitat categories, as there appeared to be few significant differences in endpoint ranges between the two coarser-grained habitat categories and between the two finer-grained habitat categories. An additional recommendation was that the dominant taxa within each habitat category be examined to evaluate the possibility of physical or biological disturbance. While an investigation of these recommendations would go far to further validate the reference range data set, such an investigation is beyond the current scope of work with Ecology. However, exclusion of extreme values (included in the current refinements) will likely address the potential impact of disturbed habitats.

3.1 IDENTIFICATION OF ANOMALOUS REFERENCE VALUES

The reference data set compiled by SEA for development of the preliminary reference ranges was re-examined using several techniques to identify potentially anomalous or extreme reference values. Originally, benthic data from all stations exhibiting chemical concentrations less than the promulgated SQS were included in the reference data set. To determine whether chemically contaminated stations had inadvertently been used in the reference data set, chemical data for

stations with low abundance and richness values were reexamined relative to the SQS. Several samples were identified as having been misidentified as clean (detection limits exceeded SQS) and were subsequently excluded. Statistical outliers or extreme values for each endpoint and habitat were also identified as part of this process for refinement of the reference data set. In addition, conventional parameters, including percent fines, total organic carbon (TOC), and total sulfides were examined to identify those stations that may have been misclassified, or may be organically enriched and thus potentially impacted from a non-chemical sediment constituent.

3.1.1 Identification of Anomalous or Extreme Values Based on Percentiles

For each reference data set, the 5th, 25th, 50th, 75th and 95th percentile values for each endpoint were calculated. Statistical outliers were identified as those values that fell outside of the median plus or minus 1.5 times the inner quartile range (IQR = 75th - 25th percentile). Few statistical outliers were identified. Extreme values in the data set were identified as those less than the 5th percentile or greater than the 95th percentile. In most cases, percentiles were used to delimit the reference data set for each endpoint.

3.1.2 Identification of Anomalous Values Based on Regressions

As another method of identifying anomalous values, a regression analysis examining each benthic endpoint relative to each conventional parameter was conducted for each habitat category using SYSTAT statistical software (Version 7.0 1997). The regression module returns values for "r" and "r²," as well as the results of an ANOVA that identifies whether the slope of the regression line is statistically different from zero. A slope that is statistically different from zero indicates that the conventional parameter affects the benthic endpoint being evaluated. A relatively strong relationship is indicated by r values greater than 0.70 (either positive or negative) and r2 values greater than 0.49. Values of r and r2 below these thresholds indicate that there may be other factors that better account for changes in the benthic endpoint or that there is no effect from that conventional parameter on the community endpoint. The software will also indicate whether some data are statistical outliers or have undue influence on the relationship between the variables. Samples characterized by abnormally large abundance values relative to the group mean were typically considered outliers. Samples having excessive influence were those where the conventional parameter had an abnormally large concentration relative to that group mean. The conventional parameter that was most frequently identified as having excess influence was total sulfides.

The analyses were conducted using both original and log_{10} -transformed data. Results indicated that in some cases there was an increase in the strength of the regression (r and r2 value) with a corresponding decrease in the probability (p) value derived from the ANOVA when the data were transformed. However the transformation did not cause a substantial increase in the r and r2 value. Table 2 shows that there were no r² values above 0.286, indicating the absence of strong relationships between benthic endpoints and conventional parameters within each habitat category. Although the ANOVA results indicated that in some cases the slope of the line was significantly different from zero, the r² value indicated that the relationship is not strong enough to significantly affect the endpoint under review.

3-2

No samples were excluded from the reference data set based on anomalous conventional parameters, although the regression analysis consistently identified a specific group of stations where the conventional parameter had undue influence on the benthic endpoint in the regression analysis. The rationale for retaining these data was based on an examination of chemical and biological data from those stations. The review showed no chemical contamination and abundance and richness measures that were within the range of the remaining samples.

3.1.3 Outlier Method Comparison

A comparison of the methods for identifying outlier samples found that, in most cases, the results overlapped; therefore, outliers identified using either method (i.e., statistical outliers and those values outside of the range defined by the 5th and 95th percentiles) were dropped from the reference data set. The outlier assessment was not conducted for SDI and the ITI. Rather, for SDI, a lower threshold value of 5.0 (with no corresponding upper threshold) was used to crop the reference data set because it is believed that values of 5.0 and below indicate a severely impacted infaunal community (Swartz et al. 1985). For the ITI, no changes were made because it is a functional measure of benthic communities among the endpoints and only reflects the predominant feeding strategies within a community. The final reference data set for each endpoint and habitat category is presented in Appendix 1. Data that were excluded from the final reference data set are delimited with a shaded background.

3.2 REFINED REFERENCE AREA VALUES

Following removal of outliers or extreme values, a new set of reference ranges was calculated for benthic community endpoints in water depths less than 150 feet (Table 3, Appendix 2). The reference ranges for each endpoint and habitat category were calculated as the mean value plus or minus one standard deviation. These values replace the reference ranges presented in SEA (1996). Refined reference values were used along with the associated reference area database, to evaluate the effectiveness of various endpoints and comparison methods in identifying impacted benthic communities.

SECTION 4

TESTING OF BENTHIC INFAUNA ENDPOINTS

Benthic infaunal endpoints and comparison methods were evaluated to determine which combination of endpoints and methods most consistently identified benthic community impacts at stations with impaired sediment chemical quality. This process first required the development of appropriate data sets for testing, followed by actual testing, an evaluation of the effectiveness of each individual endpoint in predicting impacts, and an overall ranking of the endpoints.

4.1 DATA SET COMPILATION

SMS chemical criteria were initially used to develop the "impaired chemical quality" data set for use in testing the predictiveness of the selected benthic community endpoints. The chemical criteria in the SMS are derived from the Puget Sound Apparent Effects Thresholds (AETs), which are defined as the concentrations in sediment above which significant adverse biological effects always occur. The AETs were developed from the following four biological tests:

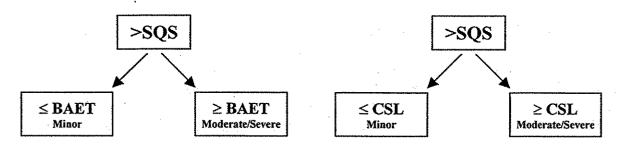
- 1. Amphipod mortality
- 2. Oyster larval abnormality
- 3. MicrotoxTM bacterial luminescence
- 4. Benthic infaunal abundance

These AETs were used to define two regulatory levels in the SMS: the Sediment Quality Standard (SQS) and the Cleanup Screening Level (CSL). The SQS chemical criteria were established by the lowest of the four AETs (referred to as the LAET) and represent the no effects threshold for a given chemical, below which no or minimal effects to benthic communities are predicted. The CSL chemical criteria were set by the second-lowest AET (referred to as the 2LAET) and represent the chemical concentration below which minor adverse effects to benthic communities may occur. Sediment concentrations above the CSL or 2LAET are anticipated to be associated with moderate to severe effects depending on the chemical magnitude and benthic endpoint being evaluated.

Further review of the 1988 AETs indicated that depressions in major taxa abundance defined the LAET (and therefore the SQS chemical criterion, where adopted¹) for most inorganics (except copper, mercury, and silver), pesticides, volatile organic compounds, and three phthalates compounds including bis(2-ethylhexyl)phthalate. The LAET for several other chlorinated organic compounds were also set by this benthic endpoint, including hexachlorobutadiene, hexachlorobenzene, and 1,4-dichlorobenzene. Major taxa abundance defined the 2LAET (and

26 April 1999

¹ It should be noted that AETs were calculated for more chemicals than were adopted into regulation due to the uncertainties associated with the predictiveness of some AETs. Examples include some of the pesticides and volatile organic compounds


thus the CSL chemical criterion) for most of the low molecular weight polycyclic aromatic hydrocarbons (PAHs) and phenols. For the high molecular weight PAHs, this benthic endpoint established the second highest or highest AET for most of these compounds (i.e., benthic effects would be predicted at concentrations greater than SQS or CSL chemical criteria).

As can be seen from this review, the original data set compiled for testing could include stations at which benthic impacts would not be predicted (i.e., stations exhibiting chemical concentrations in excess of SQS or CSL criteria that were not based on the benthic AET or BAET). Therefore, the question arose regarding how to assess the effectiveness or sensitivity of the 10 benthic endpoints evaluated in this report using this initial data set. It was concluded that different groupings or sets of chemically impacted stations were required to effectively evaluate the predictiveness of the various benthic endpoints.

The first grouping was designed to allow for an evaluation of how effective each benthic endpoint was in identifying effects predicted by the BAET. Stations exceeding the SQS (at a minimum) were grouped based on whether or not their sediment chemical concentrations were above or below the BAET. Stations with chemical concentrations below the BAET were considered to have the potential for minor adverse benthic impacts; stations with chemical concentrations above the BAET were considered to have the potential for moderate to severe benthic effects.

The second grouping was designed to determine if any of the new benthic endpoints performed well in terms of identifying effects predicted by SQS or CSL chemical criteria (i.e., how sensitive were the new benthic endpoints relative to other ecological endpoints [amphipod mortality, larval abnormality) that may have set the LAET]. Stations exceeding the SQS (at a minimum) were grouped based on whether or not their sediment chemical concentrations were between SQS and CSLs or above the CSLs. The magnitude of impacts as indicated by benthic endpoints within each of these categories was expected to vary because the BAET may not have set either of the criteria used to define these groups for some chemicals.

This approach resulted in two main chemical data sets, each with two subgroups representing potential minor versus moderate to severe impacts (given that all data were above the SQS):

4.2 TESTING ENDPOINTS

Within the data groupings defined above, numerical comparisons and a pair-wise statistical test were conducted on a station-by-station and endpoint-specific basis to identify impacted stations.

The numeric comparisons and the statistical tests were made relative to the revised reference values and the reference data set for each habitat type. All comparisons and tests were conducted by matching the contaminated stations with the appropriate reference habitat category.

Two phases of community endpoint testing were performed. An initial screening step was performed to identify those stations that could be considered impacted for the purposes of this study. In Phase 1, stations were considered impacted if the station mean was less than the mean reference value for a given benthic community endpoint (with the exception of polychaete abundances, which was also considered impacted if a given value was greater than the reference mean). For each endpoint, stations that were defined as impacted were subjected to additional testing in Phase 2. The term "impacted" has been used to represent stations identified in Phase 1 screening that are simply less than the mean reference value. It is emphasized that this term has been chosen only for such use in this report and that its use does not convey regulatory meaning. It is anticipated that actual environmental stations with ecological impacts would be identified through a series of more complex statistical tests such as those used in the Phase 2 testing. The objective of the additional testing was to determine, using a suite of numerical and statistical tests, which endpoint(s) were the most effective in consistently identifying impacted stations. See Figure 1 for an overview of the complete testing approach.

Phase 2 tests included:

- Comparison of the impacted station mean to 50 percent of the reference mean (or two times the reference mean, in the case of increased polychaete abundance). Use of 50 percent addresses the minimum difference required to accurately detect a difference between a sample and its reference for those endpoints with high variability (typically abundance-based endpoints).
- Comparison of the impacted station mean to the lower reference range limit (reference mean minus one standard deviation) for the matching habitat category (or upper reference range limit[reference mean plus one standard deviation], in the case of increased polychaete abundance)
- Comparison of the impacted station mean to the lower 95th confidence interval value of the reference data set mean for the matching habitat category (or upper 95th confidence interval, in the case of increased polychaete abundance)
- Statistical pair-wise testing for differences between individual impacted stations and the matching reference data set (i.e., a given impacted station mean was tested against the mean of the pooled data that had been used to derive the reference range). *T*-tests were conducted using both pooled and separate variance terms. Prior to initiating statistical testing, histogram plots were constructed to determine the structure of the data and to assess whether it departed from normality. Data with large departures from normality were log-transformed prior to continued statistical testing.
- Figure 2 shows the general relationship among these test endpoints for a given endpoint.

4.3 EVALUATION OF ENDPOINT EFFECTIVENESS

Phase 1 Screening—The results of the Phase 1 screening of the mean benthic endpoint value for each station relative to the reference mean and the results of the individual tests described above are compiled in Appendix 3 by chemical group. The Phase 1 comparison of each endpoint value for a station to the related reference mean resulted in the identification of impacted stations for each endpoint.

Phase 2 Testing—The outcome of Phase 2 testing of the impacted stations was used to determine the effectiveness of each endpoint. An effective endpoint was defined as one that agreed with the Phase 1 screening results in more than 65 percent of the cases (i.e., correctly predicted an impact), whereas an ineffective endpoint did not. The preliminary measure of effectiveness was determined by calculating the percent of the Phase 2 test results that concurred with the Phase 1 screening results, with respect to which stations were impacted for each endpoint and test endpoint within a chemical group.

The percentage denoting effectiveness was ranked from high to low. Shared or tied ranks were represented by the mean of the tied ranks. Higher ranks were considered indicative of greater effectiveness in identifying impacts. Ranks for each endpoint were summed within each chemical group and test comparison and again across all test types within a chemical grouping to represent the overall effectiveness. Percent of the samples correctly identifying an impact were also used in the effectiveness evaluation.

4.4 INITIAL RANKING OF BENTHIC ENDPOINTS

Phase 1 Screening Results—An initial ranking of endpoints was done based on how often an endpoint was less than reference for each chemical category (SMS versus BAET category). The results for stations grouped by SMS chemical category are reported in Table 4 and the results for the stations grouped by BAET category are presented in Table 5. The endpoints that appeared to be most sensitive, in that more than 65 percent of the samples were different from reference under conditions of elevated sediment chemistry (greater than the SQS at a minimum) included:

- The SDI,
- The ITI,
- Molluscan richness
- Total richness, and
- Polychaete richness.

There were almost no differences among endpoints that were most often different from reference among chemical groups, with the exception that polychaete richness was not consistent in its ability to indicate a difference from reference. Phase 2 Testing Results—The rankings of each endpoint when compared to one half the reference mean (or two times the reference mean for polychaete abundance) are reported in

reference mean (or two times the reference mean for polychaete abundance) are reported in Tables 6 and 7. For this type of comparison, abundance endpoints and the SDI were the most effective at correctly identifying a difference from reference. When stations were grouped by SMS chemical category (Table 6), the top four most effective endpoints included:

- Crustacean abundance,
- The SDI,
- Enhanced polychaete abundance, and
- Molluscan abundance

Although these endpoints were ranked the highest, under conditions of minor elevations in chemistry, fewer than 50 percent of the samples indicated an impact, with the exception of molluscan abundance that indicated 67 percent of the samples were impacted at stations with chemistry less than the CSL.

When stations were grouped by BAET category (Table 7), the highest-ranking endpoints were:

- Enhanced polychaete abundance,
- The SDI,
- Crustacean abundance, and
- Total abundance.

The SDI was slightly more effective than abundance measures at identifying differences from reference for stations that were predicted to have minor benthic impacts based on chemistry less than the BAET. The SDI tied with other abundance measures when the station chemistry was less than the CSL. Enhanced polychaete abundance was always more effective than depressed polychaete abundance at identifying a difference.

Again, although these benthic endpoints were ranked the highest for the "less than BAET" chemical category, fewer than 50 percent of the samples indicated an impact when one half the reference value was used as the test endpoint.

Comparisons based on reference range exceedances identified a different set of endpoints being most effective at identifying a change relative to reference (see Tables 8 and 9). For this comparison method, the most effective endpoints were:

- Enhanced polychaete abundance,
- The SDI,
- Total richness,
- Molluscan richness and
- Polychaete richness.

The first two benthic endpoints worked well for any chemical category, whereas the remaining three endpoints were more effective under conditions of elevated chemistry (greater than CSL).

A number of benthic endpoints (depending on chemical category) shared the top ranking for identifying impacts when 95% confidence limits of the reference data set were used as the test endpoint and included:

- The SDI,
- Total richness,
- Enhanced polychaete abundance, and
- Crustacean abundance.

For identifying benthic impacts when minor benthic impacts were predicted by chemistry less than the CSL (Table 10), molluscan abundance, molluscan richness, also proved to be as equally effective as the four endpoints listed above. Total abundance was also effective at identifying impacts for the category of stations with chemistry greater than the CSL, while molluscan richness and abundance were no longer as effective for this chemical category. A similar pattern was seen when stations were grouped by BAET category (Table 11), with the inclusion of the ITI as an effective endpoint for identifying impacts when chemical concentrations are elevated.

When statistical testing was used to distinguish potentially impacted stations from the reference data set, different endpoints were more effective than others depending on the predicted degree of benthic impacts (see Tables 12 and 13). Overall, based on the percentage impacted, the SDI, the ITI, crustacean abundance and molluscan abundance were the most effective at identifying impacts under any chemical category. For SMS or BAET categories predicting minor benthic impacts, the following endpoints were ranked the highest:

- The SDI,
- Molluscan abundance,
- Total richness
- Crustacean abundance, and
- The ITI

For SMS or BAET chemical groups where moderate to severe benthic effects would be predicted, some differences were noted among effective endpoints. The most effective endpoints at identifying greater impacts were:

- Depressed polychaete abundance
- Crustacean or total abundance,
- The SDI, and
- The ITI.

A summary of the effectiveness of the endpoints evaluated for each chemical category and comparison type is provided in Tables 14 (a and b), and 15 (a and b) based on both the sum of the ranks and the percent of the samples indicating an impact, averaged across comparison methods. An endpoint was considered effective if more than 65 percent of the samples indicated a difference from the test endpoint. For the chemical categories associated with potentially minor effects (less than the SQS or the BAET), the SDI was the most effective at identifying impacted benthic communities, followed by enhanced polychaete abundance or molluscan abundance. When chemical concentrations were associated with moderate to severe effects, enhanced polychaete abundance took the lead in effective (greater than 65 percent of the samples indicated a difference when averaged over all test methods) at identifying impacts to the community under conditions of more severe chemical concentration included total richness, molluscan abundance, molluscan richness, decreased polychaete abundance and polychaete richness.

4-7

SECTION 5

RECOMMENDATIONS

Healthy soft-bottom benthic communities are generally expected to be diverse with abundant numbers of individuals representing each species present. While some species may be more abundant than others depending on habitat conditions, overall, most types of marine invertebrate organisms will be represented (molluscs, crustaceans, polychaetes, echinoderms, etc.).

Several models have been used to describe changes in benthic communities that occur as a result of increasing chemical contamination or organic enrichment. In general, as concentrations of contaminants or organic material increase in sediment, species with the least tolerance to these conditions either die or do not recruit to the community. The resources that would have been utilized by these sensitive species are instead used by the more tolerant taxa that remain or opportunistic taxa that recruit in the place of more sensitive taxa. As a result, the more tolerant or opportunistic taxa tend to increase in abundance.

As contamination or organic enrichment increases, the productivity of the more tolerant taxa may decline, while the most tolerant species would take advantage of any newly available resources caused by the loss of the species with lower tolerances to the environmental conditions. Under conditions of the most severe contamination or organic enrichment, even the most tolerant taxa drop in productivity. A depiction of this generalized benthic community response model is presented in Figure 3.

Although each major taxonomic group has species representing a range of tolerances, it appears that echinoderms are one of the most sensitive major taxonomic groups, followed by crustaceans and/or molluscs and finally polychaetes (based on such endpoints as mortality, reduced recruitment or fecundity).

In this general model of soft-bottom benthic community response to chemical or organic alterations of sediment, a decrease in the SDI may be one of the first indicators of community stress as some members of the community become more abundant due to the decline in abundance of some of the more sensitive taxa. Small changes in dominance may not result in any changes in other community measures because all taxa are still present although the abundance of individual taxa is changing. As dominance increases, the SDI would continue to drop and would be paired with possible increases in the major taxa group abundances that have more tolerant species (e.g., polychaetes) and losses in those made up of more sensitive taxa (molluscs or crustaceans). A drop in total richness and major taxa richness for all groups may also be evident. As the species composition and associated feeding strategies change, the ITI would also shift (generally dropping in value with increasing contamination). As the contamination increased, the magnitude of these changes would also increase until the more tolerant taxa were affected, which would be reflected by a drop in primarily polychaete abundance.

The results of the evaluation of benthic endpoints conducted as part of the Reference Value Project appeared to be consistent with this model of benthic community response to contamination.

Shifts in dominance (represented by the SDI) was one of the most effective benthic endpoints to identify impacts regardless of the comparison method and represent increasing abundance of more tolerant taxa under the benthic community response model. Enhancement in polychaete abundance was also one of the most effective endpoints and may also be representing the phenomena of increasing abundance of more tolerant or opportunistic taxa that are already present in the benthic community. When paired with decreases in molluscan or crustacean abundance or total richness, these endpoints would follow the model described previously for conditions of low to moderate chemical contamination. As was shown in this study, molluscan abundance, crustacean abundance, and total richness were effective benthic response model, it would also be anticipated that other endpoints would be effective at levels of higher chemical contamination. This was again demonstrated in this study where all of the above endpoints continued to be effective, in addition to major taxa richness for molluscs and polychaetes and depressions in polychaete abundance.

For the purpose of developing recommendations for the SMS Rule, the ability of an endpoint to be effective at lower levels of contamination was considered a priority because of the potential contribution to a cleanup decision. The decision to clean up an area or a site under the SMS evaluation process relies on the magnitude of actual or potential biological impacts. Under the SMS, two failures of the more protective SQS biological decision criteria within a suite of three biological tests is considered equivalent to a failure of the higher magnitude CSL decision criteria, indicating the possible need for cleanup under the SMS.

Differences in the effectiveness of test comparison methods were also demonstrated in this study. Overall, use of one half the reference mean as the test endpoint was the least effective at identifying impacts, particularly where only minor adverse impacts were predicted based on a lower level (less than CSL or BAET) of chemical contamination. As an example, only one benthic endpoint was able to identify impacts in more than 65 percent of the cases using this comparison method. Conversely, use of an exceedance of the 95th confidence interval as the test endpoint was highly effective for almost all endpoints and chemical categories. Only one benthic endpoint (total abundance) failed to identify impacts in more than 65 percent of the samples. The effectiveness of comparing benthic endpoints based on reference ranges or the t-test fell between these two extremes. The t-test had five effective benthic endpoints under conditions of low-level contamination, whereas three endpoints were effective using reference range comparisons under the same conditions. The number of effective benthic endpoints doubled for these two comparison methods when chemical contamination was greater than the CSL or BAET.

In developing recommendations for modifications to the SMS Rule, it was considered important to select a comparison method that was effective at identifying lower-level impacts for more than one benthic endpoint. Overall, use of the 95th confidence interval was identified as the most effective comparison method. However, this endpoint was unable to distinguish between low to

5-2

moderate and more severe environmental contamination. In most cases, use of this test endpoint resulted in identification of an impact regardless of chemical category or benthic endpoint. One half the reference mean was also unable to distinguish between low versus higher chemical contamination in that it was not effective at identifying a minor adverse effect. From a programmatic perspective, these were viewed as shortcomings.

Based the results of this study, the following recommendations are made regarding potential programmatic changes to the Sediment Management Standards Rule where benthic community endpoints are used in decision-making:

- Benthic community evaluations should be based primarily on the SDI and enhanced polychaete abundance. Molluscan richness and abundance, crustacean abundance, and total richness should be used to confirm the magnitude of the impact.
- Numerical comparisons to reference ranges (a non-statistical approach) are recommended as the method for identifying impacts.
- A minor adverse impact (SQS level "hit" or failure) should be defined by a single exceedance of either the SDI or enhanced polychaete abundance decision criterion. (A single failure of molluscan richness or abundance, crustacean abundance or total richness should not trigger an SQS level hit. An evaluation of the data used in this study showed that there were no cases where the recommended major taxa or richness indices had more than one failure without an accompanying SDI or enhanced polychaete abundance failure).
- A moderate to severe impact (CSL level hit) should be defined by a failure of both the SDI and enhanced polychaete abundance, or either the SDI or enhance polychaete abundance coupled with a failure of molluscan richness or abundance, crustacean abundance or total richness test criterion. If the SDI is less than or equal to 5.0 this should also be consider sufficient to trigger a CSL failure. Table 16 illustrates the proposed decision rules using the recommended benthic endpoints when compared to the reference ranges.

Use of the t-test as the comparison method was also considered a valuable tool in evaluating changes in benthic community structure. A pair-wise test between a single potentially impacted station and its matching Puget Sound reference data set tended to have a high degree of statistical power to identify differences. However, from a programmatic perspective, management of the distribution of the reference data sets to potentially liable parties or project proponents that have been required to perform biological testing under the SMS Rule seemed unwieldy with a high degree of uncertainty in maintaining the integrity of the data set. Therefore, use of the t-test for reference area comparisons was not included in the recommendations.

Use of programmatic reference ranges for evaluating benthic community structure would not be subject to issues of data integrity. In addition, a shift to a reference range approach would allow greater use of the benthic endpoints in sediment management decisions because it addresses the difficulties experienced by many regulated parties in identifying appropriate reference sites. In addition, the use of reference ranges may allow for simplification of sampling designs over time, such that fewer replicate samples can be used. This would tend to reduce the cost of this test and thus make it a effective tool because of the ability of benthic communities to represent actual conditions at a site (something no other biological test does under the current suite of SMS biological effects tests).

Use of a reference range approach has precedence. Standardized reference data or reference ranges have been used in other programs outside of the Puget Sound region. Standardization or characterization of reference conditions has been attempted by a number of scientists to more effectively identify impacts to benthic communities due to anthropogenic inputs. Although these methods have not been developed within a regulatory context, they have been discussed for use in resource management decision-making.

One method that has been used in monitoring programs in Southern California coastal waters is based on calculation of a tolerance interval. Smith (1995) used tolerance intervals as thresholds or indicators for distinguishing between a reference population and impacted locations. Tolerance intervals are calculated using upper and lower percentile values of the reference data set for a given endpoint, which then define the acceptable range of values for that endpoint for comparison to a potentially impacted site. As an example, if the total abundance at a potentially impacted station was less than the lower tolerance interval for the reference population, the station would be considered impacted. There is some uncertainty associated with use of percentiles as tolerance intervals because the true population value is unknown (i.e., all organisms in the population have not been sampled, identified, and counted, the population has just been subsampled). To address this uncertainty, a tolerance interval associated with the percentile value that defined the tolerance interval. Upper and lower confidence intervals are determined for each endpoint under consideration and then the values are used to predict impacts, similar to the use of percentiles (Smith 1998).

Another reference condition approach that has been used in monitoring programs was developed for freshwater systems and presented during a Technical Information Workshop for the 44th Annual meeting of the North American Benthological Society (Bailey et al. 1996). The reference condition approach relies on establishing a database of sites that represent unimpacted conditions (based on physical, chemical, and biological data). The database is then used to develop predictive models that match a set of environmental variables to the measured biological endpoints. The model is used to predict expected biological conditions at a new site by inputting the measured environmental conditions from the new site into the model. The actual biological condition at the new site can then be compared to matching reference conditions. Data from reference sites are analyzed using Discriminant Function Analysis, which is used to determine the 90 percent probability ellipses for a given reference condition. The location of the new test station in ordination space relative to the reference ellipse determines its similarity to the reference condition. If the test station was located within the 90 percent probability ellipse for the reference data set, then it was considered to be similar to the reference condition (Bailey et al. 1996).

Adoption of a reference range approach will require a commitment on the part of the regulatory agencies to continue to identify and characterize reference conditions throughout Puget Sound. The existing Puget Sound database is insufficient to characterize many habitats that are found at

5-4

impacted sites. In addition, taxonomic changes have made the database potentially inaccurate with respect to those endpoints that are based on measures of richness.

Prior to adoption of a reference range approach, the following tasks should be completed:

- Sediment management program staff, potentially affected parties, and regional benthic experts should review the recommendations.
- An evaluation of the sensitivity and efficiency of the recommended endpoints should be conducted, based on reference range comparisons.
- The effect of the taxonomic changes should be evaluated as to the magnitude of the impact on the reference ranges for benthic endpoints based on richness. If significant, the reference ranges should be recalculated.

Once implemented, addition work is also needed:

- As the reference database is refined or expanded, the habitat definitions should be reevaluated. There is some evidence that habitat categories could be combined. Reviewers of the earlier reference range development documents have also made this observation.
- Evaluate the potential for geographical variability in endpoint values as the reference database is expanded.
- Develop and evaluate an approach to incorporate indicator taxa.
- Continue to collect data within Puget Sound in potential reference areas and habitat types not represented in the current reference database.

м. . • — .

SECTION 6

LITERATURE CITED

Bailey, R.C., R.H. Norris, T.B. Reynoldson (Eds.). 1996. Study Design and Data Analysis in Benthic Macroinvertebrate Assessments of Freshwater Ecosystems Using a Reference Site Approach. Technical Information Workshop North American Benthological Society. 44th Annual Meeting. Kalispell, Montana. June 4, 1996. 69 pp.

Barnard, J.L. and F.C. Ziesenhenne. 1960. Ophiuroid Communities of Southern Californian Coastal Bottoms. *Pacific Naturalist* 2:132-152.

Pearson, T. H. and R. Rosenberg. 1978. Macrobenthic Succession in Relation to Organic Enrichment and Pollution of the Marine Environment. *Oceanography and Marine Biology Annual Reviews* 16:229-311.

Pielou, E. C. 1966. The Measurement of Diversity in Different Types of Biological Collections. *Jour. Theoret. Biol.* 13:131-144.

Poole, R. W. An Introduction to Quantitative Ecology. New York: McGraw-Hill Publishing Company. 532 pp.

PTI. 1993. "Recommendations for Assessing Adverse Benthic Effects in Puget Sound." Prepared for Washington Department of Ecology, Olympia, WA. PTI Environmental Services, Bellevue, WA. 21 pp. + appendices.

Rakocinski, C., R. Heard, and W. Walker. 1995. "Separating Natural and Contaminant Related Gradients in Estuarine Macrobenthic Community Structure." University of Mississippi. Presentation to the Society of Environmental Toxicology and Chemistry (SETAC) Second SETAC World Congress, November 1995.

Shannon, C. E. and W. Weaver. 1964. *The Mathematical Theory of Communication*. Urbana: The University of Illinois Press.

Smith, R.W. 1998. "Analysis of 1994 Orange County Outfall Benthic Data in a Regional Context." Prepared for the County Sanitation Districts of Orange County. January 3, 1998. 72 pp.

Smith, R.W. 1995. "The Reference Envelop Approach to Impact Monitoring." A report to U.S. EPA Region 9. Grant # X-009904-01-0.

Striplin Environmental Associates. 1996. "Development of Reference Value Ranges for Benthic Infauna Assessment Endpoints in Puget Sound." Prepared for the Washington State Department of Ecology, Olympia, WA. January 1996. 45 pp + appendices. Striplin Environmental Associates. 1993. "Status Report: Benthic Infauna Reference Value report." Prepared for the Washington State Department of Ecology, Olympia, WA. 28 pp + appendices

Swartz, R.C., D. W. Shultz, G. R. Ditsworth, W.A. DeBen, and F.A. Cole. 1985. "Sediment Toxicity, Contamination, and Macrobenthic Communities Near a Large Sewage Outfall." pp. 152-175. In: Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems. T. T. Boyle (ed.). American Society for Testing and Materials STP 865. Philadelphia, PA.

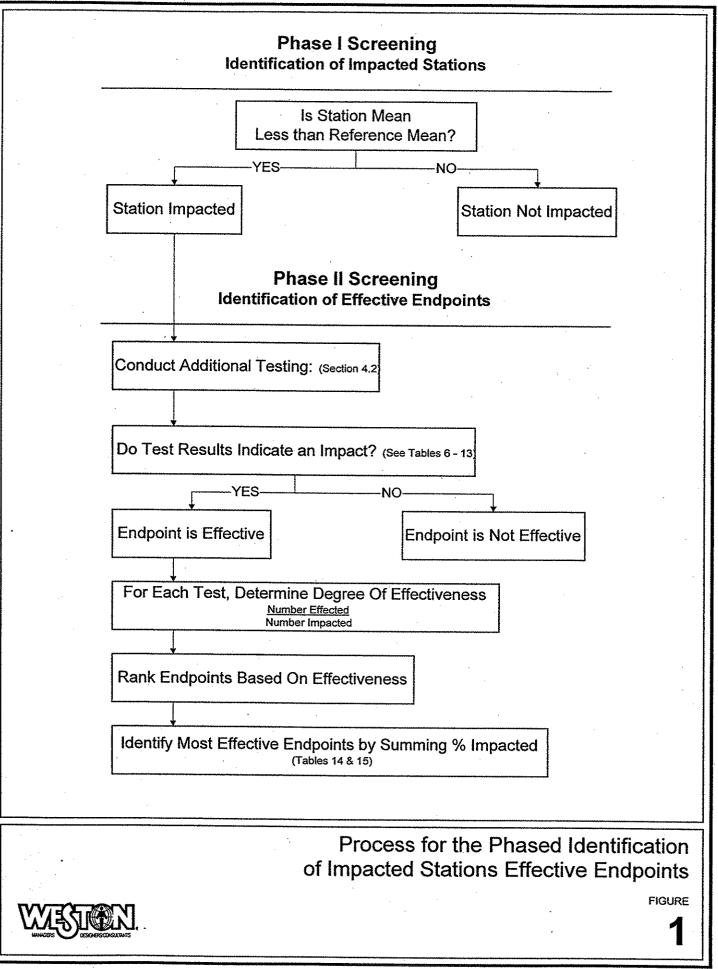
Systat. 1997. SYSTAT for Windows: Statistics, Vers. 7. Evanston, IL. 750 pp.

Tetra Tech. 1990. "Puget Sound Ambient Monitoring Program: Marine Sediment Monitoring, Final Report." Prepared for the Washington Department of Ecology, Ambient Monitoring Section, Olympia, WA. Tetra Tech, Inc., Bellevue, WA. 262 pp.

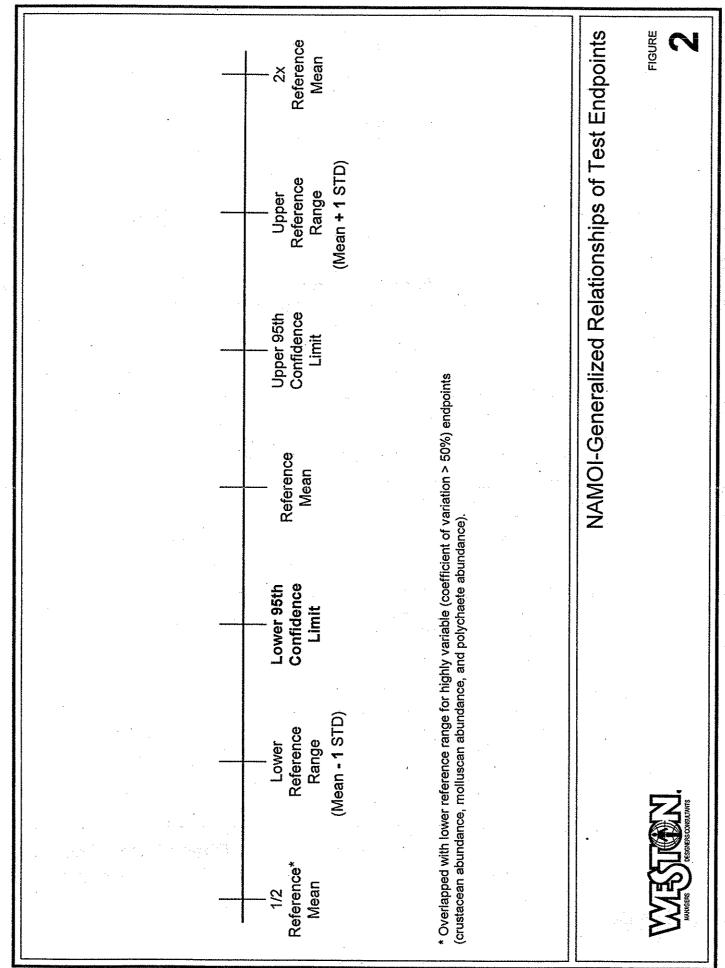
Tetra Tech and PTI. 1988. "Elliott Bay Action Program: Analysis of Toxic Problem Areas. Final Report." Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA. Tetra Tech, Inc. Bellevue, WA. 286 pp. + appendices.

Vardeman, S.B. 1992. "What About the Other Intervals?" *The American Statistician* 46(3):193-197.

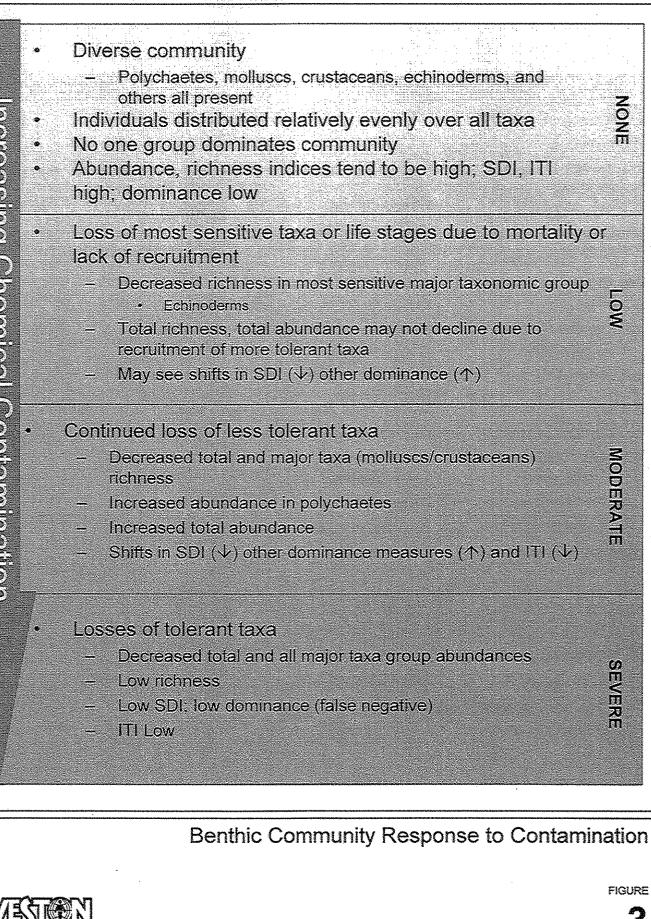
Washington State Sediment Management Standards. 1995. Prepared by the Washington State Department of Ecology, Olympia, WA. SMS, Chapter 173-204 WAC. 66 pp.

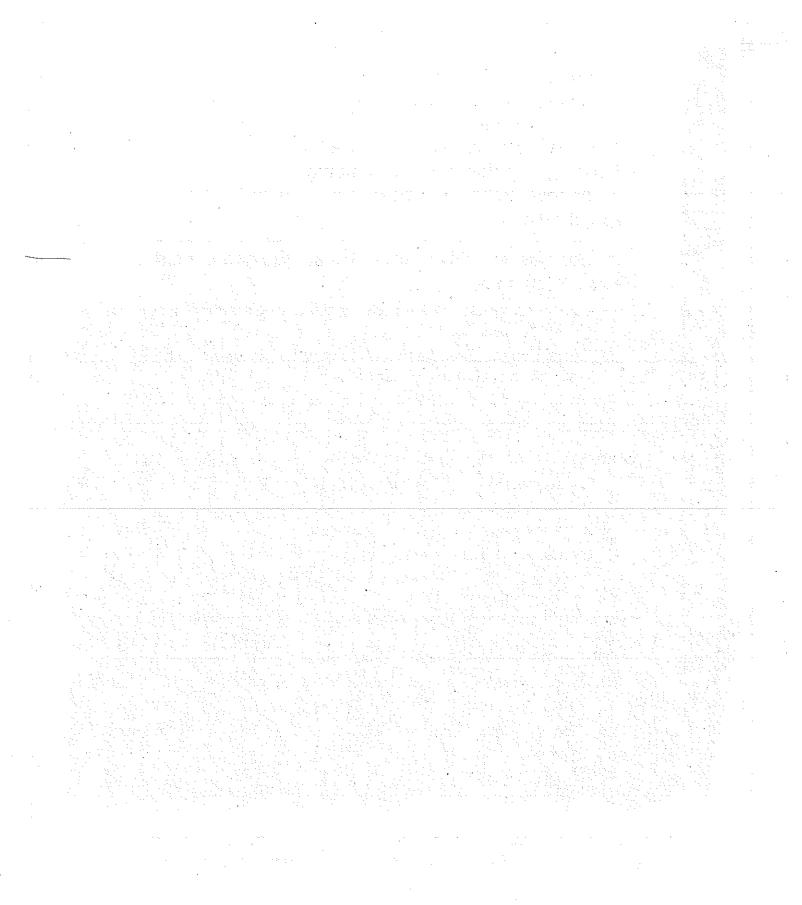

WESTON (Roy F. Weston, Inc.). 1996. "Evaluation of Analytical Methods and Benthic Community Endpoints for Potential Inclusion in the Sediment Management Standards." Prepared for the Washington Department of Ecology, Olympia, WA. Roy F. Weston, Inc. Seattle, WA. 45 pp. plus appendices

Word, J. Q. 1982. "The Infaunal Trophic Index for Puget Sound. Draft Report." Prepared for U.S. Environmental Protection Agency, Office of Research and Development, Newport, OR. University of Washington, Seattle, WA. 57 pp.


Zar, J. H. 1984. Biostatistical Analysis. 2d ed. Englewood Cliffs: Prentice-Hall, Inc. 718 pp.

FIGURES


.


99-0167.FIG

99-0167B.FIG

99-0167C.FIG

TABLES

Table 1-Priority Endpoints, Major Effects, and Method of Comparison Selected for Further Evaluation

		Type of C	Type of Comparison ^a
Endpoint	Effect	Statistical	Non-Statistical
Polychaete Abundance	Enhancement	×	×
Polychaete Abundance	Depression	×	×
Polychaete Richness	Depression	×	X
Molluscan Abundance	Depression	×	×
Molluscan Richness	Depression	X	×
Crustacean Abundance	Depression	×	· X
Crustacean Richness	Depression	×	×
Total Abundance	Depression	×	×
Total Richness	Depression	×	×
Swartz's Dominance Index (SDI)	Depression	×	×
Infaunal Tropic Index (ITI)	Depression	×	×

^a Comparisons to be made to Puget Sound habitat-specific reference data set.

99-0167.xls Table I

Page 1 of 1

Table 2—Results of Regression Analysis Between Benthic Endpoints and Habitat Characteristics ^a

· · · · · · · · · · · · · · · · · · ·						Habitat Category	Sategory		1			
Benthic Endpoint	-0	20% Fines	es	20 -	- 50% Fines	nes	50	50 - 80% Fines	les	80-	80 - 100% Fines	nes
	Fines	TOC	TS	Fines	TOC	TS	Fines	TOC	TS	Fines	TOC	TS
Total Abundance	0.002 0.020	0.004 0.005	0.012 0.003	0.033 0.048	0.034 0.000	0.007 0.084	0.003 0.003	0.030 0.102	0.002 0.019	0.000 0.030	0.147 0.115	0.115 0.146
Total Richness	0.030	0.019	0.042	0.001	0.007	0.079	0.006	0.154	0.000	0.131	0.187	0.014
Crustacean Abundance	0.020 0.001	0.030 0.000	0.083 0.053	0.069 0.244	0.019 0.041	0.008 0.027	0.030 0.048	0.002 0.017	0.024 0.001	0.016 0.027	0.000	0.039 0.028
Crustacean Richness	0.000	0.002	0.089	0.105	0.023	0.043	0.002	0.003	0.071	0.027	0.159	0.064
Polychaete Abundance	0.074 0.037	0.039 0.049	0.073 0.041	0.002 0.013	0.002 0.004	0.089 0.230	0.003 0.017	0.079 0.018	0.003 0.015	0.046 0.098	0.055 0.150	0.045 0.016
Polychaete Richness	0.059	0.041	0.018	0.001	0.006	0.133	0.012	0.076	0.022	0.032	0.152	0.014
Molluscan Abundance	0.009 0.023	0.004 0.005	0.047 0.025	0.065 0.241	0.040 0.031	0.035 0.061	0.001 0.106	0.107 0.049	0.118 0.038	0.002 0.003	0.041 0.019	0.008
Molluscan Richness	0.018	0.002	0.099	0.001	0.004	0.083	0.003	0.055	0.113	0.000	0.142	0.020
Infaunal Trophic Index (ITI)	0.044	0.002	0.023	0.092	0.134	0,005	0.000	0.001	0.000	0.222	0.080	0.068
Swartz's Dominance Index (SDI)	0.004	0.003	0.063	0.007	0.012	0.005	0.130	0.003	0.113	0.286	0.056	0.005

^a r² values generated by the regression anaylsis of untransformed (richness, SDI and ITI) and log₁₀ transformed data. Where two values are listed, the top value represents the r² value from the transformed data.
Fines = Percent fines.
TOC = Total Organic Carbon.
TS = Total Suffides.

9 April 1999

Page 1 of 1

99-0167.TBL

Table 3---Revised Reference Ranges for Puget Sound Habitats in Water Depths Less Than 150 Feet

				Habitat Category < 150 Feet	iory < 150) Feet		
		0 - 20% Fines		20 - 50% Fines		50 - 80% Fines		80 - 100% Fines
Benthic Endpoint	L	(0.1m ²)	c	(0.1m ²)	Ľ	(0.1m²)	c	(0.1m ²)
Total Abundance	164	328 - 651	61	365 - 617	68	191 - 446	85	195 - 396
Total Richness	163	50 - 87	57	53 - 76	66	44 - 62	84	25 - 39
Crustacean Abundance	161	51 - 185	60	47 - 159	65	10 - 69	-79	12 - 94
Crustacean Richness	159	9 - 16	57	7 - 13	67	5-9	91	4 - 6
Polychaete Abundance	155	91 - 275	59	140 - 302	68	91 - 205	86	39 - 126
Polychaete Richness	168	23 - 44	58	30 - 46	69	22 - 34	76	11-20
Molluscan Abundance	160	37 - 124	53	40 - 139	69	9 - 188	82	30 - 86
Molluscan Richness	161	13 - 20	55	10 - 15	68	10 - 17	85	6 - 12
Infaunal Trophic Index (ITI)	183	68 - 81	65	66 - 77	83	63 - 77	101	67 - 87
Swartz's Dominance Index (SDI)	163	9 - 22	60	11 - 19	20	7 - 17	64	7 - 10

All values are presented per 0.1m². n = Number of Samples.

4/9/1999

99-0167.xls Table 3

Table 4—Results of Phase 1 Screening to Identify Impacted Stations Grouped by SMS Category^a

.

Swartz's Dominance Index (SDI) 20	Stations ≤ CSL ^a Stations ≤ CSL	Impacted	Rank ^b	NU. UI IIIIpacted Stations > CSL ^a	No. of Stations > CSL	% Impacted	Rank ^b	Sum of the Ranks
Infaimal Trombic Index /ITI)	21	95%	11	30	34	88%	10	21
	21	81%	ග	32	34	94%	11	20
Total Richness 17	21	81%	6	23	34	68%	8	. 17
Molluscan Richness 16	21	76%	2	25	34	74%	6	16
Polychaete Richness 17	21	81%	6	20	34	59%	7	16
Enhanced Polychaete Abundance 12	21	57%	4.5	19	34	56%	6.	10.5
Molluscan Abundance 12	21	57%	4.5	- 17	34	50%	2	9.5
Crustacean Richness 15	21	71%	9	14	34	41%	3	6
Depressed Polychaete Abundance 9	21	43%	-	13	34	44%	4	5
Total Abundance 10	21	48%	2.5	7	34	21%	1.5	4
Crustacean Abundance 10	21	48%	2.5	7	34	21%	1.5	4

^a Impacted stations were identified when the mean station value was numerically less than reference mean. ^b Ranks based on the number of impacted stations relative to the total number of stations for a chemical group.

Page 1 of 1

99-0167.xls Table 4

Table 5—Results of Phase 1 Screening to Identify Impacted Stations Grouped by BAET Category^a

tex (SDI) 25 28 89% 11 25 27 ITI) 23 28 82% 10 26 27 ITI) 20 28 71% 9 21 27 10 20 28 68% 8 21 27 11 20 28 61% 6.5 20 27 11 28 61% 6.5 14 27 bundance 17 28 61% 6.5 14 27 bundance 16 28 54% 4 14 27 bundance 16 28 57% 5 13 27 Abundance 11 28 57% 5 13 27 Abundance 11 28 38% 3 13 27 Abundance 11 28 38% 3 13 27 Abundance 11 28 38% 3 13 27 Abundance 11 28 3 13 <th>Benthic Endpoint</th> <th>No. of Impacted Stations ≤ BAET^a</th> <th>No. of Stations ≤ BAET</th> <th>% Impacted</th> <th>Rank^b</th> <th>No. of Impacted Stations > BAET^a</th> <th>No. of Stations > BAET</th> <th>, % Impacted</th> <th>Rank^b</th> <th>Sum of the Ranks</th>	Benthic Endpoint	No. of Impacted Stations ≤ BAET ^a	No. of Stations ≤ BAET	% Impacted	Rank ^b	No. of Impacted Stations > BAET ^a	No. of Stations > BAET	, % Impacted	Rank ^b	Sum of the Ranks
ITI)232882%102627202871%92127202868%82127192861% 6.5 2027bundance1728 61% 6.5 1427bundance1728 54% 41427 15 28 54% 41427 16 28 57% 51327 16 28 57% 51327 10 28 39% 3327 10 28 36% 2727	Swartz's Dominance Index (SDI)	25	28	89%	11	25	- 27	93%	10	21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Infaunal Trophic Index (ITI)	23	28	82%	10	26	27	96%	11	21
19 28 68% 8 21 27 17 28 61% 6.5 20 27 bundance 17 28 61% 6.5 14 27 15 28 54% 4 14 27 27 16 28 54% 5 14 27 27 Abundance 11 28 57% 5 13 27 Abundance 11 28 36% 3 13 27 10 28 36% 2 7 27 27	Molluscan Richness	20	28	71%	6	21	27	78%	8.5	17.5
17 28 $61%$ 6.5 20 27 bundance 17 28 $61%$ 6.5 14 27 15 28 $54%$ 4 14 27 16 28 $54%$ 4 14 27 16 28 $57%$ 5 13 27 Abundance 11 28 $39%$ 3 13 27 10 28 $36%$ 2 7 27 27	Total Richness	19	28	68%	8	21	27	78%	8.5	16.5
Dundance 17 28 61% 6.5 14 27 15 28 54% 4 14 27 16 28 57% 5 13 27 Abundance 11 28 39% 3 13 27 Abundance 10 28 36% 2 7 27	Polychaete Richness	17	28	61%	6.5	20	27	74%	2	13.5
15 28 54% 4 14 27 16 28 57% 5 13 27 Abundance 11 28 39% 3 13 27 10 28 36% 2 7 27	Enhanced Polychaete Abundance	17	28	61%	6.5	41	27	52%	5.5	12
16 28 57% 5 13 27 Abundance 11 28 39% 3 13 27 10 28 36% 2 7 27	Molluscan Abundance	15	28	54%	4	14	27	52%	5.5	9.5
Abundance 11 28 39% 3 13 27 10 28 36% 2 7 27	Crustacean Richness	16	28	57%	-10	13	27	48%	3.5	8.5
10 28 36% 2 7 27	Depressed Polychaete Abundance	y en	28	39%	e,	13	27	48%	3.5	6.5
	Total Abundance	10	28	36%	, N	2	27	26%	~	3
	Crustacean Abundance	8	28	29%	+	6	· 27	33% -	7	ę

^a Impacted stations were identified when the mean station value was numerically less than reference mean. ^b Ranks based on the number of impacted stations relative to the total number of stations for a chemical group (i.e., percent impacted).

Page 1 of 1

99-0167.xls Table 5

Table 6-Results of Comparisons Based on Exceedance of One-Half the Reference Mean for Stations Grouped by SMS Category

	Station	Station Chemistry ≤ CSL (n=21)	iL (n=21)		Station	Station Chemistry > CSL (n=34)	SL (n=34)		
	No. of Impacted	No. of Stations <1/2 Pof Moon	% montood	D Safe b	No. of Impacted Stations ^a	No. of Stations <1/2 Dof Moon	% *******		ಸ
Crustacean Abundance	10	5	50%	8.5	7	5	71%	11	19.5
Swartz's Dominance Index (SDI)	20	10	20%	8.5	30	19	63%	9.5	18
Enhanced Polychaete Abundance ^c	12	9	50%	8.5	19	12	63%	9.5	18
Molluscan Abundance	12	8	67%	11	17	ø	47%	9	17
Total Abundance	10	2	50%	8.5	7	. 4	57%	7	15.5
Molluscan Richness	16	5	31%	9	25	6	36%	4	10
Depressed Polychaete Abundance	o		11%	7	15	6	. %09	8	10
Polychaete Richness	17	3	18%	4.5	20	6	45%	5	9.5
Total Richness	17	3	18%	4.5	23	7	30%	S	7.5
Crustacean Richness	15	2	13%	ŝ	4	4	29%	2	2
Infaunal Trophic Index (ITI)	17	0	%0	-	32	7	6%	~	2

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 4). ^c Comparison based on 2 times reference mean.

Page 1 of 1

Table 7---Results of Comparisons Based on Exceedance of One-Half the Reference Mean for Stations Grouped by BAET Category

· · · · ·	Station	Station Chemistry < BAET (n=28)	ET (n=28)		Station	Station Chemistry > BAET (n=27)	ET (n=27)		
Benthic Endboint	No. of Impacted Stations ^a	No. of Stations <1/2 Ref. Mean	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Stations <1/2 Ref. Mean	% Impacted	Rank ^b	Sum of the Ranks
Enhanced Polychaete Abundance ^c	17	8	47%	10	14	10	71%	9.5	. 19.5
Swartz's Dominance Index (SDI)	25	12	48%	11	25	17	68%	œ	19
Crustacean Abundance	8	3	38%	ω	σ	7	78%	11	19
Total Abundance	10	4	40%	6	7	5	71%	9.5	18.5
Molluscan Abundance	15	5	33%	7	44	6	64%	2	14
Depressed Polychaete Abundance	11	2	18%	5	13	8	62%	9	11
Molluscan Richness	20	5	25%	9	21	5	43%	4	10
Polychaete Richness	17	2	12%	ß	20	10	50%	2	8
Crustacean Richness	16	2	13%	4	.6	4	31%	7	Q
Total Richness	19	~	11%	2	21	8	38%	3	S
Infaunal Trophic Index (ITI)	23	0	%0	۲	26	2	8%	.	2
					•				

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 5). ^c Comparison based on 2 times reference mean.

99-0167.xls Table 7

Page 1 of 1

Table 8---Results of Comparisons Based on Exceedance of Reference Range Limits for Stations Grouped by SMS Category

,	Station	Station Chemistry ≤ CSL (n=21)	iL (n=21)		Statio	Station Chemistry > CSL (n=34)	SL (n≕34)		
Benthic Endpoint	No. of Impacted Stations ^a	No. of Stations < Ref. Range Limit	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Stations < Ref. Range Limit	% Impacted	Rank ^b	Sum of the Ranks
Enhanced Polychaete Abundance [¢]	12	11	92%	11	19	18	95%	11	22
Swartz's Dominance Index	20	17	85%	10	30	22	73%	10	20
Total Richness	17	11	65%	6	23	14	61%	7	16
Molluscan Richness	16	10	63%	ω	25	17	68%	8	16
Polychaete Richness	17	8	47%	° N	20	14	20%	6	12
Molluscan Abundance	12	7	58%	~	17	7	41%	3	10
Infaunal Trophic Index	17	6	53%	5.5	32	18	56%	4	9.5
Crustacean Abundance	10	5	50%	2.5	۲ ۲	4	57%	S	7.5
Crustacean Richness	15	Ø	53%	5.5	14	5	36%	7	7.5
Depressed Polychaete Abundance	Ø		11%	-	15	6	60%	Q	7
Total Abundance	10	5	50%	2.5	7	0	%0	-	3.5
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 4). ^c Comparison based on polychaete abundance > upper reference range limit.

Page 1 of 1

99-0167.xls Table 8

Table 9—Comparisons Based on Exceedance of Reference Range Limits for Stations Grouped by BAET Category

	Station	Station Chemistry ≤ BAET (n=28)	ΞT (n=28)		Station	Station Chemistry > BAET (n=27)	ET (n=27)		
Benthic Endpoint	No. of Impacted Stations ^a	No. of Stations < Ref. Range Limit	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Stations < Ref. Range Limit	% Impacted	Rank ^b	Sum of the Ranks
Enhanced Polychaete Abundance ^c	17	16	94%	11	14	13	63%	11	22
Swartz's Dominance Index (SDI)	25	18	72%	10	25	21	84%	10	20
Molluscan Richness	20	12	60%	6	24	15	71%	6	18
Total Richness	19	Ę	58%	ø	21	14	67%	7.5	15.5
Polychaete Richness	17	б	53%	7	20	13	65%	ø	13
Infaunal Trophic Index (ITI)	23	12	52%	9	26	15	58%	4	10
Crustacean Abundance	8	ю	38%	2.5	6	ŷ	67%	7.5	10
Total Abundance	10	5	50%	S	4	0	%0	~	ę
Depressed Polychaete Abundance		2	18%	-	13	8	62%	5	9
Molluscan Abundance	15	7	47%	4	14	7	50%	2	ĝ
Crustacean Richness	16	9	38%	2.5	13	7	54%	9	5.5

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 5). ^c Comparison based on polychaete abundance > upper reference range limit.

99-0167.xls Table 9

Page 1 of 1

Table 10-Results of Comparisons Based on Exceedance of 96th Confidence Limit for Stations Grouped by SMS Category

	<i>о</i>	Station Chemistry ≤ CSL (n=21)	CSL (n=21)		Stati	Station Chemistry > CSL (n=34)	SL (n=34)		
Benthic Endpoint	No. of Impacted Stations ^a	No. of Stations < 95th LCL	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Stations < 95th LCL	% Impacted	Rank ^b	Sum of the Ranks
Swartz's Dominance Index (SDI)	20	20	100%	8.5	30	30	100%	6	17.5
Total Richness	17	17	100%	8.5	23	23	100%	თ	17.5
Enhanced Polychaete Abundance [°]	12	12	100%	8.5	19	19	100%	თ	17.5
Crustacean Abundance	10	10	100%	8.5	7	7	100%	6	17.5
Molluscan Abundance	12	42	100%	8.5	17	16	94%	S	13.5
Molluscan Richness	16	16	100%	8.5	25	23	92%	4	12.5
Total Abundance	10	Q	60%	1	7	7	100%	6	10
Infaunal Trophic Index (ITI)	17	14	82%	3.5	32	31	97%	y	9.5
Crustacean Richness	15.	14	93%	2	14	12	86%	1.5	6.5
Depressed Polychaete Abundance	6	4	78%	7	15	13	87%	3	5
Polychaete Richness	17	14	82%	3.5	20	17	85%	1.5	4.5

^a Impacted stations were identified when the mean station value was numerically less than reference mean. ^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 4). ^c Comparison based on polychaete abundance > 95th UCL.

99-0167.xls Table 10

Table 11-Results of Comparisons Based on Exceedance of 95th Confidence Limit for Stations Grouped by BAET Category

	Station	Station Chemistry ≤ BAET (n=28)	ET (n=28)		Station	Station Chemistry > BAET (n=27	ET (n=27)		
Benthic Endpoint	No. of Impacted Stations ^a	No. of Stations <95th LCL	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Stations <95th LCL	% Impacted	Rank ^b	Sum of the Ranks
Swartz's Dominance Index (SDI)	25	25	100%	6	25	25	100%	8	17
Total Richness	19	19	100%	6	21	21	100%	8	17
Enhanced Polychaete Abundance ^c	17	17	100%	6	14	14	100%	8	17
Crustacean Abundance	8	ω	100%	6	6	6	100%	8	17
Moliuscan Abundance	15	14	93%	Q	14	14	100%	ω	14
Infaunal Trophic Index (ITI)	23	19	83%	3.5	26	26	100%	8	11.5
Molluscan Richness	20	20	100%	6	21	19	%06	7	11.
Total Abundance	10	9	60%	+	7	7 .	100%	8	6
Crustacean Richness	16	14	88%	2	13	12	92%	3.5	8.5
Depressed Polychaete Abundance	11	Ø	73%	7	13	12	92%	3.5	5.5
Polychaete Richness	17	14	82%	3.5	20	17	85%	٢	4.5

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

÷

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 5). ^c Comparison based on polychaete abundance > 95th UCL.

Page 1 of 1

4/9/1999

99-0167.xls Table 11

Table 12---Results of Comparisons Based on the t-test for Stations Grouped by SMS Category

	Statio	Station Chemistry ≤ CSL (n=21)	SL (n=21)		Station	Station Chemistry > CSL (n=34)	SL (n=34)		
Benthic Endpoint	No. of Impacted Stations ^a	No. of Significantly Different Stations	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Significantly Different Stations	% Impacted	Rank ^b	Sum of the Ranks
Swartz's Dominance Index (SDI)	20	17	85%	11	30	25	83%	6	20
Crustacean Abundance	10	7	20%	7	2	9	86%	10	17
Infaunal Trophic Index (ITI)	17	13	76%	8.5	32	25	78%	ω	16.5
Molluscan Abundance	12	10	83%	10	17	12	71%	3.5	13.5
Depressed Polychaete Abundance	σ	4	44%	2	15	14	. 93%	5	13
Molluscan Richness	16	10	63%	9	25	18	72%	9	12
Total Richness	17	13	76%	8.5	23	16	20%	7	10.5
Total Abundance	10	Q	60%	5	7	5	71%	S	10
Enhanced Polychaete Abundance	12	4	33%	~~	19	14	74%	7	8
Polychaete Richness	17	6	53%	4	20	14	70%	3.5	7.5
Crustacean Richness	15	7	47%	3	14	9	43%	-	4
						-			

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 4).

99-0167.xls Table 12

Page 1 of 1

Table 13---Results of Comparisons Based on the t-test for Stations Grouped by BAET Category

	Station	Station Chemistry ≤ BAET (n=28)	ET (n=28)		Station	Station Chemistry > BAET (n=27)	ET (n=27)		
Benthic Endpoint	No. of Impacted Stations ^a	No. of Significantly Different Stations	% Impacted	Rank ^b	No. of Impacted Stations ^a	No. of Significantly Different Stations	% Impacted	Rank ^b	Sum of the Ranks
Swartz's Dominance Index (SDI)	25	20	80%	10.5	25	22	88%	11	21.5
Infaunal Trophic Index (ITI)	23	17	74%	8	26	21	81%	ø	16
Depressed Polychaete Abundance	4 1	· ~	64%	9	- 13	· ←	8%	9.5	15.5
Crustacean Abundance	80	9	75%	6	G	۲.	78%	9	15
Molluscan Abundance	15	12	80%	10.5	14	10	71%	с	13.5
Total Abundance	10	5	50%	2.5	7	6	86%	9.5	12
Total Richness	19	13	68%	7	21	16	76%	4.5	11.5
Molluscan Richness	20	12	60%	2	21	16	76%	4.5	9.5
Enhanced Polychaete Abundance	17	4	41%	4	41	11	79%	~	8
Polychaete Richness	17	10	59%	4	20	13	65%	7	9
Crustacean Richness	16	8	50%	2.5	13	S	38%	٢	3.5
							-		

^a Impacted stations were identified when the mean station value was numerically less than reference mean.

^b Ranks based on the number of stations exceeding endpoint criterion relative to the number of impacted stations (see Table 5).

99-0167.xls Table 13

Page 1 of 1

Table 14a—Summary of Ranks for Benthic Endpoints Evaluated by SMS Category

Ranks Sum of 36.5 17.5 37.5 the 6.5 22 35 28 19 22 19 21 Significantly Different (t-test) 3.5 3.5 6 ÷ S 2 G 8 တ 1 95th CL Exceedance Station Chemistry > CSL 1.5 7 1.5 တ ß 9 တ S S ന 6 4 Ref. Range Exceedance 6 ÷ ø S ω 1 ŝ 2 3 4 <1/2 Ref. Mean 9.5 9,5 ÷ က N ထ ŝ ဖ Þ 4 ÷ Significantly Sum of Different the Ranks 30.5 26.5 16.5 36.5 28.5 18.5 17 23 15 38 1 (t-test) 8.5 8.5 9 ŝ 9 ო 2 4 ~ Exceedance 95th CL Station Chemistry ≤ CSL 8.5 3.5 8.5 8.5 3.5 8.5 8.5 8.5 io 2 Ref. Range Exceedance 2.5 2.5 5.5 5.5 9 ÷ တ ω ~ 3 1 <1/2 Ref. Mean 8.5 8.5 4.5 8.5 8.5 4.5 3 Ň 9 Swartz's Dominance Index (SDI) Dep. Polychaete Abundance Enh. Polychaete Abundance Benthic Endpoint Infaunal Trophic Index (ITI) Crustacean Abundance Molluscan Abundance Crustacean Richness Polychaete Richness Molluscan Richness **Total Abundance** fotal Richness

Page 1 of 1

99-0167.xis Table 14a

Table 14b—Summary of the Benthic Endpoints Evaluated by SMS Category Based on the Percent Impacted

		Station Chemi	ion Chemistry ≤ CSL				Station Chemistry > CSI	istry > CSL		
										
			95th CL	Significantly Sum of	Sum of			95th CL	Significantly	Sum of
Benthic Endpoint	Allan Mean	Exceedance	Exceedanc	(t-test)	Ranks	< I/2 Kei. Mean	кет. капде Exceedance	Exceedanc e	Untrerent (t-test)	the Ranks
Total Abundance	50	50	60	99	55%	57	0	100	71	57%
Total Richness	18	65	100	76	65%	30	61	100	70	65%
Crustacean Abundance	50	30	100	20	68%	71	57	100	86	78%
Crustacean Richness	13	53	93	47	52%	29	36	86	43	48%
Dep. Polychaete Abundance	11	11	78	44	36%	60	60	87	93	75%
Enh. Polychaete Abundance	50.	92	100	33	%69	63	95	100	74	83%
Polychaete Richness	18	47	82	53	50%	45	70	85	70	68%
Molluscan Abundance	67	58	100	83	77%	47	41	94	71	63%
Molluscan Richness	31	63	100	63	64%	36	68	92	72	67%
Infaunal Trophic Index (ITI)	0	53	82	76	53%	9	56	97	98	59% ,
Swartz's Dominance Index (SDI)	50	85	100	85	80%	63	73	100	83	80%

Page 1 of 1

99-0167.xls Table 14b

Table 15a—Summary of Ranks for Benthic Endpoints Evaluated by BAET Category

		Station Chemistry ≤ BAET	stry ≤ BAET				Station Chemistry > BAET	stry > BAET		
	<1/2 Raf	Raf Ranca	osth Ct	Significantly Sum of	Sum of	<10 Raf	Raf Rance	osth CI	Significantly	Sum of
Benthic Endpoint	Mean	Exceedance	Exceedance		Ranks	Mean	Exceedance	Exceedance	(t-test)	Ranks
Total Abundance	6	۰ ۲	*	2,5	17.5	9.5	· •••	8	9.5	28
Total Richness	3	. 8	0	7	26	ო	7.5	8	4.5	23
Crustacean Abundance	ω	2.5	ത	თ	28.5	11	7.5	8	9	32.5
Crustacean Richness	4	2.5	S	2.5	14	7	3	3.5		9.5
Dep. Polychaete Abundance	-9	+	2	9	14	ø	5	3.5	9.5	24
Enh. Polychaete Abundance	10	11	თ	-	31	9.5	5	ω	7	35.5
Polychaete Richness	9	7	3.5	4	17.5	5	g	4	7	13
Molluscan Abundance	7	4	ဖ	10.5	27.5	2	2	8	n	20
Molluscan Richness	.9	6	o	S	29	4	6	2	4.5	19.5
Infaunal Trophic Index (ITI)		9	3.5	ω	18.5	-	4	8	ø	21
Swartz's Dominance Index (SDI)	11	10	6	10.5	40.5	8	10	8	11	37

.

Page 1 of 1

99-0167.xls Table 15a

Table 15b—Summary of the Benthic Endpoints Evaluated by BAET Category Based on the Percent impacted

<1/2 Ref.			Station Chemistry ≤ BAE	stry ≤ BAET				Station Chemistry > BAE1	istry > BAET		
<1/2 Ref. Ref. Range 95th CL Optimization Optimization					Cignificantly	Sum of				Significantly	Sum of
Mean Exceedance (t-test) Ranks Mean Exceedance Exceedance 40 50 60 50 50 71 0 100 11 58 100 68 59 38 67 100 38 38 100 75 63 78 67 100 13 38 88 50 47 31 54 92 18 18 73 64 43 62 62 92 92 12 53 82 50 47 71 93 100 33 47 94 100 41 71 93 100 33 47 93 63 64 50 65 85 33 47 93 64 50 65 100 33 47 93 64 50 100 100 48 73 63		<1/2 Ref.		95th CL	Different	the the	<1/2 Ref.	Ref. Range	95th CL	Different	the
40 50 60 50 50 71 0 100 11 58 100 68 59 38 67 100 38 38 100 68 59 38 67 100 38 38 100 75 63 78 67 100 13 38 88 50 47 31 54 92 18 73 64 43 62 62 92 92 47 94 100 41 71 93 100 92 12 53 82 50 65 65 85 92 33 47 93 60 63 64 50 100 33 47 93 64 50 100 100 33 47 93 74 93 71 90 100 48 73 84 73	Benthic Endpoint	Mean	Exceedance	Exceedance		Ranks	Mean	Exceedance	Exceedance	(t-test)	Ranks
11 58 100 68 59 38 67 100 38 38 100 75 63 78 67 100 13 38 88 50 47 31 54 92 18 18 73 64 43 62 62 92 14 94 100 41 71 93 100 33 47 93 80 63 64 50 85 33 47 93 80 63 64 50 100 33 47 93 80 63 64 50 100 33 47 93 80 63 64 50 100 48 72 83 74 52 8 100	Total Abundance	40	50	60	50	50	71	0	100	86	64
38 38 100 75 63 78 67 100 13 38 88 50 47 31 54 92 18 18 73 64 43 62 62 92 92 47 94 100 41 71 71 93 100 12 53 82 59 53 50 65 85 33 47 93 800 63 64 50 100 25 60 100 61 43 71 90 100 25 60 100 61 63 64 50 100 48 72 83 74 52 8 50 100	Total Richness	1	58	100	68	59	38	67	100	76	20
13 38 50 47 31 54 92 18 18 73 64 43 62 62 92 92 47 94 100 41 71 71 93 100 12 53 82 59 53 64 50 65 85 33 47 93 80 63 64 50 100 25 60 100 60 61 43 71 90 26 53 83 74 52 8 50 100 25 60 100 60 61 43 71 90 48 72 83 74 52 8 58 100	Crustacean Abundance	38	38	100	75	63	78	. 67	100	78	81
18 18 73 64 43 62 62 92 92 47 94 100 41 71 71 93 100 12 53 82 59 53 50 65 85 33 47 93 80 63 64 50 100 25 60 100 60 61 43 71 90 48 72 100 80 75 8 58 100	Crustacean Richness	13	38	88	50	47	31	54	92	38	54
47 94 100 41 71 93 100 12 53 82 59 53 50 65 85 33 47 93 80 63 64 50 100 25 60 100 60 61 43 71 90 48 72 100 80 75 8 58 100	Dep. Polychaete Abundance	18	18	73	64	43	62	62	92	æ	56
12 53 82 59 53 50 65 85 33 47 93 80 63 64 50 100 25 60 100 60 61 43 71 90 0 53 83 74 52 8 58 100 48 72 100 80 75 68 84 100	Enh. Polychaete Abundance	47	94	100	41	74	71	93	100	79	86
33 47 93 80 63 64 50 100 25 60 100 60 61 43 71 90 0 53 83 74 52 8 58 100 48 72 100 80 75 68 84 100	Polychaete Richness	12	53	82	59	. 53	50	65	85	65	66
25 60 100 60 61 43 71 90 0 53 83 74 52 8 58 100 48 72 100 80 75 68 84 100	Molluscan Abundance	33	47	63	80	63	64	50	100	71	71
0 53 83 74 52 8 58 100 48 72 100 80 75 68 84 100	Molluscan Richness	25	09	100	60	61	43	71	80	76	70
48 72 100 80 75 68 84 100	Infaunal Trophic Index (ITI)	0	53	83	74	52	8	58	100	81	62
	Swartz's Dominance Index (SDI)	48	72	100	80	75	68	.84	100	88	85

4/9/1999

Page 1 of 1

99-0167.xls Table 15b

· ,

.

Table 16---Proposed Decision Rules for the Recommended Benthic Endpoints Based on Comparison to Reference Ranges

		a se	Benthic Endpoint	Benthic Endpoint that Exceeds Decision Criterion ^a	on Criterion ^a	
SMS Criteria	SDI	Enhanced Polychaete Abundance	Molluscan Abundance	Molluscan Richness	Crustacean Abundance	Total Richness
SQS—Single failure of either endpoint	int					
Scenario A	×					
Scenario B		×				
CSLFailure of at least two endpoints in any of	nts in any of	the following combinations	binations			
Scenario C	×	×				
Scenario D	×		×			
Scenario E	×			×		
Scenario F.	×				×	
Scenario G	×			. к		×
Scenario H		×	×			
Scenario I		×		×		
Scenario J		×			×	
Scenario K		×				×
CSL-Single failure of an endpoint	< 5.0					

^aHabitat-specific reference ranges defined in Table 3.

•

26 April 1999

. •

APPENDIX 1

STATIONS AND SAMPLES COMPRISING THE REVISED REFERENCE VALUES

A managements of a	01-1			ha 0.000/ fin	na natagan i	for total tax	a riabaaca
				he 0-20% fin			
SURVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX20
000010100				16 5	0.00	0.1	
SED19103	N	R9	4	16.5	0.92	0.1	25 25
SED19103	N	R.9	5	16.5	0.92	0.1	
SED19103	N	R 9	3	16.5	0.92	0.1	26
SED19103	N	R 9	1	16.5	0.92	0.1	28
EVCHEM	C	NG-02	5	8.6	3.1	0.2	31
SED18903	C	22	1	21	4.19	0.15	33
SED19103	N	R9	2	16.5	0.92	0.1	33
EVCHEM	C	NG-02	1	8.6	3.1	0.2	34
EVCHEM	C	NG-02	3	8.6	3.1	0.2	35 36
SED19103	С .	39	4	14.8	2.44	0.1	00
GED 10002					4.19	0.15	37
· SED18903	C	22	3	21 14.8	4.19	0.13	37
SED19103	C	39 D201	1		5.9	0.2959	38
SED19203	С	R301	1	22.1			· 39
SED19103	C	22	5	22.5	12.9	0.2 0.2	40
EVCHEM	C	NG-02	2	8.6	3.1	0.2	40
EVCHEM	C	NG-02	4	8,6	3.1		40 40
SED19103	· C	13	1	19.3	9.8	0.2 0.1453	40 40
SED19203	C	39	4	15.8	2.7	0.1455	40
SED18903	N	6	5	20	7.1 4.19	0.2	41
SED18903	C	22	5	21	4.19 2.44	0.15	41
SED19103	c	39	2	14.8 15.8	2.44	0.1453	41
SED19203	С	39 D102	. 3	15.8 20.5	2.7	0.1455	41
SED19003	S	R103	1	20.5	。 12.9	0.3	42
SED19103	C C	22 39	1 3	14.8	2.44	0.2	43
SED19103	c	39	3 2	14.8	2.44	0.1453	43 43
SED19203 SED19003	s	89 R103	3	20.5	2.7	0.1455	45 46
SED19003 SED19203	S C	36	1	17.7	2,3	0.2236	46
SED19203 SED19103	c	22	4	22.5	12.9	0.2250	40
SEASEP82	c c	C-50E	C50EVB	15.384615	2.3	0.2	48
SEASEF82 SED18903	S ·	43	1	20	6.3	0.14	48
SED18903	S	43 R103	2	20.5	8.	0.5	48
SED19003	C	22	. 3	20.5	12.9	0.2	48
SED19103	S	43	5	20	6.3	0.14	49
SED10703	Č	39	1	15.8	2.7	0.1453	
SED19203	C	R308	3	18.9	11	0.388	49
EVCHEM	c	SD-02	1	9,6	11.5	0.5	50
SED19203	c	25	3	20.4	3	0.1481	50
EVCHEM	č	PS-03	4	9.1	8	0.4	51
SED19203	S	44	1	20.5	17.9	0.519675	51
EVCHEM	č	PS-03	. 5	9.1	8	0.4	. 52
EVCHEM	Č	SD-02	4	9.6	11.5	0.5	52
SED18903	č	16	1	20	3.9	0.18	52
SED18903	č	36	5	15	2.2	0.13	52
SED10703		13	3	19.3	9.8	0.2	52
SED19103		39	5	14.8	2.44	0.1	52
SED19103	, ,	R301	3	22.1	5.9	0.2959	52
EVCHEM		PS-03	3	9.1	8	0.4	53
EVCHEM		SD-02	3	9.6	11.5	0.5	53
SED19203		25	1	20.4	3	0.1481	53
SED19203		R308	4	18.9	11	0.388	53
	\sim	1	•	10.7			~~

Appendix 1	. Stations a	and samples	making up 1	he 0-20% fir	nes category l	for total tax	a richness.
SURVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX20
SED18903	N	6	1	20	7.1	0.2	54
SED19103	S	43	3	20.8	5.9	0.1	54
EVCHEM	c	PS-04	4	20.8 8.7	7.4	0.1	55
EVCHEM	c	SD-02	5	9.6	11.5	0.5	
SED18903	c	23	1				55
SED18903	s	25 46	_	20	2.1	0.12	55
EVCHEM			. 1	22	9.5	0.42	55
	C	SD-02	2	9.6	11.5	0.5	56
SEAJUN82	C	H-75E	H75EUA	23.076923	1.8	0.1	56
SED18903	N	6	3	20	7.1	0.2	56
SED18903	C	36	1	15	2.2	0.13	56
SED18903	S	50	1	7	3.8	0.2	56
EVCHEM	С	PS-04	1	8.7	7.4	0.3	57
SED18903	S	43	3	20	6.3	0.14	57
SED19203	С	15	1	19.4	5.2	0.2149	. 57
SED19203	С	36	2	17.7	2.3	0.2236	57
SED18903	S .	50	5	7	3.8	0.2	58
SED19003	S	43	· 2 ·	19.8	7	0.26	58
SED19203	S	43	4	19.8	6	0.2859	58
SED18903	С	23	5	20	2.1	0.12	59
SED19103	C	22	2	22.5	12.9	0.2	59
SED19203	C	R308	1	18.9	11	0.388	59
SED18903	S	50	3	7	3.8	0.2	60
SED19003	С	69	1	32.4	15	0.47	- 60
SED19203	С	R301	4	22.1	5.9	0.2959	60
SED18903	C	16	3	20	3.9	0.18	61
SED19103	S	43	5	20.8	5.9	0.1	61
EVCHEM	С	PS-04	3	8.7	7.4	0.3	62
SED18903	С	23	3	20	2.1	0.12	62
SED18903	С	36	3	15	2.2	0.13	62
EVCHEM	С	PS-03	1	9.1	. 8	0.4	63
SED19003	S	43	3	19.8	7	0.26	63
SED19003	S	46	1	19.8	19	0.39	63
SED18903	С	16	5	20	3.9	0.18	64
SED19003	S	43	1	19.8	7	0.26	64
SED19203	С	22	4	20.5	8	0.2596	64
SEAJUN82	С	E-50E	E50EUA	15.384615	. 4	0.2	65
SEAJUN82	С	K-50E	K50EUA	15.384615	1.8	0.7	
SED19203	С	R308	2	18.9	11	0.388	65
SED19103	S ·	43	1	20.8	5.9	0.1	66
SED19103	S	43	4	20.8	5.9	0.1	66
SED19203	C	15	4	19.4	5.2	0.2149	66
SED19203	Ċ	R301	2	22.1	5.9	0.2959	66
EVCHEM	Č ·	PS-03	2	9.1	8	0.4	67
SED18903	S	46	5	22	9.5	0.42	68
SED19003	č	69	2	32.4	15	0.42	68
EVCHEM	Č	NG-06	3	10.2	7.1	0.47	69
EVCHEM	C	PS-04	2	8.7	.7.4	0.4 0.3	69
SED19003	S	46	2	8.7 19.8	19	0.39	69
SED19003	S	46	2 3	19.8	19	0.39	
SED19003	S	40	2	19.8 20.8			69 60
SED19103	S	43	1		5.9	0.1	69
SED19203 SEAJUN82	C S			19.8	6	0.2859	69 70
SEAJUN82	C ·	E-50E	E50EUB	15.384615	4	0.2	70

Ap	Appendix 1. Stations and samples making up the 0-20% fines category for total taxa richness.									
SU	RVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX20		
SE	D19203	С	22	3	20,5	8	0.2596	70		
SE	D19203	S	43	2	19.8	6	0,2859	71		
	CHEM	С	PS-04	5	8.7	7.4	0.3	72		
	D19203	č	36	. 4	17.7	2.3	0.2236	72		
	D19203	č	69	3	35.4	18.1	0.2250	72		
	D19203	Č	22	1	20.5	10.1	0.4509			
	D19203	C	. 36	3	20.3 17.7	2.3	0.2396	73		
	AJUN83	č	K5-75E	K575EYB	21.336	2.3	0.2230	73		
	D19003	č	69	3	32.4	15	0.2	74		
	D18903	č	31	3	22	1.7	0.47	74		
	D18903	S	46	. 3	22	9.5	0.13	76		
	D19203	č	15	3	19.4	5.2		76		
	D19203	Š	43	3	19.4	5.2	0.2149	76 76		
	D19203	Ċ	45 15	2	19.8		0.2859	76		
	AJUN82	č	E-50W	E50WUA	19.4	5.2	0.2149			
	D19103	s	12~30 W	5 S	13.384013	5	0.2	78		
	D19203	C	69	4	21.3 35.4	17.1	0.5	78		
	CHEM	č	NG-06	4	10.2	18.1	0.4569	79		
	D18903	C C	31	1	22	7.1	0.4	80		
	D19103	S	47	4	21.5	1.7	0.15	80		
	D19103	S	47	5	21.5	9.4	0.3	81		
	JUN82	C	K-50E	K50EUB	21.5 15.384615	9.4	0.3	81		
	D19103	s	44	2		1.8	0.7	82		
	CHEM	· C	NG-06	1	21.5 10.2	17.1	0.5	83		
	CHEM	c	NG-06	2	10.2	7.1	0.4	84		
	D18903	C C	15	2 5	20	7.1	0.4	84		
	D18903	c	27	5	20	8.22	0.24			
	D19203	· C	32	1	20	3.2	0.12	84		
	D18903	c	15		20.4	5.7	0.329525	84		
	D18903	c	15	1 3		8.22	0.24	85		
	D18903	c	28	1	20 20	8,22	0.24	85		
	D19103	S	23 47	3	20	4.9	0.15	86 06		
	D19203	c	69	1	35,4	9,4	0.3	86		
	JUN82	č	B-75W	B75WUC	23.076923	18.1 5.3	0.4569	86 87		
	D18903	č	31	5	23.070923	5.5 1.7	0.3	87		
	D19203	č	32	2	20.4	5.7	0.15 0.329525	87		
	JUN82	č	H-75W	H75WUA	23.076923	5.4	0.329525	87		
	JUN82	č	J-75E	J75EUA	23.076923	2.1	0.03	88		
	JUN82	č	N-75W	N75WUA	23.076923	3.3	0.1	88		
	D19003	č	32	2	20.4	5.5 7.5	0.1	88		
	D19003	č	32	3	20.4	7.5 7.5	0.22	88 88		
	D19203	č	32	3	20.4	5.7	0.22	88		
	D18903	č	32	1	20.4	7.23	0.323323	89		
	019003	S	47	2	19.5	12	0.17	90		
	JUN82	č	E-75E	E75EUA	23.076923	3.5	0.32	90 91		
	D18903	Ċ	27	1	20.070923	3.3	0.2	91		
	D19003	S	47	1	20 19.5	3.2 12	0.12	91		
	D19203	Ċ	32	4	20.4	5.7	0.32	91		
	D18903	c	37	3	20.4	5.9	0.329323	91		
	D18903	č	37	5	20 20	5.9	0.21	92		
	D19003	č	32	1	20.4	3.9 7.5	0.21	92		
	D19103	S	47	1	21.5	7.3 9.4	0.22	92		
		~	•	• ·	4.1.3	7.4	0.5	72		

SURVEY\$ REGION\$ STATION\$ SAMPLE\$ DEPTHM FINES TOC TOTAX20 SED19203 C 27 2 20.7 2.6 0.1656 92 SED19203 C 69 2 35.4 18.1 0.4569 92 SED19003 S 47 3 19.5 12 0.32 95 SED19003 S 47 2 21.5 9.4 0.3 95 SED1903 S 47 4 19.5 13.2 0.5249 96 SED1903 S 447 4 19.5 14.5 0.51 97 SED1903 S 44 3 19.5 14.5 0.51 97 SED1903 S 44 4 21.5 17.1 0.5 97 SED1903 C 28 5 20 4.9 0.15 99 SED1903 C 28 5 20.2 17.9	Appendix 1	Appendix 1. Stations and samples making up the 0-20% fines category for total taxa richness.											
SED19203 C 69 2 33.4 18.1 0.4569 92 SED18903 C 28 3 20 4.9 0.15 93 SED19003 S 47 3 19.5 12 0.32 95 SED19103 S 47 2 21.5 9.4 0.3 95 SED18003 C 32 5 20 7.23 0.17 96 SED19203 S 47 4 19.5 13.2 0.5249 96 SED19003 S 44 3 19.5 14.5 0.51 97 SED19003 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SED1803 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 32 0.1817	SURVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	тос	TOTAX20					
SED19203 C 69 2 35.4 18.1 0.4569 92 SED18903 C 28 3 20 4.9 0.15 93 SED19003 S 47 3 19.5 12 0.32 95 SED19103 S 47 2 21.5 9.4 0.3 95 SED18903 C 32 5 20 7.23 0.17 96 SED18903 C 27 3 20 3.2 0.12 97 SED19003 S 44 3 19.5 14.5 0.51 97 SED19203 C 25 2 20.4 3 0.1481 97 SED19203 C 28 5 20 4.9 0.15 99 SED18003 C 28 5 20 4.9 0.15 99 SED19203 C 32 3 20 7.23 0.17 10	SED19203	с	27	2	20.7	2.6	0.1656	92					
SED18903 C 28 3 20 4.9 0.15 93 SED19003 S 47 3 19.5 12 0.32 95 SED19103 S 47 2 21.5 9.4 0.3 95 SED18003 C 32 5 20 7.23 0.17 96 SED18003 C 32 5 20 7.23 0.12 97 SED18003 C 27 3 20 3.2 0.5249 96 SED19003 S 44 3 19.5 14.5 0.51 97 SED19203 C 25 2 20.4 3 0.1481 97 SED19203 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675													
SED19003 S 47 3 19.5 12 0.32 95 SED19103 S 47 2 21.5 9.4 0.3 95 SED18903 C 32 5 20 7.23 0.17 96 SED19203 S 47 4 19.5 13.2 0.5249 96 SED18903 C 27 3 20 3.2 0.12 97 SED19003 S 44 3 19.5 14.5 0.51 97 SED19103 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SED19203 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675	SED18903	С	28										
SED19103 S 47 2 21.5 9.4 0.3 95 SED18903 C 32 5 20 7.23 0.17 96 SED19203 S 47 4 19.5 13.2 0.5249 96 SED18903 C 27 3 20 3.2 0.12 97 SED19003 S 44 3 19.5 14.5 0.51 97 SED19103 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SED1803 C 28 5 20 4.9 0.15 99 SED1803 C 37 2 21.2 3.2 0.1817 99 SED19203 C 37 2 20.5 17.9 0.519675 100 SED19203 S 44 2 19.5 14.5 0.51	SED19003	S	47	3									
SED18903 C 32 5 20 7.23 0.17 96 SED19203 S 47 4 19.5 13.2 0.5249 96 SED18903 C 27 3 20 3.2 0.12 97 SED19003 S 44 3 19.5 14.5 0.51 97 SED19003 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 C 32 3 20 7.23 0.17 103 SED19203 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 2 19.5 13.2 0.5249	SED19103	S	47	2									
SED19203 S 47 4 19.5 13.2 0.5249 96 SED18903 C 27 3 20 3.2 0.12 97 SED19003 S 44 3 19.5 14.5 0.51 97 SED19103 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SEAJUN82 C D-50W D50WUC 15.384615 6 0.2 98 SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED19203 S 44 2 19.5 14.5 0.51 103 SED19203 S 47 3 19.5 13.2	SED18903	С	32	5	20								
SED18903 C 27 3 20 3.2 0.12 97 SED19003 S 44 3 19.5 14.5 0.51 97 SED19103 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SEAJUN82 C D-50W D50WUC 15.384615 6 0.2 98 SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED19203 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 C 27 4 20.7 2.6	SED19203	S	47	4									
SED19103 S 44 4 21.5 17.1 0.5 97 SED19203 C 25 2 20.4 3 0.1481 97 SEAJUN82 C D-50W D50WUC 15.384615 6 0.2 98 SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED18903 C 32 3 20 7.23 0.17 103 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6	SED18903	С	27	3	20	3.2	0.12						
SED19203 C 25 2 20.4 3 0.1481 97 SEAJUN82 C D-50W D50WUC 15.384615 6 0.2 98 SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 2 19.5 13.2 0.5249 105 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19203 C 37 1 20.7 2.6 </td <td>SED19003</td> <td>S</td> <td>. 44</td> <td>3</td> <td>19.5</td> <td>14.5</td> <td>0.51</td> <td>97</td>	SED19003	S	. 44	3	19.5	14.5	0.51	97					
SEAJUN82 C D-50W D50WUC 15.384615 6 0.2 98 SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED18903 C 32 3 20 7.23 0.17 103 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 2 19.5 13.2 0.5249 105 SED19203 S 47 3 19.5 13.2 0.5249 105 SED19103 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 <td>SED19103</td> <td>S</td> <td>44</td> <td>4</td> <td>21.5</td> <td>17.1</td> <td>0.5</td> <td>97.</td>	SED19103	S	44	4	21.5	17.1	0.5	97.					
SED18903 C 28 5 20 4.9 0.15 99 SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED19203 S 44 2 20.5 17.9 0.519675 100 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 1 21.5 17.1 0.5 106 SED19103 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED18903 C 37 1 20.7 <t< td=""><td>SED19203</td><td>С</td><td>25</td><td>2</td><td>20.4</td><td>3.</td><td>0.1481</td><td>97</td></t<>	SED19203	С	25	2	20.4	3.	0.1481	97					
SED19203 C 37 2 21.2 3.2 0.1817 99 SED19203 S 44 2 20.5 17.9 0.519675 100 SED18903 C 32 3 20 7.23 0.17 103 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED18903 C 37 1 20 5.9 0.21 110 SED19203 C 27 1 20.7 <td< td=""><td>SEAJUN82</td><td>С</td><td>D-50W</td><td>D50WUC</td><td>15.384615</td><td>6</td><td>0.2</td><td>98</td></td<>	SEAJUN82	С	D-50W	D50WUC	15.384615	6	0.2	98					
SED19203 S 44 2 20.5 17.9 0.519675 100 SED18903 C 32 3 20 7.23 0.17 103 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED19003 S 44 1 20.7 2.6 0.1656 106 SED19003 S 44 1 20.7 2.6 0.1656 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED19103 S 44 3 21.5	SED18903	С	28	5	20	4.9	0.15	99					
SED18903 C 32 3 20 7.23 0.17 103 SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED19003 S 44 1 19.5 14.5 0.51 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED18903 C 37 1 20 5.9 0.21 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED19103 S 44 3 21.5 1	SED19203	С	37	2	21.2	3.2	0.1817	99					
SED19003 S 44 2 19.5 14.5 0.51 103 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 47 3 19.5 13.2 0.5249 105 SED19103 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED19003 S 44 1 19.5 14.5 0.51 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED18903 C 37 1 20 5.9 0.21 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED19203 C 27 3 20.7 <	SED19203	S .	44	2	20.5	17.9	0.519675	100					
SED19203 S 44 3 20.5 17.9 0.519675 104 SED19203 S 47 3 19.5 13.2 0.5249 105 SED19103 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED19003 S 44 1 19.5 14.5 0.51 109 SED18903 C 37 1 20 5.9 0.21 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED19103 S 44 3 21.5 17.1 0.5 111 SED19203 C 27 3 20.7 2.6	SED18903	С	32	3	20	7.23	0.17	103					
SED19203 S 47 3 19.5 13.2 0.5249 105 SED19103 S 44 1 21.5 17.1 0.5 106 SED19203 C 27 4 20.7 2.6 0.1656 106 SED19003 S 44 1 19.5 14.5 0.51 109 SED18903 C 37 1 20 5.9 0.21 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED18903 C 37 1 20 5.9 0.21 110 SED19203 C 27 1 20.7 2.6 0.1656 110 SED19103 S 44 3 21.5 17.1 0.5 111 SED19203 C 27 3 20.7 2.6 0.1656 113 SED19203 S 44 4 20.5 17.9 <	SED19003	S	44	2	19.5	14.5	· 0.51	103					
SED19103S44121.517.10.5106SED19203C27420.72.60.1656106SED19003S44119.514.50.51109SED18903C371205.90.21110SED19203C27120.72.60.1656110SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113	SED19203	S	44	3	20.5	17.9	0.519675	104					
SED19103S44121.517.10.5106SED19203C27420.72.60.1656106SED19003S44119.514.50.51109SED18903C371205.90.21110SED19203C27120.72.60.1656110SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113													
SED19203C27420.72.60.1656106SED19003S44119.514.50.51109SED18903C371205.90.21110SED19203C27120.72.60.1656110SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113	SED19203	S	47	3	19.5	13.2	0.5249	105					
SED19003S44119.514.50.51109SED18903C371205.90.21110SED19203C27120.72.60.1656110SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113			44	1	21.5	17.1	0.5	106					
SED18903C371205.90.21110SED19203C27120.72.60.1656110SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113	4		27	4	20.7	2.6	0.1656	106					
SED19203C27120.72.60.1656110SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113				1		14.5	0.51	109					
SED19103S44321.517.10.5111SED19203C27320.72.60.1656113SED19203S44420.517.90.519675113	SED18903		37	1	20	5.9	0.21	110					
SED19203 C 27 3 20.7 2.6 0.1656 113 SED19203 S 44 4 20.5 17.9 0.519675 113			27	1		2.6	0.1656	110					
SED19203 S 44 4 20.5 17.9 0.519675 113							0.5	111					
			27			2.6	0.1656	113					
SED19203 S 47 2 19.5 13.2 0.5249 115			44	4		. 17.9	0.519675	113					
	SED19203	S.	47	2	19.5	13.2	0.5249	115					

i

Appendix 1. Stations and samples making up the 20-50% fines category for total taxa richness.

		STATION\$	-	-	FINES	TOC	TOTAX50
	SED19103	18	4	19	41.8	0.6	30
	SED19203	18	4	19.1	42.8	1.3271	33
	SED19103	18	3	19	41.8	0.6	35
	SED19103	18	5	19	41.8	0.6	36
	SED19103	18	1	19	41.8	0.6	39
	SED19103	R209	4	19.6	34	0.5	41
	EVCHEM	SR-08	1	10.9	22,1	1.7	44
	SED19103	R209	3	19.6	34.	0.5	48
	SED19103	R209	2	19.6	34	0.5	50
	SED19103	R209	5	19.6	34	0.5	50
	SED19103	1	2	19	41.8	0.6	51
	EVCHEM	SR-08	2	10.9	22.1	1.7	52
	SED19203	18	3	19.1	42.8	1.3271	53
	SED19203	30	3	13.3	36.3	1.0317	53
	SED19103	30	4	13.3	23.5	0.7	54
	SED19103	18	1	19.1	42.8	1.3271	54
	SED19203	30	2	13.3	36.3	1.0317	54
	EVCHEM	SR-08	4	10.9	22.1	1.0317	57
	SED19003	R111	1	20.1	36	1.3	58
	SED19003	R111	3	20.1	36	1.3	58
	SED19203	18	2	19.1	42.8	1.3271	58
	EVCHEM	SR-08	3	10.9	22.1	1.5271	59
	SED19203	30	4	13.3	36.3	1.0317	59
	EVCHEM	SR-08	5	10.9	22.1	1.7	61
	SED18903	10	5	20	37.2	0.61	61
	SED19103	30	1	13.3	23.5	0.7	61
	SED19103	30	3	13.3	23.5	0.7	61
	SED19103	30	5	13.3	23.5	0.7	61
	SED19003	71	3	6.1	46	1.4	62
	SED18903	33	1	- 20	24.04	0.64	63
	SED18903	47	3	20	23,47	0.29	63
	SED18903	47	5	20	23.47	0.29	63
	SED19203	30	1	13.3	36.3	1.0317	63
	SED18903	10	1	20	37.2	0.61	64
	SED19103	30	2	13.3	23.5	0.7	64
	SED19003	0033	3	19.8	34	1.1	65
	SED18903	33	3	20	24.04	0.64	66
	SED19103	69	3	34.4	21.4	0.6	69
	SED19103	69	4	34.4	21.4	0.6	69
	SED18903	33	5	20	24.04	0.64	70
	SED19203	40	4	9.4	32.2	2.1687	70
	SED19103	R209	1	19.6	34	0.5	71
	SED19103	10	4	20.7	32.8	0.6	72
	SED19103	69	5	34.4	21.4	0.6	72
	SED19103	R206	1	19.4	35.6	0.8	72
	SED19003	71	2	6.1	46	1,4	73
	SED19103	10	2	20.7	32.8	0.6	74
	SED19103	R206	5	19.4	35.6	0.8	74
	SED18903	10	3	20	37.2 ⁻	0.61	75
	SED18903	47	1	20	23.47	0.29	75
÷	SED19103	69	2	34.4	21.4	0.6	75
							•

4/8/1999

Appendix 1. Stations and samples making up the 20-50% fines category for total taxa richness.										
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX50				
SED19003	0033	. 1	19.8	34	1.1	76				
SED19103	10	1	20.7	32.8	0.6	78				
SED19203	40	3	9,4	32.2	2.1687	78				
SED19203	40	2	9.4	32.2	2.1687	79				
SED19003	71	¹ 1 •	6.1	46	1.4	80				
SED19003	0033	2	19.8	34	1.1	81				
SED19103	33	5	20.8	31.5	0.9	82				
SED19103	R206	2	19.4	35.6	0.8	82				
SED19203	40	1	9.4	32.2	2.1687	82				
SED19103	10	5	20,7	32.8	0.6	84				
SED19103	33	1	20.8	31.5	0.9	85				
SED19103	33	3	20.8	31.5	0.9	85				
SED19103	R206	3	19.4	35.6	0.8	87				
SED19103	33	2	20.8	31.5	0.9	88				
SED19103	69	1	34.4	21.4	0.6	89				

Appendix 1. Stations and samples making up the 50-80% fines category for total taxa richness.

 		upico monang	g up 110 00 -		acogory for a	a land home
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX80
SED19003	70	3	5.2	64	3.1	19
SED19103	70	2	6.5	67,2	3.2	20
SED19003	70	1	5,2	64	3.1	21
SED19103	70	3	6.5	67.2	3.2	22
SED19003	70	2	5.2	64	3.1	23
SED19203	70	3	7.2	66.5	2.1101	25
SED19203	70	1	7.2	66.5	2.1101	26
SED18903	18	5	20	60.15	0.93	29
		-		00.15	0.25	27
SED18903	18	1	20	60.15	0.93	32
SED19003	R105	3	14	75	2.2	34
SED19203	R303	3	14.5	76.8	1.2708	34
SED19203	R303	2	14.5	76.8	1.2708	39
SED18903	18	3	20	60.15	0.93	. 41
SED18903	30	5	13	56.04	1.4	41
SED19003	R105	2	14	75	2.2	41
SED19203	R303	1	14.5	76.8	1.2708	41
SED19003	0030	3	13.3	62	1.2700	42
SED19203	R302	1	20.6	68.5	0.9448	44
SED18903	2	î	20	60.7	0.68	45
SED19103	71	5	7.1	55.8	1.2	45
SED19203	41	2	19.1	75.1	1.1428	45
SED19103	R205	1	31.9	62.1	1.1	46
SED19203	21	2	21.7	62.2	1.2178	46
SED19203	R303	4	14.5	76.8	1.2708	47
SED19003	R105	1	14	75	2.2	48
SED19103	2	2	21.3	57.7	0.8	48
SED19203	R302	· _ 4	20.6	68.5	0.9448	48
SED18903	21	3	20	52.16	1.3	49
SED19103	8	4	22,1	63.7	2.9	49
SED19103	71	3	7.1	55.8	1.2	49
SED19203	41	3	19.1	75.1	1.1428	49
SED19103	2	3	21.3	57.7	0.8	50
SED18903	21	5	20	52.16	1.3	51
SED19103	8	3	22.1	63.7	2.9	51
SED19103	R207	1	29.9	73.4	1.5	51
SED19103	R207	5	29.9	73.4	1.5	51
SED19103	71	1	7.1	55.8	1.2	52
SED19103	R205	2	31.9	62.1	1.1	52
SED19203	21	1	21.7	62.2	1.2178	52
SED19203	R302	2	20.6	68.5	0.9448	52
SED19103	71	2	7.1	55.8	1.2	53
SED19103	71	4	7.1	55.8	1.2	53
SED19103	R205	4	31.9	62.1	1.1	53
SED19203	21	4	21.7	62.2	1.2178	53
SED19203	71	1	6.1	53	1.2331	53
SED19003	0030	2	13:3	62	1.4	54
SED19103	R205	3	31.9	62.1	1.1	54
SED19103	R205	5	31.9	62.1	1.1	54
SED19103	2	1	21.3	57.7	0.8	55
SED19103	R207	2	29.9	73,4	1.5	55
SED19203	21	3	21.7	62.2	1.2178	55
						*

ce	ndix 1. Stat	ions and san	nples making	g up the 50-8	0% fines cat	egory for to	otal taxa richn
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX80
	SED18903	8	3	21	65.77	3.9	56
	SED19103	2	4	21.3	57.7	0.8	57
	SED18903	21	1	20	52.16	1.3	58
	SED18903	2	3	20	60.7	0.68	59
	SED19203	71	3	6.1	53	1.2331	59
	SED19003	0030	1	13.3	62	1.4	60
	SED19103	R207	3	29.9	73.4	1.5	60
	SED19203	8	3	21.1	71.8	2.2161	60
	SED19203	41	4	19.1	75.1	1.1428	60
	SED19103	8	2	22.1	63.7	2.9	61
	SED19103	8	5	22.1	63.7	2.9	62
	SED19103	2	5	21.3	57.7	0.8	62
	SED19203	8	2	21.1	71.8	2.2161	63
	SED19203	23	3	6.1	53-	1.2331	63
	SED19203	41	. 1	19.1	75.1	1.1428	63
	SED19103	8	1	22.1	63.7	2.9	64
	SED19003	· · 8	1	21.1	64	3.4	65
	SED19203	71	2	6.1	53	1.2331	65
	SED19003	8	3	21.1	64	3.4	67
	SED19203	R302	3 -	20.6	68.5	0.9448	67 ·
	SED19003	8	2	21.1	64	3.4	68
	SED19203	23	4	6.1	53	1.2331	69
	SED18903	8	5	21	65,77	. 3.9	-71
	SED19103	R207	4	29.9	73.4	1.5	71
	SED19203	8	4	21.1	71.8	2.2161	71
	SED18903	2	5	. 20	60.7	0,68	72
	SED18903	8	1	21	65.77	3.9	72
	SED19203	71	4	6.1	53	1.2331	72
	SED19203	8	1	21.1	71.8	2.2161	78
	SED19203	23	2	6.1	53	1.2331	80

Appendix 1. Stations and samples making up the 50-80% fines category for total taxa richness.

Appendix 1. Stations and samples making up the 80-100% fines category for total taxa richness.

	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX100
	SED19003	R102	2	11.6	88	2.6	18
	SED19003	R101	2	2.1	90	4	19
	SED19203	49	1	4.7	88.1	2.1381	19
	SED19203	49	3	4.7	88.1	2.1381	19
	SED19003	R101	3	2.1	90	4	21
	SED19103	1	3	23.5	95.8	1.7	21
	SED19103	4	3	25.4	97.6	2	21
	522 17100				2110	-	
	SED19003	R101	1	2.1	90	4	22
	SED19103	1	1	23.5	95.8	1.7	22
	SED19203	· 1	4	22.5	94.1	1.7421	22
	SED19203	49	4	4.7	88.1	2.1381	. 22
	SED19103	R204	4	31.7	94.1	2.4	23
	SED19003	0018	3	19.1	92	1.5	24
	SED19003	R102	1	11.6	88	2.6	24
	SED19103	1	2	23.5	95.8	1.7	24
	SED19103	1	4	23.5	95.8	1.7	24
	SED19103	48	1	21.3	89.8	2.3	24
	SED19103	48	3	21.3	89.8	2.3	24
	SED19103	R204	3	31.7	94.1	2.4	24
	SED18903	1	3	22	93.32	1.5	25
	SED19003	R102	3	11.6	88	2.6	25
	SED19003	R106	1	11.2	86	2.8	25
	SED19003	R109	3	22.7	91	2.5	25
	SED19103	1	5	23.5	95.8	1.7	25
	SED19103	48	5	21.3	89.8	2.3	25
	SED19103	R204	1	31.7	94.1	2.4	25
	SED19203	48	1	20.5	88.7	1.5201	25
	SED19003	1	3	22.5	97	1.8	26
	SED19103	20	3	11.8	96.2	1	26
•	SED19103	R204	.2	31.7	94.1	2.4	26
	SED19003	0018	2	19.1	92	1.5	27
	SED19003	R106	2	11.2	86	2.8	27
	SED19003	R106	3	11.2	· 86	2.8	27
	SED19103	4	4	25.4	97.6	2	27
	SED19103	20	5	11.8	96.2	1	27
	SED19103	R204	5	31.7	94.1	2.4	27
	SED19203	48	3	20.5	88.7	1.5201	27
	SED19103	48	2	21.3	89.8	2.3	28
	SED18903	1 '	. 1	22	93.32	1.5	29
	SED19003	R109	2	22.7	<u>91</u>	2.5	29
	SED19203	48	2	20.5	88.7	1.5201	29
	SED19103	4	2	25.4	97.6	2	30
	SED19203	49	2	4.7	88.1	2,1381	30
	SED19003	1	- 1	22.5	97	1.8	31
	SED19003	1	2	22.5	97	1.8	31
	SED19103	4	1	25.4	97.6	2	31
	SED19103	48	4	21.3	89.8	2.3	31
	SED19203	1.	3	22.5	94.1	1.7421	31
	SED19203	1	1	22.5	94.1	1.7421	32
	SEAJUN82	~	QM2UA	16.307692	85	1.3	33
	SED18903	1	5	22	93.32	1.5	33

Appendix 1. Stati	Appendix 1. Stations and samples making up the 80-100% fines category for total taxa richness.										
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOTAX100					
SED19003	0020	1	10.3	. 97	1.2	33					
SED19003	R109	1	22.7	91	2.5	33					
SED19003	0048	3	20	92	2.2	34					
SED19103	4	5	25.4	97.6	2.2	34					
SED19203	4	1	23.4	96.8	2.4931	34					
SED19203	12	1	24	93.1	1.1471						
SED19203	12	2				34					
SED19203	5	4	22.5	94.1	1.7421	35					
SED19203			21	94.8	1.9311	35					
	20	1	. 11	94.11	1	36					
SED19003	0048	1	20	92	2.2	36					
SED19203	4	2	24	96.8	2.4931	36					
SED19203	48	4	20.5	88.7	1.5201	36					
SED19103	20	2	11.8	96.2	1	37					
SED19203	4	4	24	96.8	2.4931	37					
SED19203	5	3	21	` 94.8	1.9311	37					
SED18903	20	5	11	94.11	·1	38					
SED19103	5	2	20.2	95.6	1.8	38					
SED19103	20	1	11.8	96.2	· 1	38					
SED19103	20	4	11.8	96.2	1	38					
SED19203	5	1	21	94.8	1.9311	38					
SED19003	0018	1	19.1	92	1.5	39					
SED19003	0020	2	10.3	97	1.2	39					
SED19003	0048	2	20	92	2.2	39					
SED19103	5	4	20.2	95.6	1.8	39					
SED19103	5	5	20.2	95.6	1.8	39					
SED19203	12	2	21.1	93.1	1.1471	40					
SED19203	12	3	21.1	93.1	1.1471	40					
SED19103	5	3	20.2	95.6	1.8	41					
SED19203	4	3	24	96.8	2.4931	41					
SED19203	5	. 2	21	94.8	1.9311	41					
SED19203	12	. 4	21.1	93.1	1.1471	41					
SED19103	5	1	21.1	95.6	1.1471	41					
SED19103	12	1									
SED19103	12	5	21.1	91.4	1.5	43					
SED19103	20	2	21.1	91.4 06.7	1.5	43					
SED19203	20		10.3	95.7	1.0068	43					
		3	11	94.11	1	44					
SED19103	12 D202	3	21.1	91.4	1.5	44					
SED19103	R203	3	12.5	98.7	1.7	45					
SED19003	0020	3.	10.3	97	1.2	47					
SED19103	R203	5	12.5	98.7	1.7	47					
OED 10000	0010										
SED19003	0012	2	21.1	93	1.8	49					
SED19103	12	4	21.1	91.4	1.5	49					
SED19103	R203	1	12.5	98.7	1.7	49					
SED19103	R203	2	12.5	98.7	1.7	49					
SED19203	20	1	10.3	95.7	1.0068	49					
SED19003	0012	3 ,	21.1	93	1.8	50					
SED19103	12	2	21.1	91.4	1.5	50					
SED19103	R203	4	12.5	98.7	. 1.7	52					

Appendix 1.	Stations and samples making	a up the 0-20%	6 fines category fo	r total taxa abundance.

0110		ono ana oam	pico maning	up 0.0 0-207		gory for total	
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB20
	EVCHEM	SD-01	5	4.2	4.6	0.2	57
	SED19103	39	2	14.8	2.44	0.1	116
	SED19103	39	1	14.8	2.44	0.1	118
	SED19203	R301	1	22.1	5,9	0.2959	122
•	SED18903	6	5	20	7.1	0.2	139
	SED19103	39	4	14.8	2.44	0.1	142
	SED19203	39	3	15.8	2.7	0.1453	145
	SED19203	36	1	17.7	2.3	0.2236	149
	SED19203	39	4	15.8	2.7	0.1453	163
	SED19203	39	2	15.8	2.7	0.1453	165
	SED19003	R103	1	20.5	. 8	0.5	181
	SED19203	39	1	15.8	2.7	0.1453	191
	SED19103	39	5	14.8	2.44	0.1	197
	SED19203	44	1	20.5	17.9	0.519675	200
	SED19103	39	3	14.8	2.44	0.1	211
	SED19003	R103	2	20.5	8	0.5	212
	SED19203	36	2	17.7	2.3	0.2236	212
	SED18903	16	1	20	3.9	0.18	216
	SED19203	R301	3	22.1	5.9	0.2959	222
	SED18903	16	5	20	3.9	0.18	225
	EVCHEM	NG-02	1	8.6	3.1	0.2	228
	EVCHEM	NG-02	5	8.6	3.1	0.2	229
	SED19003	R103	3	20.5	8	0.5	233
	SED19203	36	3	17.7	2.3	0.2236	264
	SED19203	36	4	17.7	2.3	0.2236	264
	SED18903	22	5	21	4.19	0.15	270
	SED19103	44	5	21.5	17.1	0.5	271
	SED19203	R301	4	22.1	5.9	0.2959	271
	SED19203	15	1	19.4	5.2	0.2149	276
	EVCHEM	NG-02	2	8.6	3.1	0.2	284
	SED19103	22	1	22.5	12.9	0.2	284
	SED18903	31	1	22	1.7	0.15	290
	EVCHEM	NG-02	4	8.6	3.1	0.2	292
	SED18903	16	3	20	3.9	0.18	293
	EVCHEM	NG-02	3	8.6	3.1	0.2	306
	SED18903	22	1	21	4.19	0.15	307
	SED18903	6	1	20	• 7.1	0.2	316
	EVCHEM	PS-03	3	9.1	8	0.4	334
	SED19103	22	2	22.5	12.9	0.2	334 ~
	SED18903	31	3	22	1.7	0.15	337
	SED19003	69	3	32.4	15	0.47	338
	SED18903	46	1	22	9,5	0.42	342
	SED18903	22	3	21	4.19	0.15	343
	SED19103	22	5	22.5	12.9	0.2	350
	SED18903	36	1	15	2.2	0.13	356
	SED18903	.23	5	20	2.1	0.12	367
	SED19203	15 D200	4	19.4	5.2	0.2149	368
	SED19203	R308	4	18.9	11	0.388	369
	SED18903	15	5	20	8.22	0.24	372
-	EVCHEM	PS-04	4	8.7	7.4	0.3	373
	EVCHEM	PS-04	1	8.7	7.4	0.3	375

99-0167b.XLS_TOAB20

ppei	ndix 1. Stati	ons and sam	ples making	g up the 0-20	% fines cate	gory for tota	il taxa abunda
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB20
	SED19203	69	3	35.4	18.1	0.4569	378
	SED18903	50	5	7	3.8	0.2	381
	SED19203	32	1	20.4	5.7	0.329525	383
	SED18903	36	5	15	2.2	0.13	384
	SED19003	69	1	32.4	15	0.47	385
	SED19103	44	2	21.5	17.1	0.5	385
	SEAJUN82	H-75W	H75WUA	23.076923	5.4	0.05	389
	SED18903	37	3	- 20	5.9	0.21	391
	SED19203	37	2	21.2	3.2	0.1817	391
	SED19103	44	: 4	21.5	17.1	0.5	394
	SED19203	32	2	20.4	5.7	0.329525	395
	SEAJUN82	H-75E	H75EUA	23.076923	1.8	0.1	397
	EVCHEM	PS-03	4	9.1	8	0.4	398
	SED19203	32	3	20.4	5.7	0.329525	399
	SED18903	6	3	20	7.1	0.2	400
	SED18903	15	- 3	20	8.22	0.24	404
	SEAJUN82	E-50W	E50WUA	15.384615	5	0.2	409
	SED19203	32	4	20.4	5.7	0.329525	409
	EVCHEM	PS-03	5	9.1	8	0.4	412
	SED19203	15	2	19.4	5.2	0.2149	412
	SED19003	69	2	32.4	15	0.47	414
	EVCHEM	PS-03	2	9.1	. 8	0.4	415
	EVCHEM	PS-03	1	9.1	8	0.4	416
	SED18903	28	1	20	4.9	0.15	427
	SEAJUN82	B-75W	B75WUC	23.076923	5.3	0.3	428
	SEAJUN83	K5-75E	K575EYB	21.336	3	0.2	431
	EVCHEM	PS-04	3	8.7	7.4	0.3	437
	SED18903	50	3	. 7	3.8	0.2	440
	SEAJUN82	N-75W	N75WUA	23.076923	3.3	0.1	441
	SED19003	46	1	19.8	19	0.39	442
	SED18903	46	5	22	9.5	0.42	445
	SED18903	43	່ 1	20	6.3	0.14	467
	SED18903	23	3	20	2.1	0.12	468
	SED19203	15	3	19.4	5.2	0.2149	474
	EVCHEM	PS-04	5	8.7	7.4	0.3	476
	SED18903	36	3	15	2.2	0.13	480
	SED19103	22	4	22.5	12.9	0.2	480
	SED19203	44	3 -	20.5	17.9	0.519675	483
	SED19203	44	2	20.5	17.9	0.519675	484
	EVCHEM	SD-02	3	9.6	11.5	0.5	487
	SED19203	R308	3	18.9	11	0.388	489
	EVCHEM	SD-02	4	9.6	11.5	0.5	491
	SED19103	R 9	1	16.5	0.92	0.1	493
	SED19103		3	21.5	17.1	0.5	496
	SED19203	R308	2	18.9	11	0.388	497
	SED18903	46	3	22	9.5	0.42	502
	SED19103	47.	2	21.5	9.4	. 0.3	505
	SED19103	22	3	22.5	12.9	0.2	511
	SEASEP82	C-50E	C50EVB	15.384615	2.3	0.1	513
	EVCHEM	SD-02	1	9.6	11.5	0.5	514
	SED19003	46	2	19.8	19	0.39	514
	SED19103	47	5	21.5	9.4	0.3	516

Ap ance.

99-0167b.XLS TOAB20

Appendix 1. Stations and samples making up the 0-20% fines category for total taxa abundance.

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB20
					~~~	
SEAJUN82	D-50E	D50EUA	15.384615	3.9	0.2	521
SED19203	47	4	19.5	13.2	0.5249	523
EVCHEM	<b>PS-04</b>	2	8.7	7.4	0.3	529
SEAJUN82	E-75E	E75EUA	23.076923	3.5	0.2	531
SED19003	47	3	19.5	12	0.32	532
EVCHEM	SD-02	5	9.6	11.5	0,5	533
SED19203	27	2	20.7	2,6	0.1656	533
SED18903	15	1	20	8.22	0.24	538
SED18903	28	5	20	4.9	0.15	538
SED19203	69	4	35.4	18.1	0.4569	541
SED18903	23	1	20	2.1	0.12	542
SED18903	43	3	20	6.3	0.14	544
SED18903	27	1	20	3.2	0.12	545
SED19203	69	1	35.4	18.1	0.4569	549
SED19103	R 9	3	16.5	0.92	0.1	551
SED19003	47	1	19.5	12	0.32	553
SED19203	R301	2	22.1	5.9	0.2959	557
SED19003	47	2	19.5	12	0.32	562
SEAJUN82	D-50W	D50WUC	15.384615	6	0.2	563
SED19103	47	3	21.5	9.4	0.3	565
SED19103	43	3	20.8	5.9	0.1	573
SED19003	46	3	19.8	19	0.39	586
SED19203	22	4	20.5	8	0.2596	586
SED18903	31	5	22	1.7	0.15	587
SED18903	37	1	20	5.9	0.21	590
EVCHEM	SD-02	2	9.6	11.5	0.5	595
SED19103	43	4	20.8	5.9	0.1	609
SED19203	69	2	35.4	18.1	0.4569	614
SED18903	43	5	20	6.3	0.14	616
SEAJUN82	K-50E	K50EUB	15.384615	1.8	0.7	617
SED19203	R308	1	18.9	11	0.388	619
SED18903	37	5	20	5.9	0.21	620
SED19003	44	3	19.5	14.5	0.51	624
SED19003	43	2	19.8	7	0.26	630
SED19003	43	3	19.8	7	0.26	634
SEAJUN82	K-50E	K50EUA	15.384615	1.8	0.7	635
SED19103	44	1	21.5	17.1	0.5	635
SED18903	50	1	7	3.8	0.2	640
SED19203	44	4	20.5	17.9	0.519675	644
SED18903	27	5	20	3.2	0.12	655
SED19103	47	4	21.5	9.4	0.3	656
SED19203	27	3	20.7	, 2.6	0.1656	668
SED18903	27	3	20	3.2	0.12	673
SED19103	47	1	21.5	9.4	0.3	676
SED19103	13	1	19.3	9.8	0.2	685
SED19203	22	3	20.5	8	0.2596	686
SEAJUN82	J-75E	J75EUA	23.076923	2.1	0.1	687
SED19103	43	-5	20.8	5.9	0.1	693
SED19203	27	4	20.7	2.6	0.1656	694
SED18903	32	1	20	7.23	0.17	696
SED19003	32	2	20.4	7.5	0.22	696
SED19103	43	1	20.8	5.9	0.1	699

Appendix 1. Stations and samples making up the 0-20% fines category for total taxa abundance.

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB20
SED18903	32	3	20	7.23	0.17	703
SED19103	R 9	4	16.5	0.92	0.1	716
SED19203	47	3	19.5	13.2	0.5249	717
SEAJUN82	E-50E	E50EUB	15.384615	4	0.2	722
SED19103	R 9	5	16.5	0.92	0.1	724
SED19203	22	- 1	20.5	8	0.2596	724
SED19203	27	1	20.7	2.6	0.1656	730
SED18903	32	5	20	7.23	0.17	732
SED19003	43	1	19.8	7	0.26	754
SED19003	44	2	19.5	14.5	0.51	759
SED19103	43	2	20.8	5.9	0.1	761
SED19203	43	1	19.8	6	0.2859	767
SED19003	32	3	20.4	7.5	0.22	770
SED18903	28	3	20	4.9	0.15	780
SED19003	32	1	20.4	7.5	0.22	783
SED19103	13	3	19.3	9.8	0.2	783
SEAJUN82	E-50E	E50EUA	15.384615	4	0.2	784
SED19203	37	.4	21.2	3.2	0.1817	787
SED19203	25	3	20.4	3	0.1481	789
SED19103	R 9	2	16.5	0.92	0.1	817
SED19203	37	3	. 21.2	3.2	0.1817	828
EVCHEM	NG-06	3	. 10.2	7.1	0.4	833
SED19203	43	. 4	19.8	6	0.2859	844
SED19203	43	3	19.8	6	0.2859	852
SED19203	25	1	20.4	3	0.1481	853
SED19203	37	1	21.2	3.2	0.1817	881
SED19203	25	2	20.4	3	0.1481	901
SED19203	43	2	19.8	6	0.2859	973
SED19003	44	1	19.5	14.5	0.51	994

	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB50
	EVCHEM	SR-08	1	10.9	22.1	1.7	192
	SED19003	R111	1	20.1	36	1.3	241
	EVCHEM	SR-08	2	10.9	22.1	1.7	257
	SED19203	30	2	13.3	36.3	1.0317	260
			-				
. :	SED19103	18	3	19	41.8	0.6	274
	SED19103	30	5	13.3	23.5	0.7	278
	SED19103	30	4	13.3	23.5	0.7	300
	SED19103	30	2	13.3	23.5	0.7	311
	SED19103	30	. 3	13.3	23.5	0.7	321
	SED19003	R111	3	20.1	36	1.3	328
	SED19203	30	3	13.3	36.3	1.0317	331
	SED19003	0033	3	19.8	34	1.1	335
	SED18903	47	5	20	23.47	0.29	345
	SED19103	R206	1	19.4	35.6	0.8	349
	SED19203	30	4	13.3	36.3	1.0317	349
	SED19103	R209	· 1	19.6	34	0.5	354
	SED19203	30	1	13.3	36.3	1.0317	366
	SED19103	10	4	20.7	32.8	0.6	370
	SED19103	R209	4	19.6	34	0.5	381
	EVCHEM	SR-08	4	10.9	22.1	1.7	385
	SED19203	18	4	19.1	42.8	1,3271	394
	SED18903	47	3	20	23.47	0.29	398
	SED19103	69	5	34,4	21.4	0.6	401
	SED19103	R209	3	19.6	34	0.5	402
	SED19103	R209	5	19.6	34	0.5	405
	SED19103	R206	3	19.4	35.6	0.8	421
	EVCHEM	SR-08	5	10.9	22.1	1.7	422
	SED19103	R209	2	19.6	34	0.5	441
	SED19103	10	1	20.7	32.8	0.6	469
	SED19103	30	1	13.3	23.5	0.7	470
	SED19103	R206	5	19.4	35.6	0,8	472
	SED19103	10	5	20.7	32.8	0.6	483
	SED19103	69	3	. 34.4	21.4	0.6	485
	SED19103	10	2	20.7	32.8	0.6	486
	SED19003	71	3	6.1	46	1.4	490
	SED19103	18	5	19	41.8	0.6	491
	SED19003	0033	2	19.8	34	1.1	498
	SED19103	69	4	34.4	21.4	0.6	499
	SED19103	33	5	20.8	31.5	0.9	507
	SED19003	0033	1	19.8	34	1.1	509
	SED19103	69	2	34.4	21.4	0.6	527
	EVCHEM	SR-08	3	10.9	22.1	1.7	531
	SED19103	33	3	20.8	31.5	0.9	539
	SED19003	71	2	6.1	46	1.4	544
	SED19103	33	2	20.8	31.5	0.9	546
	SED19203	18	3.	19.1	42.8	1.3271	565
	SED19203	40	1	9.4	32.2	2.1687	573
	SED18903	10	5	20	37.2	0.61	579
	SED19203	40	2	9.4	32.2	2.1687	595
	SED18903	10	1	20	37.2	0.61	603
	SED19103	69	1	34.4	21.4	0.6	603

Appendix 1. Stations and samples making up the 20-50% fines category for total taxa abundance.

Appendix 1.	Stations and	l samples ma	aking up the	20-50% fines	s category for to	al taxa abundance.
-------------	--------------	--------------	--------------	--------------	-------------------	--------------------

		. –	-			
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB50
SED18903	47	1	20	23.47	0.29	609
SED19003	71	1	6.1	46	1.4	617
SED19203	18	2	19.1	42.8	1.3271	620
SED19103	18	1	19	41.8	0.6	626
SED18903	33	1.00%	20	24.04	0.64	632
SED18903	33	5	20	24.04	0.64	643
SED18903	33	3.	20	24.04	0.64	644
SED19103	R206	2	19.4	35.6	0.8	649
SED19103	18	4	19	41.8	0.6	655
SED19203	18	1	19.1	42.8	1.3271	672
SED19103	33	1	20.8	31.5	0.9	686
SED19203	40	4	9.4	32.2	2.1687	716
SED19103	R206	4	19.4	35.6	0.8	727
SED18903	-10	3	20	37.2	0.61	756
SED19103	18	2	19	41.8	0.6	759
SED19203	40	3	9.4	32.2	2.1687	769
SED19103	33	4	20.8	31.5	0.9	782
SED19103	10	3	20.7	32.8	0.6	864

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB80
SED19203	70	4	7.2	66.5	2.1101	43
SED19203	70	2	7.2	66.5	2.1101	62
SED19103	70	5	6.5	67.2	3.2	79
SED19003	70	3	5.2	64	. 3.1	84
SED19103	70	4	6.5	67.2	3.2	87
SED19103	70	2	6.5	67.2	3.2	93
SED19103		1	6.5	67.2	3.2	96
SED19103		3	6.5	67.2	3.2	111
SED19203		3 .	7.2	66.5	2.1101	112
SED19003		2	5.2	64	3.1	114
SED19203	70	1	7.2	66.5	2.1101	119
SED19003		1	5.2	64	3.1	135
SED19203		1 .	20.6	68.5	0.9448	151
SED19203		4 .	20.6	68.5	0.9448	163
SED18903		5	20	60.15	0.93	170
SED19103		4	22.1	63.7	2.9	185
SED19103		4	21.3	57.7	0.8	197
SED19103		2	21.3	57.7	0.8	204
SED19103		5	7.1	55.8	1.2	211
SED19103		1	7.1	55.8	1.2	213
SED19203		3	20.6	68.5	0.9448	218
SED19103		3	7.1	55.8	1.2	222
SED19203		2	14.5	76.8	1.2708	225
SED19203		3	21.1	71.8	2.2161	227
SED19103		3	22.1	63.7	2.9	230
SED19203		1	14.5	76.8	1.2708	230
SED18903		1	20	60.7	0.68	252
SED19103		2	7.1	55.8	1.2	253
SED19103		5	21.3	57.7	0.8	256
SED19203		2	20.6	68.5	0.9448	282
SED19203		2	21.1	71.8	2.2161	296
SED19103		4	7.1	55.8		299
SED19203		3	14.5	76.8 _.	1.2708	299
SED19103		3	21.3	57.7	0.8	300
SED19103		5	22.1	63.7	2.9	302
SED19103 SED19103		2	22.1	63.7	2.9	309
	2 8	1	21.3	57.7	0.8	310
SED19103 SED19203		1	22.1 14.5	63.7	2.9	319
SED19203 SED19003		4 3	14.5	76.8 75	1.2708	329
SED19003 SED19103	R105 R207	2 1	29.9		2.2	336
SED19103		2		73.4	1.5	352
SED19003 SED19203	° 71	1	21.1 6.1	64 53	3.4	354
SED19203		3	6.1	53	1.2331	359
SED19203 SED18903		5	13	56.04	1.2331 1.4	365 368
SED18903	R205	1	31.9	62.1	1.4	308 373
SED19103	8	5	21	65.77	1.1 3.9	373 377
SED18903	° 8	1	21	65.77	3.9 3.9	377
SED18903		4	31.9	62.1	3.9 1.1	381
SED19003		3	21.1	64	· 3.4	388
SED19003		2	31.9	62.1	3.4 1.1	391
			~1.7	02.1	1.1	JJ1

Appendix 1. Stations and samples making up the 50-80% fines category for total taxa abundance.

		•		• •			
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB80
	SED19003	8	1.	21.1	64	3.4	393
	SED19203	8	4	21.1	71.8	2.2161	401
	SED19203	71	2	6.1	53	1.2331	404
	SED18903	8	3	21	65,77	3.9	406
•	SED19103	R205	5	31.9	62.1	1.1	406
	SED18903	18	1	20	60.15	0.93	418
	SED19003	0030	3	13.3	62	1.4	422
	SED19203	23	3	6.1	53	1.2331	424
	SED19103	R205	3	31.9	62.1	1.1	425
	SED19203	8	1	21.1	71.8	2.2161	426
	SED19203	71	4	6.1	53	1.2331	449
	SED19103	R207	2	29.9	73.4	1.5	453
	SED19103	R207	3	29.9	73,4	1.5	453
	SED18903	2	5	20	60.7	0.68	469
	SED18903		3	20	60.7	0.68	496
	SED19003	0030	2	13.3	62	1.4	499
	SED19103	R207	5	29.9	73.4	1.5	504
	SED18903	18	3	20	60.15	0.93	514
	SED19003	0030 ·	1	13.3	62	1.4	514
		R207	4	29.9	73.4	1.5	531
			1	14	- 75	2.2	552
	SED19003	R105	2	14	75	2.2	564
		41	2	19.1	75.1	1.1428	668
	SED19203	23	1	6.1	53	1.2331	729
			4	6.1	53	1.2331	783
			4	19.1	75.1	1.1428	862
			3	20	52.16	1.3	864
	SED18903	21	1	20	52.16	1.3	894

Appendix 1. Stations and samples making up the 50-80% fines category for total taxa abundance.

enc					0% fines cate	egory for to	tal taxa abund
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB100
	SED19203	49	1	4.7	88.1	2.1381	90
	SED19203	49	3	4.7	88.1	2.1381	109
	SED19003	R101	1	2.1	90	4	111
	SED19203	49	4	4.7	88.1	2.1381	117
	SED19103	48	5	21.3	89.8	2.3	118
	SED19003	R102	2	11.6	88	2.6	130
	SED19003	R102	1	11.6	88	2.6	132
	SED19103	20	5	11.8	96.2	1	145
	SED19103	R204	3	31.7	94.1	2.4	147
	SED19203	49	2	4.7	88.1	2.1381	153
	SED19103	48	3	21.3	89.8	2.3	161
	SED19103	R204	4	31.7	94.1	2.4	163
	SEAJUN82	QM-2	QM2UA	16.307692	85	1.3	172
	SED19103	20	3	11.8	96.2	1	173
	SED19103	48	1	21.3	89.8	2.3	176
	SED19203	4	1	24	96.8	2.4931	178
	SED19103	20	1	11.8	96.2	1	186
	SED19103	48	2	21.3	89.8	2.3	187
	SED19203	4	3	24	96.8	2.4931	190
	SED19103	48	4	21.3	89.8	2,3	196
	SED19103	20	4	11.8	96.2	1	197
	SED19203	4	4	24	96.8	2.4931	200
	SED19103	4	2	25.4	97.6	2	202
	SED19103	R203	5	12.5	98.7	1.7	206
	SED19103	4	1	25.4	97.6	2	215
	SED19103	20	2	11.8	96.2	1	215
	SED19203	4	2	24	96.8	2.4931	216
	SED19003	R101	3	2.1	90	4	217
	SED19103	4	5	25.4	97.6	, 2	219
	SED19103	R204	2	31.7	94.1	2.4	225
	SED19003	R101	2	2.1	90	4	226
	SED19103	R203	3	12.5	98.7	1.7	231
	SED19103	4	3	25.4	97.6	2	238
	SED19103	5	4	20.2	95.6	1.8	238
	SED19103	5	2	20.2	95.6	1.8	239
	SED19203	5	3	21	94.8	1.9311	241
	SED19003	0018	3	19.1	92	1.5	248
	SED19103	4	4	25.4	. 97.6	2	253
	SED19103	R203	1	12.5	98.7	1.7	260
	SED19203	48	1	20.5	88.7	1.5201	262
	SED19103	R203	4	12.5	, 98.7	1.7	263
	SED19203	5	4	21	94.8	1.9311	263
	SED19203	5	1	21	94.8	1.9311	266
	SED19203	48	3	20.5	88.7	1.5201	266
	SED19103	1	. 1	23.5	95.8	1.7	272
	SED19003	R102	3	11.6	88	2.6	273
	SED19103	R204	5	31.7	94.1	2.4	276
	SED19203	5	2	21	94.8	1:9311	286
	SED19103	R204	1	31.7	94.1	2.4	288
	SED19003	0018	2	19.1	92	1.5	290
	SED19103	5	5	20.2	95.6	1.8	291

Appendix 1. Stations and samples making up the 80-100% fines category for total taxa abundance.

Appendix 1.	Stations and s	amples makir	ig up the	80-100%	fines category	y for total taxa abundance.
-------------	----------------	--------------	-----------	---------	----------------	-----------------------------

ndix 1. Statio	ns and samp	les making i	up the 80-100	0% fines cate	egory for to	tal taxa abun
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	TOAB100
SED19203	48	2	20.5	88.7	1.5201	291
SED19203	12	3	21.1	93.1	1.1471	293
SED18903	- 1	3	22	93.32	1.5	299
SED19103	5	3	20.2	95.6	1.8	301
SED19103	1	2	23.5	95.8	1.7	303
SED19003	0048	2	20	92	2.2	316
SED19003	0018	1	19.1	92	1.5	324
SED19003	R106	3	11.2	86	2.8	324
SED19103	12	1	21.1	91.4	1.5	334
SED19103	R203	2	12.5	98.7	1.7	335
SED19103	5	1	20.2	95.6	1.8	345
SED19203	12	4	21.1	93.1	1.1471	349
SED19203	12	2	21.1	93.1	1.1471	350
SED19003	R106	1	· 11.2	86	2.8	353
SED19003	0048	1	20	92	2.2	361
SED19103	12	5	21.1	91.4	1.5	361
SED19103	12	4	21.1	91.4	1.5	368
SED19003	0020	2	10.3	97	1.2	369
SED19203	48	4	20.5	88.7	1.5201	373
SED18903	20	1	11	94.11	1	375
SED19103	1	3	23.5	95.8	1.7	376
SED19203	12	1	21.1	93.1	1.1471	376
SED19103	12	3	21.1	91.4	1.5	378
SED18903	1	1	22	93.32	1.5	385
SED19003	0020	1	10.3	97	1.2	388
SED19003	0048	3	20	92	2.2	388
SED19003	0020	3	10.3	97	1.2	404
SED19203	20	2	10.3	95.7	1.0068	421
SED19003	R106	2	11.2	86	2.8	445
SED19103	12	2	21.1	91.4	1.5	447
SED18903	20	5	- 11	94.11	- 1	456
SED19203	20	1	10.3	95.7	1.0068	463
SED19003	0012	3	21.1	93	1.8	466
SED19103	1	5	23.5	95.8	1.7	482
SED19203	20	3	10.3	95.7	1.0068	488
SED19003	0012	2	21.1	93	1.8	495
SED18903	20	3	11	94.11	1	499
SED19003	0012	1	21.1	93	1.8	500
SED19203	20	4	10.3	95.7	1.0068	507
SED19003	R109	3	22.7	91	2.5	536
SED19103	1	4	23.5	95.8	1.7	543
SED18903	1	5	22	93.32	1.5	574
SED19003	1	1	22.5	97	. 1.8	582
SED19003	R109	2	22.7	91	2.5	585
SED19003	R109	1	22.7	91	2.5	612
SED19203	1	4	22.5	94.1	1.7421	644

4/8/1999

Appendix 1. Stations and samples making up the 0-20% fines category for polychaete richness.
----------------------------------------------------------------------------------------------

pendix 1. Stat	ions and san	npies making	g up the 0-20	% tines catego	ory for poly	cnaete richne
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX20
SED19203	44	1	20.5	17.9	0.52	6
SED18903	22	1	21	4.19	0.15	11
SED19103		5	22.5	12.9	0.20	12
SED19103		3	16.5	0.92	0.10	12
SED19103		4	16.5	0.92	0.10	12
SED19103		5	16.5	0.92	0.10	12
EVCHEM		1	8.6	3.1	0.20	14
EVCHEM		2	8.6	3.1	0.20	14
EVCHEM		5	8.6	3.1	0.20	14
SED18903		5	21	4.19	0.15	14
SED19003		1	20.5	8	0.50	14
SED19103		1	22.5	12.9	0.20	14
SED19103		2	16.5	0.92	0.10	14
		-				
EVCHEM	NG-02	3	8.6	3.1	0.20	15
SED18903		5	20	2.1	0.12	15
SED19103		4	19.3	9.8	0.20	15
SED19103		1	16.5	0.92	0.10	15
SED18903		3	21	4.19	0.15	16
SED19203		4	15.8	2.7	0.15	16
EVCHEM		4	8.6	3.1	0.20	17
SED19103		4	14.8	2.44	0.10	17
SED19203		3	20.4	3	0.15	.17
SED19103		1	19.3	9.8	0.20	18
SED19103		2	14.8	2.44	0.10	18
SED19203		1	20.4	3	0.15	18
SED19103		1	14.8	2.44	0.10	19
SED19203		3	15.8	2.7	0.15	19
SED18903		5	7	3.8	0.20	20
SED19103		4	22.5	12.9	0.20	20
SED18903		5	20	7.1	0.20	21
SED18903		1	20	2.1	0.12	21
SED19103		3	22.5	12.9	0.20	21
SED19103		3	14.8	2.44	0.10	21
SED19203		1	17.7	2.3	0.22	21
SED18903		1	20	7.1	0.20	22
SED18903		1	20	6.3	0.14	22
SED18903		1	7	3.8	0.20	22
SED19003		2	, 20.5	8	0.50	22
SED19003		3	19.3	9.8	0.20	22
SED19203		2	15.8	2.7	0.15	22
SED19203		1	22.1	5.9	0.30	22
SEASEP82		C50EVB	15.384615	2.3	0.10	23
SED18903		3	20	7.1	0.20	23
SED18903		1	15	2.2	0.13	23
SED18903		5	20	6.3	0.13	-23
SED18903		- 1	20	9.5	0.14	23
SED18903		3	20.5	9.5	0.42	23
SED19003 SED19103		5	20.3 14.8	° 2.44	0.30	23
SED19103 SED19103		3	20.8	2.44 5.9	0.10	23
SED19103 SED19203		5 4	20.8	-3	0.10	23
SED19203 SED18903		4 5	20.4	2.2	0.13	23 24
SED18903 SED18903		3	13	3.8	0.13	24 24
2CD 19203	, .JU	. 3	1	5.0	0.20	24

	ono una oun	ipico manin	g up ine o-zo	/o mies cale	gory for pory	chaete norme
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX20
SED19203	R301	3	22.1	5.9	0.30	24
EVCHEM	PS-03	4	9.1	8	0.40	25
SED18903	16	1	20	3.9	0.18	25
SED19203	39	1	15.8	2.7	0.15	25
EVCHEM	PS-03	5	9.1	8	0.40	26
EVCHEM	PS-04	4	8.7	7.4	0.30	26
SED18903	23	3	20	2.1	0.12	26
SED18903	13	3	20	9.7	0.18	27
SED19103	22	2	22.5	12.9	0.20	27
SED19203	22	4	20.5	8	0.26	27
SED19203	43	4	19.8	6	0.29	27
EVCHEM	NG-06	3	10.2	7.1	0.40	28
EVCHEM	PS-03	3	9.1	8	0.40	28
EVCHEM		3	8.7	7.4	0.30	28
EVCHEM	SD-02	1	9.6	11.5	0.50	28
SEAJUN82	K-50E	K50EUA	15.384615	1.8	0.70	28
SED19203	15	1	19,4	5.2	0.21	28
SED19203	R308	3	18.9	11	0.39	28
EVCHEM	SD-02	4	9.6	11.5	0.50	20
SEAJUN82	E-50E	E50EUA	15.384615	4	0.20	29
SED18903	13	1	20	9.7	0.18	29
SED19003	69	1	32.4	15	0.47	29
SED19103	15	1	21.8	5.8	0.20	29
SED19203	22	3	20.5	8	0.26	29
SED19203	36	2	17.7	2.3	0.22	29
EVCHEM	PS-04	- 1	8.7	7.4	0.30	30
EVCHEM	SD-02	3	9.6	11.5	0.50	30
EVCHEM	SD-02	5	9.6	11.5	0.50	30
SEAJUN82	H-75E	H75EUA	23.076923	1.8	0.10	30
SED18903	43	3	20	6.3	0.14	30
SED19003	43	2	19.8	7	0.26	30
SED19003	46	1	19.8	19	0.39	30
SED19103	13	2	19.3	9.8	0.20	30
SED19103	43	5	20.8	5.9	0.10	30
SEAJUN82	E-50E	E50EUB	15.384615	4	0.20	31
SED18903	36	3	15	2.2	0.13	31
SED19103	15	4	21.8	5.8	0.20	31
SED19203	R308	4	18.9	. 11	0.39	31
EVCHEM	PS-03	1	9.1	. 8	0.40	32
EVCHEM	PS-04	5	8.7	7.4	0.30	32
EVCHEM	SD-02	2	9.6	11.5	0.50	32
SEAJUN82	E-50W	E50WUA	15.384615	5	0.20	32
SEAJUN82	H-75W	H75WUA	23.076923	5.4	0.05	32
SED19003	43	1	19.8	7	0.26	32
SED19103	15	.5	21.8	5.8	0.20	32
SED19103	43	4	20.8	5.9	0.10	32
SED19203	15	4	19.4	5.2	0.21	32
SED19203	R301	4	22.1	5.9	0.30	32
EVCHEM	NG-06	- 1	10.2	7.1	0.40	33
SED18903	16	3	20	3.9	0.18	33
SED19003	43	3	19.8	7	0.26	33
SED19203	36	4	17.7	2.3	0.22	33
SED19203	69	3	35.4	18.1	0.46	. 33

Appendix 1	. Stations and	i samples making	g up the 0-20%	fines category f	for polychaete richness.
------------	----------------	------------------	----------------	------------------	--------------------------

	ons and san	ibles making	j up ille 0-20	76 mies catego	ity for pory	
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX20
SED18903	16	5	20	3.9	0.18	34
SED18903	27	5	20	3.2	0.12	34
SED19103	15	. 2	21.8	5.8	0.20	34
SED19103	43	2	20.8	5.9	0.10	34
SED19003	46	2	19.8	19	0.39	. 36
SED19103	43	<u>II</u>	20.8	5.9	0.10	36
SED19203	36	3	17.7	2,3	0.22	36
SED19203	43	1	19.8	6	0.29	36
EVCHEM	NG-06	2	10.2	7.1	0.40	37
EVCHEM	NG-06	4	10.2	7.1	0.40	37
EVCHEM	PS-03	2	9.1	8	0.40	37
EVCHEM	PS-04	2	8.7	7.4	0.30	37
SED19003	46	3	19.8	19	0.39	. 37
SED19103	13	5	19.3	9.8	0.20	37
SED19103	15	3	21.8	5.8	0.20	37
SED19203	R308	1	18.9	11	0.39	37
SED19203	R308	2	18.9	11	0.39	37
SEAJUN82	K-50E	K50EUB	15.384615	1.8	0.70	38
SED18903	31	1	22	1.7	0.15	38
SED18903	31	3	22	1.7	0.15	38
SED18903		5	22	9.5	0.42	38
SED19003		2	32.4	15	0.47	38
SED19203	22	1	20.5	8	0.26	38 ·
SED19203		2	19.8	6	0.29	38
SED19203	43	3	19.8	6	0.29	38
SED19203		4	35.4	18.1	0.46	38
SEAJUN82		E75EUA	23.076923	3.5	0.20	39
SED19203	R301	. 2	22.1	5.9	0.30	39
SEAJUN82	B-75W	B75WUC	23.076923	5.3	0.30	40
SED19203	15	3	19.4	5.2	0.21	40
SEAJUN82		N75WUA	23.076923	3.3	0.10	41
SED18903	27	· 1	20	3.2	0.12	41
SEAJUN82	D-50W	D50WUC	15.384615	6	0.20	42
SEAJUN83	K5-75E	K575EYB	21.336	3	0.20	42
SED18903		1	20	8.22	0.24	42
SED18903	15	5	20	8.22	0.24	42
SED18903	28,	3	20	4.9	0.15	42
SED19203	22	2	20.5	8	0.26	42
SED19003	69	3	32.4	15	0.47	43
SED18903	46	3	22	9.5	0.42	44
SEAJUN82	J-75E	J75EUA	23.076923	2.1	0.10	45
SED18903	13	. 5	20	9.7	0.18	45
SED18903	15	. 3	20	8.22	0.24	45
SED18903	31	5	22	1.7	0.15	45 '
SED18903	37	3	20	5.9	0.21	45
SED19103	47	4	21.5	9.4	0.30	45
SED19203		2	19.4	5.2	0.21	45
SED19203		2	20.4	3	0.15	45
SED18903		3	20	3.2	0.12	46
SED18903		5	20	5,9	0.21	46
SED19103		3	21.5	9.4	0.30	46
SED19203		1	20.4	5.7	0.33	46
SED19003		2	20.4	7.5	0.22	47

SED19003       32       3       20.4       7.5       0.22       4         SED19103       47       5       21.5       9.4       0.30       4         SED19203       32       4       20.4       5.7       0.33       4         SED18903       28       1       20       4.9       0.15       44         SED19003       32       1       20       7.23       0.17       44         SED19103       44       2       21.5       17.1       0.50       44         SED19103       44       2       21.5       9.4       0.30       50         SED19203       69       1       35.4       18.1       0.46       44         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       3       20.4       5.7       0.33       55         SED1	ppe	ndix 1.	Stati	ions and san	nples makin	g up the 0-2	0% fines cate	gory for poly	chaete richne	3
SED19103       47       5       21.5       9.4       0.30       4         SED19203       32       4       20.4       5.7       0.33       4         SED18903       28       1       20       4.9       0.15       4         SED18903       32       1       20       4.9       0.15       4         SED19003       32       1       20.4       7.5       0.22       44         SED19103       44       2       21.5       17.1       0.50       44         SED19203       69       1       35.4       18.1       0.46       44         SED19203       69       2       35.4       18.1       0.46       55         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19103       47       1       21.5       9.4       0.30       56         SED19103       47       1       19.5       12       0.32       57         SED190		SURV	/EY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX20	
SED19103       47       5       21.5       9.4       0.30       44         SED19203       32       4       20.4       5.7       0.33       44         SED18903       28       1       20       4.9       0.15       44         SED18903       32       1       20       7.23       0.17       44         SED19003       32       1       20.4       7.5       0.22       44         SED19103       44       2       21.5       17.1       0.50       44         SED19203       69       1       35.4       18.1       0.46       45         SED19203       69       2       35.4       18.1       0.46       55         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19103       47       1       19.5       12       0.32       55         S		SED1	9003	32	3	20.4	7.5	0.22	48	
SED19203       32       4       20.4       5.7       0.33       44         SED18903       28       1       20       4.9       0.15       44         SED18903       32       1       20       7.23       0.17       44         SED19003       32       1       20.4       7.5       0.22       44         SED19103       44       2       21.5       17.1       0.50       44         SED19203       69       1       35.4       18.1       0.46       44         SED19203       69       2       35.4       18.1       0.46       55         SED19203       69       2       35.4       18.1       0.46       55         SED19203       32       2       20.7       2.6       0.17       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED1903       44       5       21.5       17.1       0.50       55         SED1903       47       1       19.5       12       0.32       55         S		SED1	9103	47	5	21.5			48	
SED18903       28       1       20       4.9       0.15       44         SED18903       32       1       20       7.23       0.17       44         SED19003       32       1       20.4       7.5       0.22       44         SED19103       44       2       21.5       17.1       0.50       44         SED19103       47       2       21.5       9.4       0.30       56         SED19203       69       2       35.4       18.1       0.46       57         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.7       2.3       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55         SE		SED1	9203	32	4				48	
SED18903       32       1       20       7.23       0.17       44         SED19003       32       1       20.4       7.5       0.22       44         SED19103       44       2       21.5       17.1       0.50       44         SED19203       69       1       35.4       18.1       0.46       44         SED19203       69       2       35.4       18.1       0.46       55         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19103       34       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SED19103       47       1       21.5       9.4       0.30       55         SED19103       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55 <td< td=""><td></td><td>SED1</td><td>8903</td><td>28</td><td>1</td><td>20</td><td>4.9</td><td></td><td>49</td><td></td></td<>		SED1	8903	28	1	20	4.9		49	
SED19003       32       1       20.4       7.5       0.22       44         SED19103       44       2       21.5       17.1       0.50       44         SED19203       69       1       35.4       18.1       0.46       44         SED19203       69       2       35.4       18.1       0.46       46         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20       7.23       0.17       55         SED1903       32       3       20       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED1903       47       1       19.5       12       0.32       55         SED1903       47       2       19.5       12       0.32       55         SED1903       47       2       19.5       12       0.32       55         SED19		SED1	8903	32	1				49	
SED19103       44       2       21.5       17.1       0.50       44         SED19203       69       1       35.4       18.1       0.46       44         SED19103       47       2       21.5       9.4       0.30       56         SED19203       69       2       35.4       18.1       0.46       56         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       2       20.4       5.7       0.33       55         SED18903       32       3       20       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SED1903       28       5       20       4.9       0.15       54         SED1903       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED1		SED1	9003	32	1	20.4			49	
SED19203       69       1       35.4       18.1       0.46       44         SED19103       47       2       21.5       9.4       0.30       56         SED19203       69       2       35.4       18.1       0.46       56         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SED1803       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       17.1       0.50       56         SED19003       47       3       19.5       14.5       0.51       57 <td< td=""><td></td><td>SED1</td><td>9103</td><td>44</td><td>2</td><td></td><td></td><td></td><td>49</td><td></td></td<>		SED1	9103	44	2				49	
SED19103       47       2       21.5       9.4       0.30       50         SED19203       69       2       35.4       18.1       0.46       50         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED18903       32       3       20.7       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED18903       28       5       20       4.9       0.15       54         SED18903       28       5       20       4.9       0.15       54         SED18903       27       3       20.7       2.6       0.17       55         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       3       19.5       14.5       0.51       56         SE		SED1	9203	69	1	35.4			49	
SED19203       69       2       35.4       18.1       0.46       50         SED19203       27       2       20.7       2.6       0.17       55         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED18903       32       3       20       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       3       19.5       14.5       0.51       56         SED19003       47       3       19.5       14.5       0.51       56         SE		SED1	9103	47	2	21.5	9.4		50	
SED19203       27       2       20.7       2.6       0.17       5         SED19203       32       2       20.4       5.7       0.33       55         SED19203       32       3       20.4       5.7       0.33       55         SED18903       32       3       20       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       14.5       0.51       58         SED19		SED1	9203	69	2	35.4			50	
SED19203       32       2       20.4       5.7       0.33       5         SED19203       32       3       20.4       5.7       0.33       5         SED18903       32       3       20       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SED19103       47       1       21.5       9.4       0.30       55         SED1903       47       1       19.5       3.9       0.20       54         SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       14.5       0.51       58         SED1		SED1	9203	27	2	20.7	2.6		51	
SED18903       32       3       20       7.23       0.17       52         SED19103       44       5       21.5       17.1       0.50       52         SED19103       47       1       21.5       9.4       0.30       52         SED19103       47       1       21.5       9.4       0.30       52         SED1903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       47       2       19.5       12       0.32       55         SED19003       44       3       19.5       14.5       0.51       56         SED19003       47       3       19.5       12       0.32       56         SED19003       47       3       19.5       14.5       0.51       56         SED1900		SED1	9203	32		20.4	5.7	0.33	51	
SED18903       32       3       20       7.23       0.17       55         SED19103       44       5       21.5       17.1       0.50       55         SED19103       47       1       21.5       9.4       0.30       55         SEAJUN82       D-50E       D50EUA       15.384615       3.9       0.20       54         SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55         SED19103       44       4       21.5       17.1       0.50       56         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       44       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       14.5       0.51       58		SED1	9203	32		20.4	5.7		51	
SED19103       47       1       21.5       9.4       0.30       53         SEAJUN82       D-50E       D50EUA       15.384615       3.9       0.20       54         SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19003       47       1       19.5       12       0.32       55         SED19103       44       4       21.5       17.1       0.50       56         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       14.5       0.51       58         SED19003       37       1       20.7       2.6       0.17       58		SED1	8903	32		20	7.23	0.17	52	
SEAJUN82       D-50E       D50EUA       15.384615       3.9       0.20       54         SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19203       27       3       20.7       2.6       0.17       55         SED19103       44       4       21.5       17.1       0.50       56         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED1903       32       5       20       7.23       0.17       59		SED1	9103	44	5	21.5	17.1	0.50	52	
SED18903       28       5       20       4.9       0.15       54         SED19003       47       1       19.5       12       0.32       55         SED19203       27       3       20.7       2.6       0.17       55         SED19103       44       4       21.5       17.1       0.50       56         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       44       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       37       1       20       7.9       0.52       59         SED18903       37       1       20       5.9       0.21       59         SED1903 <td></td> <td>SED1</td> <td>9103</td> <td>47</td> <td>1</td> <td>21.5</td> <td>9.4</td> <td>0.30</td> <td>53</td> <td></td>		SED1	9103	47	1	21.5	9.4	0.30	53	
SED19003       47       1       19.5       12       0.32       53         SED19203       27       3       20.7       2.6       0.17       55         SED19103       44       4       21.5       17.1       0.50       56         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       44       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       14.5       0.51       58         SED19003       32       5       20       7.23       0.17       58         SED1803       37       1       20       5.9       0.21       59         SED19203       37       2       21.2       3.2       0.18       60         SED19						15.384615	3.9	0.20	54	
SED19203       27       3       20.7       2.6       0.17       55         SED19103       44       4       21.5       17.1       0.50       56         SED19003       47       2       19.5       12       0.32       57         SED19003       47       2       19.5       12       0.32       57         SED19003       44       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED1903       27       4       20.7       2.6       0.17       58         SED1803       32       5       20       7.23       0.17       59         SED18903       37       1       20       5.9       0.21       59         SED19203       44       2       20.5       17.9       0.52       59         SED19003       44       2       19.5       14.5       0.51       66         SED191					5	20	4.9	0.15	54	
SED19103       44       4       21.5       17.1       0.50       50         SED19003       47       2       19.5       12       0.32       57         SED19203       27       1       20.7       2.6       0.17       57         SED19003       44       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19203       27       4       20.7       2.6       0.17       58         SED18903       32       5       20       7.23       0.17       59         SED18903       37       1       20       5.9       0.21       59         SED19203       44       2       20.5       17.9       0.52       59         SED19203       37       2       21.2       3.2       0.18       60         SED19203       44       2       19.5       14.5       0.51       62         SED						19.5	12	0.32	55	
SED19003       47       2       19.5       12       0.32       57         SED19203       27       1       20.7       2.6       0.17       57         SED19003       44       3       19.5       14.5       0.51       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       47       3       19.5       12       0.32       58         SED19003       27       4       20.7       2.6       0.17       58         SED1803       32       5       20       7.23       0.17       59         SED18903       37       1       20       5.9       0.21       59         SED19203       44       2       20.5       17.9       0.52       59         SED19203       37       2       21.2       3.2       0.18       60         SED19203       37       2       21.2       3.2       0.51       62         SED19003       44       2       19.5       14.5       0.51       62         SED19						20.7	2.6	0.17	55	
SED19203         27         1         20.7         2.6         0.17         57           SED19003         44         3         19.5         14.5         0.51         58           SED19003         47         3         19.5         12         0.32         58           SED19203         27         4         20.7         2.6         0.17         58           SED19203         27         4         20.7         2.6         0.17         58           SED18903         32         5         20         7.23         0.17         59           SED18903         37         1         20         5.9         0.21         59           SED19203         44         2         20.5         17.9         0.52         59           SED19203         37         2         21.2         3.2         0.18         60           SED19203         37         2         21.2         3.2         0.51         62           SED19003         44         2         19.5         14.5         0.51         62           SED19203         44         3         20.5         17.9         0.52         62						21.5	17.1	0.50	56	
SED19003         44         3         19.5         14.5         0.51         58           SED19003         47         3         19.5         12         0.32         58           SED19203         27         4         20.7         2.6         0.17         58           SED18903         32         5         20         7.23         0.17         59           SED18903         37         1         20         5.9         0.21         59           SED19203         44         2         20.5         17.9         0.52         59           SED19203         37         2         21.2         3.2         0.18         60           SED19203         37         2         21.2         3.2         0.18         60           SED19203         37         2         21.2         3.2         0.18         60           SED19203         44         2         19.5         14.5         0.51         62           SED19103         44         1         21.5         17.9         0.52         62           SED19203         44         3         20.5         17.9         0.52         62						19.5	12	0.32	57	
SED19003       47       3       19.5       12       0.32       58         SED19203       27       4       20.7       2.6       0.17       58         SED18903       32       5       20       7.23       0.17       59         SED18903       37       1       20       5.9       0.21       59         SED19203       44       2       20.5       17.9       0.52       59         SED19203       37       2       21.2       3.2       0.18       60         SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       3       20.5       17.9       0.52       62         SED19003       44       1       19.5       14.5       0.51       65 <td></td> <td>SED1</td> <td>9203</td> <td>27</td> <td>1</td> <td>20.7</td> <td>2.6</td> <td>0.17</td> <td>57</td> <td></td>		SED1	9203	27	1	20.7	2.6	0.17	57	
SED19003       47       3       19.5       12       0.32       58         SED19203       27       4       20.7       2.6       0.17       58         SED18903       32       5       20       7.23       0.17       59         SED18903       37       1       20       5.9       0.21       59         SED19203       44       2       20.5       17.9       0.52       59         SED19203       37       2       21.2       3.2       0.18       60         SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       3       20.5       17.9       0.52       62         SED19003       44       1       19.5       14.5       0.51       65 <td></td>										
SED19203       27       4       20.7       2.6       0.17       58         SED18903       32       5       20       7.23       0.17       59         SED18903       37       1       20       5.9       0.21       59         SED19203       44       2       20.5       17.9       0.52       59         SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       1       19.5       14.5       0.51       65									58	
SED18903       32       5       20       7.23       0.17       55         SED18903       37       1       20       5.9       0.21       55         SED19203       44       2       20.5       17.9       0.52       55         SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       1       19.5       14.5       0.51       65									58	
SED18903       37       1       20       5.9       0.21       55         SED19203       44       2       20.5       17.9       0.52       55         SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       1       19.5       14.5       0.51       65									58	
SED19203       44       2       20.5       17.9       0.52       59         SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19203       44       3       20.5       17.9       0.52       62         SED19003       44       1       19.5       14.5       0.51       65									59	
SED19203       37       2       21.2       3.2       0.18       60         SED19003       44       2       19.5       14.5       0.51       62         SED19103       44       1       21.5       17.1       0.50       62         SED19203       44       3       20.5       17.9       0.52       62         SED19003       44       1       19.5       14.5       0.51       65									59	
SED19003         44         2         19.5         14.5         0.51         62           SED19103         44         1         21.5         17.1         0.50         62           SED19203         44         3         20.5         17.9         0.52         62           SED19003         44         1         19.5         14.5         0.51         65									59	
SED19103         44         1         21.5         17.1         0.50         62           SED19203         44         3         20.5         17.9         0.52         62           SED19003         44         1         19.5         14.5         0.51         65									60	
SED19203         44         3         20.5         17.9         0.52         62           SED19003         44         1         19.5         14.5         0.51         65									62	
SED19003 44 1 19.5 14.5 0.51 65							,		62	
									62	
SED19203 4/ 4 19.5 13.2 0.52 65					-				65	
		SEDI	9203	4/	4	19.5	13.2	0.52	65	

Арр less.

į

pendix 1. Static	ons and sam	ples making	up the 20-50%	% fines catego	ory for poly	chaete richn
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX50
EVCHEM	SR-08	2	10.9	22.1	1.70	19
SED19103	18	4	19	41.8	0.60	19
SED19103	R209	4	19.6	34	0.50	19
EVCHEM	SR-08	1	10.9	22.1	1.70	-20
SED19103	18	5	19	41.8	0.60	20
SED19203	18	· 4	19.1	42.8	1.33	20
SED19103	18	3	19	41.8	0.60	22
SED19103	R209	3	19.6	34	0.50	22
EVCHEM	SR-08	3	10.9	22.1	1.70	24
SED19103	18	1	19	41.8	0.60	24
EVCHEM	SR-08	5	10.9	22.1	1.70	26
SED19203	30	3	13.3	36.3	1.03	26
EVCHEM	SR-08	4	10.9	22.1	1.70	27
SED19103	R209	2	19.6	34	0.50	27
SED19103	R209	5	19.6	34	0.50	. 27
SED19003	R111	3	20.1	. 36	1.30	28
SED18903	47	5	20	23.47	0.29	29
SED19103	30	4	13.3	23.5	0.70	30
SED18903	47	3	20	23.47	0.29	33
SED19203	30	4	13.3	36.3	1.03	33
SED19003	71	3	6.1	46	1.40	34
SED19103	18	2	19	41.8	0.60	34
SED19203	- 18	1 .	19.1	42.8	1.33	34
SED19203	18	2	19.1	42.8	1.33	34
SED19203	30	2	13.3	36.3	1.03	35
SED18903	10	1	20	37.2	0.61	36
SED18903	10	5	20	37.2	0.61	36
SED19003	R111	1	20.1	36	1.30	36
SED18903 SED19103	47	1 3	20	23.47	0.29	37
SED19103	30 69	3 5	13.3 34.4	23.5	0.70	37
SED19103	18	3	54.4 19.1	21.4 42.8	0.60	37
SED19203	33	1	20	42.8 24.04	1.33	37 38
SED18903	33	3	20	24.04	0.64 0.64	38
SED19103	30	5	13.3	23.5	0.04	38
SED19203	30	1	13.3	36.3	1.03	- 38
SED19203	40	4	9.4	32.2	2.17	38
SED18903	33	5	20	24.04	0.64	· 39
SED19003	71	2	6.1	46	1.40	39
SED19103	30	2	13.3	23.5	0.70	39
SED18903	10	3	20	37.2	0.61	40
SED19103	R206	1	19.4	35.6	0.80	41
SED19103	R206	5	19.4	35.6	0.80	41
SED19103	R209	1	19.6	34	0.50	41
SED19003	0033	3	19.8	34	1.10	42
SED19103	30	1	13.3	23.5	0.70	42
SED19103	69	3	34.4	21.4	0.60	42
SED19003	71	1	6.1	46	1.40	43
SED19103	69	4	34.4	21.4	0.60	44
SED19003	0033	1	19.8	34	1.10	45
SED19103	33	1	20.8	31.5	0.90	45
SED19103	69	· 2	34.4	21.4	0.60	45

Appendix 1. Stations and samples making up the 20-50% fines category for polychaete richness.

Appendix 1.	Stations and	samples making up	the 20-50% f	ines category for	polychaete richness.
-------------	--------------	-------------------	--------------	-------------------	----------------------

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX50
SED19203	40	3	9.4	32.2	2.17	45
SED19103	10	1	20.7	32.8	0.60	47
SED19103	R206	2	19.4	35.6	0.80	47
SED19203	40	1	9.4	32.2	2.17	47
SED19103	10	2	20.7	32.8	0.60	48
SED19103	10	¹ 4	20.7	32.8	0.60	49
SED19103	33	2	20.8	31.5	0.90	49
SED19103	33	3	20.8	31.5	0.90	49
SED19003	0033	2	19.8	34	1.10	50
SED19103	33	5	20.8	31.5	0.90	50
SED19203	40	2	9.4	32.2	2.17	50
SED19103	R206	3	19.4	35.6	0.80	- 53
SED19103	10	5	20.7	32.8	0.60	55
SED19103	69	1	34.4	21.4	0.60	55
SED19103	33	4	20.8	-31.5	0.90	59
SED19103	R206	··· 4	19.4	35.6	0.80	60

per					30% fines ca		olychaete richn
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX80
	SED19103	70	3	6.5	67.2	3.2	9
	SED19203	70	2	7.2	66.5	2.1101	9
	SED19003	70	1	5.2	64	3.1	10
	SED19003	70	2	5.2	64	3.1	10
	SED19003	70	3	5.2	64	3.1	10
	New York						
	SED19203	70	1	7.2	66.5	2.1101	14
	SED19203	70	3	7.2	66.5	2.1101	15
	SED19003	R105	3	14	75	2.2	16
	SED18903	18	5	20	60.15	0.93	18
	SED18903	2	1	20	60.7	0.68	19
	SED18903	18	1	20	60.15	0.93	20
	SED19203	R303	3	14.5	76.8	1.2708	20
	SED19003	R105	2	14	75	2.2	21
	SED19103	71	5	7.1	55.8	1.2	21
	SED19203	R302	1	20.6	68.5	0.9448	21
	SED19203	R303	1	14.5	76.8	1.2708	21
	SED19003	R105	1	14	75	2.2	23
	SED18903	21	5	20	52.16	1.3	24
	SED19103	2	2	21.3	57.7	0.8	24
	SED19103		3	21.3	57.7	0.8	24
	SED19103		1	31.9		1.1	24
	SED19203		2	21.7	62.2	1.2178	24
	SED19203		3	21.7	62.2	1.2178	24
	SED19203		4	21.7		1.2178	
	SED19203		2	19.1	75.1	1.1428	24
	SED19203		3	19.1	75.1	1.1428	24
	SED19203 SED19003		4	20.6		0.9448	
	SED19003 SED19103		5 5	13.3 29.9		1.4	. 26 26
	SED19103		1	29.9		1.2178	
	SED19203		2	20.6		0.9448	26
	SED19203 SED18903		3	20.0	65.77	3.9	20
	SED18903		3	20		0.93	27
	SED18903		1	20			27
	SED18903		3	20			27
	SED19103		4	31.9		1.1	27
	SED19103		× 1	29.9			27
	SED19203		2	14.5			27
	SED18903		3	20			
	SED19103		4	22.1		2.9	
	SED19103		1	21.3			
	SED19103	71	3	7.1	55.8	1.2	28
	SED19103	R205	5	31.9	62.1	1.1	28
	SED19203	23	4	6.1	53	1.2331	28
	SED19203	71	1	6.1	. 53		28
	SED19103	71	2	7.1	55.8	1.2	29
	SED19203		4	14.5			
	SED18903	2	5	20			
	SED18903		5	13			
	SED19003		2	21.1			
	SED19103		4	21.3			
	SED19103	. 71	4	7.1	55.8	1.2	31

## Appendix 1. Stations and samples making up the 50-80% fines category for polychaete richness.

		proo monn	g up allo oo l	0070 18100 00	logory for pr	siyonacco nom
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX80
SED19203	- 41	4	19.1	75.1	1.1428	31
SED19003	8	1	21.1	64	3.4	32
SED19203	71	3	6.1	- 53	1.2331	32
SED19103	71	1	7.1	55.8	1.2	33
SED19103	R205	2	31.9	62.1	1.1	33
SED19203	23	2	6.1	53	1.2331	33
SED19203	41	1	19.1	75.1	1.1428	33
SED19103	2	5	21.3	57.7	0.8	34
SED19103	R205	3	31.9	62.1	1.1	34
SED19103	R207	2	29.9	73.4	1.5	34
SED19203	71	2	6.1	53	1.2331	34
SED19103	8	5	22.1	63.7	2.9	35
SED19103	R207	3	29.9	73.4	1.5	35
SED19203	8	3	21.1	71.8	2.2161	35
SED19203	8	2	21.1	• 71.8	2.2161	36
SED19203	71	4	6.1	53	1.2331	36
SED19203	R302	3	20.6	68.5	0.9448	36
SED19003	8	3	21.1	64	3.4	- 37
SED19003	0030	1	13.3	62	1.4	37
SED19003	0030	2	13.3	62	1.4	37 -
SED19103	8	1	22.1	63.7	2.9	37
SED18903		5	21	65.77	3.9	38
SED19103	8	3	22.1	63.7	2.9	38
SED19203	<u>8</u>	4	21.1	71.8	2.2161	39
SED19103		2	22.1	63.7	2.9	40
SED19103		4	29.9	73.4	1.5	40
SED19203	23	3	6.1	53	1.2331	40
SED18903		1	21	65.77		42
SED19203	8	1 .	21.1	71.8	2.2161	44

Appendix 1. Stations and samples making up the 50-80% fines category for polychaete richness.

Appendix 1. Stations and samples making up the 80-100% fines category for polychaete richness.

SURVEY \$	STATION \$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX100
SED19103	48	3	21.3	89.8	2.3	5
SED19103	R101	1	2.1	90	4	6
SED19003	49	1	4.7	88.1	2.1381	6
SED19203	49	3	4.7	88.1	2.1381	7
SED19203	1	3	22.0	93.32	1.5	8
SED19003	R101	2	2.1	90	. 4	8
SED19003	.1	2	23.5	95.8	1.7	
SED19103		3	23.5	95.8		8
SED19103	48	1	21.3	89.8	2.3	8
SED19103		5	21.3	89.8	2.3	8
SED19103		4	22.5	94.1	1.7421	8
SED19203		1 .	20.5	88.7	1.5201	š
SED19203 SED19203	49	4	4.7	88.1	2.1381	8
3117203						
SED19003	R102	2	11.6	88	2.6	9
SED19003		3	25.4	97.6	2	9
SED19103		3	22.5	.97	1.8	10
SED19003		3	2.1	90	4	10
SED19003		3	11.2	86	2.8	. 10
SED19003		1	23.5	95.8	1.7	10
SED19103		4	25.4	97.6	2	10
SED19103		2	20.5	88.7	1.5201	10
SED19203		1	22.5	97	1.8	11
SED19003		2	19.1	92	1.5	11
SED19003		- 1	11.6	88	2.6	11
SED19103		4	23.5	95.8	1.7	11
SED19103		3	31.7	94.1	2.4	11
SED19203		3	22.5	94.1	1.7421	11
SED19203		3	20.5	88.7	1.5201	11
SED18903		1	22.0		1.5	12
SED18903		1	11.0	94.11	. 1	12
SED19003		3	19.1	92	1.5	12
SED19003		1	11.2	86	2.8	12
SED19103		- 5	23.5	95.8	1.7	12
SED19103		2	21.3	89.8	2.3	12
SED19103		4	31.7	94.1	2.4	12
SED19203		4	21.0	94.8	1.9311	12
SED18903		5	22.0	93.32	1.5	13
SED18903		5	11.0	94.11	1	13
SED19003		2	22.5	97	1.8	13
SED19003		3	20.0	92	2.2	13
SED19003		3	22.7	91	2.5	13
SÈD19103		4	21.3	89.8	2.3	13
SED19203		1	22.5	94.1	1.7421	13
SED1900		3	11.6	88	2.6	14
SED1900		2	11.2	86	2.8	
SED1900		2	22.7	. 91	2.5	14
SED1910		2	25.4	97.6	2	14
SED1910		5	21.1	91.4	1.5	
SED1910		2	31.7		2.4	14
SED1920		2	4.7	88.1	2.1381	
SEAJUN8		QM2UA	16.3	85	1.3	
SED1910	*	5	25.4	97.6	2	15

1.

HUIX I.	Station	is and same	des making	up the 80-1	00% tines ca	ategory for p	olychaete rich
SURV	/EY \$ \$	STATION \$	SAMPLE\$	DEPTHM	FINES	TOC	POTAX100
SED	19103	5	2	20.2	95.6	1.8	15
SED	19103	20	3	11.8	96.2	1	15
SED	19103	R204	1	31.7	94.1	2.4	15
SED	19203	1	2	22.5	94.1	1.7421	15
SED	19003	0020	1	10.3	97	1.2	16
SED	19003	0048	2	20.0	92	2.2	16
	19003	R109	1	22.7	91	2.5	16
	19103	4	1	25.4	97.6	2	16
	19103	5	5	20.2	95.6	1.8	16
	19103	R204	5	31.7	94.1	2.4	16
	19203	5	- 3	21.0	94.8	1.9311	16
	19203	12	1	21.1	93.1	1.1471	16
	19103	5	3	20.2	95.6	1.8	17
	19203	4.	<b>4</b>	24.0	96.8	2.4931	17
	19203	5	2	21.0	94.8	1.9311	17
	19103	5	1	20.2	95.6	1.8	1.8
	19203	4	1	24.0	96.8	2.4931	18
	19103	5	4	20.2	95.6	1.8	19
	19103	20	5	11.8	96.2	1	19
	19203	5.	1	21.0	94.8	1.9311	19
	19203	12	2	21.1	93.1	1.1471	19
	19203	12	3	21.1	93.1	1.1471	19
	19203	48	4	20.5	88.7	1.5201	19
	19203	12	4	21.1	93.1	1.1471	20
	19203	20	2	10.3	95.7	1.0068	20
	19003	0048		20.0	92	2.2	20
	19003	0018	1	19.1	92	1.5	22
	19003	0020	2	10.3	97	1.2	22
	19103	12	1	21.1	91.4	1.5	22
	19203	4	2	24.0	96.8	2.4931	22
	18903	20	. 3	11.0	94.11	1	23
	19003	0012	2	21.1	93	1.8	23
	19103	12	3	21.1	91.4	1.5	- 23
	19103	12	4	21.1	91.4	1.5	24
	19003	0012	3	21.1	93	1.8	25
	19103	20	2	11.8	96.2	1	25
	19103	20	4	11.8	96.2	1	25
	de la la la						
SED	19103	12	2	21.1	91.4	1.5	26
SED	19103	20	1	11.8	96.2	1	27
SED	19103	R203	3	12.5	98.7	1.7	27
SED	19203	20	1	10.3	95.7	1.0068	27
SED	19003	0012	1	21.1	93	1.8	28
SED	19203	<u> </u>	3	24.0	96.8	2.4931	28
SED	19003	0020	3	10.3	97	1.2	29
	19103	R203	5.	12.5	98.7	1.7	29
SED	19103	R203	1	12.5	98.7	1.7	30
SED	19103	R203	2	12.5	98.7	1.7	30

Appendix 1.	Stations and	l samples	making up	the 0-20%	fines category	for polychaete abundance.
-------------	--------------	-----------	-----------	-----------	----------------	---------------------------

011		nis and sam	Jes making	up ale 0-207	o mies caley	ory for poryc	maete abunua
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB20
	SED19203	44	1	20.5	17. <del>9</del>	0.519675	10
	SED18903	22	5	21	4.19	0.15	24
	SED19103	22	1	22.5	12.9	0.2	24
	SED19103	22	5	22.5	12.9	0.2	24
	SED19103	- 39	2	14.8	2.44	0.1	33
	SED18903	22	1	21	4.19	0.15	37
	SED19103	39	1	14.8	2.44	0.1	41
	SED19103	13	1	19.3	9.8	0.2	46
	SED19103	39	4	14.8	2.44	0.1	46
	SED19203	36	1	17.7	2.3	0.2236	46
	SED19103	22	2	22.5	12.9	0.2	47
	EVCHEM	NG-02	1	8.6	3.1	0.2	49
	EVCHEM	NG-02	5	8.6	3.1	. 0.2	49
	SED18903	22	3	21	4.19	0.15	49
	EVCHEM	NG-02	3	8.6	3.1	0.2	51
	SED19203	R301	1	22.1	5.9	0.2959	51
	SED18903	6	5	20	7.1	0.2	52
	EVCHEM	NG-02	4	8.6	3.1	0.2	58
	SED18903	23	5	20	2.1	0.12	60
	SEASEP82	C-50E	C50EVB	15.384615	2.3	0.1	61
	SED19103	22	4	22.5	12.9	0.2	61
	SED19103	13	3	19.3	9.8	0.2	62
	SED18903	23	1	20	2.1	0.12	67
	SEAJUN82	H-75W	H75WUA	23.076923	5.4	0.05	68
	SED19103	39	3	14.8	2.44	0.1	69
	EVCHEM	NG-02	2	8.6	3.1	0.2	70
	SED19003	R103	1	20.5	8	0.5	70
	SED19103	22	3	22.5	12.9	0.2	70
	SED19203	39	3	15.8	2.7	0.1453	71
	SED19103	39	5	14.8	2.44	0.1	73
	SEAJUN82	H-75E	H75EUA	23.076923	1.8	0.1	78
	SED19203	25	3	20.4	3	0.1481	82
	SED18903	50	5	7	3.8	0.2	83
	SED18903	6	1	20	7.1	0.2	85
	SED18903	23	3	20	2.1	0.12	86
	SED19203	36	2	17.7	2.3	0.2236	90
	SED19203	39	4	15.8	2.7	0.1453	92
	SEAJUN82	E-50E	E50EUB	15.384615	4	0.2	95
	SED18903	50	3	7	3.8	0.2	96
	SED19203	25	1	20.4	3	0.1481	98
	SEAJUN82	E-50E	E50EUA	15.384615	4	0.2	103
	SED18903	50	1	7	3.8	0.2	105
	SED19203	22	3	20.5	8	0.2596	105
	SED19203	39	2	15.8	2.7	0.1453	105
	SED18903	46	1	22	9.5	0.1455	105
	EVCHEM	SD-02	3	9.6	11.5	0.42	108
	SED18903	16	1	20	3:9	0.18	109
	SED19203	39	1	15.8	2.7	0.18	109
	SED19203	R103	2	20.5	8	0.1455	109
	SEAJUN82	K-50E	K50EUA	20.5 15.384615	1.8	0.3	111
	SED19203	69	3	35.4	1.8	0.4569	112
	SED19203	R103	3	20.5	10.1	0.4369	115
		ALIVJ	5	20.J	0	0.5	110

	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB20
	SED18903	31	1	22	1.7	0.15	116
	EVCHEM	SD-02	1	9.6	11.5	0.5	117
	SED18903	6	3	- 20	7.1	0.2	117
	EVCHEM	PS-03	3	9.1	8	0.4	118
	EVCHEM	SD-02	5	9.6	11.5	0.5	120
	SED19203	22	4	20.5	8	0.2596	123
	SEAJUN83	K5-75E	K575EYB	21.336	3	0.2	125
	SEAJUN82	E-50W	E50WUA	15.384615	5	0.2	126
	SED19203	15	1	19.4	5.2	0.2149	126
	SED19003	69	- 3	32.4	15	0.2142	128
	SED19203	36	3	17.7		0.2236	128
	SED18903	16	5	20	3.9	0.18	129
	SED18903	43	1	20	6.3	0.13	130
	EVCHEM	SD-02	2	9.6	11.5	0.14	130
	SED19203	R301	3	22.1		0.2959	134
	EVCHEM	SD-02	4	9.6	11.5	0.2939	136
	SED18903	43	3	20	6.3	0.14	130
	EVCHEM	PS-03	4	2.0 9.1	8	0.14	137
	SED18903	36	5	15	2.2	0.13	
	SED18903	15	5	20			138
	EVCHEM	NG-06	3		8.22	0.24	140
	SEAJUN82	NG-00 N-75W	N75WUA	10.2 23.076923	7.1	0.4	141
	SED19103	43	3	23.076923	3.3	0.1	144
	SED19103	43 36	5 4		5.9	0.1	144
	SEAJUN82	K-50E	4 K50EUB	17.7	2.3	0.2236	145
	SED18903	36	-1	15.384615	1.8	0.7	149
	SED18903	30 43		15	2.2	0.13	149
	EVCHEM	43 PS-03	1	19.8	7	0.26	153
	SED19203	R301	5	9.1	8	0.4	154
	SED19203 SED18903	36	4	22.1	5.9	0.2959	154
	SEAJUN82	E-75E	3 E75EUA	15	2.2	0.13	158
	SEAJON82 SED18903	43		23.076923	3.5	0.2	159
	SED18903 SED19103	43 44	5	20	6.3	0.14	159
	EVCHEM		5	21.5	17.1	0.5	159
		PS-04		8.7	7.4	0.3	160
	SEAJUN82	D-50W	D50WUC	15.384615	6	0.2	163
	SED19003	43	3	19.8	. 7	0.26	163
	EVCHEM	PS-04	4	8.7	7.4	0.3	165
	SED19003	69 1.5	1	32.4	15	0.47	172
•	SED18903	15	3	20	8.22	0.24	178
	SED19003	43	2	19.8	7	0.26	178
	EVCHEM	PS-03	2	9.1	8	0.4	179
	SED19203	15	2	19.4	5.2	0.2149	179
	SED18903	16	3	20	3.9	0.18	180
	SED18903	31	3	22	1.7	0.15	184
	SED19203	69	4	35.4	18.1	0.4569	186
	SEAJUN82	J-75E	J75EUA	23.076923	2.1	0.1	187
	SED19203	15	4	19.4	5.2	0.2149	187
	EVCHEM	PS-03	1.	9.1	8	0.4	189
	SED18903	15	1	20	8.22	0.24	191
	SED18903	27	1	20	3.2	0.12	191
	SED19203	R301	2	22.1	5.9	0.2959	192
	SED19203	69	2	35.4	18.1	0.4569	199
	SED10203	25	2	20.4	2	A 1/01	200

Appendix 1. Stations and samples making up the 0-20% fines category for polychaete abundance.

SED19203

25

2

20.4

3

0.1481

Appendix 1.	<ul> <li>Stations and sample</li> </ul>	es making up the	0-20% fines	category f	or polychaete abundance.
-------------	-----------------------------------------	------------------	-------------	------------	--------------------------

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB20
SED18903	37	3	20	5.9	0.21	201
SED18903	46	5	22	9.5	0.42	201
SED19203	22	1	20.5	8	0.2596	202
EVCHEM	NG-06	2	10.2	7.1	0.4	205
SED19003	.69	2	32.4	15	0.47	205
SED18903	27	5	20	3.2	0.12	206
SEAJUN82	B-75W	B75WUC	23.076923	5,3	0.3	209
SED19103	43	:5	20.8	5.9	0.1	212
SED19203	69	1	35.4	18.1	0.4569	214
SED19203	32	4	20.4	5.7	0.329525	225
SED19003	47	1	19.5	12	0.32	233
SED19203	32	2	20.4	5.7	0.329525	234
EVCHEM	PS-04	5	8.7	7.4	0.3	235
SED19203	27	2	20.7	2.6	0.1656	235
SED19203	32	1	20.4	5.7	0.329525	236
SED18903	28	1	20	4.9	0.15	238
SEAJUN82	D-50E	D50EUA	15.384615	3.9	0.2	240
EVCHEM	PS-04	3	8.7	7.4	0.3	242
SED19103	43	4	20.8	5.9	0.1	242
SED19103	47	4	21.5	9.4	0.3	242
SED19103	44	4	21.5	17.1	0.5	249
SED19203	32	3	20.4	5.7	0.329525	249
SED19103	43	1	20.8	5.9	0.1	250
SED19103	44	2	21.5	17.1	0.5	258
SED19103	47	5	21.5	9.4	0.3	260
SED19203	43	3	19.8	6	0.2859	263
SED19003	46	1	19.8	19	0.39	266
SED18903	27	3 ·	20	3.2	0.12	267
SED19103	43	2	20.8	5.9	0.1	269
SED19203	37	2	21.2	3.2	0.1817	269
SED18903	31	5	22	1.7	0.15	271
SED19203	43	1	19.8	. 6	0.2859	271
SED19203	15	3	19.4	5.2	0.2149	272
EVCHEM	<b>PS-04</b>	2	8.7	7.4	0.3	274
SED19203	R308	4	18.9	11	0.388	278
SED18903	46	3	22	9.5	0.42	279
SED19003	47	3	19.5	12	0.32	285
SED19203	43	4	19.8	6	0.2859	286
SED19003	47	2	19.5	12	0.32	287
SED19203	44	3	20.5	17.9	0.519675	. 299
EVCHEM	NG-06	1	10.2	7.1	<b>0.4</b>	300
SED18903	28	5	20	4.9	0.15	311
EVCHEM	NG-06	4	10.2	7.1	0.4	313
SED19003	46	2	19.8	. 19	0.39	317
SED19103	44	3	21.5	17.1	0.5	319
SED19203	43	2	19.8	6	0.2859	325
SED19103	47	3	21.5	9.4	0.3	331
SED19203	27	3	20.7	2.6	0.1656	332
SED19103	47	2	21.5	9.4	0.3	335
SED19203	27	4	20.7	2.6	0.1656	339
SED19203	44	2	20.5	17.9	0.519675	339
SED19103		1	16.5	0.92	0.1	344
SED19003	46	3	19.8	19	0.39	359

er	idix 1. Statio	ns and samp	oles making	up the 0-20%	5 fines categ	ory for poly	chaete abunda
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB20
	SED19203	27	1	20.7	2.6	0.1656	367
	SED18903	37	1	20	5.9	0.21	386
	SED19203	47	4	19.5	13.2	0.5249	387
	SED19103	47	1	21.5	9.4	0.3	393
	SED19203	R308	2	18.9	11	0.388	393
	SED19203	R308	3	18.9	11	0.388	395
	SED19103	R 9	3	16.5	0.92	0.1	402
	SED18903	37	5	20	5.9	0.21	419
1	SED19103	R 9	4	16.5	0.92	0.1	428
	SED19103	44	1	21.5	17.1	0.5	434
	SED19203	44	4	20.5	17.9	0.519675	443
	SED19003	44	3	19.5	14.5	0.51	449
	SED19203	47	3	19.5	13.2	0.5249	497
	SED19003	32	2	20.4	7.5	0.22	501
	SED18903	32	1	20	7.23	0.17	508
	SED19003	32	1	20.4	7.5	0.22	518
	SED18903	32	3	20	7.23	0.17	520
	SED19203	R308	1	18.9	11	0.388	522
	SED18903	32	5	20	7.23	0.17	527
	SED19203	37	3	21.2	3.2	0.1817	610

Appendix 1.	Stations and	i samples i	making up th	e 20-50% fines	category for	polychaete abundance.
-------------	--------------	-------------	--------------	----------------	--------------	-----------------------

andix 1. Otation	is and samp	ico making t	ip ale 20-007	intes calleg	ory for poly	chaete abunc
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB50
EVCHEM	SR-08	1	10.9	22.1	1.7	62
EVCHEM	SR-08	2	10.9	22.1	1.7	69
SED19103	18	3	19	41.8	0.6	82
SED19203	18	4	19.1	42.8	1.3271	90
<b>Lesettes</b>						
EVCHEM	SR-08	4	10.9	22.1	1.7	96
SED19103	R209	4	19.6	34	0.5	104
SED19203	30	3	13.3	36.3	1.0317	105
SED18903	47	5	20	23.47	0.29	108
SED19103	R209	1	19.6	34	0.5	124
SED19103	30	4	13.3	23.5	0.7	125
EVCHEM	SR-08	3	10.9	22.1	1.7	127
EVCHEM	SR-08	5	10.9	22.1	1.7	128
SED19003	R111	1	20.1	36	1.3	129
SED19103	R206	1	19.4	35.6	0.8	134
SED19103	R209	3	19.6	34	0.5	142
SED19203	30	4	13.3	36.3	1.0317	142
SED19103	30	2	13.3	23.5	0.7	146
SED19103	R209	5	19.6	34	0.5	150
SED19003	0033	3	19.8	34	1.1	151
SED19103	18	4	19	41.8	0.6	152
SED19103	30	5	13.3	23.5	0.7	162
SED19203	30	1	13.3	36.3	1.0317	167
SED19203	30	2	· 13.3	36.3	1.0317	167
SED19103	30	3	13.3	23.5	0.7	• 174
SED18903	47	3	20	23.47	0.29	175
SED19103	R206	3	19.4	35.6	0.8	180
SED19103	69	5	34.4	21.4	0.6	182
SED18903	47	1	20	23.47	0.29	184
SED19003	R111	3	20.1	36	1.3	184
SED19103	18	5	19	41.8	0.6	184
SED19103	R206	5	19.4	35.6	0.8	192
SED19203	18	2	19.1	42.8	1.3271	192
SED19103	33	2	20.8	31.5	0.9	199
SED19103	R209	2	19.6	34	0.5	203
SED19203	40	1	9.4	32.2	2.1687	206
SED19103	18	1	19	41.8	0.6	217
SED19103	R206	2	19.4	35.6	0.8	222
SED19103	. 33	3	20.8	31.5	0.9	223
SED19003	0033	1	19.8	34	1.1	230
SED19003	0033	2	19.8	34	1.1	230
SED19103	33	1	20.8	31.5	0.9	234
SED19103	33	5	20.8	31.5	0.9	234
SED19003	71	3	6.1	46	1.4	259
SED19203	18	3	19.1	42.8	1.3271	259
SED19103	69 D006	2	34.4	21.4	0.6	260
SED19103	R206	4	19.4	35.6	0.8	262
SED19103	69	3	34.4	21.4	0.6	280
SED19003	71	2	6.1	46	1.4	297
SED19203	18	1	19.1	42.8	1.3271	299
SED19103	10	4	20.7	32.8	0.6	301
SED19103	18	2	19	41.8	0.6	302
SED19103	69	4	34.4	21.4	0.6	304

H 11	JIX I. Station	is and samp	ies making t	Jp the 20-50%	% fines categ	fory for poly	chaete abund	а
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB50	
	SED19003	71	1	6.1	46	1.4	318	
	SED18903	33	5	20	24.04	0.64	320	
	SED19103	30	1	13.3	23.5	0.7	335	
	SED18903	33	1	20	24.04	0.64	336	
	SED19203	40	2	9.4	32.2	2.1687	337	
	SED18903	33	3	20	24.04	0.64	341	
	SED19103	10	1	20.7	32.8	0.6	344	
	SED19103	33	4	20.8	31.5	0.9	356	
	SED19103	69	1	34.4	21.4	0.6	358	
	SED19103	10	2	20.7	32.8	0.6	382	
	SED19103	10	5	20.7	32.8	0.6	382	
	SED19203	40	4	9.4	32.2	2.1687	389	
	SED18903	10	5	20	37.2	0.61	412	
	SED19203	40	. 3	9.4	32.2	2.1687	439	
	SED18903	10	1	20	37.2	0.61	449	

Appendix 1. Stations and samples making up the 20-50% fines category for polychaete abundance.

en	dix 1. Statior	ns and samp	les making u	up the 50-80%	6 fines categ	ory for poly	chaete abunda
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB80
	SED19203	70	4	7.2	66.5	2.1101	16
	SED19103	70	4	6.5	67.2	3.2	23
	SED19103	70	5	6.5	67.2	3.2	25
	SED19103	70	2	6.5	67.2	3.2	28
	SED19003	70	. 3	5.2	64	3.1	32
	SED19103	70	1	6.5	67.2	3.2	32
	SED19203	70	2	7.2	66.5	2.1101	34
	SED19003	70	1	5.2	64	3.1	44
	SED19203	R302	1	20.6	68.5	0.9448	57
	SED19203	R302	2	20.6	68.5	0.9448	57
	SED19203	R302	4	20.6	68.5	0.9448	57
	SED19003	70	2	5.2	64	3.1	60
	SED19103	70	3	6.5	67.2	3.2	65
	SED19203	R303	1	14.5	76.8	1.2708	69
	SED19203	70	. 3	7.2	66.5	2.1101	79
	SED19203	. 70	1	7.2	66.5	2.1101	81
	SED19103	R205	1	31.9	62.1	1.1	83
	SED19103	R205	5	31.9	62.1	1.1	84
	SED19103	R205	4	31.9	62.1	1.1	87
	SED18903	18	5	20	60.15	0.93	98
	SED19203	R303	2	14.5	76.8	1.2708	99
	SED19103	71	5	7.1	55.8	1.2	100
	SED19103	R205	3	31.9	62.1	1.1	105
	SED19203	R302	3	20.6	68.5	0.9448	107
	SED19203		3	14.5	76.8	1.2708	107
	SED19103	2	4	21.3	57.7	0.8	112
	SED19103	2	2	21.3	57.7	0.8	115
	SED19003	R105	3	14	75	2.2	116
	SED19103	71	1	7.1	55.8	1.2 1.2331	118 120
	SED19203	23	4	6.1 20	53 60.15	0.93	120
	SED18903	18 71	1 3	7.1	55.8	1.2	121
	SED19103 SED19103	R205		31.9	62.1	1.2	121
	SED19103 SED19103		2 3	21.3	57.7	0.8	127
	SED19103 SED19203		4	14.5	76.8	1.2708	129
	SED19203 SED19103		1	29.9	73.4	1.2708	139
	SED19103		2	19.1	75.1	1.1428	139
	SED19203		2	29.9	73.4	1.1425	145
	SED19103		5	29.9	73.4	1.5	146
	SED19103		5	20	52.16	1.3	148
	SED19103		5	21.3	57.7	0.8	149
	SED18903		1	20	60.7	0.68	153
	SED19103		4	22.1	63.7	2.9	153
	SED18903		3	20	52.16	1.3	155
	SED19203		2	21.7	62.2	1.2178	155
	SED19103		4	7.1	55.8	1.2	156
	SED19203		3	21.1	71.8	2.2161	157
	SED19103		2	7.1	55.8	1.2	160
	SED19203		3	6.1	53	1.2331	
	SED18903		1	20	52.16	1.3	164
	SED19103		3	29.9	73.4	1.5	165
	SED19203		1	19.1	75.1	1.1428	171

## Appendix 1. Stations and samples making up the 50-80% fines category for polychaete abundance.

ene	dix 1. Station	ns and samp	les making u	up the 50-80%	% fines categ	ory for poly	chaete abund	З
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB80	
	SED19203	21	3	21.7	62.2	1.2178	176	
	SED19203	41	3	19.1	75.1	1.1428	176	
	SED19203	8	2	21.1	71.8	2.2161	182	
	SED18903	18	3	20	60.15	0.93	189	
	SED19103	8	3 .	22.1	63.7	2.9	193	
	SED19203	23	2	6.1	53	1.2331	193	
	SED19203	41	4	19.1	75.1	1.1428	193	ł
	SED19203	71	2	6.1	53	1.2331	194	
	SED18903	8	5	21	65.77	3.9	195	
	SED19203	71	3	6.1	53	1.2331	196	
	SED19003	R105	1	14	75	2.2	205	
	SED19003	8	. 1	21.1	64	3.4	208	
	SED19103	8	• 5	22.1	63.7	2.9	213	
	SED19203	71	1	6.1	53	1.2331	213	
	SED19003	R105	2	14	75	2.2	216	
	SED19103	8	1	22.1	63.7	2.9	216	
	SED18903	8	3	21	65.77	3.9	219	
	SED19203	21	4	21.7	62.2	1.2178	227	
	SED19103	R207	4	29.9	73.4	1.5	233	
	SED19203	21	1	21.7	62.2	1.2178	233	
	SED19003	8	2	21.1	64	3.4	234	
	SED19103	2	1	21.3	57.7	0.8	235	
	SED18903	<u>8</u>	1	21	65.77	3.9	236	
	SED19103	8	2	22.1	63.7	<b>2.9</b> ⁻	241	
	SED19203	8	4	21.1	71.8	2.2161	243	
	SED19203	71	4	6.1	53	1.2331	246	
	SED19003	0030	3	13.3	62	1.4	249	
	SED18903	30	5	13	56.04	1.4	255	
	SED19203	8	1	21.1	71.8	2.2161	281	
	SED19003	8	3	21.1	64	3.4	287	

Appendix 1. Stations and samples making up the 50-80% fines category for polychaete abundance.

portai		STATION\$			FINES	TOC	POAB100
	SED19103	48	5	21.3	89.8	2.30	11
	SED19103	48	1	21.3	89.8	2.30	14
	SED19103	48	-3	21.3	89.8	2.30	14
	SED19103	4	3	25.4	97.6	2.00	16
	SED19003	R101	2	2.1	90	4.00	19
1004362							
	SED19003	R101	1	2.1	90	4.00	22
	SED19103	1	3	23.5	95.8	1.70	22
	SED19203	48	. 1	20.5	88.7	1.52	22
	SED19103	4	4	25.4	97.6	2.00	- 23
	SED19203	48	3	20.5	88.7	1.52	23
	SED19203	48	2	20.5	88.7	1.52	27
	SED19203	1	4	22.5	94.1	1.74	29
	SED19203	49	1	4.7	88.1	2.14	30
	SED19003	R101	3	2.1	90	4.00	31
	SED19103	48	2	21.3	89.8	2.30	31
	SED19103	1	5	23.5	95.8	1.70	34
	SED19103	48	4	21.3	89.8	2.30	36
	SED19203	5	1	21.0	94.8	1.93	37
	SED19103	1	1	23.5	95.8	1.70	38
	SED19103	4	2	25.4	97.6	2.00	39
	SED19203	4	1	24.0	96.8	2.49	40
	SED19003	R102	2	11.6	88	2.60	41
	SED19203	4	4	24.0	96.8	2.49	41
	SED19103 ⁻		1	25.4	97.6	2.00	42
	SED19203	49	3	4.7	88.1	2.14	. 43
	SED19203	5	3	21.0	94.8	1.93	44
	SED19103	. 1	4	23.5	95.8	1.70	45
	SED19103	4	5	25.4	97.6	2.00	46
	SED19103	5	2	20.2	95.6	1.80	46
	SED18903	1	3	22.0	93.32	1.50	50
	SED19103	12	5	21.1	91.4	1.50	50
	SED19003	R102	1	11.6	88	2.60	51
	SED19203	5	4	21.0	94.8	1.93	53
	SED19003	0048	2	20.0	92	2.20	54
	SED19203	49 D204	4	47	88.1	2.14	54
	SED19103	R204 49	3	31.7	94.1	2.40	56
	SED19203 SEAJUN82		2	4.7	88.1	2.14	56
	SED19003	QM-2 0018	QM2UA	16.3	85	1.30	57
	SED19003	R204	2 4	19.1	92	1.50	60
	SED19103	0048		31.7	94.1	2.40	62
	SED19003	5	1 2	20.0	92	2.20	67
	SED19203	0018	3	21.0 19.1	94.8 92	1.93	67 70
	SED19003	0018	1	19.1	92 92	1.50	70
	SED19003	R102	3	19.1	88	1.50 2.60	71 72
	SED19003	12	3	21.1	00 91.4	1.50	
	SED19103	5	5	20.2	91.4 95.6		74
	SED19103	1	3	20.2	95.6 94.1	1.80 1.74	79 79
	SED19203	1	2	22.5	94.1 95.8	1.74	80
	SED19103	5	2 4	23.5	95.8 95.6	1.70	80
	SED19103	12	3	20.2	93.0 93.1	1.80	80 82
	SED19203	12	1	21.1	93.1 91.4	1.13	83
		he dan	*	4 . 1 سته	24.7	1.50	05

Appendix 1. Stations and samples making up the 80-100% fines category for polychaete abundance.

ndi	x 1. Station	s and sampl	es making u	p the 80-100	% fines categ	ory for poly	chaete abunc
	SURVEY'\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	POAB100
	SED19203	4	3	24.0	96.8	2.49	83
	SED19203	48	4	20.5	88.7	1.52	84
	SED19203	12	1	21.1	93.1	1.15	88
	SED19203	12	2	21.1	93.1	1.15	91
	SED19103	5	,1	20.2	95.6	1.80	92
,	SED19203	4	1	24.0	96.8	2.49	92
	SED19103	12	4	21.1	91.4	1.50	95
	SED19203	12	· 4	21.1	93.1	1.15	95
	SED19003	1	3	22.5	97	1.80	96
	SED19103	R204	2	31.7	94.1	2.40	96
	SED19103	12	2	21.1	91.4	1.50	99
	SED19003	0012	- 3	21.1	93	1.80	100
	SED19003	R106	3	11.2	86	2.80	103
	SED19003	0012	2	21.1	93	1.80	106
	SED19103	5	3	20.2	95.6	1.80	108
	SED19003	0012	1	21.1	93	1.80	109
	SED19003	0048	3	20.0	92	2.20	112
	SED19103	R204	5	31.7	94.1	2.40	112
	SED19203	1	2	22.5	94.1	1.74	114
	SED19203	1	1	22.5	94.1	1.74	115
	SED19103	R203	5	12.5	98.7	1.70	119
	SED19103	20	5	11.8	96.2	1.00	120
	SED18903	1	1	22.0	93.32	1.50	122
	SED19003	R106	1	11.2	86	2.80	125
	SED19103	20	3	11.8	96.2	1.00	128
	SED19003	R106	2	11.2	86	2.80	129
	SED19103	20	4	11.8	96.2	1.00	130
	SED19003	R109	3	22.7	91	2.50	139
	SED19103	R203	3	12.5	98.7	1.70	139
	SED19103	20	1	11.8	96.2	1.00	141
	SED19103	R204	1	31.7	94.1	2.40	147
	SED18903	1	5	22.0	93.32	1.50	148
	SED19103	R203	1	12.5	98.7	1.70	158
	SED19003	1	1	22.5	97	1.80	160
	SED19003	R109	2	22.7	91	2.50	162
	SED19003	R109	1	22.7	91	2.50	173
	SED19103	20	2	11.8	96.2	1.00	174
	SED19103	R203	- 4	12.5	98.7	1.70	179
	SED18903	20	1	11.0	94.11	1.00	188
1							
	SED19003	1	2	22.5	97	1.80	207
	SED19003	0020	2	10.3	97	1.20	211
	SED18903	20	5	11.0	94.11	1.00	215
	SED19103	R203	2	12.5	98.7	1.70	241
	SED19003	0020	1	10.3	97	1.20	245
	SED19003	0020	- 3	10.3	97	1.20	266
		— +	-			~ ~ ~ ~ ~	40 V V

Appendix 1. Stations and samples making up the 80-100% fines category for polychaete abundance.

Appendix 1.	Stations and s	samples makin	g up the 0-:	20% fines	category for	mollusc richnes
SURVE	EY\$ STATIC	DN\$ SAMPLE\$	DEPTHM	FINES	TOC	MOTAX20
SED 10	102 0.0		16 6	0.00	0.1	
SED19		1	16.5	0.92	0.1	3
SED19		5	16.5	0,92	0.1	- 5
SED19		3	16.5	0.92	0.1	6
SED19		4	16.5	0.92	0.1	6
SED19	103 R 9	- 2	16.5	0.92	0.1	7
SED18	903 27	1	20	3.2	0.12	8
SED19	103 22	1	22.5	12.9	0.2	8
SED19	103 47	1	21.5	9.4	0.3	8
SED19		3	20.5	17.9	0.519675	8
SED19			18.9	11	0.388	8
SED19		1	14.8	2.44	0.588	9
SED19		3		2.44	0.1	9
			14.8			
SED19		4	14.8	2.44	0.1	9
SED19			22.1	5.9	0.2959	9
SED19	203 R301	2	22.1	5.9	0.2959	9
SED19		1	17.7	2.3	0.2236	10
SED19		2	17.7	2.3	0.2236	10
SED19	203 39	1	15.8	2.7	0.1453	10
SED19	103 39	2	14.8	2.44	0.1	10
SED19	203 39	2	15.8	2.7	0.1453	10
SED19	203 39	4	15.8	2.7	0.1453	10
SED18		1	20	6.3	0.14	10
SED19			20.5	8	0.5	10
SED18		3	20	6.3	0.14	11
SED19		2	19.8	19	0.39	11
SEAJU					0.3	11
SEAJU			15.38462	J.J 4	0.2	
SEAJU						11
			23.07692	1.8	0.1	11
SED19			18.9	11	0.388	11
EVCH			9.6	11.5	0.5	11
EVCH			9.6	11.5	0.5	.11
EVCH	· · · · ·		9.6	11.5	0.5	11
SED19		3	19.3	9.8	0.2	12
SED18	903 22	1	21	4.19	0.15	12
SED19	203 39	3	15.8	2.7	0.1453	12
SED19	003 44	3	19.5	14.5	0.51	12
SED18	903 46	3	22	9.5	0.42	12
SED19	103 47	5	21.5	9.4	0.3	12
EVCH			8.6	3.1	0.2	12
EVCH			8.6	3.1	0.2	12
SED19			20.5	8	0.5	12
SED19			20.5	5.9	0.2959	12
SED19		1	19.3	9.8	0.2555	12
SED19		3				
SED19 SED19			20.4	7.5	0.22	13
		1	20.8	5.9	0.1	13
SED19		1	19.8	6	0.2859	
SED18		5	20	6.3	0.14	13
SED18		1	22	9.5	0.42	13
SED19		3	19.8	19	0.39	13
SED19		2	19.5	12	0.32	13
SED19	203 47	4	19.5	13.2	0.5249	13

SS.

Appendix 1. Stations and samples making up the 0-20% fines category for mollusc richness.

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX20
	<i>(</i> 0	_				
SED19003	69	2	32.4	15	0.47	13
SEAJUN83	K5-75E	K575EYB	21.336	3	. 0.2	13
EVCHEM	NG-02	2	8.6	3.1	0.2	13
EVCHEM	NG-02	3	8.6	3.1	0.2	13
EVCHEM	NG-02	4	8.6	3.1	0.2	13
EVCHEM	PS-04	1	8.7	7.4	0.3	13
SED19003	R103	2	20.5	8	0.5	13
SED19203	R308	3	18.9	11	0.388	13
EVCHEM	SD-02	4	9.6	11.5	0.5	13
EVCHEM	SD-02	5	9.6	11.5	0.5	13
SED18903	22	3	21	4.19	0.15	14
SED18903	36	5	15	2.2	0.13	14
SED19203	37	2	21.2	3.2	0.1817	14
SED19203	43	4	19.8	6	0.2859	14
SEASEP82	<b>C-50E</b>	C50EVB	15.38462	2.3	0.1	14
SEAJUN82	J-75E	J75EUA	23.07692	2.1	0.1	14
SEAJUN82	K-50E	K50EUA	15.38462	1.8	0.7	14
SEAJUN82	K-50E	K50EUB	15.38462	1.8	0.7	14
SED19203	R308	2	18.9	11	0,388	14
SED18903	6	5	20	7.1	. 0.2	15
SED18903	22	5	21	4.19	0.15	15
SED19203	25	1	20.4	3	0.1481	15
SED18903	31	3	22	1.7	0.15	15
SED19203	-32	2	20.4	5.7	0.329525	15
SED18903	36	1	15	2.2	0.13	15
SED18903	• 36	3	15	2.2	0.13	15
SED19203	36	3	17.7	2.3	0.2236	15
· SED19103	39	5	14.8	2.44	0.1	15
SED19203	43	2	19.8	6	0.2859	15
SED19103	43	5	20.8	5.9	0.1	15
SED19003	44	2	19.5	14.5	0.51	15
SED19003	46	1	19.8	19	0.39	15
SED18903	46	5	22	9.5	0.42	15
SED19103	47	4	21.5	9.4	0.3	15
SED19003	69	1	32.4	15	0.47	15
SEAJUN82	E-50E	E50EUB	15.38462	4	0.2	15
EVCHEM	PS-03	4	9.1	8	0.4	15
SED19203	25	3	20.4	3	0.1481	16
SED19203	36	4	17.7	2.3	0.2236	16
SED19003	43	1	19.8	7	0.26	16
SED19003	43	2	19.8	7	0.26	16
SED19103	43	4	20.8	5.9	0.1	16
SED19103	44	5	21.5	17.1	0.5	16
SED18903	50	1	7	3.8	0.2	16
SED19003	69	3	32.4	15	0.47	16
SEAJUN82	H-75W	H75WUA	23.07692	5.4	0.05	16
EVCHEM	PS-03	5	9.1	8	0.4	16
SED19203	R301	4	22.1	5.9	0.2959	16
SED19103	22	3	22.5	12.9	0.2	17
SED19103	22	5	22.5	12.9	0.2	17
SED19203	32	3	20.4	5.7	0.329525	. 17
SED18903	32	5	20	7.23	0.17	17
						- ·

Appendix 1.	Stations and sample	s making up the 0-20%	6 fines category for mollusc richness.
-------------	---------------------	-----------------------	----------------------------------------

	ono una oum	piee maning	g up uio o z		atogory for	
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX20
SED19003	43	3	. 19.8	7	0.26	17
SED19203	43	3	19.8	6	0.2859	17
SED19103	44	3	21.5	17.1	0.5	17
SED18903	50	3	7	3.8	0.2	17
SEAJUN82	E-50W	E50WUA	15.38462	5	0.2	17
SEAJUN82	N-75W	N75WUA	23.07692	3.3	0.1	17
EVCHEM	PS-04	3	8.7	7.4	0.3	17
EVCHEM	PS-04	4	8.7	7.4	0.3	17
SED18903	16	1	20	3.9	0.18	18
SED19103	22	4	22.5	12.9	0.2	18
SED18903	31	1	22	1.7	0.15	.18
SED18903	32	-	20	7.23	0.17	18
SED19203	32	1	20.4	5.7	0.329525	18
SED19203	37	4	21.2	3.2	0.1817	18
SED19103	44	2	21.5	17.1	0.5	18
SED19003	47	1	19.5	12	0.32	18
SED19103	47	2	21.5	9.4	0.3	18
SED19103	47	3	19.5	12	0.32	18
SED19003	- 47	3	21.5	9.4	0.3	18
SED19203	47	3	19.5	13.2	0.5249	18
SED18903	50	5	-7	3.8	0.2	18
SEAJUN82	E-75E	E75EUA	23.07692	3.5	0.2	18
EVCHEM	PS-03	2	9.1	8	0.4	18
EVCHEM	PS-03	3	9.1	. 8	0.4	18
EVCHEM	PS-04	5	8.7	7.4	0.3	18
SED19203	15	1	19.4	5.2	0.2149	19
SED19203	15	2	19.4	5.2	0.2149	19.
SED19203	27	2	20.7	2.6	0.1656	19
SED18903	31	5	22	1.7	0.15	19
SED19003	32	2	20.4	7.5	0.22	19
SED19203	32	4	20.4	5.7	0.329525	. 19
SED18903	37	3	20	5.9	0.21	19
SED19203	37	3	21.2	3.2	0.1817	19
SED19103	43	2	20.8	5.9	0.1	19
SED19103	43	3	20.8	5.9	0.1	19
SED19003	44	1	19.5	14.5	0.51	19
SED19103	44	1	21.5	17.1	0.5	19
SED19203	44	1	20.5	17.9	0.519675	19
SED19203	69	3	35.4	18.1	0.4569	19
SEAJUN82	D-50W	D50WUC	15.38462	6	0.2	19
EVCHEM	PS-03	1	9.1	8	0.4	19
EVCHEM	PS-04	2	8.7	7.4	0.3	19
SED18903	6	3	20	7.1	0.2	20
SED18903	16	5	20	3.9	0.18	20
SED19103	22	2	22.5	12.9	0.2	20
SED18903	28	1	20	4.9	0.15	20
SED19003	32	1	20.4	7.5	0.22	20
SED18903	32	3	20	.7.23	0.17	20
SED18903	37	1	20	5.9	0.21	20
SED19103	44	4	21.5	17.1	0.5	20
SED19203	44	4	20.5	17.9	0.519675	20
SED19203	47	1	19.5	13.2	0.5249	20

ope	ndix 1. Stati	ons and sam	ples making	g up the 0-2	20% fines c	ategory for	mollusc richne
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX20
	SED19203	69	1	35.4	18.1	0.4569	20
	SED19203	15	4	19.4	5.2	0.2149	21
	SED18903	- 16	. 3	20	3.9	0.18	21
	SED19203	27	1	20.7	2.6	0.1656	21
	SED19203	27	4	20.7	2.6	0.1656	21
	SED18903	37	5	20	5.9	0.21	21
	SED19203	44	2	20.5	17.9	0.519675	21
	SED19203	69	4	35.4	18.1	0.4569	21
	SED19203	15	3	19.4	5.2	0.2149	22
	SED18903	27	- 3	20	3.2	0.12	22
	SEAJUN82	D-50E	D50EUA	15.38462	3.9	0.2	22
	SED18903	6	1	20	7.1	0.2	23
	SED19203	22	1	20.5	8	0.2596	23
	SED19203	22	4	20.5	. 8.	0.2596	23
	SED18903	23	3	20	2.1	0.12	23
	SED19203	27	. 3	20.7	2.6	0.1656	23
	SED18903	28	- 5	20	4.9	0.15	23
	SED19203	69	2	35.4	18.1	0.4569	23
	SED18903	15	3	20	8.22	0.24	24
	SED18903	23	1	20	2.1	0.12	24
	SED19203	25	2	20.4	3	0.1481	24
	SED19203	37	1	21.2	3.2	0.1817	24
	EVCHEM	NG-06	1	10.2	7.1	0.4	24
	EVCHEM	NG-06	3	10.2	7.1	0.4	24
	SED18903	15	1	20	8.22	0.24	25
	SED19203	47	2	19.5	13.2	0.5249	25
	EVCHEM	NG-06	2	10.2	7.1	0.4	25
	EVCHEM	NG-06	4	10.2	7.1	0.4	25
	SED19203	22	3	20.5	8	0.2596	26 .
	SED18903	27	5	20	3.2	0.12	26

4/9/1999

Appendix 1. Stations and samples making up the 20-50% fines category for mollusc richness.

ງຕາ	iux i. Statu	nis and same	ies making	up are zo-c	<i>70 /0 11100 0</i>	atogoty ioi	mondoo monne
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX50
	SED19103	18	3	19	41.8	0.6	5
	SED19103	10	4	20,7	32.8	0.6	6
	EVCHEM	SR-08	1	10.9	22.1	1.7	7
	SED19103	18	4	19	41.8	0.6	7
000000							
	SED19103	30	1	13.3	23.5	0.7	8
	EVCHEM	SR-08	2	10.9	22.1	1.7	9
	EVCHEM	SR-08	4	10.9	22.1	1.7	9
	SED18903	10	3	20	37.2	0.61	9
	SED19103	30	2	13.3	23.5	0.7	9
	SED19203	18	4	19.1	42.8	1.3271	9
	SED18903	10	. 5	20	37.2	0.61	10
	SED19003	R111	1	20.1	36	1.3	10
	SED19103	18	1	19	41.8	0.6	10
	SED19103	18	5	19	41.8	0.6	10
	SED19203	18	3	19.1	42.8	1.3271	10
	EVCHEM	SR-08	3	10.9	22.1	1.7	11
	EVCHEM	SR-08	5	10.9	22.1	1.7	11
	SED18903	10	1	20	37.2	0.61	11
	SED19103	10	1	20.7	32.8	0.6	11
	SED19103	10	3	20.7	32.8	0.6	11
	SED19103	10	5	20.7	32.8	0.6	11
	SED19103	18	2	19	41.8	0.6	11
	SED19103	30	4	13,3	23.5	0.7	11
	SED19103	30	5	13.3	23.5	0.7	11
	SED19203	18	1	19.1	42.8	1.3271	11
	SED19203	30	1	13.3	36.3	1.0317	11
	SED19203	30	2	13.3	36.3	1.0317	11
	SED19003	0033	1	19.8	34	1.1	12
	SED19003	0033	3	19.8	34	1.1	12
	SED19103	10	2	20.7	32.8	0.6	12
	SED19103	30	3	13.3	23.5	0.7	12
	SED19103	69	3	34.4	21.4	0.6	12
	SED19103	R209	4	19.6	34	0.5	12
	SED18903	33	1	20	24.04	0.64	13
	SED19103	69 Daaa	2	34.4	21.4	0.6	13
	SED19103	R209	5	19.6	34	0.5	13 13
	SED19203	18	2	19.1	42.8	1.3271	13
	SED18903	33		20	24.04	0.64 0.29	14
	SED18903	47 69	3 4	20 24 4	23.47 21.4	0.29	14
	SED19103	69	4 5	34.4 34.4	21.4	0.6	14
	SED19103 SED19103		2	19.6	34	0.5	14
	SED19103	R209	3	19.6	. 34	0.5	14
	SED19103	30	3	13.3	36.3	1.0317	14
	SED19203	40	2	13.3 9.4	32.2	2.1687	14
			3	20	24.04	0.64	15
	SED18903 SED18903	.33 47	5	20 20	24.04	0.04	15
	SED18903	47 71	3	20 6.1	46	1.4	15
	SED19003 SED19003	R111	3.	20.1		1.4	15
	SED19003 SED19103	69	1	34.4	21.4	0.6	15
	SED19103	R209	1	19.6	21. <del>4</del> 34	0.5	15
	0019103	K203	r	17.0		0.5	1.0

Appendix 1. Stations and samples making up the 20-50% fines category for mollusc richness.								
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX50		
SED 10202	20	4	10.0					
SED19203	30	4	13.3	36.3	1.0317	15		
SED19003	0033	2	19.8	34	1.1	16		
SED19003	.71	2	6.1	46	1.4	17		
SED19203	40	3	9.4	32.2	2.1687	17		
SED18903	47	1 -	20	23.47	0.29	18		
SED19103	33	4	20.8	31.5	0.9	18		
SED19103	33	5	20.8	31.5	0.9	18		
SED19203	40	. 4	9.4	32.2	2.1687	18		
SED19003	71	1	6.1	46	1.4	19		
SED19103	33	2	20.8	31.5	0.9	19		
SED19103	33	3	20.8	31.5	0.9	19		
SED19103	R206	1	19.4	35.6	0.8	20		
SED19103	R206	3	19.4	35.6	0.8	20		
SED19103	33	1	20.8	31.5	0.9	21		
SED19203	40	1	9.4	32.2	2.1687	21		

4/9/1999

Appendix 1. Stations and samples making up the 50-80% fines category for mollusc richness.

policik II. occido	tio ana oanik	noo maaaag			alogory for	monuso nomic
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX80
SED19203	R303	2	14.5	76.8	1.2708	2
SED19203	R303	3	14.5	76.8	1.2708	3
SED19203	R303	1	14.5	76.8	1.2708	4
SED19203	R303	4	14.5	76.8	1.2708	4
SED19003	70	1	5.2	64	3.1	5
SED19103	70	1 .	6.5	67.2	3.2	5
SED19203	70	2	7.2	66.5	2,1101	5
SED19203	70	3	7.2	66.5	2.1101	5
SED19003	70	2	5.2	64	3.1	. 6
SED19003	70	3	5.2	64	3.1	6
SED19203	70	1	7.2	66.5	2.1101	6
SED19203	70	4	7.2	66.5	2.1101	7
SED18903	18	5	20	60.15	0.93	8
SED19003	0030	2	13.3	62	1.4	8
SED19003	0030	3	13.3	62	1.4	8
SED19003	R105	2	14	. 75	2.2	8
SED19103	70	2	6.5	67.2	3.2	8
SED19103	70	3	6.5	67.2	3.2	8
SED19103	70	4	6.5	67.2	3.2	8
SED18903	18	3	20	60.15	0.93	9
SED19003	R105	3	14	75	2.2	9
SED19103	8	3	22.1	63.7	2.9	9
SED19103	8	4	22.1	63.7	2.9	9
SED19103	70	5	6.5	67.2	3.2	. 9
SED18903	18	1	20	60.15	0.93	10
SED19103	71	1	7.1	55.8	1.2	10
SED19103	71	3	7.1	55.8	1.2	11
SED19103	R205	2	31.9	62.1	1.1	11
SED18903	21	1	20	52,16	1.3	12
SED18903	21	3	20	52.16	1.3	12
SED19003	0030	1	13.3	62	1.4	12
SED19103	8.	·2	22.1	63,7	2.9	12
SED19103	. 2	1	21.3	57.7	0.8	12
SED19203	8	3	21.1	71.8	2.2161	12
SED19203	R302	1	20.6	68.5	0.9448	12
SED19103	8	1	22.1	63.7	2.9	13
SED19103	71	4	7.1	55.8	1.2	13
SED19103	R205	3	31.9	62.1	1.1	13
SED19203	R302	4	20.6	68.5	0.9448	13
SED19003	8	3	21.1	64	3.4	14
SED19103	8	5	22.1	63.7	2.9	14
SED19103	71	5	7.1	55.8	1.2	14
SED19103	R207	1	29.9	73.4	1.5	14
SED19103	R207	4	29.9	73.4	1.5	14
SED19203	21	2	21.7	62.2	1.2178	14
SED19203	. 41	2	19.1	75.1	1.1428	14
SED18903	21	5	20	52.16	1.3	15
SED19003	R105	1	14	75	2.2	15
SED19103	71	2	7.1	55.8	1.2	15
SED19103	R205	4	31.9	62.1	1.1	. 15
SED19103	R207	2	29.9	73.4	1.5	. 15

.

ope	ndix 1. S	tations and samp	oles making	up the 50-	80% fines o	category for	mollusc richne
	SURVE	Y\$ STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX80
	SED191	03 R207	. 5	29.9	73.4	1.5	15
	SED192	03 71	1	6.1	53	1.2331	15
	SED189	03 8	· 1	-21	65.77	3.9	16
	SED190	03 8	2	21.1	64	3.4	16
	SED191	03 2	2	21.3	57.7	0.8	16
	SED191	03 R205	1	31.9	62.1	1.1	16
	SED191	03 R205	5	31.9	62.1	1.1	16
	SED191	03 R207	3	29.9	73.4	1.5	16
	SED192	03 8	1	21.1	71.8	2.2161	16
	SED192	03 8	2	21.1	71.8	2.2161	16
	SED192	03 8	2 4	21.1	71.8	2.2161	16
	SED192	03 71	3	6.1	53	1.2331	16
	SED192	03 R302	2	20.6	68.5	0.9448	16
	SED192	03 41	3	19.1	75.1	1.1428	17
	SED192	03 71	2	6.1	53	1.2331	17
	SED189	03 2	1	20	60.7	0:68	18
	SED189	03 2	3	20	60.7	0.68	18
	SED1896	93 8,	3	21	65.77	3.9	18
	SED1890	)3 8	5	21	65.77	3.9	18
	SED1900	)3 8	1	21.1	64	3.4	18
	SED1910	03 2	5	21.3	57.7	0.8	18
	SED1920	)3 21	3	21.7	62.2	1.2178	18
	SED1910	)3 2	3	21.3	57.7	0.8	19
	SED1910		4	21.3	57.7	0.8	19
~	SED1920	)3 R302	3	20.6	68.5	0.9448	19
6262							
	SED1920		1 .	21.7	62.2	1.2178	20
·	SED1920		4	21.7	62.2	1.2178	20
	SED1920		1	19.1	75.1	1.1428	20
	SED1920		4	19.1	75.1	1.1428	20
	SED1890		5	20	60.7	0.68	21
	SED1920	03 71	4	6.1	53	1.2331	24

4/9/1999

pendix 1. Statior	ns and samp	les making	up the 80-1	00% fines c	ategory for	mollusc richne
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX100
SED19103	1	1	23.5	95.8	1.7	3
SED19003	R101	3	2.1	90	4	4
SED19003	R102	2	11.6	88	2.6	4
SED19003	R102	3	11.6	88	2.6	4
SED19103	1	3	23.5	95.8	1.7	4
SED19103	R203	4	12.5	98.7	1.7	4
SED19003	R101	2	2.1	90	4	5
SED19003	R106	1	11.2	86	2,8	5
SED19003	R109	2	22.7	91	2.5	5
SED19003	R109	3	22.7	91	2.5	5
SED19103	1	4	23.5	95.8	1.7	5
SED19103	1	5	23.5	95.8	1.7	5
SED19103	R203	3	12.5	98.7	1.7	. 5
SED19203	1	4	22.5	94.1	1.7421	5
SED18903	1	1	2.2	93.32	1.5	6
SED18903	1	3	22	93.32	1.5	6
SED19003	R102	1	11.6	88	2.6	6
SED19003	R106	2	11.2	86	2.8	6
SED19003	R109	1	22.7	91	2.5	6 -
SED19103	20	5	11.8	96.2	1	6
SED19103	R203	1	12.5	98.7	1.7	6.
SED19103	R204	1	31.7	94.1	2.4	6
SED19103	R204	4	31.7	94.1	2.4	6
SED19103	R204	5	31.7	94.1	2.4	6
SED19203	4	2 1	24	96.8	2.4931	6
SED19003	0048		20	92	2.2	7
SED19003	R101	1	2.1	90 96	. 4	7
SED19003	R106	3	11.2	86	2.8	· 7
SED19103	4	3	25.4	97.6	2 1.7	7
SED19103	R203	5	12.5 31.7	98.7 94.1	2.4	7
SED19103 SED19203	R204 1		22.5	94.1 94.1	1.7421	. 7
	1 4	1	22.3	94.1 96.8	2.4931	7
SED19203 SED18903	4	5	24	93.32	1.5	8
SED18903	1	1	22.5	97	1.5	8
SED19003	1	2	22.5	97	1.8	8
SED19003	0018	1	19.1	92	1.5	8
SED19003	0018	3	19.1	92	1.5	8
SED19003	1	2	23.5	95.8	1.7	8
SED19103	20	2	11.8	96.2	1	8
SED19103	20	4	11.8	96.2	1	. 8
SED19103	48	1	21.3	89.8	2.3	8
SED19103	48	2	21.3	89.8	2.3	8
SED19103	R203	2	12.5	98.7	1,7	8
SED19103	R204	3	31.7	94.1	2.4	8
SED19203	1	3	22.5	94.1	1.7421	8
SED19203	49	1	4.7	88.1	2.1381	8
SED19203	49	3	4.7	88.1	2.1381	8
SED19103	4	- 1	25.4	97.6	2	9
SED19103	. 4	2	25.4	97.6	- 2	9
SED19103	. 20	3	11.8	96.2	1	9
÷						

Appendix 1. Stations and samples making up the 80-100% fines category for mollusc richness.

Appendix 1.	Stations and	l samples making up	o the 80-100%	fines category	for mollusc richness.
-------------	--------------	---------------------	---------------	----------------	-----------------------

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOTAX100
SED19203	1	2	22.5	94.1	1.7421	9
SED19203	49	4	4.7	88.1	2.1381	9
SEAJUN82	QM-2	QM2UA	16.30769	85	1.3	10
SED19003	1	3	22.5	97	1.8	10
SED19003	0018	2	19.1	92	1.5	10
SED19103	4	4	25.4	97.6	2	10
SED19103	20	1 1	11.8	96.2	1	10
SED19203	4	1	24	96.8	2.4931	10
SED19203	48	1	20,5	88,7	1.5201	10
SED19203	49	2	4.7	88.1	2.1381	10
SED19003	0020	2	10.3	97	1.2	11
SED19003	0020	3	10.3	97	1.2	11
SED19103	4	5	25.4	97.6	2	11
SED19103	5	-4	20.2	95.6	1.8	11
SED19103	12	1	21.1	91.4	1.5	. 11
SED19103	48	5	21.3	89.8	2.3	11
SED19203	4	4	24	96.8	2.4931	11
SED19203	5	1	21	94.8	1.9311	11
SED19203	12	î	21.1	93.1	1.1471	11
SED19203	48	3	20.5	88.7	1.5201	11 -
SED19203	48	. 4	20.5	88.7	1.5201	11
SED18903	20	3	11	94.11	1.5201	11
SED19003	0048	2	20	92	2.2	12
SED19003	0048	3 .	20 20	92	2.2	12
SED19103	5	3	20.2	95.6	1.8	12
SED19103	12	. 3	20.2	91.4	1.8	12
SED19103	48	3	21.1	89.8	2.3	12
SED19103	48	4 ·	21.3	89.8	2.3	12
SED19203	12	4	21.5	93.1	1.1471	12
SED19203	48	2	20.5	88.7	1.5201	12
SED19003	0012	3	20.5	.93	1.5201	12
SED19003	0020	1	10.3	97	1.3	13
SED19203	5	3	21	94.8	1.9311	13
SED19203	5	4				
SED19203	12	2	21 21.1	94.8 93.1	1.9311 1.1471	13 13
SED19203	12	3	21.1	93.1 93.1	1.1471	13
SED19203	0012	2	21.1	93.1	1.1471	13
SED19103	5	2	20.2	95.6	1.8	14
SED19103	5	5	20.2	95.6 95.6	1.8	
SED19103	i2	5	20.2			14
56517105	12	+	21.1	91.4	1.5	14
SED19003	0012	1	21.1	02	1.0	16
SED19003	12	2		93	1.8	15
SED19203	5		21.1	91.4	1.5	. 15
SED19203 SED19203	20	2	21	94.8	1.9311	15
SED19203 SED19203		1	10.3	95.7	1.0068	15
SED19203	20	2	10.3	95.7	1.0068	15
SED18903	20		11	94.11	1	16
	5	1	20.2	95.6	1.8	16
SED19203	20	3	10.3	95.7 05.7	1.0068	16
SED19203	20	4	10.3	95.7	1.0068	16

Appendix 1. Stations and samples making up the 0-20% fines category for mollusc abundance.

endix 1. Stati	ions and san	iples making	j up tite 0-20	% mes cale	gory for me	musc abundai
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB20
SED19203	R308	4	18.9	11	0.388	. 18
SED19203	R308	2	18.9	11	0.388	22
SED19203	39	4	15.8	2.7	0.1453	23
SED18903	31	3	22	1.7	0.15	25
SED19103	39	4	14.8	2.44	0.1	27
SED19203	37	°2	21.2	3.2	0.1817	27
SED19203	39	2	15.8	2.7	0.1453	27
SED19203	36	2	17.7	2.3	0.2236	28
SED19203	36	4	17.7	2.3	0.2236	28
SED19103	R 9	5	16.5	0.92	0.1	30
SED19203	36	1	17.7	2.3	0.2236	31
SED19203	32	2	20.4	5.7	0.329525	32
SEAJUN82	H-75E	H75EUA	23.076923	1.8	0,1	33
SED18903	31	1	22	1.7	0.15	33
SED19203	32	3	20.4	5.7	0.329525	33
SED19203	39	1	15.8	2.7	0.1453	33
SED18903	43	3	20	6.3	0.14	34
SED19003	46	2	19.8	19	0.39	35
SED19203	39	. 3	15.8	2.7	0.1453	35
SED19103	39	3	14.8	2.44	0.1	36
SED19203	36	3	17.7	2.3	0.2236	37
SED19203	43	4	19.8	6	0.2859	37
SED19203	R308	3	18.9	. 11	0.388	37
SEAJUN82		B75WUC	23.076923	5.3	0.3	39
SED18903	32	3	20	7.23	0.17	39
SED19103	39	1	14.8	2.44	0.1	40
SED19103	39	2	14.8	2.44	0.1	40
SED19203	32	1	20.4	5.7	0.329525	40
SED18903	46	1	22	9.5	0.42	41
SED19003	44	3	19.5	14.5	0.51	41
SED18903	43	1	20	6.3	0.14	42
SED18903	46	3	22	9.5	0.42	42
SEAJUN82		H75WUA	23.076923	5.4	0.05	43
SED19003		3	20.4	7.5	0.22	43
SED19103		5	14.8	2.44	0.1	43
EVCHEM		1	8.6	3.1	0.2	44
SED19103		3	16.5	0.92	0.1	44
SED19203		1	19.4	5.2	0.2149	. 44
SED19003	32	1	20.4	7,5	0.22	45
SED19103	R9	1	16.5	0.92	0.1	45
SED18903		5	20	7.23	0.17	46
SED19003	46	1	19.8	19	0.39	46
SED19203	44	2	20.5	17.9	0.519675	46
SED19203	47	4	19.5	13.2	0.5249	46
SEAJUN83		K575EYB	21.336	3	0.2	47
SED19203		3 .	21.2	3.2	0.1817	47
SED19203		3	22.1	5.9	0.2959	47
SED18903		5	20	6.3	0.14	48
SED19103		4	21.5	17.1	0.5	48
SED19103		5	21.5	17.1	0.5	. 48
SED19203		-1	22.1	5.9	0.2959	48

Appendix 1. Stations and samples making up the 0-20% fines category for mollusc abundance.								
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB20		
SEAJUN82	N-75W	N75WUA	23.076923	3.3	0.1	49		
SED18903	37	1	20	5.9	0.21	50		
SED19103	43	1	20.8	5.9	0.1	51		
SED19103	43	5	20.8	5.9	0.1	52		
SED19203	32	4	20.4	5.7	0.329525	52		
SED18903	32	1	20	7.23	0.17	53		
SED18903	37	· 3	20	5.9	0.21	53		
SED19003	32	2	20.4	7.5	0.22	53		
EVCHEM	NG-02	5	8.6	3.1	0.2	54		
SED19203	15	<b>4</b> :.	19.4	5.2	0.2149	54		
SED19203	43	1	19.8	6	0.2859	54		
SED19003	44	2	19.5	14.5	0.2059	55		
SED18903	16	5	20	3.9	0.18	57		
SED19003	69	2	32.4	15	0.13	57		
SED19003	44	2	21.5	15	0.47	57		
SED19103	47	5	21.5	9.4	0.3	59		
SED19103	16	. 1	21.3	9.4 3.9				
SED18903	44	4	20.5		0.18	60		
SED19203	44 44			17.9	0.519675	60		
SED19003 SED19203		1	19.5	14.5	0.51	61		
	43 D 50E	2	19.8	6	0.2859	61		
SEAJUN82	D-50E	D50EUA	15.384615	3.9	, 0.2	62		
SED19003	46 D208	3	19.8	19	0.39	62		
SED19203	R308	1	18.9	11	0.388	62		
SED18903	37	5	20	5.9	0.21	63		
SED19003	43	1	19.8	7	0.26	63		
SED19003	43	3	19.8	· 7	0.26	63		
SED19103	43	4	20.8	5.9	0.1	63		
SED19203	15	2	19.4	5.2	0.2149	63		
SED18903	31	5	22	1.7	0.15	64		
SED19203	44	1	20.5	17.9	0.519675	64		
SEAJUN82	E-75E	E75EUA	23.076923	3.5	0.2	65		
SED19103	R 9	2	16.5	0.92	0.1	65		
SED18903	27	3	20	3.2	0.12	. 66		
SED19103	43	3	20.8	5.9	0.1	66		
SED19103	47	2	21.5	9.4	0.3	66		
SEAJUN82	J-75E	J75EUA	23.076923	2.1	0.1	67		
SED18903	46	5	22	9.5	0.42	67		
SED19103	43	2	20.8	5.9	0.1	67		
EVCHEM	PS-04	. 1	8.7	7.4	0.3	68		
SED18903	36	1	15	2.2	0.13	68		
SED19203	43	3	19.8	6	0.2859	68		
SED19003	R103	2	20.5	8	0.5	69		
SED19103	R 9	4	16.5	0.92	0.1	69		
SED18903	16	3	20	3.9	0.18	70		
SED19203	27	1	20.7	2.6	0.1656	70		
EVCHEM	PS-04	4	8.7	7.4	0.3	71		
SED19003	69	1	32.4	15	0.47	71		
SED19103	44	2	21.5	17.1	0.5	71		
SED19003	69	3	32.4	15	0.47	72		
SED19103	47	3	21.5	9.4	0.3	72		
SEAJUN82	E-50W	E50WUA	15.384615	5	0.2	73		
SED19203	37	4	21.2	3.2	0.1817	. 73		

Appendix 1. Stations and samples making up the 0-20% fines category for mollusc abundance.

	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB20
	EVCHEM	NG-02	2	8.6	3.1	0.2	74
	SED19003	47	1	19.5	12	0.32	74
	SED19203	27	4	20.7	2.6	0.1656	74
	SED19003	R103	1	20.5	8	0.5	75
	SED19003	R103	3	20.5	8	0.5	75
	SED19203	R301	4	22.1	5.9	0.2959	75
	SED18903	6	5	20	7.1	0.2	76
	SED19203	47	1	19.5	13.2	0.5249	76
	SED19203	27	2	20.7	2.6	0.1656	78
	EVCHEM	<b>PS-04</b>	5	8.7	7.4	0.3	81
	SED19003	47	3	19.5	12	0.32	81
	EVCHEM	NG-02	3	8.6	3.1	0.2	82
	EVCHEM	<b>PS-04</b>	.3	8.7	7.4	0.3	82
	SEAJUN82	K-50E	K50EUA	15.384615	1.8	0.7	83
	SED19103	47	4	21.5	9.4	0.3	83
	SED19203	47	.3	19.5	13.2	0.5249	84
	SED19203	27	3	20.7	2.6	0.1656	85
	SED19203	44	3	20.5	17.9	0.519675	85
	SED18903	36	5	15	2.2	0.13	87
	SED19003	43	2	19.8	7	0.26	90
	SED19103	44	. 1	21.5	17.1	0.5	91
	SED19203	R301	2	22.1	5.9	0.2959	92
	EVCHEM	PS-03	1	9.1	8	0.4	93
	SEAJUN82	K-50E	K50EUB	15.384615	1.8	0.7	95
	SED18903	36	3	15	2.2	0,13	96
	EVCHEM	NG-02	4	8.6	3.1	0.2	97
	SED19203	15	3	19.4	5.2	0.2149	98
	SED19203	69	3	35.4	18.1	0.4569	98
	SEAJUN82	D-50W	D50WUC	15.384615	6	0.2	100
	SED18903	27	5	20	3.2	0.12	100
	SED18903	28	1	20	4.9	0.15	106
	EVCHEM	PS-04	2	8.7	7.4	0.3	107
1	SED19203	69	1	35.4	18.1	0.4569	109
	SEAJUN82		E50EUB	15.384615	4	0.2	110
	SED18903	28	5	20	4.9	0.15	110
	SED19203	47	2	19.5	13.2	0.5249	110
	SED18903	27	1	20	3.2	0.12	118
	SED19003	47	2	19.5	12	0.32	118
	SEASEP82		C50EVB	15.384615	2.3	0.1	119
	SED18903	28	3	20	4.9	0.15	120
	SED19203	37	1	21.2	3.2	0.1817	122
	EVCHEM	PS-03	3	9.1	8	0.4	123
	EVCHEM	SD-02	-3	9.6	11.5	0.5	125
	SED19103	47	1	21.5	9.4	0.3	126
	EVCHEM	PS-03	2	9.1	8	0,4	127
	EVCHEM	SD-02	4	9.6	11.5	0.5	134
	SED19203	69	4	35.4	18.1	0.4569	134
	EVCHEM	SD-02	1	9.6	11.5	0.5	136
	SED18903	22	5	21	4.19	0.15	146
	EVCHEM	PS-03	5	9.1	8	0.4	149
	EVCHEM	PS-03	4	9.1	8	0.4	152
	SED19203	69	2	35.4	18.1	0.4569	155
			-				

pendix	1. Stat	ions and san	nples makin	g up the 0-20	0% fines cate	egory for m	ollusc abundar
SU	RVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB20
SE	D19103	22	1	22.5	12.9	0.2	163
ΕV	CHEM	SD-02	5	9.6	11.5	0.5	172
SE	D18903	22	1	21	4.19	0.15	176
SE	D18903	50	3	7	3.8	0.2	177
SE	D19103	22	2	22.5	12.9	0.2	178
SE	D18903	15	3	20	8.22	0.24	182
EV	<b>CHEM</b>	SD-02	2	9.6	11.5	0.5	183
SE	D18903	50	5	7	3.8	0.2	189
SE/	AJUN82	E-50E	E50EUA	15.384615	4	0.2	190
SE	D18903	15	5	20	8.22	0.24	196
SE	D18903	6	1	20	7.1	0.2	197
SEI	D18903	22	3	21	4.19	0.15	204
SE	D19103	22	5	22.5	12.9	0.2	212
SEI	D18903	23	5	20	2.1	0.12	216
	D19203	22	4	20.5	8	0.2596	224
SEI	D18903	· 6	3	20	7.1	0.2	251
	D19203	22	1	20.5	8	0.2596	262
SEI	<b>D19103</b>	22	4	22.5	12.9	0.2	267
SEI	D19203	22	3 -	20.5	8	0.2596	280
SEI	D18903	23	3	20	2.1	0.12	283
	D18903	15	1	20	8.22	0.24	291
	D18903	50	1	7	3.8	0.2	313
SEI	D19103	22	3	22.5	12.9	0.2	318
					1		

Appendix 1.	Stations and samples making up the 20-50% fines category for mollusc abundance.
-------------	---------------------------------------------------------------------------------

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB50
SED19103	10	4	20.7	32.8	0.6	16
SED19103	. 30	1	13.3	23.5	0.7	26
EVCHEM	SR-08	1	10.9	22.1	1.7	28
SED19103	30	3	13.3	23.5	0.7	34
EVCHEM	SR-08	2	10.9	22.1	1.7	37
SED18903	47	3	20	23.47	0.29	38
SED19003	R111	1	20.1	36	1.3	38
SED19103	69	· 3	34.4	21.4	0.6	39
SED19203	30	1	13.3	36,3	1.0317	40
EVCHEM	SR-08	5	10.9	22.1	1.7	43
SED19103	30	5	13.3	23.5	0.7	44
SED19203	30	2	13.3	36,3	1.0317	47
SED19103	10	1	20.7	32.8	0.6	48
SED19103	30	4	13.3	23.5	0.7	48
SED18903	47	5	20	23.47	0.29	51
SED19203	30	4	13.3	36.3	1.0317	52
SED19103	69	4	34.4	21.4	0.6	53
SED18903	10	1	20	37.2	0.61	54
EVCHEM	SR-08	4	10.9	22.1	1.7	55
SED19103	69	1	34.4	21.4	0.6	55
SED19103	10	5	20.7	32.8	0.6	56
SED19103	69	2	34.4	21.4	0.6	56
SED19103	69	5	34.4	21.4	0.6	56
SED19003	R111	3	20.1	36	1.3	58
SED19103	30	2	13.3	23.5	0.7	59
SED19003	0033	3	19.8	34	1.1	62
SED18903	10	5	20	37.2	0.61	65
SED18903	47	1	20	23.47	0.29	65
SED19103	R209	2	19.6	34	0.5	66
SED19103	R209	1	19.6	34	0.5	70
SED19203	30	3	13.3	36.3	1.0317	72
SED19003	71	2	6.1	46	1.4	73
SED19103	10	2	20.7	32.8	0.6	75
SED19003	71	3	6.1	46	1.4	77
SED19103	R209	5	19.6	34	0.5	78
SED19103	R209	4	19.6	34	0.5	80
SED19103	R209	3	19.6	34	0.5	81
SED19203	40	2	9.4	32.2	2,1687	83
SED18903	33	1	20	24.04	0.64	92
EVCHEM	SR-08	3	10.9	22.1	1.7	95
SED18903	10	3	20	37.2	0.61	95
SED19103	33	5	20.8	31.5	0.9	108
SED19003	71	1	6.1	46	1.4	113
SED19003	0033	2	19,8	34	1.1	118
SED19103	10	3	20.7	32.8	0.6	131
SED19203	40	3	9.4	32.2	2.1687	132
SED18903	33		20	24.04	0.64	135
SED19103	33	2	20.8	31.5	0.9	146
SED18903	33	5	20	24.04	0.64	149
SED19103	33	3	20.8	31.5	0.9	159
SED19203	40	4	9.4	32.2	2.1687	164

Appendix 1. Stations and samples making up the 20-50% fines category for mollusc abundance.

			•			
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB50
SED19103	R206	1	19.4	35.6	0.8	170
SED19103	18	.3	19	41.8	0.6	174
SED19003	0033	1	19.8	34	1.1	176
SED19203	40	1	9.4	32.2	2.1687	189
SED19103	R206	3	19.4	35.6	0.8	209
SED19103	33	4	20.8	31.5	0.9	219
SED19103	33	1	20.8	31.5	0.9	227
SED19103	R206	5	19.4	35.6	0.8	241
SED19203	18	3	19.1	42.8	1.3271	246
SED19203	18	4	19.1	42.8	1.3271	262
SED19103	18	5	19	41.8	0.6	286
SED19203	18	1	19.1	42.8	1.3271	321
SED19203	18	2	19.1	42.8	1.3271	338
SED19103	R206	2	19.4	35.6	0.8	346

endix 1	. Stati	ons and sam	ples making	up the 50-8	0% fines ca	tegory for m	ollusc abunda
SUR	VEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB80
SED	18903	30	5	13	56.04	1.4	0
	19203	23	3	6.1	53	1,2331	0
	19203	R303	2	14.5	76.8	1.2708	3
	19203	R303	1	14.5	76.8	1.2708	5
	19203	R303	3	14.5	76.8	1.2708	7
SED	019203	R303	4	14.5	76.8	1.2708	9
	019103	8	4	22.1	63.7	2.9	11
SED	19003	R105	3	14	75	2.2	16
SEL	019203	70	. 1	7.2	66.5	2.1101	17
SEL	019203	70	4	7.2	66.5	2.1101	19
SEL	019203	70	2	7.2	66.5	2.1101	23
SED	019203	70	3	7.2	66.5	2.1101	23
SEL	019103	8	3	22.1	63.7	2.9	26
SEL	019103	71	1	7.1	55.8	1.2	28
SEL	019103	70	3	6.5	67.2	3.2	35
SEL	019103	71	3	7.1	55.8	1.2	36
SEL	019003	70	2	5.2	64	3.1	37
SEL	019203	8	3	21.1	71.8	2.2161	39
SEI	019003	R105	2	14	75	2.2	40
SEL	019103	8	2	22.1	63.7	2.9	40
SEL	)19203	R302	1	20.6	68.5	0.9448	40
SEL	019103	2	1	21.3	57.7	0.8	44
SEI	019003	0030	2	13.3	62	1.4	.47
SEL	019003	70	3	5.2	64	3.1	47
SEL	019103	71	2	7.1	55.8	1.2	47
SEI	019003	0030	3	13.3	62	1.4	49
SEI	019103	8	5	22.1	63.7	2.9	51
SEI	019103	71	5	7.1	55.8	1.2	51
SEL	019103	71	4	7.1	55.8	1.2	52
	019203	8	2	21.1	71.8	2.2161	52
SEI	019003	8	3	21.1	64	3.4	53
	019103	70	5	6.5	67.2	3.2	54
	019003	R105	1	14	75	2.2	55
	019103		4	6.5		3.2	58
	019203		4	20.6	68.5	0.9448	58
	D19103		2	6.5	67.2	3.2	. 59
	019203		1	6.1	53	1.2331	61
	019103		- 1	22.1	63.7	2.9	62
	019103		1	6.5	67.2	3.2	62
	018903		1	21	65.77	3.9	63
	D18903		5	20	60.15	0.93	63
	D19003		2	21.1	64	3.4	64
	019103		4	21.3	57.7	0.8	66
	D18903		1	20	60.7	0.68	68
	D19203		1	21.1	71.8	2.2161	71
	D19203		3	20.6	68.5	0.9448	71
	D19103		2	21.3	57.7	0.8	72
	D18903		3	20	60.7	0.68	76 76
	D18903		5	20	60.7	0.68	76 77
	D19103		5	21.3	57.7	0.8	77
SE	D19203	8	4	21.1	71.8	2.2161	80

Appendix 1. Stations and samples making up the 50-80% fines category for mollusc abundance.

~		ono una oum	proo maning			gory for m	onuso abunac
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB80
	SED19003	70	1	5.2	64	3.1	81
	SED19003	0030	1	13.3	62	1.4	86
	SED19203	71	3	6.1	53	1.2331	86
	SED19203	R302	2	20.6	68.5	0.9448	94
	SED18903	. 8	5	21	65.77	3.9	96
	SED19003	8	2563 <b>1</b> 4 2 3	21.1	64	3.4	99
	SED18903	8	3	21	65.77	3.9	101
	SED19203	71	2	6.1	53	1.2331	120
	SED19203	71	4	6,1	53	1.2331	133
	SED19103	2	3	21.3	57.7	0.8	156
	SED19103	R207	1	29.9	73.4	1.5	192
	SED19103	R205	2	31.9	62.1	1.1	202
	SED19103	R205	3	31.9	62.1	1.1	234
	SED19103	R205	4	31.9	62.1	1.1	249
	SED19103	R205	1	31.9	62.1	1.1	252
	SED19103	R207	4	29.9	73.4	1.5	253
	SED19103	R207	3	29.9	73.4	1.5	266
	SED19103	R205	5	31.9	62.1	1.1	272
	SED18903	18	1	20	60.15	0.93	285
	SED18903	18	3	20	60.15	0.93	288
	SED19103	R207	2	29.9	73.4	1.5	294
	SED19103	R207	5	• 29.9	73.4	1.5	333
	SED19203	23	4	6.1	53	1.2331	382
	SED18903	21	3	20	52.16	1.3	439
	SED18903	21	1	20	52.16	1.3	457
	SED19203	41	2	19.1	75.1	1.1428	460
	SED19203	21	1	21.7	62.2	1.2178	503

Appendix 1. Stations and samples making up the 50-80% fines category for mollusc abundance.

endix 1. Stati	ons and sam	ples making	up the 80-10	0% fines cate	egory for m	ollusc abunda
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB100
SED19103	1	1	23.5	95.8	1.7	5
SED19003		2	22.7	91	2.5	8
SED19003		3	22.7	91	2.5	9
SED19003		1	11.2	86	2.8	10
SED19003		2	11.2	86	2.8	10
SED19103		3	23.5	95.8	1.7	10
SED19003	R109	1	22.7	91	2.5	11
SED19103		· 4	12.5	98.7	1.7	12
SED18903	8 1	1	22.0	93.32	1.5	13
SED19103	3 1	5	23.5	95.8	1.7	14
SED19103	8 R203	1	. 12.5	98.7	1.7	15
SED19103	8 R203	2	12.5	<b>98.7</b>	1.7	16
SED19103	8 R203	5	12.5	98.7	1.7	16
SED19103	3 R203	3	12.5	98.7	1.7	17
SED19103		2	23.5	95.8	1.7	22
SED19103	3 20	5	11.8	96.2	1	23
SED19003		3	11.2	86	2.8	26
SED19203		2	24.0	96.8	2.4931	26
SED19003		1	20.0	92	2.2	33
SED19103		2	11.8	96.2	1	33
SED19103		5	21.3	89.8	2.3	: 33
SED19203		4	20.5	88.7	1.5201	34
SED1890		3	22.0	93.32	1.5	35
SED19003		1	11,6	88	2.6	35
SED1910		4	23.5	95.8	1.7	35
SED19203		4	22.5	94.1	1.7421	36
SED1920		1	20.5	88.7	1.5201	38
SED1920		3	20.5	88.7	1.5201	41
SED1900		2	11.6	88	2.6	42
SED1910		3	21.3	89.8	2.3	42
SED1910		3	11.8	96.2	1	43
SED1910		1	11.8	96.2	1	. 44 · 44
SED1910		3	31.7	94.1	2.4 2.1381	44 44
SED1920		1	4.7	88.1		44
SED1920		4	4.7	88.1 89.8	2.1381 2.3	44
SED1910		1	21.3	89.8 94.1	1.7421	45
SED1920		1	22.5 21.1	93.1	1.1471	45
SED1920 SED1900		5 1	21.1	97	1.1471	47
SED1900 SED1910		4	31.7	94.1	2.4	47
SED1910 SED1920		4 4	21.1	93.1	1.1471	48
SED1920 SED1910		4	21.1	89.8	2.3	49
SED1910 SED1900		2	20.0	92	2.2	51
SED1900 SED1910		1	31.7	94.1	2.4	51
SED1910 SED1910		4	21.3	89.8	2.3	52
SED1910 SED1920		3	21.5	94.1	1.7421	53
SED1920 SED1920		3	24.0	96.8	2.4931	53
SED1920 SED1920		3	4.7	88.1	2.1381	54
SED1920		3	20.0	92	2.1301	55
SED1900		2	25.4	97.6	2	56
SED1910		4	11.8	96.2	1	56
		•			-	

Appendix 1. Stations and samples making up the 80-100% fines category for mollusc abundance.

Appendix 1.	. Stations and samples making up the 80-100% fines category for mollusc abundance.
-------------	------------------------------------------------------------------------------------

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	MOAB100
SED19103	R204	5	31.7	94.1	2.4	57
SED19003	1	2	22.5	97	1.8	60
SED19003	0020	3	10.3	97	1.2	63
SED19003	0020	1	10.3	97	1.2	64
SED19003	R101	1	2.1	90	4	64
SED19203	12	1	21.1	93.1	1.1471	64
SED19203	1	2	22.5	94.1	1.7421	65
SED18903	1	5	22.0	93.32	1.7421	68
SED19103	4	4	25.4	97.6	1.5	68
SED19203	48	2	20.5	88.7	1.5201	68
SED19203	20	4	10.3	95.7	1.0068	69
SEAJUN82	QM-2	QM2UA	16.3	85	1.0008	70
SED19103	R204	2	31.7	94.1	2.4	70 71
SED19203	4	1	24.0	96.8	2.4931	71
SED19203	49	2	4.7	88.1	2.4931	
SED19203	12	2	21.1	93.1	1.1471	74 76
SED19003	0020	2	10.3	97	1.1471	76
SED19103	4	3	25.4	97.6	1.2	77
SED19103	12	1	21.1	97.8 91.4	1.5	78
SED19103	12	3	21.1	91.4 91.4		82
SED18903	20	3	11.0	94.11	1.5	83
SED19103	12	4	21.1	94.11 91.4	1	84
SED19103	5	4	20.2	91.4 95.6	1.5	84
SED19103	4	5	20.2	95.6 97.6	1.8	85
SED19103	4	1	25.4 25.4	97.6 97.6	2	89
SED18903	20	1	23.4 11.0	97.8 94.11	. 2	91
SED19203	4	4	24.0	^{94.11} 96.8	1 2.4931	96
SED19103	12	5	21.1	90.8 91.4	2.4951	96 07
SED19203	5	3	21.1	91.4 94.8	1.9311	97
SED19203	20	3	10.3	9 <del>4.</del> 8	1.9311	99 [°]
SED19203	20	1	10.3	95.7 95.7	1.0068	101
SED19003	0012	3	21.1	93	1.0008	104
SED18903	20	5	11.0	94.11 ·	1.0	107
SED19103	12	2	21.1	91.4	1.5	108
SED19203	20	2	10.3	95.7	1.0068	110
SED19203	5	4	21.0	94.8	1.9311	110
SED19103	5	2	20.2	95.6	1.9511	115 116
		-	20.2	22.0	1.0	110
SED19103		5	20.2	95.6	1.8	131
SED19203	5	2	21.0	94.8	1.9311	131
SED19003	1	3	22.5	97	1.2311	135
SED19103	5	3	20.2	95.6	1.8	133
SED19003	R102	3	11.6	88	2.6	137
SED19003	0012	1	21.1	93	1.8	139
SED19003	0018	3	19.1	92	1.8	142
SED19003	R101	3	2.1	92 90	1.3	
SED19103	.5	1	20.2	95.6	4 1.8	160
SED19003	0012	2	21.1	93.0	1.8	164
		***		25	1.0	171

ndix 1. Statio	ons and sam	ples making	y up the 0-20	% fines cate	gory for c	ustacean richi
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX20
SED18903	6	5	20	7.1	0.2	2
SED19103	R9	4	16.5	0.92	0.1	2
SED19103	R 9	5	16.5	0.92	0.1	2
EVCHEM	NG-02	5	8.6	3.1	0.2	3
SED18903		3	20	3.9	0.18	3
SED19103	R 9	3	16.5	0.92	0.1	3
EVCHEM	PS-03	3	9.1	8	0.4	2 4
SED18903	16	- 1	20	3.9	0.18	· 4
SED19103	R 9	1	16.5	0.92	0.1	4.
SED19103		2	16.5	0.92	0.1	4
SED19203	R308	3	18.9	11	0.388	4
SED 17205	Rester		10.9		0.500	
EVCHEM	NG-02	1	8.6	3.1	0.2	5
EVCHEM	NG-02	3	8.6	3.1	0.2	5
SED18903	6	1	20	7.1	0.2	5
SED18903		5	20	3.9	0.18	. 5
SED19703		5	21.5	17.1	0.5	. 5
EVCHEM		4	9.1	8	0.4	6
EVCHEM	PS-03	5	9.1	. 8	0.4	6
SED18903	.6	3	20	7.1	0.2	6
SED18903		3	2ŭ 21	4.19	0.15	ő
SED19203		. 1	22.1	5.9	0.2959	6
EVCHEM	SD-02	. 1	9.6	11.5	0.5	. 7
EVCHEM		3	9.6	11.5	0.5	7
SED19103		1	22.5	12.9	0.2	· · · 7
SED19203		1	19.4	5.2	0.2149	. 7
EVCHEM		2	8.6	3.1	0.2149	8
EVCHEM		4	8.6	3.1	0.2	8
EVCHEM		1	9.1	8	0.4	. 8
EVCHEM		2	9.1	8	0.4	8
EVCHEM		4	9.6	11.5	0.5	8
SED18903		1	20	2.1	0.12	8
SED19003		3	19.8	7	0.26	
SED19103		1	19.3	9.8	0.2	8
SED19103		3	22.5	12.9	0.2	. 8
SED19103		4	22.5	12.9	0.2	8
SED19103		5	22.5	12.9	0.2	8
SED19103		1	14.8	2.44	0.1	8
SED19103		4	14.8	2.44	0.1	8
SED19203		3	15.8	2.7	0.1453	8
SED19203		2	18.9	11	0.388	. 8
SED19203		4	18:9	11	0.388	8
EVCHEM		4	8.7	7.4	0.3	. 9
SED18903		1	21	4.19	0.15	
SED19003		2	19.8	·* 7	0.26	
SED19003		3	32.4	15	0.47	
SED19003		3	20.5	8	0.5	
SED19003		2	22.5	12.9	0.2	
SED19103		2	14.8	2.44	0.1	9
SED19103		3	14.8	2.44	0.1	
SED19103		3	20.8	5.9	0.1	
SED19103		2	21.5	17.1	0.5	
EVCHEM		2	9.6	11.5	0.5	
EVCHEM		5	9.6	11.5	0.5	
SEASEP82		C50EVB	15.384615	2.3	0.1	
SED18903		5	21	4.19	0.15	
20010000		2	<i>4 ک</i>		0.15	10

## Appendix 1. Stations and samples making up the 0-20% fines category for crustacean richness.

en	dix 1. Statio	ns and sam	ples making	up the 0-20	% fines cate	gory for ci	ustacean rich
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX20
	SED18903	23	3	20	2.1	0.12	10
	SED18903	43	5	20	6.3	0.14	10
	SED18903	46	5	22	9.5	0.42	10
	SED19003	47	1	19.5	12	0.32	10
	SED19003	R103	1	20.5	8	0.5	10
	SED19203	15	2	19.4	5.2	0.2149	10
	SED19203	22	- 1	20.5	8	0.2596	10
	SED19203	22	4	20.5	8	0.2596	10
	SED19203	39	2	- 15.8	2.7	0.1453	10
	SED19203	47	2	19.5	13.2	0.5249	10
	SED19203	R301	3	22.1	5.9	0.3249	
	SED19203	R301	4	22.1	. 5.9		10
	SED19203	R308	4	18.9		0.2959	10
	EVCHEM	PS-04	1	8.7	11	0.388	10
	EVCHEM	PS-04 PS-04	2		7.4	0.3	11
	SEAJUN82			8.7	7.4	0.3	11
		H-75E		23.076923	1.8	0.1	11
	SED18903	15	1	20	8.22	0.24	11
	SED18903		5	20	8.22	0.24	11
	SED18903	32	5	20	7.23	0.17	11
	SED18903	43	1	20	6.3	0.14	11
	SED18903	43	3 .	20	6.3	0.14	11
	SED19003	43	1	19.8	. 7	0.26	11
	SED19003	R103	2	20.5	8	0.5	11
	SED19103	43	1	20.8	5.9	0.1	11
	SED19103	43	5	20.8	5.9	0.1	11
	SED19203	15	4	19.4	5.2	0.2149	-11
	EVCHEM	NG-06	3	10.2	7.1	0.4	12
	EVCHEM	NG-06	4	10.2	7.1	0.4	12
	EVCHEM	PS-04	3	8.7	7.4	0.3	12
	SEAJUN83	K5-75E	K575EYB	21.336	3	0.2	12
	SED18903	15	3	20	8.22	0.24	12
	SED18903	36	· 1	15	2.2	0.13	12
	SED18903	₆ 36	5	. 15	2.2	0.13	12
	SED18903	<b>ົ</b> 50	1	7	3.8	0.2	12
	SED18903	50	5	7	3.8	0.2	12
	SED19103	39	5	14.8	2.44	0.1	12
	SED19103	43	2	20.8	5.9	0.1	12
	SED19103	47	5	21.5	9.4	0.3	12
	SED19203	22	3	20.5	8	0.2596	12
	SED19203	39	4	15.8	2.7	0.1453	12
	SED19203	43	2	19.8	6	0.2859	12
	SED19203	47	3	19.5	13.2	0.5249	12
	SED19203	47	4	19.5	13.2	0.5249	12
	SED19203	R301	2	22.1	5.9	0.2959	12
	SED18903	46	1	22	9.5	0.42	12
	SED19003	46	3	19.8	19	0.39	13
	SED19003	47	2	19.5	12	0.39	13
	SED19003	47	3	19.5	12	0.32	
	SED19103	47	1	21.5			13
	SED19103	47 47	1		9.4	0.3	13
				21.5	9.4	0.3	13
	SED19203	15	3	19.4	5.2	0.2149	13
	SED19203	39	1	15.8	2.7	0.1453	13
	SED19203	43	1	19.8	6	0.2859	13
	SED19203	69 60	1	35.4	18.1	0.4569	13
	SED19203	69	2	35.4	18.1	0.4569	13
	SED19203	69	3	35.4	18.1	0.4569	13

Appendix 1 ichness.

endix 1.	Statior	ns and sam	ples making	up the 0-209	% fines cate	gory for cr	ustacean richr
SURV	VEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX20
SEDI	19203	69	4	35.4	18.1	0.4569	13
	18903	23	5	20	2.1	0.12	14
	18903	31	3	22	1.7	0.15	14
	18903	31	5	22	1.7	0.15	14
	18903	36	3	15	2.2	0.13	. 14
	18903	37	5	20	5.9	0.21	14 -
	18903	46	3	22	9.5	0.42	14
	18903	50	3	7	3.8	0.2	14
	19003	69	2	32.4	15	0.47	14
	19103	13	3	19.3	9.8	0.2	14
	19103	43	4	20.8	5.9	0.1	14
	19103	44	4	21.5	17.1	0.5	14
	19103	47	. 4	21.5	9.4	0.3	14
	19203	32	. 1	20.4	5.7	0.329525	14
	19203	44	2	20.5	17.9	0.519675	14
	HEM	NG-06	2	10.2	7.1	0.4	15
SED	18903	28	1	20	4.9	0.15	15
	18903	28	3	20	4.9	0.15	15
	19003	32	2	20.4	7.5	0.22	15
SED	19003	46 .	1	19.8	19	0.39	
SED	19003	69	1	32.4	15	0.47	
SED	19203	25	3	20.4	3	0.1481	15
SED	19203	27	2	20.7	2.6	0.1656	
SED	19203	32	3	20.4	5.7	0.329525	
SED	19203	36	1	17.7	2.3	0.2236	
SED	19203	43	4	19.8	6	0.2859	
	19203	44	3	20.5	17.9	0.519675	
EVC	HEM	PS-04	5	8.7	7.4	0.3	
	JUN82		K50EUB	15.384615	1.8	0.7	
	18903	28	5	20	4.9	0.15	
	18903	31	1	22	1.7	0.15	
	18903	32	I	20	7.23	0.17	
	18903	37	3	20	5.9	0.21	
	019103	44	1	21.5	17.1	0.5	
	019203	25	1	20.4	3	0.1481	
	)19203	32	2	20.4	5.7	0.329525	
	019203		2	17.7	2.3	0.2236	
	)19203		3	19.8	6	0.2859	
	)19003		1	20.4	7.5	0.22 0.22	
	019003		3	20.4	7.5	0.22	
	)19003		2	19.8	19 17.1	0.5	
	019103		3 4	21.5 20.4	5.7	0.329525	
	019203		3	20.4	2.3	0.32932	
	)19203 JUN82		B75WUC	23.076923	5.3	0.2250	
	JUN82		E50EUB	15.384615	4	0.2	
	JUN82		J75EUA	23.076923	2.1	0.1	
	D18903		375204	23.070723	3.2	0.12	
	D18903		5	20	3.2	0.12	
	D18903		1	20	5.9	0.2	
	D19003		1	19.5	14.5	0.5	
	D19003		2	21.5	9.4	0.3	
	D19103		2	21.2	3.2	0.181	
	D19203		3	21.2	3.2	0.181	
	D19203		1	20.5	17.9	0.51967	
	D19203		4	20.5	17.9	0.51967	
		••	•				

Appendix 1. Stations and samples making up the 0-20% fines category for crustacean richness.

4/9/1999

Appendix 1. Stations and samples making up the 0-20% fines category for crustacean richness.

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX20
SED19203	47	1	19.5	13.2	0.5249	18
SED18903	32	3	20	7.23	0.17	19
SED19203	36	4	17.7	2.3	0.2236	. 19
EVCHEM	NG-06	1	10.2	7.1	0.4	20
SEAJUN82	K-50E	K50EUA	15.384615	1.8	0.7	20
SED18903	27	1	20	3.2	0.12	20
SED19003	44	2	19.5	14.5	0.51	20
SEAJUN82	E-50E	E50EUA	15.384615	4	0.2	21
SEAJUN82	E-50W	E50WUA	15.384615	5	0.2	21
SED19003	44	3 ·	19.5	14.5	0.51	21
SED19203	27	4	20.7	2.6	0.1656	-21
SED19203	37	4	21.2	3.2	0.1817	21
SEAJUN82	E-75E	E75EUA	23.076923	3.5	0.2	22
SED19203	25	2	20.4	3	0.1481	. 23

Appendix 1	Stations and	l samples making up	the 20-50% fines	category fo	r crustacean richness.
------------	--------------	---------------------	------------------	-------------	------------------------

	io ana oang	noo manang	ap (10 20 0)	570 mileo ou	egory for e	laotaocanino
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX50
SED19103	18	4	19	41.8	0.6	. 1
SED19203	18	4	19.1	42.8	1.3271	2
SED19103	18	1	19	41.8	0.6	3
SED19103	18	2	19	41.8	0.6	3
SED19103	18	5	19	41.8	0.6	3
		_				
SED19203	18	3	19.1	42.8	1.3271	4
SED19103	18	3	19	41.8	0.6	. 5
SED19003	R111	· 1	20.1	36	1.3	6
SED19103	R209	5	19.6	34	0.5	6
SED19203	18	1	19.1	42.8	1.3271	6
SED19003	0033	3	19.8	34	1.1	. 7
SED19103	R206	2	19.4	35.6	0.8	7
SED19103	R209	2	19.6	34	0.5	7
SED19103	R209	4	19.6	34	0.5	7
SED19203	30	4	13.3	36.3	1.0317	7
SED19003	R111	3	20.1	36	1.3	8
SED19103	30	1	13.3	23.5	0.7	8
SED19103	33	5	20.8	31.5	0.9	8
SED19103	R206	5	19.4	35.6	0.8	8
SED19203	30	2	13.3	36.3	1.0317	8
SED18903	33	ī	20	24.04	0.64	9
SED18903	47	3	20	23.47	0.29	9
SED19003	71	.3	6.1	46	1.4	9
SED19103	30	3	13.3	23.5	0.7	. 9
SED19103	69	4	34.4	21.4	0.6	9
SED19103	R206	1	19.4	35.6	0.8	9
SED19203	18	2	19.1	42.8	1.3271	9
SED19203	30	3	13.3	36.3	1.0317	9
SED19203	40	1	9.4	32.2	2.1687	9
SED19203	40	4	9.4	32.2	2.1687	9
SED18903	33	5	20	24.04	0.64	10
SED18903	47	5	20	23.47	0.29	10
SED19103	R206	3	19.4	35.6	0.8	10
SED19103	R209	3	19.6	34	. 0.5	10
SED19203	30	1	13.3	36.3	1.0317	10
SED19203	40	2	9.4	32.2	2.1687	10
SED19003	71		6.1	46	1.4	11
SED19103	30	2 5	13.3	23.5	0.7	11
SED19103	69	3	34.4	21.4	0.6	11
SED19103	R206	4	19.4	35.6	0.8	11
SED19203	40	3	9.4	32.2	2.1687	11
SED18903	33	3	20	24.04	0.64	12
SED18903	47	1	20	23.47	0.29	12
SED19003	0033	2	19.8	34	1.1	12
SED19003	71	1	6.1	46	1.4	. 12
SED19103	30	4	13.3	23.5	0.7	
SED19103	33	4	20.8	31.5	0.9	
SED19103	R209	1	19.6	34	0.5	
SED18903	10	-5	20	37.2	0.61	13
SED19103	10	2	20.7	32.8	0.6	
SED19103	33	2	20.8	31.5	0.9	
SED19103	33	3	20.8	31.5	0.9	
SED19003	0033	1	19.8	34	1.1	
SED19103	69	2	34.4	21.4	0.6	
EVCHEM	SR-08	1	10.9	22.1	1.7	

٠,

Appendix 1. Stations and samples making up the 20-50% fines category for a	crustacean richness.	
----------------------------------------------------------------------------	----------------------	--

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX50
SED19103	10	1	20.7	32.8	0.6	15
SED19103	10	5	20.7	32.8	0.6	15
SED19103	30	2	13.3	23.5	0.7	15
SED19103	33	1	20.8	31.5	0.9	15
SED19103	69	1	34.4	21.4	0.6	15
SED18903	10	1 1	20	37.2	0.61	16
SED19103	10	4	20.7	32.8	0.6	16
SED19103	10	3	20.7	· 32.8	0.6	17
SED19103	69	5	34.4	21.4	0.6	17
EVCHEM	SR-08	2	10.9	22.1	1.7	20
EVCHEM	SR-08	4	10.9	22.1	1.7	20

no	iix 1. Station	ns and samp	oles making	up the 50-80	0% fines cat	egory for c	rustacean rich
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX80
	SED18903	18	1	20	60.15	0.93	0
	SED19103	70	5	6.5	67.2	3.2	• 0
	SED18903	18	5	20	60.15	0.93	1
	SED19003	70	3	5.2	64	3.1	2
	SED19103	70	1	6.5	67.2	3.2	2
	SED19103	70	4	6.5	67.2	3.2	2
	SED19203	70	2	7.2	66.5	2.1101	- 2
	SED18903	18	3	20	60.15	0.93	3
	SED19103	70	3	6.5	67.2	3.2	3
	SED19103	R207	2	29.9	73.4	1.5	3
	SED19203	70	4	7.2	66.5	2.1101	3
	SED19003	70	1	5.2	64	3.1	4
	SED19003	70	2	5.2	64 .	3.1	4
	SED19003	R105	3	14	75 [.]	2.2	4
	SED19103	8	3	22.1	63.7	2.9	4
	SED19103	2	3	21.3	57.7	0.8	4
	SED19103	2	4	21.3	57.7	0.8	4
	SED19103	70 R205	2	6.5	67.2	3.2	4
	SED19103 SED19103		1	31.9	62.1	1.1	4
	SED19103 SED19203	R205 21	- 3	31.9	62.1	1.1	4
	SED19203	70	3	21.7 7.2	62.2	1.2178	4
	SED19203	R205	2	31.9	66.5 62.1	2.1101 1.1	4 5
	SED19103	21	2	21.7	62.1	1.2178	-5
	SED19203	41	2	19.1	75.1	1.1428	. 5
	SED19203	41	3	19.1	75.1 75.1	1.1428	. 5
	SED19203	70	· 1	7.2	66.5	2.1101	5
	SED19003	0030	2	13.3	62	1.4	
	SED19003	R105	1 .	14	75	2.2	6
	SED19103	2	2	21.3	57.7	0.8	6
	SED19103	2	5	21.3	57.7	0.8	6
	SED19103	71	1	7.1	55.8	1.2	6
	SED19103	71	2	7.1	55.8	1.2	6
	SED19103	71	4	7.1	55.8	1.2	. 6
	SED19103	R207	3	29.9	73.4	1.5	6
	SED19203	41	1	19.1	75.1	1.1428	6
	SED18903	2	1	20	60.7	0.68	7
	SED19103	71	- 3	7.1	- 55.8	1.2	7
	SED19103	71	5	7.1	55.8	1.2	7
	SED19103	R205	5	31.9	62.1	1.1	7
	SED19203	21	4	21.7	62.2	1.2178	7
	SED19203	41	4	19.1	75.1	1.1428	7
	SED19203 SED18903	71 2	1	6.1	53	1.2331	7
	SED18903	21	3 3	20	60.7	0.68	8
	SED18903	0030	3	20 13.3	52.16 62	1.3	8
	SED19003	R205	4	13.5 31.9	62.1	1.4	8
	SED19103	R207	4 1	29.9	62.1 73.4	1.1 . 1.5	8 8
	SED19103	R207	5	29.9	73.4	1.5	8
	SED19203	71	3	6.1	53	1.2331	8
	SED19203	R303	2	14.5	76.8	1.2331	8
	SED19203	R303	3	14.5	76.8	1.2708	8
	SED18903	8	1	21	65.77	3.9	9
	SED18903	8	3	21	65.77	3.9	9
	SED19003	R105	2	14	75	2.2	9

## Appendix 1. Stations and samples making up the 50-80% fines category for crustacean richness.

nd	ix 1. Statio	ns and samp	oles making	up the 50-80	)% fines cat	egory for c	rustacean rich
	SURVEYS	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX80
	SED19103		2	22.1	63.7	2.9	9
	SED19103	. 2	1	21.3	57.7	0.8	9
	SED19203	R302	. 1	20.6	68.5	0.9448	9
	SED19203	R302	2	20.6	68.5	0.9448	9
	SED19203	R302	3	20.6	68.5	0.9448	9
	SED19203	R302	4	20.6	68.5	0.9448	9
	SED19203	R303	1	14.5	76.8	1.2708	9
	SED19203	R303	4	14.5	76.8	1.2708	9
	SED19003	8	3	21.1	64	3.4	10
	SED19003	0030	1	13.3	62	1.4	10
	SED19103	8	1	22.1	63.7	2.9	10
	SED19203	8	2	21.1	71.8	2.2161	10
	SED19203	8	3	21.1	71.8	2.2161	10
	SED19203	21	. 3	21.7	62.2	1.2178	10
	SED19203	71	4	6.1	53	1.2331	10
	SED18903	21	5	20	52.16	1.3	. 11
	SED19103	8	4	22.1	63.7	2.9	11
	SED19103	8	5	22.1	63.7	2.9	11
	SED19203	71	2	6.1	53	1.2331	11
	SED18903	2	5	20	60.7	0.68	12
	SED18903	8	5	21	65.77	3.9	12
	SED19003	8	1	21.1	64	3.4	12
	SED19103	R207	4	29.9	73.4	1.5	12
	SED19203	8	4.	.21.1	71.8	2.2161	13
	SED19203	23	2	6.1	-53	1.2331	13
	•						

Append hness.

<b>F</b>	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX100	
						_		
	SED19103	20	1	11.8	96.2	1	0	
	SED19103	20	3	11.8	96.2	1	1	
	SED19103	20	5	11.8	96.2	1	1	
	SED19103	4	1	25.4	97.6	. 2	2	
	SED19103	R204	1	31.7	94.1	2.4		
	SED19203	48	3	20.5	88.7	1.5201	2	
	SED19003	0018	- 3	19.1	92	1.5		
	SED19003	R101	2	2.1	90	4		
	SED19003	R102	2	11.6	88	2.6		
	SED19103	4	3	25.4	97.6	2		
	SED19103	5	3	20.2	95.6	1.8		
	SED19103		2	11.8	96.2	1		
	SED19103	48	4	21.3	89.8	2.3		
	SED19103	48	5	21.3	89.8	2.3		
	SED19103	R204	2	31.7	94.1	2.4		
	SED19103	R204	3	31.7	94.1	2.4		
	SED19103	R204	4	31.7	94.1	2.4		
	SED19103	R204	5	31.7	94.1	2.4		
	SED19203	4	1	24	· 96.8	2.4931	3	
	SED19203	4	3	24	96.8	2.4931		
	SED19203	20	4	10.3	95.7	1.0068		
	SED19203	48	4	20.5	88.7	1.5201	. 3	
	SED19203	49	3 .	4.7	88.1	2.1381	3	
	SED19003	1	3	22.5	97	1.8	4	
	SED19003	0020	1	10.3	. 97	1.2	4 -	
	SED19003	0048	1	20	92	2.2	. 4	
	SED19003	0048	2	20	92	. 2.2	4	
	SED19003	R101	3	2.1	90	4	4	
	SED19003	R106	1	11.2	86	2.8	4	
	SED19003		2	11.2	86	2.8	4	
	SED19003	R109	3	22.7	91	2.5	4	
	SED19103	4	2	25.4	97.6	2	. 4	
	SED19103	4	4	25.4	97.6	2	. 4	
	SED19103		5	20.2	95.6	1.8	4	
	SED19103		4 [.]	11.8	96.2	1	4	
	SED19103		1	21.3	89.8	2.3	4	
	SED19103		2	21.3	89.8	2.3		
	SED19103		3	21.3	89.8	. 2.3	4	
	SED19203		2	24	96.8	2.4931	. 4	
	SED19203		4	24	96.8	2.4931	. 4	
	SED19203	12	1 .	21.1	93.1	1.1471	. 4	
	SED19203		1	20.5	88.7	1.5201		
	SED19203		2	20.5	88.7	1.5201		
	SED19203		1	4.7	88.1	2.1381		
	SED19203		2	4.7	88.1	2.1381		
	SED19203		4	4.7	88.1	2.1381		
	SEAJUN82		QM2UA	16,307692		1.3		
	SED19003	•	2	22.5	97	1.8		
	SED19003		2	19.1	92	1.5	5 5	
	SED19003		3	20	92	2.2		
	SED19003		1	11.6	88	2.6	5 <b>5</b>	
	SED19003		3	11.6	88	2.6	5 5	
	SED19003		3	11.0	86	2.8	3 5	
	SED19003		1	22.7	91	2.5	5 5	
	SED19003		2	22.7	91	2.5	5 5	
	0000	1(10)	har	L.L. 1	~ 1	<i></i>		

	Appendix 1. Stations a	id samples making up the	80-100% fines category 1	or crustacean richness.
--	------------------------	--------------------------	--------------------------	-------------------------

nd	ix 1. Station	s and samp	les making	up the 80-10	0% fines ca	tegory for	crustacean ric
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARTAX100
	SED19103	1	2	23.5	95.8	1.7	5
	SED19103	1	4	23.5	95.8	1.7	5
	SED19103	1	5	23.5	95.8	1.7	5
	SED19103	4	. 5	25.4	97.6	2	5
	SED19103	5	1	20.2	95.6	1.8	5
	SED19103	5	2	20.2	95.6	1.8	5
	SED19103	<b>5</b>	<b>.</b>	20.2	95.6	1.8	
	SED19103	12	2	21.1	91.4	1.5	5
	SED19103	12	3	21.1	91.4	1.5	5
	SED19203	5	3	21	94.8	1.9311	5
	SED18903	1	1	22	93.32	1.5	6
	SED18903	1	3	22	93.32	1.5	. 6
	SED18903	20	1	11	94.11	1	6
	SED19003	1	1	22.5	97	1.8	6
	SED19003	0020	2	10.3	97	1.2	6
	SED19003	0020	3	10.3	97	1.2	· · 6
	SED19003	R101	1	2.1	90	4	6
	SED19103	1	3	23.5	95.8	1.7	6
	SED19103	R203	3	12.5	98.7	1.7	6
	SED19103	R203	5	12.5	98.7	1.7	6
	SED19203	1	4	22.5	94.1	1.7421	6
	SED19203	5	2	21	94.8	1.9311	6
	SED19203	. 5	4	21	94.8	1.9311	6
	SED19203	12	2	21.1	93.1	1.1471	6
	SED19203	12	3	21.1	93.1	1.1471	. 6
	SED19203	20	1	10.3	95.7	1.0068	6
	SED19203	20	3	10.3	95.7	1.0068	6
	SED18903	1	5	22	93.32	1.5	7
	SED18903	20	5	11	94.11	1	7
	SED18903	41	3	20	81.14	0.8	7
	SED19003	0018	1	19.1	. 92	1.5	7
	SED19103	1	1	23.5	95.8	1.7	7
	SED19103	12	1 .	21.1	91.4	1.5	7
	SED19103	12	4	21.1	91.4	1.5	7
	SED19103	12	5	21.1	91.4	1.5	7
	SED19103	R203	1	12.5	98.7	1.7	7
	SED19103	R203	2	12.5	98.7	1.7	7
	SED19103	R203	4	12.5	98.7	1.7	7
	SED19203	1	1	22.5 ·	94.1	1.7421	7
	SED19203	1	3	22.5	94.1	1.7421	7
	SED19203	5	1	21	94.8	1.9311	7
	SED19203	12	4	21.1	93.1	1.1471	7
	SED18903	20	3	11	94.11	1	8
	SED19003	0012	1	21.1	93	1.8	8
	SED19203	1	- 2	22.5	94.1	1.7421	8
	SED19203	20	2	10.3	95.7	1.0068	8
	SED18903	41	5	20	81.14	0.8	9
	SED18903	41	1	20	81.14	0.8	10

## Appendix 1. Stations and samples making up the 80-100% fines category for crustacean richness.

4/9/1999

ppe	endix 1. Stat	tions and sam	ples making u	p the 0-20% fi	nes category	for crustac	ean abundanc
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB20
	SED18903	6	5	20	7.1	0.2	6
	SED19103	R 9	1	16.5	0.92	0.1	6
	SED19103	R 9	3	16.5	0,92	0.1	8
	SED19103	R 9	5	16.5	0.92	0.1	8
	SED18903	16	. 1	20	3.9	0.18	9
	SED18903	16	3	20	3.9	0.18	10
	SED18903	6	1	20	7.1	0.2	11
	SED18903	16	5	20	3.9	0.18	12
	SED18903	6	3	20	7.1	0.2	13
	SED19203	15	1	19.4	5.2	0.2149	17
			-				
	SED19103	R 9	4	16.5	0.92	0.1	19
	SED19203	R301	1	22.1	5.9	0.2959	21
	SED19103	R 9	2	16.5	0.92	0.1	25
	SED19203	15	4	19.4	5.2	0.2149	25
	SED18903	15	5	20	8.22	0.24	26
	SED19003	R103	1	20.5	8	0.5	26
	SED19003	R103	2	20.5	8	0.5	26
	SED19103	44	5	21.5	17.1	0.5	26
	SED19203	R301	3	22.1	5.9	0.2959	26
	SED19203	47	2	19.5	12	0.32	20
	SED19003	R308	1	18.9	12	0.388	30
	SED19203	R308	3	18.9	. 11	0.388	30
	SED19203	R308	2	18.9	11	0.388	31
	SED19203	R308	4	18.9	11	0.388	31
	SED19203 SED19103	47	4 5	21.5	9.4	0.388	32
	SED19103 SED19203	39	2	15.8	2.7	0.1453	32
	SED19203 SED19003	R103	2	20.5	2.1	0.1455	33
	SED19003	15	2	20.5 19.4	5.2	0.2149	. 33
	SED19203	R301	4	22.1	5.2 5.9	0.2149	34
	SED19203	15		22.1	8.22	0.2939	34
	SED18903	15	1.3	20	8.22	0.24	35
	SED18903	39	1	14.8	8.22 2.44	0.24	. 35
	SED19103	39 47			2.44 9.4		35
	SED19103	47	2 4	21.5 21.5	· 9.4	0.3	35
	SED19103	47 39	4 2	14.8	9.4 2.44	0.3	35
	SED19103	39	2 3	14.8	2.44	0.1453	36
	SED19203 SED19003	35 47		13.8	12	0.1455	38
	SED19003 SED19103	47 44	1 2	21.5	17.1	0.52	58 41
	SED19103	44 47	- 3	21.5	9.4	0.3	41
		47 · 39		15.8		0.1453	41
	SED19203 SED19203	39	1	15.8	2.7 2.7	0.1453	41
	SED19203 SED19203	15	4		5.2		44 47
			3	19.4		0.2149	4 <i>1</i> / 50
	SED19203	47	4	19.5	13.2	0.5249	
	SED19003	47	3	19.5	12	0.32	57
	SED19203	37	2	21.2	3.2	0.1817	58
	SED19103	44	4	21.5	17.1	0.5	65
	SED19103	39	4	14.8	2.44	0.1	67 (7
	SED19203	47	2	19.5	13.2	0.5249	67
	SED19203	47	3	19.5	13.2	0.5249	67
	SED19103		1	21.5	17.1	0.5	68
	SEAJUN82	B-75W	B75WUC	23.0769231	5.3	0.3	71

Appendix 1. Stations and samples making up the 0-20% fines category for crustacean abundance.

pp	endix 1. Sta	tions and sam	ples making u	o the 0-20% fi	nes categor	y for crustac	ean abundanc
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB20
	SED19103	47	1	21.5	9.4	0.3	71
	SED19203	36	1	17.7	2.3	0.2236	72
	SED19103	44	3	21.5	17.1	0.5	75
	SED18903	28	1	20	4.9	0.15	77
	SED19103	39	5	14.8	2.44	0.1	78
	SED19203	36	4	17.7	2.3	0.2236	80
	SED19203	44	3	20.5	17.9	0.519675	82
	SED19203	44	2	20.5	17.9	0.519675	84
	SED19203	47	.1	19.5	13.2	0.5249	87
	SED18903	23	5	20	2.1	0.12	· 88
	SED18903	37	5	20	5.9	0.21	88
	SED18903	22	3	21	4.19	0.15	89
	SED18903	50	5	7	3.8	0.2	89
	EVCHEM	PS-03	3	9.1	8	0.4	90
	SED19203	36	3	17.7	2.3	0.2236	91
	SED18903	37	3	20	5.9	0.21	92
	SED19203	36	2	17.7	2.3	0.2236	92
	SED18903	22	1	21	4.19	0.15	93
	SED19203	32	1	20.4	5.7	0.329525	93
	SED19003	44	2	19.5	14.5	0.51	94
	SED19203	44	1	20.5	17.9	0.519675	94
	SED18903	23	3	<b>Ž</b> 0	2.1	0.12	95
	SED18903	31	3	22	1.7	0.15	95
	SED19003	44	1	19.5	14.5	0.51	95
• •	SED19103	22	1	22.5	12.9	0.2	96
	EVCHEM	PS-03	4	9.1	8	0.4	98
	SED18903	22	5	21	4.19	0.15	98
	SED18903	28	3	20	4.9	0.15	99
	SED19103	39	3	14.8	2.44	0.1	99
	SED19203	37	4	21.2	3.2	0.1817	99
	EVCHEM	PS-03	2	9.1	8	0.4	102
	EVCHEM	PS-03	5	9.1	8	0.4	103
	SED18903	28	. 5	20	4.9	0.15	104
	SED19003	46	· 3	19.8	19	0.39	104
	SED19103	22	2	22.5	12.9	0.2	104
	SED19203	44	4	20.5	17.9	0.519675	104
	SED19003	44	3	19.5	14.5	0.51	105
	EVCHEM	PS-04	3	8.7	7.4	0.3	106
	SED19103	13	3	19.3	9.8	0.2	106
	SED18903	32	3	20	7.23	0.17	109
	SED19203	25	3	20.4	3	0.1481	109
	SED19203	32	3	20.4	5.7	0.329525	109
	SED18903	32	1	20	7.23	0.17	111
	SED19003	32	2	20.4	7.5	0.22	111
	EVCHEM	PS-03	· 1	9.1	8	0.4	112
	SED19003	46	2	19.8	19	0.39	112
	SED19103	22	5	22.5	12.9	0.2	112
	SED19003	46	1	19.8	19	0.39	115
	SED18903	23	. 1	20	2.1	0.12	116
	SED19003	32	3	20.4	7.5	0.22	116
	SED19203	32	4	20.4	5.7	0.329525	118
·	SED19203	37	3	21.2	3.2	0.1817	118

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB20
SED18903	31	1	22	1.7	0.15	119
SED19103	22	3	22.5	12.9	0.2	119
SED19203	69	3	35.4	18.1	0.4569	119
SED19203	32	2	20.4	5.7	0.329525	120
SED19003	69	3	32.4	15	0.47	121
EVCHEM	NG-02	5	8.6	3.1	0.2	123
SED18903	37	1	20	5.9	0.21	123
SED18903	32	5	20	7.23	0.17	126
SED18903	36	1	. 15	2.2	0.13	128
SED19203	37	î	21.2	3.2	0.1817	128
EVCHEM	NG-02	1	8.6	3.1	0.1017	129
SED19203	69	4	35.4	18.1	0.4569	129
EVCHEM	NG-02	2	8.6	3.1	0.4505	130
EVCHEM	NG-02 NG-02	2 4	8.6	3.1	0.2	130
EVCHEM	PS-04	4	8.0 8.7	5.1 7.4	0.2	133
SED19203	69	1	35.4	18.1	0.4569	135
SED19203 SED18903	46	1 5 :	22	9.5	0.4509	134
SED18903	40 69	2	32.4	9.5 15	0.42	133
SED19003 SED19103	43	2	32.4 20.8	5.9		
SED19103		1			0.1	137
	69 DS 04		32.4	15	0.47	140
EVCHEM	PS-04	1	8.7	7.4	0.3	142
SED18903	46 DS 04	3	22	9.5	0.42	143
EVCHEM	PS-04	2	. 8.7	7.4	0.3	144
SED19003	32	1	20.4	7.5	0.22	. 146
EVCHEM	PS-04	5	8.7	7.4	0.3	147
SED18903	46	1	22	9.5	0.42	148
SED19103	22	4	22.5	12.9	0.2	150
SED18903	50	3	7	3.8	0.2	152
SED18903	. 36	5	15	2.2	0.13	153
SED18903	43	1	20	6.3	0.14	169
SED19203	69	2	35.4	18.1	0.4569	169
EVCHEM	NG-02	3	8.6	3.1	0.2	170
SED19103	13	. I	.19.3	9.8	0.2	174
SED19003	43	3	19.8	7	0.26	175
SED19103	43	4	20.8	5.9	0.1	175
SEAJUN82		E50WUA	15.3846154	5	0.2	180
EVCHEM	NG-06	4	10.2	7.1	0.4	181
SEAJUN82		D50EUA	15.3846154	3.9	0.2	181
SED19103	43	- 1	20.8	5.9	0.1	188
EVCHEM	NG-06	3	10.2		0.4	189
SED19103	43	5	20.8	5.9	0.1	191
SED18903	50	1	7	3.8	0.2	198
SED19203	27	2	20.7	2.6		200
SED18903	31	5	22	1.7	0.15	202
EVCHEM	SD-02	4	9.6	11.5	0.5	210
SED18903	27	1	20	3.2	0.12	215
SED19203	22	1	20.5	8	0.2596	215
SED19203	22	4	20.5	8	0.2596	217
SED18903	36	3	15	2.2	0.13	220
SED19203	43	1	19.8	6	0.2859	229
SED19103	43	2	20.8	5.9	0.1	230
EVCHEM	SD-02	5	9.6	11.5	0.5	233

Appendix 1. Stations and samples making up the 0-20% fines category for crustacean abundance.

Appendix 1.	Stations and	i samples makin	ig up the	0-20% fines	category for	crustacean abundance.
-------------	--------------	-----------------	-----------	-------------	--------------	-----------------------

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB20
EVCHEM	NG-06	2	10.2	7.1	0.4	237
SEAJUN82	D-50W	D50WUC	15.3846154	6	0.4	237
SED19203	27	3	20.7	2.6	0.1656	237
SED19003	43	2	19.8	2.0	0.26	238
EVCHEM	SD-02	3	9.6	11.5	0.5	240
SED18903	43	5	20	6.3	0.14	242
SED19203	27	1	20.7	2.6	0.1656	242
SEAJUN82	N-75W	N75WUA	23.0769231	3.3	0.1	243
SEAJUN83	K5-75E	K575EYB	21.336	3	0.2	247
SED19003	43	1	. 19.8	7	0.26	247
SED19203	R301	2	22.1	5.9	0.2959	247
EVCHEM	SD-02	1	9.6	11.5	0.5	252
SED18903	43	3	20	6.3	0.14	252
SED19203	25	1	20.4	3	0.1481	252
SEAJUN82	H-75W	H75WUA	23.0769231	5.4	0.05	257
SED19203	25	2	20.4	3	0.1481	261
EVCHEM	SD-02	2	9.6	11.5	0.5	265
SED19203	27	4	20.7	2.6	0.1656	271
EVCHEM	NG-06	1	10.2	7.1	0.4	275
SEAJUN82	H-75E	H75EUA	23.0769231	1.8	0.1	282
SEAJUN82	E-75E	E75EUA	23.0769231	3.5	0.2	286
SED18903	27	3	20	3.2	0.12	292
SED19203	43	3	19.8	6.	0.2859	292
SED19203	22	3	20.5	8	0.2596	297
SED19203	43	4	19.8	6	0.2859	298

pendix 1. Stat	ions and sam	ples making up	the 20-50%	fines category	for crusta	cean abundan
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB50
SED19103	18	4	19	41.8	0.6	2
SED19103	18	2	19	41.8	0.6	4
SED19103	18	5	19	41.8	0.6	5
SED19103	18	1	19	41.8	0.6	7
SED19103	18	3	19	41.8	0.6	8
SED19203	18	3	19.1	42.8	1.3271	9
SED19203	18	1	19.1	42.8	1.3271	10
SED19103	R206	5	19.4	35.6	0.8	20
SED19103	R206	3	19.4	35.6	0.8	23
SED19103	10	2	20,7	32.8	0.6	26
SED19003	R111	1	20.1	36	1.3	27
SED19203	18	2	19.1	42.8	1.3271	27
SED19103	R206	1	19.4	35.6	0.8	30
SED19103	R206	. 2	19.4	35.6	0.8	30
SED18903	47	3	20	23.47	0.29	32
SED19203	18	4	19.1	42.8	1.3271	34
SED19103	10	5	20.7	32.8	0.6	40
SED19103	R206	4	19.4	35.6	0.8	40
SED18903	47	5	20	23.47	0.29	41
SED19203	30	2	13.3	36.3	1.0317	46
SED19103		4	20.7	32.8	0.6	52
SED19103		3	20.7	32.8	0.6	62
SED19003		3	20.1	36	1.3	. 64
SED19103		1	20.7	32.8	0.6	69
SED19103		5	13.3	23.5	0.7	71
EVCHEM		1	10.9	22.1	1.7	74
SED18903		1	20	23.47	-0.29	91
SED18903		5	20	37.2	0.61	96
SED19003		1	19.8	34	1.1	98 [.]
SED18903		. 1	20	37.2	0.61	99 100
SED19103		1	13.3	23.5	0.7	103
SED18903		3	20	37.2	0.61	104
SED19103		2	13.3	23.5	0.7	105
SED19103		3	13.3	23.5	0.7	106
SED19103		4	34.4		0.6 1.1	110 111
SED19003		3	19.8 6.1	34 46	1.1	111
SED19003		3 3	34.4		0.6	111
SED19103		5 4	13.3		0.0	118
SED19103 EVCHEM		2	13.3		1.7	125
SED19003		1	6.1	46	1.7	134
SED19003 SED19003		2	6.1		1.4	134
		5	34.4		0.6	134
SED19103		2	34.4		0.6	142
SED19103 SED19203		2	13.3		1.0317	142
SED19203 SED19003		2	19.8		1.0317	144
SED19003 SED19203		4	13.3		1.0317	145
SED19203 SED19103		1	13.5		0.5	140
SED19103		3	20.8		0.9	147
SED19103		4	20.8 9.4		2.1687	150
SED19203 SED19203		4	13.3		1.0317	150
019203	50		1.7.7	50.5	*.VJ17	<b>a. .</b>

Appendix 1. Stations and samples making up the 20-50% fines category for crustacean abundance.

pendix 1	. Stati	ions and sam	ples making up	the 20-50% f	ines categor	y for crusta	cean abundan
SURY	VEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB50
SEDI	19103	33	5	20.8	31.5	0.9	153
SEDI	18903	33	5	20	24.04	0.64	160
SEDI	19203	40	1	9,4	32.2	2.1687	164
SEDI	19203	40	2	9.4	32.2	2.1687	164
SEDI	19103	R209	2	19.6	34	0.5	165
SED1	18903	33	3	20	24.04	0.64	167
SEDI	19103	R209	3	19.6	34	0.5	169
SED1	19103	R209	5	19.6	34	0.5	171
SED1	19103	69	1	34.4	21.4	0.6	176
SED1	19103	33	4	20.8	31.5	0.9	183
SEDI	19103	R209	4	19.6	34	0.5	185
SED1	9203	40	3 .	9.4	32.2	2.1687	187
SED1	19103	33	2	20.8	31.5	0.9	189
SED1	8903	33	1	20	24.04	0.64	201
EVC	HEM	SR-08	5	10.9	22.1	1.7	210
SED1	9103	33	1	20.8	31.5	0.9	218
EVC	HEM	SR-08	4	10.9	22.1	1.7	222
							•

Appe ince.

4/8/1999

pendix 1. Sta	tions and sam	ples making up	the 50-80% f	fines categor	y for crusta	cean abundar
SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB80
SED18903	18	1	20	60.15	0.93	0
SED19103	70	5	6,5	67.2	3.2	0
SED18903	18	5	20	60.15	0.93	1
SED19103	70	1	6.5	67.2	3.2	. 2
SED19003	70	3	5.2	64	.3.1	3
SED19203	70	4	7.2	66.5	2.1101	4
SED19103	70	2	6.5	67.2	3.2	5
SED19103	70	4	6.5	67.2	3.2	5
SED19203	70	2	7.2	66.5	2.1101	5
SED19103	70	3	6.5	67.2	3.2	6
SED19003		1	5.2	64	3.1	7
SED19203		3	7.2	66,5	2.1101	7
SED18903	18	3	20	60.15	0.93	8
SED19103	2	3	21.3	57.7	0.8	8
SED19103	R207	2	29.9	73.4	1.5	8
SED19103		4	21.3	57.7	0.8	9
SED19003	70	2 .	5.2	64	3.1	10
SED19103		2	21.3	57.7	0.8	10
SED19103		3	22.1	63.7	2.9	11
SED19103		3	29.9	73.4	1.5	16
SED19103		1	21.3	57.7	0.8	18
SED19103		5	21.3	57.7	0.8	18
SED19103		1	29.9	73.4	1.5	18
SED19103		4	22.1	63.7	2.9	19
SED19103		1	31.9	62.1	1.1	19
SED19103		3	31.9	62.1	1.1	19
SED19203		1	7.2	66.5	2.1101	19
SED19103		4	31.9	62.1	1.1	20
SED19103		5	29.9	73.4	1.5	20
SED19103		5	31.9	62.1	1.1	- 23
SED19103		2	31.9	62.1	1.1	26
SED19103		2	22.1	63.7	2.9	28
SED19203		3	21.1	71.8	2.2161	28
SED18903		1	20	60.7	0.68	30
SED19103		1	22.1	63.7	2.9	31
SED18903		5	20	60.7	0.68	33
SED19203		3	20.6	68.5	0.9448	33
SED19103		2	7.1	55.8	1.2	34
SED19103		4	29.9	73.4	1.5	34
SED19103		5	22.1	63.7	2.9	36
SED19203		4	20.6	68.5	0.9448	36
SED19103		3	7.1	55.8	1.2	38
SED19003		3	21.1	64	3.4	41
SED19203		4	19.1	75.1	1.1428	43
SED19103		1	7.1	55.8	1.2	44
SED19103		5	7.1	55,8	1.2	44
SED19203		1	20.6	68.5	0.9448	46
SED19003		2	21.1	64	3.4	47 -
SED19203		3	6.1	53	1.2331	49 50
SED18903		3	20	60.7	0.68	50
SED19203	41	2	19.1	75.1	1.1428	54

Appendix 1. Stations and samples making up the 50-80% fines category for crustacean abundance.

e	ndix 1. Stati	ions and sam	oles making up	o the 50-80% f	ines categor	y for crusta	cean abundar
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB80
	SED19203	41	3	19.1	75.1	1.1428	57
	SED19203	71	4	6.1	53	1.2331	58
	SED19203	8	2	21.1	71.8	2.2161	61
·	SED19203	71	2	6.1	53	1.2331	63
	SED19203	71	1	6.1	53	1.2331	68
	SED19203	8	4	21.1	71.8	2.2161	69
	SED19203	8	1	21.1	71.8	2.2161	71
	SED19103	71	4	7.1	55,8	1.2	74
	SED18903	8	1	21	65.77	3.9	75
	SED19003	8	1	21.1	64	3.4	79
	SED18903	8	5	21	65.77	3.9	81
	SED19003	0030	1	13.3	62	1.4	82
	SED18903	8	3	21	65.77	3.9	84
	SED19203	41	1	19.1	75.1	1.1428	85
	SED19003	R105	3	. 14	75	2.2	100
	SED19003	R105	1	14	75	2.2	108
	SED19203	R303	2	14.5	76.8	1.2708	110
	SED19003	0030	2	13.3	62	1.4	112
	SED19203	R302	2 3	20.6	68.5	0.9448	122
	SED19003	0030	3	13.3	62	1.4	124
·	SED19203	R303	1	14.5	76.8	1.2708	138
•	SED19003	R105	2	14	75	2.2	155
	SED19203	R303	3	14.5	76.8	1.2708	167
	SED19203	R303	4	14.5	76.8	1.2708	174
	SED19203	23	2	6.1	53	1.2331	249
	SED19203	23	3	6.1	53	1.2331	· 250

Appendix 1. Stations and samples making up the 50-80% fines category for crustacean abundance.

4/8/1999

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB100	
SED19103	20	1	11.8	96.2	1	0	
SED19103	20	3	11.8	96.2	1	.1	
SED19103	20	5	11.8	96.2	1	1	
SED19003	R101	2	2.1	90	4	3	
SED19103	20	2	11.8	96.2	1	5	
SED19103	20	4	11.8	96.2	1	5	
SED19203	4	1	24	96.8	2.4931	6	
SED19203	49	3	4.7	88.1	2.1381	10	
SED19003	0018	3	19.1	92	1.5	13	
SED19003	<b>R101</b>	3	2.1	90	4	13	
SED19203	4	2	24	96.8	2.4931	13	
SED19003	0018	2	19.1	92	1.5	14	
SED19203	4	4	24	96.8	2.4931	14	
SED19203	49	1	4.7	88.1	2.1381	14	
SED19203	49	2	4.7	88.1	2.1381	14	
SED19003	R101	1	2.1	90	4	16	
SED19203	20	1	10,3	95.7	1.0068	16	
SED19203	20	· 4.	10.3	95.7	1.0068	16	
SED19203	49	4	4.7	88.1	2.1381	16	
SED19103	5	3	20.2	95.6	1.8	19	
SED19203	4	3	24	96.8	2.4931	. 19	
SED19203	20	3	10.3	95.7	1.0068	20	
SED19103	5	5	20.2	95.6	1.8	22	
SED19203	20	2	10.3	95.7	1.0068	22	
SED19103	12	3	21.1	91.4	1.5	23	
SED19103	. 5	4	20.2	95.6	1.8	24	
SED19103	12	4	21.1	91.4	1.5	24	
SED19003	0018	1	19.1	92	1.5	- 25	
SED19103	5	2	20.2	95.6	1.8	26	
SED19203	5	1	21	94.8	1.9311	26	
SED19203	5	2	21	94.8	1.9311	26	
SED19203	5	4	21	94.8	1.9311	27	
SED19103	R204	2	31.7	94.1	2.4	28	
SED19203	5	3	21	94.8	1.9311	28	
SED19103	12	. 2	21.1	91.4	1.5		
SÉAJUN82	•	QM2UA	16.307692	85	1.3	- 33	
SED19103	5	. 1	20.2	95.6	1.8		
SED19103	12	1	21.1	91.4	1.5		
SED19103	12	5	21.1	91.4	1.5		
SED19103	R204	3	31.7	94.1	2.4		
SED19103	4	3	25.4	97.6	2	36.	
SED19203	12	1	21.1	93.1	1.1471	37	•
SED19103	4	2	25.4	97.6	2		
SED19003	R102	1	11.6	88	2.6		
SED19103	4	5	25.4	97.6	2		
SED19103	R204	• 4	31.7	94.1	2.4		
SED19103	4	1	25.4	97.6	2		
SED19103	R203	5	12.5	98.7	1.7		
SED19203	12	2	21.1	93.1	1.1471		
SED19003	R102	2	11.6	88 07.6	2.6	43	
SHEEPEN 102	А	а	· j 🖌 A	072		A C	

Appendix 1. Stations and samples making up the 80-100% fines category for crustacean abundance.

SED19103

4

25.4

97.6

2

46

4

ppenc	dix 1. Statio	ns and samp	les making up t	he 80-100% 1	fines catego	ry for crus	tacean abund
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	ARAB100
,	SED19103	R203	3	12.5	98.7	1.7	49
	SED19203	12	4	21.1	93.1	1.1471	54
	SED19003	R102	3	11.6	88	2.6	56
	SED19103	R203	1 .	12.5	98.7	1.7	57
	SED19003	0012	2	21.1	93	1.8	60
	SED19103	R203	4	12.5	98.7	1.7	62
	SED19203	12	3	21.1	93.1	1.1471	62
	SED19103	48	5	21.3	89.8	2.3	63
	SED19003	0012	1	21.1	93	1.8	65
	SED19103	R203	2	12.5	98.7	1.0	65
	SED19003	0012	3	21.1	93	1.8	68
	SED19003	0020	3	10.3	97	1.0	73
	SED19103	R204	1	31.7	94.1	2.4	75 75
	SED19103	48	2	21.3	89.8	2.4	76
	SED19003	0020	1	10.3	97	1.2	70 79
	SED19003	0020	2	10.3	. 97	1.2	81
	SED19103	R204	5	31.7	94.1	2.4	85
	SED18903	20	1	11	94.11	2.4	87
	SED19103	48	3	21.3	89.8	2.3	95
	SED19103	48	4	21.3	89.8	2.3	95 96
	SED18903	1	3	21.5	93.32	1.5	98
	SED19103	48	1	21.3	89.8	2.3	103
	SED18903	20	3	11	94.11	2.5	103
	SED18903	20	5	11	94.11	1	114
	SED18903	1	5	22	93.32	1.5	129
	SED19003	R106	3	11.2	86	2.8	130
	SED19103	1	2	23.5	95.8	1.7	133
	SED18903	1 .	1	22	93.32	1.7	133
	SED19003	0048	1	22	92	2.2	138
	SED19003	1	ĩ	22.5	97	1.8	148
÷	SED19003	0048	2	20	92	2.2	150
	SED19003	R106	1	11.2	86	2.2	159
				11.2	00	2.0	172
,	SED19003	1	3	22.5	97	1.8	168
	SED19203	48	2	20.5	88.7	1.5201	108
	SED19003	1	2	22.5	97	1.5201	190
	SED19003	R109	3	22.7	91	2.5	192
	SED19203	48	3	20.5	88.7	1.5201	197
	SED19203	48	1	20.5	88.7	1.5201	197
	SED19103	1	1	23.5	95.8	1.5201	201
	SED19003	0048	3	20	92	2.2	201
	SED19003	R106	2	11.2	86	2.2	212
	SED19003	R109	1	22.7	91	2.8	218
	SED19003	R109	2	22.7	91	2.5	228 245
	SED19103	1	4	23.5	95.8	1.7	243
	SED19103	ĩ	3	23.5	95.8	1.7	248 249
	SED19203 ·	î	4	22.5	95.8 94.1	1.7421	249
	SED19203	48	4	20.5	88.7	1.7421	252
			Ŧ	40,0	00,7	1.9201	232

,

#### Appendix 1. Stations and samples making up the 0-20% fines category for the Infaunal Trophic Index.

SURVEY\$ STATIONS\$ SAMPLES\$ DEPTHM FINES TOC ITI120

EVCHEM	NG-06	4	10.2	7.1	0.4	69
SEAJUN82	K-50E	K50EUB	15.4	1.8	0.7	69
SED18903	36	1	.15.0	2.2	0.1	69
SED19103	R 9	3	16.5	0.9	0.1	69
SED19103	R 9	2	16.5	0.9	0.1	69
SED19103	39	3	14.8	2.4	0.1	69
SED19203	39	3	15.8	2.7	0.1	69
SED19203	R301	2	22.1	5.9	0.3	69
SED19203	R301	3	22.1	5.9	0.3	69
SED19203	R308	2	18.9	11.0	0.4	69
SED19103	22	5	22.5	12.9	0.2	60
SED18903	6	3	20.0	7.1	0.2	62
SED19003	R103	1	20.5	8.0	0.5	62
SED18903	6	5	20.0	7.1	0.2	63
SED19103	. 22	1	22.5	12.9	0.2	63
SED19103	39	2	14.8	2.4	0.2	64
EVCHEM	NG-06	3	10.2	7.1	0.1	65
SED19203	22	3	20.5	8.0	0.3	65
EVCHEM	NG-06	2	10.2	8.0 7.1	0.3	66
SEAJUN82	H-75E	H75EUA	23.1	1.8	0.4	66
SED18903	50	n/JEOA 5	7.0	1.0 3.8	0.1	66
SED18903	36	5	15.0	5.8 2.2	0.2	66
SED18903	36	3	15.0	2.2	0.1	66
SED18903	R103	2	20.5	2.2 8.0	0.1	66
SED19003	R103	3		8.0 8.0		
SED19003	22	2	20.5 22.5	8.0 12.9	0.5	66
SED19103	22 R 9	5			0.2	66 66
SED19103	39	1	16.5	0.9	0.1	66
EVCHEM		1	14.8	2.4	0.1	66 67
	NG-02 NG-02		8.6	3.1	0.2	67
EVCHEM	NG-02 NG-06	1	8.6	3.1	0.2	67 67
EVCHEM EVCHEM	NG-00 NG-02		10.2	7.1	0.4	67
		3	8.6	3.1	0.2	67
EVCHEM	NG-02	5	8.6	3.1	0.2	67
SEAJUN82 SED18903	B-75W	B75WUC	23.1	5.3	0.3	67
	15	5 3	20.0	8.2	0.2	67 67
SED18903	22	-	21.0	4.2	0.2	67
SED19203	R308	1	18.9	11.0	0.4	67
SED19203	27	1	20.7	2.6	0.2	67
SED19203	39 Dage	1	15.8	2.7	0.1	67
SED19203	R308	4	18.9	11.0	0.4	67
EVCHEM	NG-02	4	8.6	3.1	0.2	68
SEAJUN82	E-50E	E50EUA	15.4	4.0	0.2	68
SEAJUN82	E-50E	E50EUB	15.4	4.0	0.2	68
SEAJUN82	K-50E	K50EUA	15.4	1.8	0.7	68
SED18903	16	1	20.0	3.9	0.2	68
SED19103	39	5	14.8	2.4	0.1	68
SED19103	39	4	14.8	2.4	0.1	68
SED19103	13	3	19.3	9.8	0.2	68
SED19203	22	4	20.5	8.0	0.3	68
SED19203	R301	4	22.1	5.9	0.3	68
SED19103	R 9	4	16.5	0.9	0.1	69
SED19203	R308	3	18.9	11.0	0.4	69
EVCHEM	PS-03	3	9.1	8.0	0.4	70

99-0167j ITI120

Appendix 1. Stations and samples making up the 0-20% fines category for the Infaunal	al Trophic Index.
--------------------------------------------------------------------------------------	-------------------

×	ations and sa	imples maki	ing up the 0-20	% fines c	ategory	for the	Intauna
	SEAJUN82	J-75E	J75EUA	23.1	2.1	0.1	70
	SEASEP82	C-50E	C50EVB	15.4	2.3	0.1	70
	SED18903	22	5	21.0	4.2	0.2	70
	SED18903	15	3	20.0	8.2	0.2	70
	SED18903	22	. 1	21.0	4.2	0.2	70
	SED18903	50	1	7.0	3.8	0.2	70
	SED19103	47	1	21.5	9.4	0.3	70
	SED19203	22	1	20.5	8.0	0.3	70
	SED19203	27	2	20.7	2.6	0.2	70
	SED19203	R301	1	22.1	5.9	0.3	70
	SEAJUN83	K5-75E	K575EYB	21.3	3.0	0.2	71
	SED18903	50	3	7.0	3.8	0.2	71
	SED19203	39	2	15.8	2.7	0.1	71
	SED19203	25	- 1	20.4	3.0	0.1	71
	SED19203	27	3.	20.4	2.6	0.1	71
	EVCHEM	PS-03		9.1	2.0 8.0	0.2	72
	EVCHEM	SD-02	2	9.1 9.6	11.5	0.4	72
	SEAJUN82	D-50W	D50WUC	9.0 15.4	6.0	0.5	72
	SED18903	23	5	20.0	2.1	0.2	72
	SED18903	16	5	20.0	3.9	0.1	72
	SED18903	15	1	20.0	8.2	0.2	72
	SED19203	32	4	20.0	5.7	0.3	72
	SED19203	32	2	20.4	5.7	0.3	72
	SED19203	47	3	19.5	13.2	0.5	72
	SED19203	39	4	15.8	2.7	0.1	72
	SED19203	32	3	20.4	5.7	0.3	72
	EVCHEM	SD-02	3	9.6	11.5	0.5	73
	EVCHEM	SD-02	1	9.6	11.5	0.5	73
	EVCHEM	PS-02	5	9.1	8.0	0.4	73
	SED18903	23	1	20.0	2.1	0.1	73
	SED18903	16	3	20.0	3.9	0.2	73
	SED19103	44	5	21.5	17.1	0.5	73
	SED19103	R9	1	16.5	0.9	0.1	73
	SED19203	69	2	35.4	18.1	0.5	73
	SED19203	27	4	20.7	2.6	0.2	73
	EVCHEM	PS-03	. 1	9.1	8.0	0.4	74
	EVCHEM	PS-04	4	8.7	7.4	0.3	74
	EVCHEM	SD-02	5	9.6	11.5	0.5	74
	EVCHEM	SD-02	4	9.6	11.5	0.5	74
	SEAJUN82	E-75E	E75EUA	23.1	3.5	0.2	74
	SEAJUN82	H-75W	H75WUA	23.1	5.4	0.1	74
	SED18903	27	5	20.0	3.2	0.1	74
	SED19003	47	3	19.5	12.0	0.3	74
	SED19003	47	2	19.5	12.0	0.3	74
	SED19203	44	3	20.5	17.9	0.5	74
	SED19203	44	1	20.5	17.9	0.5	74
	SED19203	36	2	17.7	2.3	0.2	74
	SED19203	44	2	20.5	17.9	0.5	74
	SED19203	25	2	20.4	3.0	0.1	74
	SED19203	25	3	20.4	3.0	0.1	74
	SED19203	47	2	19.5	13.2	0.5	74
	EVCHEM	PS-04	1	8.7	7.4	0.3	75
	EVCHEM	PS-03	2	9.1	8.0	0.4	75
	SED18903	27	1	20.0	3.2	0.1	75
	SED18903	23	3	20.0	2.1	0.1	75

Appendix 1. Stations and samples making up the 0-20% fines category for the Infaunal Trophic Index.

lations and sa	mpies maki	ng up the 0-20	% lines ca	alegory i	or the	intauna
SED18903	46	5	22.0	9.5	0.4	75
SED18903	31	1 -	22.0	1.7	0.2	75
SED19103	44	4	21.5	17.1	0.5	75
SED19103	44	2	21.5	17.1	0.5	75
SED19103	47	2	21.5	9.4	0.3	75
SED19203	36	3	17.7	2.3	0.2	75
EVCHEM	<b>PS-04</b>	5	8.7	7.4	0.3	76
SEAJUN82	E-50W	E50WUA	15.4	5.0	0.2	76
SED18903	46	1	22.0	9.5	0.4	76
SED18903	27	3	20.0	3.2	0.1	76
SED19003	69	3	32.4	15.0	0.5	76
SED19103	13	1	19.3	9.8	0.2	76
SED19203	37	3	21.2	3.2	0.2	76
SED19203	37	2	21.2	3.2	0.2	76
SED19203	32	- 1	20.4	5.7	0.3	76
EVCHEM	PS-04	2	8.7	7.4	0.3	77
SED18903	31	5	22.0	1.7	0.2	77
SED19003	47	1	19.5	12.0	0.3	77
SED19103	44	1	21.5	17.1	0.5	77
SED19203	44	4	20.5	17.9	0.5	77
SED19203	47	4	19.5	13.2	0.5	77
SED19203	36	4	17.7	2.3	0.2	77
SED19203	36	1	17.7	2.3	0.2	77
SED18903	31	3	22.0	1.7	0.2	78
SED19003	46	2	19.8	19.0	0.4	78
SED19003	69	<b>I</b> .	32.4	15.0	0.5	78
SED19203	37	4	21.2	3.2	0.2	78
SED19203	69	4	35.4	18.1	0.5	78
SEAJUN82	N-75W	N75WUA	23.1	3.3	0.1	79
SED19003	32	.1	20.4	7.5	0.2	79
SED19103	44	3	21.5	17.1	0.5	79
SED19203	69	3	35.4	18.1	0.5	79
SED18903	37	3	20.0	5.9	0.2	80
SED18903	46	3	22.0	9.5	0.4	80
SED18903	37	1	20.0	5.9	0.2	81
SED19003	69	2	32.4	15.0	0.5	81
SED19003	46	1	19.8	19.0	0.4	81
SED19003	32	3	20.4	7.5	0.2	81
SED19103	47	3	21.5	9.4	0.3	81
SED19203	47	1	19.5	13.2	0.5	81
SED19203	37	. 1	21.2	3.2	0.2	81
SED19203	69	1	35.4	18.1	0.5	81
EVCHEM	PS-04	3	8.7	7.4	0.3	82
SED18903	43	3	20.0	6.3	0.1	82
SED19003	46	3	19.8	19.0	0.4	82
SEAJUN82	D-50E	D50EUA	15.4	3.9	0.2	83
SED18903	28	1	20.0	4.9	0.2	83
SED18903	32	3	20.0	7.2	0.2	83
SED19003	43	2	19.8	7.0	0.3	83
SED19103	43	4	20.8	5.9	0.1	83
SED18903	43	1	20.0	6.3	0.1	84
SED19103	47	5	21.5	9.4	0.3	84
SED19203	15	4	19.4	5.2	0.2	84
SED19003	44	1	19.5	14.5	0.5	85
SED19003	44	3	19.5	14.5	0.5	85
	• •	~	1,7.00	- ····	~.~	

Appendix 1. Stations an	samples making up the 0-20% fines category for the Infaunal Trophic Index.
-------------------------	----------------------------------------------------------------------------

· · · · · · · · · · · · · · · · · · ·				• •		
SED19003	32	2	20.4	7.5	0.2	85
SED19103	43	1	20.8	5.9	0.1	85
SED19103	47	4	21.5	9.4	0.3	85
SED19203	43	2	19.8	6.0	0.3	85
SED19203	43	3	19.8	6.0	0.3	- 85
SED19203	15	1	19.4	5.2	0.2	85
SED18903	32	5	20.0	7.2	0.2	86
SED19103	43	2	20.8	5.9	0.1	86
SED19203	43	1	19.8	6.0	0.3	86
SED18903	43	5	20.0	6.3	0.1	87
SED18903	37	5	20.0	5.9	0.2	87
SED18903	32	1	20.0	7.2	0.2	87
SED19003	43	3	19.8	7.0	0.3	87
SED19203	15	3	19.4	5.2	0.2	87
SED19203	43	4	19.8	6.0	0.3	87
SED18903	28	5	20.0	4.9	0.2	88
SED19003	44	2	19.5	14.5	0.5	88
SED19003	43	1	19.8	7.0	0.3	88
SED19103	43	5	20.8	5.9	0.1	88
SED19203	15	2	19.4	5.2	0.2	88

# Appendix 1. Stations and samples making up the 20-50% fines category for the Infaunal Trophic Index.

SURVEY\$ STATIONS\$ SAMPLES\$ DEPTHM FINES TOC ITI150

÷						
SED19003	R111	· 1	20.1	36.0	1.3	66
SED19003	33	1	20.8	31.5	0.9	66
EVCHEM	SR-08	2	10.9	22.1	1.7	66
SED19103	18	5	19.0	41.8	0.6	66
SED19003	0033	3	19.8	34.0	1.1	66
SED19103	18	1	19.0	41.8	0.6	67
SED19203	30	1	13.3	36.3	1.0	67
SED19103	33	4	20.8	31.5	0.9	67
SED19103	18	4	19.0	41.8	0.6	67
SED19103	18	2	19.0	41.8	0.6	67
SED19103	18	3	19.0	41.8	0.6	67
SED19103	33	2	20.8	31.5	0.9	67
SED19203	30	3	13.3	36.3	1.0	67
EVCHEM	SR-08	1	10.9	22.1	1.7	67
SED19103	33	3	20.8	31.5	0.9	67
EVCHEM	SR-08	3	10.9	22.1	1.7	67
EVCHEM	SR-08	4	10.9	22.1	1.7	67
SED19003	0033	.1	19.8	34.0	1.1	67
SED18903	33	. 1	20.0	24.0	0.6	67
SED18903	33	3	20.0	24.0	0.6	68
EVCHEM	SR-08	5	10.9	22.1	1.7	68
SED19103	33	5	20.8	31.5	0.9	68
SED19103	R206	4	19.4	35.6	0.8	68
SED19103	R206	· 5	19.4	35.6	0.8	68
SED19203	40	2	9.4	32.2	2.2	68
SED18903	33	5.	20.0	24.0	0.6	68
SED19203	30	2	13.3	36.3	1.0	68
SED19103	R209	5	19.6	34.0	0.5	68
SED19203	. 30	4	13.3	36.3	1.0	68
SED19203	18	4	19.1	42.8	1.3	68
SED19003	0033	2	19.8	34.0	1.1	68
SED19203	40	1	9.4	32.2	2.2	68
SED19103	R209	4	19.6	34.0	0.5	69
SED19103	R209	3	19.6	34.0	0.5	69'
SED19103	R209	2	19.6	34.0	0.5	69
SED19103	R206	2	19.4	35.6	0.8	69
SED19203	40	4	9.4	32.2	2.2	69
SED19103	R206	1	19.4	35.6	0.8	70
SED19203	40	. 3	9.4	32.2	2.2	70
SED19103	R209	1	19.6	34.0	0.5	70
SED19103	R206	3	19.4	35.6	0.8	70
SED19203	18	1	19.1	42.8	1.3	71
SED19203	18	2	19.1	42.8	1:3	72
SED19203	18	3	19.1	42.8	1.3	73
SED19003	71	2	6.1	46.0	1.4	74
SED19103	30	3	13.3	23.5	0.7	74
SED19003	71	1	6.1	46.0	1.4	74
SED19103	30	4	13.3	23.5	0.7	75
SED19003	R111	3	20.1	36.0	1.3	76
SED18903	47 [°]	1	20.0	23.5	0.3	76
SED19103	30	5	13.3	23.5	0.7	76
SED19003	71	3	6.1	46.0	1.4	.78
SED19103	69	5	34.4	21.4	0.6	78

Appendix 1. Stations and samples making up the 20-50% fines category for the In	nfaunal Trophic Index.
---------------------------------------------------------------------------------	------------------------

SED19103	30	2	13.3	23.5	0.7	79	
SED19103	69	1	34.4	21.4	0.6	80	
SED19103	69	4	34.4	21.4	0.6	80	
SED19103	69	3	34.4	21.4	0.6	81	
SED19103	10	2	20.7	32.8	0.6	81	
SED19103	69	2	34.4	21.4	0.6	81	
SED18903	47	3	20.0	23.5	0.3	82	
SED19103	30	1	13.3	23.5	0.7	82	
SED19103	10		20.7	32.8	0.6	83	
SED18903	47	5	20.0	23.5	0.3	83	
SED19103	10	4	20.7	32.8	0.6	83	
SED19103	10	5	20.7	32.8	0.6	84	

Appendix 1. Stations and samples making up the 50-80% fines category for the Infaunal Trophic Index.

SURVEY\$ STATIONS\$ SAMPLES\$ DEPTHM FINES TOC ITI180

		· · · · ·				
SED19103	70	2	6.5	67.2	3.2	52
SED19203	70	4	7.2	66.5	2.1	56
SED19103	70	4	6.5	67.2	3.2	57
SED19203	21	3	21.7	62.2	1.2	59
SED19003	70	3	5.2	64.0	3.1	60
SED19203	21	4	21.7	62.2	1.2	60
SED18903	21	.3	20.0	52.2	1.3	61
SED18903	21	5	20.0	52.2	1.3	61
SED19203	21	2	21.7	62.2	1.2	62
SED18903	21	. 1	20.0	52.2	1.3	62
SED19103	70	5	6.5	67.2	3.2	62
SED19203	R302	2	20.6	68.5	0.9	63
SED19103	2	2	21.3	57.7	0.8	64
SED19103	2	3	21.3	57.7	0.8	64
SED19103	R207	2	29.9	73.4	1.5	64
SED19103	R207	3	29.9	7.34	1.5	64
SED19203	21	1	21.7	62.2	1.2	64
SED19103	R207	1	29.9	73.4	1.5	65
SED19103	R207	4	29.9	73.4	1.5	65
SED19203	41	2	19.1	75.1	1.1	65
SED19103	R207	5	29.9	73.4	1.5	65
SED19203	70	3	7.2	66.5	2.1	66
SED19203	41	3	19.1	75.1	1.1	66
SED19003	70	2	5.2	64.0	3.1	66
SED19003	70	1	5.2	64.0	3.1	66
SED19203	41	1	19.1	75.1	1.1	66
SED18903	18	1	20.0	60.2	0.9	66
SED19103	70	3	6.5	67.2	3.2	66
SED19203	70	2	7.2	66.5	2.1	67
SED19203	70	1	7.2	66.5	2.1	67
SED19203	41	4	19.1	75.1	1.1	67
SED19103	70	1	6.5	67.2	3.2	67
SED18903	18	3	20.0	60.2	0.9	67
SED18903	18	5	20.0	60.2	0.9	67
SED18903	30	5	13.0	56.0	1.4	68
SED19003	0030	· 1	13.3	62.0	1.4	68
SED19103	2	4	21.3	57.7	0.8	69
SED19203	R302	1.	20.6	68.5	0.9	69
SED19003	0030	3	13.3	62.0	1.4	69
SED19203	R302	3	20.6	68.5	0.9	70
SED19203	R302	4	20.6	68.5	0.9	70
SED19003	0030	2	13.3	62.0	1.4	70
SED19203	71	4	6.1	53.0	1.2	70
SED18903	2	1	20.0	60.7	0.7	70
SED19203	71	1	6.1	53.0	1.2	70
SED19103	8	4	22.1	63.7	2.9	71
SED19203	23	4	6.1	53.0	1.2	71
SED19203	23	2	6.1	53.0	1.2	71
SED19103	8	2	22.1	63.7	2.9	72
SED18903	2	3	20.0	60.7	0.7	72
SED19203	R303	3	14.5	76,8	1.3	72
SED19203	R303	2	14.5	76.8	1.3	73
SED19203	8	1	21.1	71.8	2.2	73

Appendix 1. Stations and samples making up the 50-80% fines category for the Infaunal Trophic	Index.
-----------------------------------------------------------------------------------------------	--------

	•	•		. 🗸 🗸		
SED19103	71	4	7.1	55.8	1.2	73
SED19103	8	3	22.1	63.7	2.9	73
SED19203	71	3	6.1	53.0	1.2	73
SED19203	71	2	6.1	53.0	1.2	74
SED19203	R303	1	14.5	76.8	1.3	74
SED19203	R303	4	14.5	76.8	1.3	74
SED19103	71	1	7.1	55.8	1.2	74
SED19103	71	5	7.1	55.8	1.2	74
SED19103	R205	1	31.9	62.1	1.1	75
SED19203	23	3	6.1	53.0	1.2	75
SED19103	8	1	22.1	63.7	2.9	76
SED19103	71	3	7.1	55.8	1.2	76
SED19103	2	5	21.3	57.7	0.8	76
SED19103	8	5	22.1	63.7	2.9	77
SED19203	8	3	21.1	71.8	2.2	. 78
SED19203	8	2	21.1	71.8	2.2	78
SED19003	8	3	21.1	64.0	3.4	79
SED19003	8	2	21.1	64.0	3.4	79
SED19103	R205	2	31.9	62.1	1.1	80
SED18903	2	5	20.0	60.7	0.7	80
SED18903	8	5	21.0	65.8	3.9	80
SED19003	R105	3	14.0	75.0	2.2	80
SED19003	R105	2	14.0	75.0	2.2	80
SED19103	2	1	21.3	57.7	0.8	80
SED19103	R205	5	31.9	62.1	1.1	81
SED19203	8	4	21.1	71.8	2.2	81
SED19103	R205	4	31.9	62.1	1.1	82
SED19003	R105	1	14.0	75.0	2.2	83
SED19103	R205	3	31:9	62.1	1.1	83
SED19003	8	1	21.1	64.0	3.4	84

## Appendix 1. Stations and samples making up the 80-100% fines category for the Infaunal Trophic Index.

SURVEY\$ STATIONS\$ SAMPLES\$ DEPTHM FINES TOC ITI100

00 4 10 10 10 10	014.2	OMOTIO	16.2	85.0	1 2	54.0
SEAJUN82 SED19103	QM-2 R204	QM2UA	16.3 31.7	85.0 94.1	1.3 2.4	54.0 56.0
SED19103	R102	3	11.6	94.1 88.0	2. <del>4</del> 2.6	58.0
SED19003	R204	4	31.7	94.1	2.4	58.0
SED19103	49	1	4.7	94.1 88.1	2.4	59.0
SED19203 SED19003	49 R102	. 1	11.6	88.0	2.1	62.0
SED19003 SED19203	5	1	21	94.8	2.0 1.9	63.0
SED19203	49	3	4.7	94.0 88.1	2.1	63.0
SED19203 SED19003	49 R101	3		90.0	4.0	63.0
SED19003	R101	2	2.1 2.1			63.0 64.0
	49	2	2.1 4.7	90.0 88.1	4.0	64.0 64.0
SED19203	49	2	20.5	88.7	2.1	65.0
SED19203	48 48	2			1.5	65.0
SED19103		3	21.3	89.8	2.3	
SED19003	0018	3	19.1	92.0	1.5	66.0
SED19003	0048		20.0	92.0	2.2	66.0
SED19003	0048	2	20.0	92.0	2.2	66.0
SED19203	48	3	20.5	88.7	1.5	66.0
SED19003	0018	1	19.1	92.0	1.5	66.0
SED19103	R204	5	31.7	94.1	2.4	66.0
SED19003	0018	2	19.1	92.0	1.5	66.0
SED19103	5	3	20.2	95.6	1.8	67.0
SED19203	48	4	20.5	88.7	1.5	67.0
SED19203	48	1	20.5	88.7	1.5	67.0
SED19203	49	4	4.7	88.1	2.1	67.0
SED19003	0048	1	20.0	92.0	2.2	67.0
SED19103	48	5	21.3	89.8	2.3	68.0
SED19103	R204	2	31.7	94.1	2.4	69.0
SED19103	48	3	21.3	89.8	2.3	69.0
SED19103	48	4	21.3	89.8	2.3	69.0
SED19103	48	1 .	21.3	89.8	2.3	70.0
SED19103	- 5	5	20.2	95.6	1.8	71.0
SED19103	R203	2	12.5	98.7	1.7	73.0
SED19103	20 D106	3	11.8	96.2	1.0	73.0
SED19003	R106	3	11.2	86.0	2.8	74.0
SED19103	5	1	20.2	95.6	1.8	74.0
SED19103	20	5	11.8	96.2	1	75.0
SED19203	5. 5	2	21.0	94.8	1.9	75.0
SED19203		4	21.0	94.8	1.9	75.0
SED19103	R204	1	31.7	94.1 07.6	2.4	75.0
SED19103	4	5	25.4	97.6	2.0	76.0
SED19103	20	1	11.8	96.2	1.0	76.0
SED19103	5	4	20.2	95.6	1.8	76.0
SED19103	20	2	11.8	96.2	1.0	76.0
SED18903	20	5	11.0	94.1	1.0	77.0
SED19203	5	3	21.0	94.8	1.9	77.0
SED19203	4	3	24.0	96.8	2.5	. 77.0
SED19103	20	4	11.8	96.2	1.0	77.0
SED18903	20	3	11.0	94.1	1.0	77.0
SED19003	R101	1	2.1	90.0	4.0	77.0
SED19103	5	2	20.2	95.6 07.0	1.8	77.0
SED19003	0020	.2	10.3	97.0 02.2	1.2	77.0
SED18903	- 1	1	22.0	93.3	1.5	78.0
SED18903	20	. 1	11.0	94.1	1.0	79.0

the stand of the s	Appendix 1.	Stations and samples making up the 80-100% fines ca	ategory for the Infaunal Trophic Index.
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------	-----------------------------------------------------	-----------------------------------------

tations and san	iples mak	ing up the 80-10	J0% fines	category	for the	e Intaur	7
SED19203	20	3	10.3	95.7	1.0	79.0	
SED19103	4	1	25.4	97.6	2.0	80.0	
SED19003	0020	1	10.3	97.0	1.2	80.0	
SED19203	4	4 .	24.0	96.8	2.5	80.0	
SED19003	R109	2	22.7	91.0	2.5	80.0	
SED18903	1	3	22.0	93.3	1.5	81.0	
SED19003	0020	3	10.3	97.0	1.2	81.0	
SED19003	0012	2 ·	21.1	93.0	1.8	81.0	
SED19103	R203	5	12.5	98.7	1.7	81.0	
SED19103	1	2	23.5	95.8	1.7	82.0	
SED19103	1	1	23.5	95.8	1.7	82.0	
SED19103	R203	4	12.5	98.7	1.7	82.0	
SED19203	20	4	10.3	95.7	1.0	82.0	
SED19103	R203	. 1	12.5	98.7	1.7	83.0	
SED19003	R106	1	11.2	86.0	2.8	83.0	
SED19203	20	· 1	10.3	95.7	1.0	84.0	
SED19203	4	ĩ	24.0	96.8	2.5	84.0	
SED19203	20	2	10.3	95.7	1.0	84.0	
SED19003	R109	1	22.7	91.0	2.5	84.0	
SED19003	0012	1	21.1	93.0	1.8	84.0	
SED19003	R106	2	11.2	86.0	2:8	84.0	
SED19003	0012	3	21.1	93.0	1.8	85.0	
SED19203	12	3	21.1	93.1	1.1	85.0	
SED19103	R203	3	12.5	98.7	1.7	85.0	
SED19103	12	2	21.1	91.4	1.5	85.0	
SED19203	12	4	21.1	93.1	1.1	86.0	
SED18903	1	5	22.0	93.3	1.5	86.0	
SED19003	R109	3	22.7	91.0	2.5	86.0	
SED19103	12	1	21.1	91.4	1.5	86.0	
SED19103	12	4	21.1	91.4	1.5	86.0	
SED19203	12	2	21.1	93.1	1.1	87.0	
SED19103	12	3	21.1	91.4	1.5	87.0	
SED19103	4	2	25.4	97.6	2.0	87.0	
SED19003	1	1	22.5	97.0	1.8	88.0	
SED19203	4	2	24.0	96.8	2.5	88.0	
SED19103	12	5	21.1	91.4	1.5	88.0	
SED19003	1	2	22.5	97.0	1.8	88.0	
SED19103	4	3	25.4	97.6	2.0	89.0	
SED19203	12	1	21.1	93.1	1.1	90.0	
SED19103	4	4	25.4	97.6	2.0	90.0	
SED19103	1	3	23.5	95.8	1.7	90.0	
SED19203	1	2	22.5	94.1	1.7	92.0	
SED19203	1	1	22.5	94.1	1.7	92.0	
SED19003	1	3	22.5	97.0	1.8	93.0	
SED19103	1	4	23.5	95.8	1.7	93.0	
SED19203	1	3	22.5	94.1	1.7	95.0	•
SED19203	1	4	22.5	94.1	1.7	95.0	
SED19103	1	5	23.5	95.8	1.7	96.0	
		1. A. A.					

Appendix 1.	Stations and samples making up the 0-20% fines category for Swartz's dominance index	٢.
-------------	--------------------------------------------------------------------------------------	----

SURVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI20
SED19103	С	13	1	19.3	9.8	0.2	2
SED19103	С	13	3	19.3	9.8	0.2	2
SED19203	С	25	3	20.4	3	0.1481	2
EVCHEM	С	SD-01	1	4.2	4.6	0.2	3
EVCHEM	С	SD-01	3,	4.2	4.6	0.2	3
SED19103	N	R 9	5	16.5	0.92	0.1	3
SED19203	С	25	1	20.4	3	0.1481	3
EVCHEM	C	NG-02	1	8.6	3.1	0.2	4
EVCHEM	С	NG-02	3	8.6	3.1	0.2	4
EVCHEM	С	NG-02	4	8.6	3.1	0.2	4
EVCHEM	С	NG-02	5	8.6	3.1	0.2	4
EVCHEM	С	SD-01	5	4.2	4.6	0.2	4
SEAJUN82	С	H-75E	H75EUA	23.0769231	1.8	0.1	4
SED19103	N	R 9	2	16.5	0.92	0.1	4
SED19103	Ν	R 9	3	16.5	0.92	0.1	4
SED19103	Ν	R 9	4	16.5	0.92	0.1	4
SEASEP82	С	C-50E	C50EVB	15.3846154	2.3	0.1	5
SED18903	Č	22	3	21	4.19	0.15	5
SED18903	Ċ	22	5	21	4.19	0.15	5
SED19103	Ċ	22	4	22.5	12.9	0.2	5
SED19103	N	R 9	1	16.5	0.92	0.1	5
			_				
EVCHEM	С	SD-01	4	4.2	4.6	0.2	6
SEAJUN82	С	E-50E	E50EÚA	15.3846154	4	0.2	6
SED18903	С	22	1	21	4.19	0.15	6
SED18903	C	23	1	20	2.1	0.12	6
SED19103	С	22	. 1	22.5	12.9	0.2	6
SED19103	С	22	3	22.5	12.9	0.2	6
SED19103	С	22	5	22.5	12.9	0.2	· 6
SED19203	С	22	3	20.5	8	0.2596	6
SED19203	S	43	4	19.8	. 6	0.2859	6
EVCHEM	. C	NG-02	2	8.6	3,1	0.2	7
EVCHEM	С	NG-06	3	10.2	7.1	0.4	7
EVCHEM	С	SD-01	2	4.2	4.6	0.2	7
EVCHEM	С	SD-02	1	9.6	11.5	0.5	7
EVCHEM	С	SD-02	3	9.6	11.5	0.5	7
EVCHEM	С	SD-02	5	9.6	11.5	0.5	7
SEAJUN82	С	K-50E	K50EUA	15.3846154	1.8	0.7	7
SED18903	S	43	5	20	6.3	0.14	`7
SED19003	S	43	1	19.8	7	0.26	7
SED19103	S	43	3	20.8	5.9	0.1	7
SED19203	С	22	4	20.5	8	0.2596	7
SED19203	С	R308	1	18.9	11	0.388	7
SED19203	С	R308	3	18.9	11	0.388	7
EVCHEM	С	NG-06	2	10.2	7.1	0.4	8
SED19003	S	43	2	19.8	7	0.26	8
SED19103	С	22	2	22.5	12.9	0.2	8
SED19103	S	43	5	20.8	5.9	0.1	8
EVCHEM	С	NG-06	1	10.2	7.1	0.4	. 9
EVCHEM	С	NG-06	4	10.2	7.1	0.4	9
EVCHEM	C	PS-03	3	9.1	8	0.4	9
EVCHEM	С	PS-04	1	8.7	7.4	0.3	9

Appendix 1. Stations and samples making up the 0-20% fines category for Swartz's dominance index.

SURVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	тос	SDI20
EVCHEM	С	SD-02	2	9.6	11.5	0.5	9
SEAJUN82	С	E-50E	E50EUB	15.3846154	4	0.2	9
SED18903	C	36	3	15	2.2	0.13	. 9
SED18903	S	43	3	20	6.3	0.14	9
SED19003	S	43	3	19.8	7	0.26	
SED19203	C	22	1	20.5	8	0.2596	9
SED19203	Č	25	2	20.4	3	0.1481	9
SED19203	S	.43	3	19.8	6	0.2859	· 9
EVCHEM	Ĉ	PS-03	4	9.1	8	0.4	10
EVCHEM	Ċ.	PS-03	5	9.1	8	0.4	10
EVCHEM	Ċ	PS-04	2	8.7	7.4	0.3	10
EVCHEM	č	PS-04	4	8.7	7.4	0.3	10
EVCHEM	C	SD-02	4	9.6	11.5	0.5	10
SED18903	Ċ	23	3	20	2.1	0.12	10
SED19103	S	43	1	20.8	5.9	0.1	10
SED19103	S	43	2	20.8	5.9	0.1	10
SED19103	S	43	4	20.8	5.9	0.1	10
SED19203	S	43	2	19.8	6	0.2859	10
SED19203	C	R301	2	22.1	5,9	0.2959	10
SED19203	C	R308	2	18.9	11	0.388	10
EVCHEM	Ċ	PS-04	- 3	8.7	7.4	0.3	10
SEAJUN83	Č Č	K5-75E	K575EYB	21.336	3	0.2	11
SED19103	C	39	4	14.8	2.44	0.1	11
SED19203	Č	15	1	19.4	5.2	0.2149	11
SED19203	C	39	2	15.8	2.7	0.1453	11
EVCHEM	Ċ	PS-03	2	9.1	8	0.1103	12
SEAJUN82	Ċ	K-50E	K50EUB	15.3846154	1.8	0.7	12
SED18903	С	23	5	20	2.1	0.12	12
SED18903	Ċ	28	3	20	4.9	0.15	12
SED18903	С	32	1	20	7.23	0.17	12
SED18903	S	43	1	20	6.3	0.14	12
SED19003	S	46	1	19.8	19	0.39	12
SED19003	S	46	2	19.8	19	0.39	12
SED19103	С	39	1	14.8	2.44	0.1	12
SED19203	° C	39	3	15.8	2.7	0.1453	12
SED19203	C	39	4	15.8	2.7	0.1453	12
SED19203	S	43	1	19.8	6	0.2859	12
SED18903	C	36	5	15	2.2	0.13	13
SED18903	S	50	1	7	3.8	0.2	13
SED18903	S	50	3	7	3.8	0.2	13
SED19003	S	46	3	19.8	19	0.39	13
SED19203	C	R308	4	18.9	11	0.388	13
EVCHEM	С	PS-04	:5	8.7	7.4	0.3	. 14
SEAJUN82	С	J-75E	J75EUA	23.0769231	2.1	0.1	14
SED18903	S	50	5	7	3.8	0.2	14
SED19003	C	32	2	20.4	7.5	0.22	14
SED19003	S	R103	1	20.5	8	0.5	14
SED19003	S	R103	3	20.5	8	0.5	14
SED19103	C	39	3	14.8	2.44	0.1	14
SED19103	S	47	4	21.5	9.4	0.3	14
SED19203	С	R301	1	22.1	5.9	0.2959	14
EVCHEM	С	PS-03	1	9.1	8	0.4	15

Appen	dix 1. St	ations and	samples mal	king up the C	)-20% fines c	ategory for S	wartz's dom	inance index.
SU	RVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI20
SE	D18903	N	6	1	20	7.1	0.2	15
	D18903	Ċ	27	5	20	3.2	0.12	15
	D18903	č	36	1	15	2.2	0.13	15
	D18903	S	46	1	22	-9.5	0.42	15
	D19003	Ĉ -	32	3	20.4	7.5	0.22	. 15
	D19003	č	69	1	32.4	15	0.47	15
	D19103	č	39	2	14.8	2.44	0.1	15
	D19103	č	39	5	14.8	2.44	0.1	15
	D19203	č	39	1	15.8	2.7	0.1453	15
	D19203	S	44	1	20.5	17.9	0.519675	15
	AJUN82	Č .	E-75E	E75EUA	23.0769231	3.5	0.2	16
	D18903	Ň	6	3	20	7.1	0.2	16
	D18903	Ċ	32	• 3	20	7.23	0.17	16
	D19003	Č	32	1	20,4	7.5	0.22	16
	D19003	S	R103	2	20.5	8	0.5	16
	D19203	Č	36	1	17.7	2.3	0.2236	16
	D19203	č	R301	3	22.1	5.9	0.2959	16
	AJUN82	c	E-50W	E50WUA	15.3846154	5.7	0.2	10
	AJUN82	C.	N-75W	N75WUA	23.0769231	3.3	0.1	17
	D18903	C	16	3	20.0707251	3.9	0.18	17
	D18903	c	37	5	20	5.9	0.21	17
	D19103	S	47	5	21.5	9.4	0.21	. 17
	ED19203	C	69	4	35.4	18.1	0.4569	17
	ED18903	N	6	5	20	7.1	0.4507	18
	D18903	C	27	3	20	3.2	0.12	18
	ED19003	s	47	1	19.5	12	0.32	18
	ED19203	C	69	2	35.4	18.1	0.4569	18
	ED18903	c	32	. 5	20	7.23	0.4505	18
	ED18903	s	46	5	20	9.5	0.42	19
	ED19003	S S	47	2	19.5	12	0.32	19
	ED19203	C ²	15	3	19.4	5.2	0.2149	19
	ED19203	· Č	15	4	19.4	5.2	0.2149	19
	ED19203	č	R301	4	22.1	5.9	0.2959	19
	ED19003	s	44	1	19.5	14.5	0.2755	20
	ED19003	C	69	2	32.4	14.5	0.47	20
	ED19103	Š	47	1	21.5	9.4	0.3	20
	ED19203	Č	15	2	19.4	5.2	0.2149	20
	ED19203	S	47	3	19.5	13.2	0.5249	20
	ED19203	č	69	1	35.4	18.1	0.4569	20
	EAJUN82	c	D-50W	D50WUC	15.3846154	6	0.4505	20
	EAJUN82	č	H-75W	H75WUA	23.0769231	5.4	0.05	21
	ED18903	č	15	1	20.0707291	8.22	0.24	21
	ED18903	c	16	1	20	3.9	0.18	21
	ED18903	č	28	5	20	4.9	0.15	21
	ED18903	S	28 46	3	20	9.5	0.13	21
	ED18903	C >	40 27	- 1	20	3.2	0.42	21
	ED18903	c	31	5	20	1.7	0.12	22
	ED19003	s	44	3.	19.5	1.7	0.15	22
	ED19103	S	47	2	21.5	9.4	0.31	22
	ED19203	C	27	2	21.3	2.6	0.1656	22
	ED19203	c	36	2 4	17.7	2.0	0.1036	22
	ED19203	c	31	. 4	22	2.3 1.7	0.2230	22
<u>ى</u>	10303	C	21	5	<i>LL</i>	1.7	0.13	. 40

Appendix 1. St	tations and	samples mai	king up the (	0-20% fines c	ategory for S	Swartz's dom	inance index.
SURVEY\$	REGION\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI20
SED19003	S	47	3	19.5	12	0.32	23
SED19003	C	69	3	32.4	15	0.47	23
SED19103	S	47	3	21.5	9.4	0.3	23
SED19203	С	27	4	20.7	2.6	0.1656	23
SED19203	С	36	2	17.7	2.3	0.2236	23
SED19203	С	69	3	35.4	18.1	0.4569	23
SEAJUN82	С	B-75W	B75WUC	23.0769231	5.3	0.3	24
SED18903	С	28	1	20	4.9	0.15	24
SED18903	С	31	1	22	1.7	0.15	24
SED19203	С	32	1	20.4	5.7	0.329525	24
SED19203	C	32	3	20.4	5.7	0.329525	24
SED19203	S	47	2	19.5	13.2	0.5249	24
SED18903	С	15	3	20	8.22	0.24	25
SED18903	С	16	5	20	. 3.9	0.18	25
SED19003	S	44	2	19.5	14.5	0.51	25
SED19203	C	32	4	20.4	5.7	0.329525	25
SED19203	С	36	3	17.7	2.3	0.2236	25
SED19203	С	37	1	21.2	3.2	0.1817	25
SED19203	S	44	2	20.5	17.9	0.519675	25
SED19103	S ·	44	2	21.5	17.1	0.5	26
SED19103	S	44	5	21.5	17.1	0.5	26
SED19203	С	27	- 1	20.7	2.6	0.1656	26
SED19203	С	27	3	20.7	2.6	0.1656	26
SED19203	С	32	2	20.4	5.7	0.329525	26
SED19203	S	47	1	19.5	13.2	0.5249	27
SED18903	C	37	1	20	5.9	0.21	28
SED18903	С	37	3	20	5.9	0.21	28
SED18903	С	15	5	20	8.22	0.24	29
SED19203	С	37	4	21.2	3.2	0.1817	30
SED19103	S	44	4	21.5	17.1	0.5	34
SED19103	S	44	3	21.5	17.1	0.5	37

4/9/1999

Appendix 1. Stations and samples making up the 20-50% fines category for Swartz's dominance index.

	1. Otadono	ana oampro	o making up	410 20-00701	intoo oatogoi	y ior onaid	_o dominano
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI50
	SED19103	18	4	19	41.8	0.6	2
	SED19103	18	1	19	41.8	0.6	- 3
	SED19103	18	5	19	41.8	0.6	3
	SED19103	18	2	19	41.8	0.6	4
	SED19103	18	3	19	41.8	0.6	4
	SED19203	18	1	19.1	42.8	1.3271	4
	SED19203	18	4	19.1	42.8	1.3271	4
	SED19203	18	2	19.1	42.8	1.3271	5
2000							
5	SED19103	R209	2	19.6	34	0.5	6
	SED19103	R209	4	19.6	34	0.5	6
	SED19103	R209	3	19.6	34	0.5	7
	SED19103	R209	5	19.6	34	0.5	8
	SED19203	18	3	19.1	42.8	1.3271	8
	SED18903	10	1	20	37.2	0.61	9
	SED18903	33	1	20	24.04	0.64	9
	SED18903	10	3	20	37.2	0.61	. 10
	SED18903	10	5	20	37.2	0.61	10
	SED18903	33	3	20	24.04	0.64	10
	SED18903	33	5	20	24.04	0.64	11
	SED19203	40	• 4	9.4	32.2	2.1687	11
	EVCHEM	SR-08	1	10.9	22.1	1.7	12
	SED19103	10	2	20.7	32.8	0.6	12
	SED19103	30	1	13.3	23.5	0.7	12
	EVCHEM	SR-08	2	10.9	22.1	1.7	13
	SED19203	30	3	13.3	36.3	1.0317	13
	SED19003	0033	1	19.8	34	1.1	14
	SED19003	R111	3	20.1	36	1.3	14
	SED19103	30	. 4	13.3	23.5	0.7	14
	SED19103	33	1	20.8	31.5	0.9	14
	SED19203	30	1	13.3	36.3	1.0317	14
	SED19203	30	4	13.3	36.3	1.0317	14
	EVCHEM	SR-08	3	10.9	22.1	1.7	15
	EVCHEM	SR-08	5	10.9	22.1	1.7	15
	SED18903	47	3	20	23.47	0.29	15
	SED19103	30	3	13.3	23.5	0.7	15
	SED19103	R209	1	19.6	· 34	0.5	15
	SED19203	30	2	13.3	36.3	1.0317	15
	SED19203	40	3	9.4	32.2	2.1687	15
	EVCHEM	SR-08	4	10.9	22.1	1.7	16
	SED19003	0033	3	19.8	34	1.1	16
	SED19103	10	3	20.7	32.8	0.6	. 16
	SED19103	30	2	13.3	23.5	0.7	16
	SED19103	30	5	13.3	23.5	0.7	16
	SED19103	69	4	34.4	21.4	0.6	16
	SED19203	40	2	9.4	32.2	2.1687	16
	SED18903	47	1	20	23.47	0.29	17
	SED18903	47	5	20	23.47	0.29	17
	SED19103	10	1	20.7	32.8	0.6	17
	SED19103	10	5	20.7	32.8	0.6	17
	SED19103	69	1	34.4	21.4	0.6	17
	SED19103	69	2	34.4	21.4	0.6	17

Appendix 1. Stations and samples making up the 20-50% fines category for Swartz's dominance index.

SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI50
SED19103	69	3	34.4	21.4	0.6	17
SED19203	40 .	1	9,4	32.2	2.1687	17
SED19103	33	3	20.8	31.5	0.9	18
SED19103	69	5	34.4	21.4	0.6	18
SED19003	0033	2	19.8	34	1.1	19
SED19003	71	· 2	6.1	46	1.4	. 19
SED19003	R111	1	20.1	36	1.3	19
SED19003	71	1	6.1	46	1.4	20
SED19103	10	4	20.7	32.8	0.6	20
SED19103	33	2	20.8	31.5	0.9	20
SED19103	33	5	20.8	31.5	0.9	20
SED19103	R206	2	19.4	35.6	0.8	20
SED19103	R206	5	19.4	35.6	0.8	20
SED19003	71	3	6.1	46	1.4	. 22
SED19103	R206	4	19.4	35.6	0.8	22
SED19103	33	4	20.8	31.5	0.9	23
SED19103	R206	1	19.4	35.6	0.8	24

ndix 1.	Stations	and sample	s making up	the 50-80%	fines catego	ry for Swartz	s dominance i
SU	RVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI80
SE	D18903	21	3	20	52.16	1.3	4
SE	D18903	21	5	20	52,16	1.3	4
SE	D18903	30	5	13	56.04	1.4	4
	D19103	70	1	6.5	67.2	3.2	4
	D18903	18	1	20	60.15	0.93	5
	D18903	18	3	20	60.15	0.93	5
	D18903	21	1	20	52,16	1.3	5
	D19203	21	2	21.7	62.2	1.2178	5
	D19203	21	3	21.7	62.2	1.2178	5
	D19203	41	2	19.1	75.1	1.1428	5
	D19203	41	3	19.1	75.1	1.1428	5
			~	17.1	15.1	1.1420	
SE	D19003	70	1	5.2	64	3.1	6
	D19003	70	3	5.2	64	3.1	6
	D19003	R105		14	75	2.2	6
	D19003	R105	12	14	75	2.2	6
	D19003	R105	2	14	75 75		. 6.
	D19003	70	2	6.5	67.2	2.2	
	D19103	70	3			3.2	6
	D19103	70 70	3 4	6.5	67.2	3.2	6
	D19103	70	4 5	6.5	67.2	3.2	6
				6.5	67.2	3.2	6
	D19103	R205	4 5	31.9	62.1	1.1	6
	D19103	R207 21		29.9	73.4	1.5	6
	D19203		4	21.7.	62.2	1.2178	6
	D19203	23	2 3	6:1	53	1.2331	6
	D19003	0030	2	13.3	62	1.4	7
		70 D205		5.2		3.1	7
	D19103	R205	1 3	31.9	62.1	1.1	7
	D19103	R205 R205	3 5	31.9	62.1	1.1	7
-	D19103			31.9	62.1	1.1	7
	D19103	R207	2	29.9	73.4	1.5	7
	D19203	21	1	21.7	62.2	1.2178	7
		23	4	6.1	53	1,2331	7
	D19203	41	1	19.1	75.1	1.1428	7
	D19203	70 70	2	7.2	66.5	2.1101	8
		70	35	7.2	66.5	2.1101	8
	D18903	18		20	60.15	0.93	9
	D19003	0030	1	13.3	62	1.4	9
		0030	2	13.3	62 57 7	1.4	9
	D19103	2	3	21.3	57.7	0.8	9
	D19103	R207	1 -	29.9	73.4	1.5	9
	D19103	R207	3	29.9	73.4	1.5	9
	D19203	23	3	6.1	53	1.2331	9,
	D19203	41	4	19.1	75.1	1.1428	9
	D19203	70	1	7.2	66.5	2.1101	9
	D19203	70	4	7.2	66.5	2.1101	9
	D19203	R303	1	14.5	76.8	1.2708	9
	D19203	R303	3	14.5	76.8	1.2708	9
	D19103	R205	2	31.9	62.1	1.1	10
	D18903	2	3	20	60.7	0.68	11
	D19103	2 D207	1	21.3	57.7	0.8	11
25	ED19103	R207	4	29.9	73.4	1.5	11

Appendix 1. Stations and samples making up the 50-80% fines category for Swartz's dominance index.

\ppendix	1. Stations	and sample	s making up	the 50-80%	fines categor	y for Swart	z's dominance	; ine
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SD180	
	SED19203	R303	2	14.5	76.8	1.2708	11	
	SED19203	R303	4	14.5	76.8	1.2708	11	
	SED18903	2	5	20	60.7	0.68	13	
	SED19203	71	· 1 .	6.1	53	1.2331	13	
	SED18903	8	3	21	65.77	3.9	14	
	SED19203	R302	2	20.6	.68.5	0.9448	14	
	SED18903	2	1	20	60,7	0.68	15	
	SED19103	8	<b>4</b> ·	22.1	63.7	2.9	15	
	SED18903	8	5	21	65.77	3.9	16	
	SED19103	-8	2	22.1	63.7	2.9	16	
· .	SED19103	71	4	7.1	55,8	1.2	16	
	SED19203	71	<b>4</b> • • •	6.1	53	1.2331	16	
	SED19103	8	3	22.1	63.7	2.9	17	
	SED19103	2	2	21.3	57.7	0.8	17	
	SED19103	71	3	7.1	55.8	1.2	17	
	SED19203	R302	1	20.6	68.5	0.9448	17	
	SED19203	R302	4	20.6	68.5	0.9448	17	
	SED19003	8	1	21.1	64	3.4	18	
	SED19003	8	3	21.1	64	3.4	18	
	SED19103	71	1	7.1	55.8	1.2	18	
	SED19103	71	5	7.1	55,8	1.2	18	
	SED19203	71	3	6.1	53	1.2331	18	
	SED18903	8	1	21	65.77	3.9	19	
	SED19203	8	2	21.1	71.8	2.2161	19	
	SED19203	71	2	6.1	53	1.2331	19	
	SED19103	8	1	22.1	63.7	2.9	20	
	SED19103	8	. 5	22.1	63.7	2.9	20	
	SED19103	2	5	21.3	57.7	0.8	20	
	SED19103	71	2	7.1	55.8	1.2	· 20	
	SED19003	8	2	21.1	64	3.4	21	
	SED19103	2	4	21.3	57.7	0.8	21	
	SED19203	8	3	21.1	71.8	2.2161	21	
	SED19203	8	4	21.1	71.8	2.2161	22	

Ap ndex.

Appendix 1. Stations and samples making up the 80-100% fines category for Swartz's dom	iominance index.
----------------------------------------------------------------------------------------	------------------

SURVEY	7\$ STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI100
SED190	03 R101	2	2.1	90	4	2
SED192	03 48	1	20.5	88.7	1.5201	2
SED190	03 R101	3	2.1	90	4	3
SED191	03 1	1	23.5	95.8	1.7	3
SED191	03 1	3	23.5	95.8	1.7	3
SED191	03 1	4	23.5	95.8	1.7	3
SED191	03 1	5	23.5	95.8	1.7	3
SED192		3	22,5	94.1	1.7421	3
SED192		4	22.5	94.1	1.7421	3
SED192		3	20.5	88.7	1.5201	
SED192		4	20.5	88.7	1.5201	3 3
SED190		2	22.5	97	1.8	. 4
SED190		3	22.5	97	1.8	4
SED190		2	19.1	92	1.5	4
SED190		2	11.2	· 86	2,8	4
SED190		1	22.7	91	2.5	4
SED190		2	22.7	91	2.5	4
SED190		. 3	22.7	91	2.5	4
SED191		2	23.5	95.8	1.7	4
SED191		1	22.5	94.1	1.7421	4
SED192		2	22.5	94.1	1.7421	4
SED192		2	20.5	88.7	1.5201	· 4
SED192		1	20.5	97	1.5201	5
SED190		2	21.1	93	1.8	5
SED190		1	19.1	92	1.5	5
SED190		3	19.1	92	1.5	5
SED190		1	20,0	92 92	2.2	5
SED190	·	3	20.0	92	2.2	. 5
SED190		3	20.0	97.6	2.2	5
SED191		4	25.4	97.6	2	5
SED191 SED191		5	21.1	91.4	1.5	5
SED191		3	21.1	89.8	2.3	5
SED191		5	21.3	89.8	2.3	5
SED191 SED192		1	21.5	93.1	1.1471	5
	05 12	1	21.1	73.1	1.14/1	
SED189	03 1	- 1	22.0	93.32	1.5	6
SED189 SED190		2	11.6	88	2.6	6
SED190		3	11.6	88	2.6	6
SED190		1	11.0	86	2.8	6
SED190		3	11.2	86	2.8	6
SED190 SED191		• 2	25.4	97.6	2.3	6
SED191 SED191		1	21.1	91.4	1.5	6
SED191 SED191		2	21.1	91.4	1.5	6
SED191 SED191		3	21.1	91.4 91.4	1.5	- 6
SED191 SED191		3	•		1.5	6
SED191 SED191			11.8	96.2 80 8	2.3	6
		1	21.3	89.8		
SED189		5	11.0	94.11	1	. 7
SED190		1	21.1	93 02	1.8	7
SED190		3	21.1	93	1.8	7
SED190		1	2.1	90 01 4	.4	7
SED191		4	21.1	91.4	1.5	7
SED191	03 48	2	21.3	89.8	2.3	7

ndix	1. Stations	and samples	making up	the 80-100%	fines catego	ry for Swar	tz's dominanc
	SURVEY\$	STATION\$	SAMPLE\$	DEPTHM	FINES	TOC	SDI100
	SED19103	48	4	21.3	89.8	2.3	7
	SED19103	R204	1	31.7	94.1	2.4	7
	SED19203	12	4	21.1	93.1	1.1471	7
	SED19203	49	3	4.7	88.1	2.1381	7
•	SED18903	1	3	22.0	93.32	1.5	8
	SED18903	1	5	22.0	93.32	1.5	8
	SED18903	20	1	11.0	94.11	1.5	8
	SED18903	20	3	11.0	94.11	1	8
	SED19003	0048	2	20.0	92	2.2	8
	SED19103	4	1	25.4	97.6	2.2	8
	SED19103	20	5	11.8	96.2	1	8
÷ 1	SED19103	R204	3 .	31.7	94.1	2.4	8
	SED19103	R204	4	31.7	94.1	2.4	8
	SED19103	R204	5	31.7	94.1	2.4	8
	SED19203	12	2	21.1	93.1	1.1471	· 8
	SED19203	12	3	21.1	93.1	1.1471	8
	SED19203	20	2	10.3	95.7	1.1471	8
	SED19203	49	1	4.7	88.1	2.1381	8
	SED19203	49	4	4.7	88.1	2.1381	
	SEAJUN82	QM-2	QM2UA	16.3	85	1.3	8
	SED19003	0020	1	10.3	97	1.5	9
	SED19003	R102	1	10.5	88	1.2 2.6	9
	SED19003	4	5	25.4	97.6	2.0	9 9
	SED19203	4	4	23.4 24.0	96.8	2.4931	9
	SED19203	5	1	24.0	90.8 94.8	1.9311	9
	SED19203	0020	2	10.3	97	1.9311	
	SED19103	5	1	20.2	95.6	1.2	10
	SED19103	5	2	20.2	95.6	1.8	10 10
	SED19103	5	5	20.2	95.6 95.6	1.8	•
	SED19103	R204	2	31.7	93.0 94.1	2.4	10
	SED19203	4	1	24.0	96.8	2.4931	10
•	SED19203	4	2	24.0	96.8	2.4931	10
	SED19203	5	3	24.0	94.8	1.9311	10 10
	SED19203	5	4	21.0	94.8 94.8	1.9311	10
	SED19203	20	1	10.3	95.7	1.0068	10
	SED19203	20	. 3	10.3	95.7	1.0068	10
	SED19203	20 49	2	4.7	88.1	2.1381	
	SED19203	0020	3	10.3	97	1.2	10
	SED19103	5	4	20.2	95.6	1.2	11
	SED19103	20	1	11.8	95.0 96.2		11
	SED19103	R203	2	12.5	90.2 98.7	1 1.7	11
	SED19203	4	3 ,	24.0			11
	SED19203	- 5	3	24.0	96.8 95.6	2.4931	11
	SED19103	20	2	20,2	95.6 96.2	1.8	12
	SED19103	20	2 4	11.8	96.2 96.2	1	12
	SED19103	20 5	4 2	21.0		1	12
	SED19203	20	2 4	10.3	94.8 95 7	1.9311	12
	17203	20	· ••	10.5	95.7	1.0068	12

Append nce index.

#### APPENDIX 2

## SUMMARY STATISTICS FOR REVISED REFERENCE VALUE RANGES

Appendix 2. Summary statistics for revised reference ranges.

27.0		) TOTAX80	TOTAX50	TOTAX20
N of cases	84	66	57	163
Minimum	22	32	39	37
Maximum	47	71 .	84	104
Range	25	39	45	67
Mean	32.488	53.121	64.614	68.466
0.95 CI Upper	34.011	55.359	67.578	71.261
0.95 CI Lower	30.966	50.883	61.651	65.672
Std. Error	0.765	1.121	1.479	1.415
Standard Dev	7.015	9.104	11.169	18.066
Variance	49.217	82.877	124.741	326.386
C.V.	0.216	0.171	0.173	0.264
	TOAB100	TOAB80	TOAB50	TOAB20
N of cases	85	68	61	164
Minimum	130	87	274	181
Maximum	507	564	756	789
Range	377	477	482	608
Mean	295.988	318.279	491.426	489.805
0.95 CI Upper	317.711	349.13	523.714	514.689
0.95 CI Lower	274.265	287.429	459.138	464.921
Std. Error	10.924	15.456	16.142	12.602
Standard Dev	100.712	127.453	126.07	161.382
Variance	10142.94	16244.383	15893.715	26044.146
C.V.	0.34	0.4	0.257	0.329
	0.00	<b>V</b> 11	Vela J I	0.342
	POTAX100	POTAX80	POTAX50	POTAX20
N of cases	POTAX100 76	POTAX80 69		POTAX20 168
N of cases Minimum			58	168
	76 9	69 14	58 22	168 15
Minimum Maximum	76 9 25	69 14 39	58 22 53	168 15 57
Minimum Maximum Range	76 9 25 16	69 14 39 25	58 22 53 31	168 15 57 42
Minimum Maximum Range Mean	76 9 25 16 15.474	69 14 39 25 28.217	58 22 53 31 38.052	168 15 57 42 33.714
Minimum Maximum Range Mean 0.95 CI Upper	76 9 25 16 15.474 16.466	69 14 39 25 28.217 29.674	58 22 53 31 38.052 40.153	168 15 57 42 33.714 35.345
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower	76 9 25 16 15.474 16.466 14.482	69 14 39 25 28.217 29.674 26.761	58 22 53 31 38.052 40.153 35.95	168 15 57 42 33.714 35.345 32.083
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error	76 9 25 16 15.474 16.466 14.482 0.498	69 14 39 25 28.217 29.674 26.761 0.73	58 22 53 31 38.052 40.153 35.95 1.049	168 15 57 42 33.714 35.345 32.083 0.826
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	76 9 25 16 15.474 16.466 14.482 0.498 4.34	69 14 39 25 28.217 29.674 26.761 0.73 6.063	58 22 53 31 38.052 40.153 35.95 1.049 7.992	168 15 57 42 33.714 35.345 32.083 0.826 10.707
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	76 9 25 16 15.474 16.466 14.482 0.498 4.34	69 14 39 25 28.217 29.674 26.761 0.73 6.063	58 22 53 31 38.052 40.153 35.95 1.049 7.992	168 15 57 42 33.714 35.345 32.083 0.826 10.707
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V.	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166 82.674	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209 148.265	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286 220.949	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355 183.187
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166 82.674 91.966	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209 148.265 162.059	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286 220.949 242.132	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355 183.187 197.778
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Upper 0.95 CI Lower	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166 82.674 91.966 73.383	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209 148.265 162.059 134.471	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286 220.949 242.132 199.767	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355 183.187 197.778 168.596
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Upper 0.95 CI Lower Std. Error	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166 82.674 91.966 73.383 4.673	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209 148.265 162.059 134.471 6.911	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286 220.949 242.132 199.767 10.582	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355 183.187 197.778 168.596 7.386
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166 82.674 91.966 73.383 4.673 43.336	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209 148.265 162.059 134.471 6.911 56.989	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286 220.949 242.132 199.767 10.582 81.284	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355 183.187 197.778 168.596 7.386 91.954
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Upper 0.95 CI Lower Std. Error	76 9 25 16 15.474 16.466 14.482 0.498 4.34 18.839 0.281 POAB100 86 22 188 166 82.674 91.966 73.383 4.673	69 14 39 25 28.217 29.674 26.761 0.73 6.063 36.761 0.215 POAB80 68 34 243 209 148.265 162.059 134.471 6.911	58 22 53 31 38.052 40.153 35.95 1.049 7.992 63.874 0.21 POAB50 59 96 382 286 220.949 242.132 199.767 10.582	168 15 57 42 33.714 35.345 32.083 0.826 10.707 114.636 0.318 POAB20 155 47 402 355 183.187 197.778 168.596 7.386

Appendix 2. Summary statistics for revised reference ranges.

	3100013710	A 3 6000 + 370A	1.000.2224	
N of cases		0 MOTAX80	MOTAX50	MOTAX20
Minimum	85 5	68	55	161
Maximum	14	6	8	10
•		19	18	23
Range Mean	9	13	10	13
	9.059	13.235	12.691	16.199
0.95 CI Upper	9.637	14.13	13.404	16.75
0.95 CI Lower	8,481	12.34	11.978	15.648
Std. Error	0.291	0.448	0.356	0.279
Standard Dev	2.679	3.698	2.638	3.539
Variance	7.175	13.675	6.958	12.523
C.V.	0.296	0.279	0.208	0.218
	MOAB100	MOAB80	MOAB50	MOAB20
N of cases	82	69	53	160
Minimum	11	9	37	30
Maximum	116	382	219	216
Range	105	373	182	186
Mean	58.024	98.58	89.585	80.65
0.95 CI Upper	64.129	120.092	103.175	
0.95 CI Lower	51.919	77.067	75.995	87.484
Std. Error	3.068	10.781	6.772	73.816
Standard Dev	27.785	89.552	49.304	3.46
Variance	771.999	8019.541	2430.863	43.767
C.V.	0.479	0.908		1915.512
0.11.	0.475	0.700	0.55	0.543
	CRTAX100	CRTAX80	CRTAX50	CRTAX20
N of cases	91	67	57	159
Minimum	3	3	4	5
Maximum	7	11	16	19
Range	4	8	12	14
Nango				
Mean	4.89	7	10.404	12.107
Mean	4.89		10.404 11.195	12.107 12.667
		7.579	11.195	12.667
Mean 0.95 CI Upper	4.89 5.174 4.607	7.579 6.421	11.195 9.612	12.667 11.547
Mean 0.95 CI Upper 0.95 CI Lower	4.89 5.174 4.607 0.143	7.579 6.421 0.29	11.195 9.612 0.395	12.667 11.547 0.284
Mean 0.95 CI Upper 0.95 CI Lower Std. Error	4.89 5.174 4.607 0.143 1.362	7.579 6.421 0.29 2.374	11.195 9.612 0.395 2.981	12.667 11.547 0.284 3.575
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	4.89 5.174 4.607 0.143 1.362 1.854	7.579 6.421 0.29 2.374 5.636	11.195 9.612 0.395 2.981 8.888	12.667 11.547 0.284 3.575 12.78
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance	4.89 5.174 4.607 0.143 1.362	7.579 6.421 0.29 2.374	11.195 9.612 0.395 2.981	12.667 11.547 0.284 3.575
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V.	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80	11.195 9.612 0.395 2.981 8.888	12.667 11.547 0.284 3.575 12.78
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60	12.667 11.547 0.284 3.575 12.78 0.295
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154 52.911	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112 109	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189 181 102.633	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261 242
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154 52.911 62.076 43.747	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112 109 39.338	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189 181 102.633	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261 242 118.075
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154 52.911 62.076	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112 109 39.338 46.692	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189 181 102.633 117.108	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261 242 118.075 128.482
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154 52.911 62.076 43.747	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112 109 39.338 46.692 31.985	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189 181 102.633 117.108 88.159	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261 242 118.075 128.482 107.667
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154 52.911 62.076 43.747 4.603 40.914 1673.979	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112 109 39.338 46.692 31.985 3.681 29.675 880.634	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189 181 102.633 117.108 88.159 7.234	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261 242 118.075 128.482 107.667 5.27
Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev Variance C.V. N of cases Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	4.89 5.174 4.607 0.143 1.362 1.854 0.278 CRAB100 79 5 159 154 52.911 62.076 43.747 4.603 40.914	7.579 6.421 0.29 2.374 5.636 0.339 CRAB80 65 3 112 109 39.338 46.692 31.985 3.681 29.675	11.195 9.612 0.395 2.981 8.888 0.287 CRAB50 60 8 189 181 102.633 117.108 88.159 7.234 56.031	12.667 11.547 0.284 3.575 12.78 0.295 CRAB20 161 19 261 242 118.075 128.482 107.667 5.27 66.869

Appendix 2. Summary statistics for revised reference ranges.

	ITI100	ITI80	IT150	IT120
N of cases	101	83	65	183
Minimum	54	52	66	60
Maximum	96	84	84	88
Range	42	32	18	28
Mean	77.198	70.229	71.585	74.377
0.95 CI Upper	79.159	71.758	72.99	75.355
0.95 CI Lower	75.237	68.7	70.18	73.399
Std. Error	0.988	0.769	0.703	0.495
Standard Dev	9.934	7.004	5.67	6.703
Variance	98.68	49.057	32.153	44.928
C.V.	0.129	0.1	0.079	0.09
. •	SDI100	SDI80	SDI50	SDI20
N of cases	64	SDI80 70	SD150 60	SDI20 163
Minimum				
Minimum Maximum	64	70	60	163
Minimum	64 6	70 6	60 6	163 6
Minimum Maximum Range Mean	64 6 12	70 6 22	60 6 24	163 6 30
Minimum Maximum Range	64 6 12 6	70 6 22 16	60 6 24 18	163 6 30 24
Minimum Maximum Range Mean	64 6 12 6 8.516	70 6 22 16 12.186	60 6 24 18 15.133	163 6 30 24 15.276
Minimum Maximum Range Mean 0.95 CI Upper	64 6 12 6 8.516 8.978	70 6 22 16 12.186 13.441	60 6 24 18 15.133 16.218	163 6 30 24 15.276 16.268
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower	64 6 12 6 8.516 8.978 8.053	70 6 22 16 12.186 13.441 10.93	60 6 24 18 15.133 16.218 14.048	163 6 30 24 15.276 16.268 14.284
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error	64 6 12 6 8.516 8.978 8.053 0.231	70 6 22 16 12.186 13.441 10.93 0.629	60 6 24 18 15.133 16.218 14.048 0.542	163 6 30 24 15.276 16.268 14.284 0.502 6.411
Minimum Maximum Range Mean 0.95 CI Upper 0.95 CI Lower Std. Error Standard Dev	64 6 12 6 8.516 8.978 8.053 0.231 1.852	70 6 22 16 12.186 13.441 10.93 0.629 5.265	60 6 24 18 15.133 16.218 14.048 0.542 4.2	163 6 30 24 15.276 16.268 14.284 0.502

## **APPENDIX 3**

### SUMMARY RESULTS OF NUMERICAL COMPARISONS AND STATISTICAL TESTS BY STATION AND HABITAT CATEGORY

.

	Ŀ	Π	Γ	Π	η	1	1	Ţ	-	T	Т	T	T	T	Т	Ţ	Т	Т	Т	Г	ŀ	ľ	Γ	Π	T	1		T	Т	Т	Γ	Γ	Γ		T	Т	T	T	Т	Ϊ.	Π	T	T	Т	T	Τ	Ţ	Г	Π	Π		П	Π	Т	Т	7
No.	95th		X					×	×)*		< +	^ _	<>	<b>^</b>	<b>^</b>		×	(×		×	×	×	×	×			}	<		×		×		×	×	Ŷ	<>	×	×	×			×	×	:×	:	×	×	×		×	×	×:	×'n		<
	Ref	Range	Х					×	×	~>	<					<>	:×			×		×		×						×		×				2	<>		X	×			×	X			×	×	Π		X		÷	×	<	
	1/2 Ref	Mean						×	,	~					>	<				×	ľ	×		X						×		×								×																
APPART OF	t-test		×					~	<);				Ņ		,	<×	×			×		×		X			T			×		×		×		Ŷ	< *	×	×	×				×			×	×			×		X	×	$\Rightarrow$	<
	t-test		0.028	0.086	0.009	0.159	0.300	800	0.023	0.00		007.0	0.00	0.054			00000	0.484	0.003	0000	0.248	0,000	0.443	0.039		0.0271	0.001	0.000	1004	0.000	0.011	0,000	6000	0.017	0.208	1000		0.028	0000	0.007	0.004		0.428	0.001	0.052	0.643	0.002	0.000	0.119	0.764	0.004	0.313	0.009	0.048	100.0	1070'0
	to reference	meen	DEP	ENH	ENH	ENH	ENH	DEP 430					1020			DFP	050	DEP	HNB	DEP	DEP	DEP	DEP	DEP		ENH		ENH	FNH	DEP	ENH	DEP	ENH	DEP	DEP		UED DED	DED	DEP	DEP	ENH			DEP	DEP	ENH	DEP	DEP	DEP	ENH	DEP	DEP	DEP	DEP		
3170172101210	LCL to		31.0	31.0	31.0	31.0	31.0	60 <u>9</u>	A:00	20.8	A'00	800	50.0	0.02	0.02	16.05	50.9	50.9	81.8	61.6	81.6	61.6	61.6	61.6		31.01	010	31.01	31.01	31.0	31.0	31.0	61.6	<u>85.7</u>	65.7	03.7	86.7	85.7	65.7	65.7	65.7		31.0						50.9							
ALC: NO.	ange		39.6	39.6	39.6	39.5	39.5	62.2	7.20	12.20	27.20	02.2	82 5	10 CB	22.2	62 5	62.2	62.2	75.8	75.8	75.8	75.8	75.8	76.8		39.01	10.90	39.51	39.6	39.5	39.5	38.5	75.8	88.6	88.6	0.00	RA A	88.81	66.61	86.6	88.6		2'82	39.5	39.5	39.5	39.5	62.2	62.2	76.8	76.8	75.8	88.6	80.6	00.0 I	00.00
1.050500	Reference Renge		25.5	25.5	25.5	25.6	25.5	40.44	10.45		0.25	0.24		0.44		10 77	44.0	44.0	53.4	53.4	53.4	53.4	53.4	53.4	4	20.0	22.0	25.5	25.5	25.6	25.6	25.6	53.4	50.4	50.4	50.4 F.0.1	50 A	50.4	60.4	60.4	50.4		20.02	25.5	25.5	25.6	25.5	44,0	44.0	53.4	53.4	53.4	50.4	50.4 50.4	1 20.4	1255
1.88 V. 10 24	STD				1	ſ		<del></del>		ł					l						11.2	1				0.7	0.5	10.4	7.0	20.2	7,0	7.0	11.2	18,1	18,1	1.01	19.1	18.1	18.1	18.1	18.1		2	1.0	7.0	0.2	10.7	9.1	9.1	11.2	11.2	11.2	18.1	18.1	10.1	2.1.2
	Ref	Mean	32.5	32.5	32.5	32.5	32.5	53.1	02.7	20.1	1.00	59.1	1.02	53.1	1.53	53.1	53.1	63.1	64.8	64.8	64.6	64.6	64.6	64.6		32.5	30.20	30.61	32.5	32.6	32.5	32.6	64.8	68.5	68.5	00.00	68.61	68.5	68.5	68.5	89.6	1.00	32.0	32.5	32.5	32.6	32.6	53.1	63.1	64.6	84.61	64.61	68.5	59.51	200.01	17:00
14.14.14.14	Station	Value	24.8	44.0	45.7	36.0	40.0	16.0	40.2	000	0.04	20.0	0.74	NOT S		18.01	31.01	48.7	80.01	11.0	61.2	32.0	59.4	. 32.0		44.2	10.05	53 7	50.0	24	50.8	9.5	89.88	53.4	29.01	10.20	ABA	51.7	43.0	31.0	90,2		20.0	21.8	29.7	40.2	22.01	38.0	45.6	85.4	52.21	55.3	52.81	48.21	1205	1722
	Station		KG-01	SS-04	2	406	606	EW-04	11-W-11	200	07-11	00-11	441.44	AAA. 1.2	111104	W.07	-W-10	612	<b>\B-01</b>	W-05	4H-02	VH-04	W-14	603		PS-01	0		V	208R	4	305R	3	1H-01	S-04	ZL M	to SU SU		2	112R	2		WP	NS-08	8			-	2	S-03	S-02		PS-03	10-01	6400	-
	Survey			- 1	- 1	- 1	- 1	EBCHEM			ł	-		1			Ł	1	1	Ł	Ł			1	Т		Т	Т	ED10103 R	Т		1		1		1		1			SED19103 0.	-		T	Г	101	1	ED18903 B5	SED19103 35							
	Habitat					Т	T	8	Т	Т	T	Т	Т	Т	Т	Т	1	T	1	1-	1	1		1																		-	18 81			1			80 SE				1		E	
	Chemistry		>cal and bast																							>cs! but <bset< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>&gt; sqs but cest &gt;baet</td><td>bene hud</td><td>scaland bast</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></bset<>																-	> sqs but cest >baet	bene hud	scaland bast										-	-

Page 1

BMAT808.WK4

<i></i>		1	T	1		-7	T	Т	T	т		т	T	T	7-	T	T	<b>.</b>	ŗ	1	(***)	ŕ				-7	-7	-1	Ť	÷	<del></del>		- <b>T</b>	-	1	<u> </u>	7	<b>,                                    </b>		r					7	r -	· · ·		,  1	<b></b>		<del></del>			- <b>-</b>	<b>γ</b>	<b></b>
	95th						·			<:					×	×				×				×						,	<	^	<					×		×	X		~~~~~					x					X			-	×
	Ref	Renge							>	<					• *	×				×										Ŷ	<		~			A.					X			ŀ				×					×				X
	1/2 Ref	Mean								<					×	<b>×</b>				×										Ŷ	<		<								×							×									X
	t-test								^	<b>~</b>					×	×				×							:			>	<	,	<							×	×							×				- i	×				×
	t-test		0.004	0.175	0.002	0.445	0,005	01010		2000	0000	0.018	0000	00000	0000	0000	0.007	0.341	0.005	0000	0.198	0.050	0.649	0.711		0.050	1200			0000		12000		0.768	0.104	0.025	0.101	0.221	0.006	0.038	0.003	108'0	10070	0747	0.771	0.710	0.001	0.000	0.369	0.036	0.003	0.0081	0.027	CRO'N	0.001	0.819	0.0141
us de la subra de la subra de subra de la subra de La subra de la s	to reference	meen	ENH	ENH	ENH	ENH	ENM	ENH			HNS	ENH	ENH ENH	ENH			ENH	ENH	ENH	DEP	ENH	ENH	ENH	DEP		HN	ENH							ENH	ENH	ENH	ENH	DEP	ENH	DEP	DEP	HNI	ENH		DEP	DEP	ENH	DEP	ENH	ENH	H	ENH			ENH HUB	DEP	DEP
ALL	LCL 1		274.3	274.3	274.3	274.3	2/4.3	287.4	4.702	201.4	287 4	287.4	287.4	287.4	10.04	287.4	287.4	287.4	459.1	459.1	459.1	458.1	459.1	458,1		274.3	274.3	214.0	214.0	614.0	6.4.2	6.4.0	214.0 450.4	AAA O	ARA Q	484.9	484.9	484,9	464.9	464.9	464.9	464.9	574 2	212	274.3	274.3	274.3	274.3	287.4	287.4	459.1	459.1	459.1	404.8 ABA.0	484.9	464.9	464.9
1997 (P. 1997)			396.7	396.7	396.7	386.7	386.7	445.7 287.4	1.094	440.7	440.7	146.7	145.7	1467	148.7	445.7	445.7	445.7	617.5	617.5	617.5	617.5	817.5	017.6	•	396.7	396.7	200 2 217.3	1000	1.900	1.000	380.4	1.025	654.3	A61.0	851.2	651.2	851.2	851.2	651.2	651.2	651.2	308 7 574 3	17000	396.7	396.7	396.7	396.7	445.7	445.7	617.5	617.61	617.0	001.21	651.2   464.9	051.2	651.2]
and the second second	STDEV Reference Range		195.3	185.31	195.3	195.3	195.31	190.9	18,082	8.041		0,001	10/01	1000	0.001	100.0	190.91	190.9	365.3	365.3	305.3	365.3	365.3	365.3		195.3	195.31	180.31	IC SOF	0.001	12020	180.01	10700	1 4 906	1 A ACE	328.4	328.4	328,4	328.4	328.4	328.4	328.4	105.91	127001	195.3	195,3	195.3	185,3	190.91	190.9	365.3	365.31	365.31	328.41	328.4	328,4	328.4
	STDEV							127.4	ł	ļ		ł														100.7	100.7	1001	1.001	1 COOL	1001	1.001	7.ML	12121	181.4	181.4	181.4	161.4	161.4	161.4	161.4	161.4	1001	1101	100.7	100.7	100.7	100.7	127.4	127.4	126.1	128.1	128.1	101.4	161.4	161.4	161.4
ALC: NO	Ref	Mean						318.3	ļ					I												296.0	296.0	290.0	0.027	0.000	0.082	0'092	1.082		480.8	499.8	489.8	489.8	489.8	489,8	489.8	489.8	0.000	1000	298.0	296.0	296.0	296.0	318.3	318.3	491.4	491.4	491.4	0.849.	489.8	489.8	489.8
ALLEY ALLEY	Station	Meen	1220.8	1100.2	350.0	333.0	841.0	2067.6	1984.4	32.2	0.789	0.140	0'8C)	20000	0.8622	140.4	1257 8	426.0	843.4	103.2	585.4	897.4	654.8	365.7		515.8	489.7	2/1.3	7170	0.0101	0.021	5.9X8	0.78	0.400	575 0	1798.0	537.2	441.8	654.3	404.7	166.0	485.0	0.904	28	277.2	277.3	573.2	140.4	645.3	628.6	845.41	722.6	353.01	10.9UC	915.4	482.0	229.3
	Station		KG-01	SS-04	12	1408	1606	EW-04	EW-11	00-HN	80-HN	00-11	VWV-US	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P1-4444	EVI-01	EW.10	1512	AB-01	EW-05	NH-02	NH-04	EW-14	1603		PS-01	4	8		54	IZUBR	4	SUDH	101	10-04	EW19	NG-04	PS-02	0	ñ	112R	22		-W-1	NS-08	48	1	49	5	<u>65</u>	VS-03	PS-02	0	S-03	NG-03		<b>B9</b>
	Survey					- ł		EBCHEM					-	1	- E		1	1	i –	Ł	1	1			1		ED18903	SED18903	E019003	ED18103	ED19103	- 1		- L					E 1		÷		0144		1	1	£							-	EVCHEM I	2.1	
	Habitet	T					1	80	- 1				t		- 1		5	1	1	1	1					1 1	1	100 1	ł			1		1	1	Į.	20		ŧ		ŧ		- 907	Т	1	1	E	ŧ	1				- 1		20 20 20 20	1	E I
	Chemistry	T	>csi and baet																							scil but chaet																		>195 but <csi,>bset</csi,>	SAAR MIR	cel and bast											

Page 1

١,

08/30/97

		J	T		T	T	Ţ	Τ	Т	1	-		Γ	Γ	T	T		Т	T	Γ	Ī	Т	T	Т	Ţ	Т	Т	T	Т	Т	Γ	Т	Ť	Т	Т	Т	Т	Т	Т	[	Т	Т	T	1	Т	T	Г	T	Τ	1	M	m		Т	Т	Т	Ţ	7	Т	Г
		Ĩ				+		× ;	×	×	×					×	× 	:  ×	:×		×		^ +	  -	<>					-	-		<b>\</b>	^ _	<			þ	<	×	×;	<:	×	×		×		×			×	×			×	×	×'n	×>	Ŷ	:×
	Ref	Range					;	×		×						×	×	×			×		,	~	<>	~						>	<	,				>	\$	×	×			×		×		×			×				×			>		×
NAMES AND	1/2 Ref	MBBN						×		×						×	×	×			×		×		,	<						<u>``</u>	<					<b>,</b>	~					×		×						-						T	Ť	
	t-test						,	~	;	×						×	×	×		-	×		×		† *				-			,		  >			-+-	- <del> </del> -  >	$\diamond$		+ v	+	+	ł				×		-	×			-+	×	+	×		- <	×
	t-test	1.04.0	197.0	1000	0000	0.109	0.1891	0,000	700.0	0.000	0.0821	0.857	0.559	0.889	0.022	0.000	0.000	0.000	0.657	0.032	0000	0.437	0000	0.026	13000	- con-n	0000	10000	10200	0.001	0.013		200	2000		2020	2020	01000		0000	12770	0.143	0.000	10000	120.70	0.130		0.002	0.858	0.014	0.003	0.106	0.684	0.482	0.000	0.302	1000	0.200	0.039	0.035
LARVER AND	to reference	11001	UEL							OEP	0EP	ENH	DEP	DEP	ENH	DEP	DEP	DEP	DEP	ENH	DEP	DEP	DEP	DEP.						ENH	ENH	DED	UNH I		ENH BNH						DED					DEP		)EP	NH I	HN	ЩР Н	DEP	DEP							EP
CEALER	LCL to	1317	14.0	11 11	2.1.5	24.6	2000	0.02	0.07	20.6	26.8									l		1											1	Ł	ł			I.	t	1	32.1	l	ł			14.5														32.1 D
	-	10 0	0.01	10.0	0.01	10.01	10.01	2.50	0.10	24.3	34,3	34.3	34.3	34.3	34.3	34.3	34.3	34,3	34.3	48.0	46.01	48.0	46.0	46.0	0 01	12005			I												44.4			ł		19.8							34.3				ŀ.			
	Reference range	44.0	14.5	111			1 1 1 1	25.1	1.90	1.22	22.1	22.1	22.1	22.1	22.1	22.1	22.1	22.1	22.1	30.0	30.01	30.0	30.0	30.0	0.05	202												1			10.02					11.2							22.1		ľ					
	STDEV Refe	12	10	2 4 4	Der.	2.0	2 4	1.0	100	1.0	0.1	6.1	6,1	6,1	6.1	8.1	6.1	6.1	6.1	8.0	8.0	80	8.0	8.0	D B		l														10.5					4.3							6.1							
	STI STI	15.5	12.0	15.5	14.0	1 K K	202	6 86	7.07	7.07	29.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	2.8	18.0	0.8	0.8	18.0	8.01	0.8	-	Į						}								00 1					16.6							28.2			ľ				
	┢	a	1	. 1	1	ł.	F	6 10		1	1	- 1	ł	- 1				1			1	Ł	Į.		Ł	Ŧ						ŀ										ł			ł															
	Station	14	Ċ	3)¥					4		5	58	27	28	31		5	10	25	46	2	36	16	28	<u>}</u>		56	00	15	27	31	-	30	8	200	36	200	\$¦⊈	51	28	22.4	10		20		7.0		Ъ,	15.	21.	0	23.0	27.4	10	717	120	28.	17.6	24.7	20.3
	Station	KC-D4	10.00	5 65	1 Area	1908	CINIDA	EW-11	111 10		80-UN	SS-11	60-WW	WW-11	WW-14	EW-01	EW-07	EW-10	612	AB-01	EW-05	VH-02	VH-04	W-14	603	~~~	05.01		đ		4	208R	4	058	3	10-HI	10-3	W. 19	100	50.00	Love AD		120	1120		QM-1		NS-08						22-0	246	w.	S-M	NG-03		
	Survey		Ŧ	1	1		1	COCHEN			1	- 1	- 1	- 1							Ĺ		1	1		Ī	1	T	Τ,	Ŧ	D19103 B	Τ.		Ł		1			÷.	1	CELABORA M					EA1 C	1	- 1	- 1	•	D19103 49	- 1	SED19103 30	1		1	1		1	<b>518003 B</b> B
	Habitat			1	Τ	T	ſ			Т	Т	Τ	1						_	-	1	F	-	Î	Ť	╋															20 64					100 SE			- 1	•	-	- 1	- F	1		1				20  SE(
	Chemistry	Verland Post	THEO BUT INC.																								A new bud about																			>sqs but <csl.>baet</csl.>			<csi and="" bast<="" td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></csi>				+							

Page 1

26/06/80

BMAT808.WK4

12	1.7	7			T	-T	-7	Т	<b>~</b> T		~~7		-	r	T	T	T	<del>1</del>	1-	<b>T</b>	<b>T</b>	T	<del></del>	•	·	т	-T-	~~~	- <b>T</b>	~~7			r	r		<b>۲</b>	T	<b>.</b>		7		_	T	1	-	<b>}</b>		r	-7						-r			····		~	- <del></del>	'n
	Ref Max		×,>	<					×		×		×	×	×			×	<u> </u>	×			>	-					×		X	×		×	_												×						×	×								
	95th	S	×				×	x	×		×	×	×	×	×			×	ļ	×			×	ç			,	×	Ý		×	×	×	×	×	×	×					7			×		X		×		×		×	×	:	X						
	95th	3			ĥ	Y				×						×	×		×		×			Ŷ	Ş														×	X	¢	¢.	X	×											×	,	Ş	<	×	×	×	
	High Ref	Renge	Ŷ	Ŷ				Ş	×		×	×	×	×	×			×		×		À	<u>}</u>				,	<	<		×	×	×	×		×	×					×					×	;			~		×	×	-	×				ļ		
	Low Ref	-								×						×					×	-		T	 >				+										×				×			-									+				×		×	
THE REAL	2x Ref	╉	† ~			-	-	+ \$	×	-	×		×	×	×	-		×	-				×		+-		<b>,</b>	÷			×	×		X					T		÷	×					×			i		-	×	+	+							
1997 Star	t-test	╡	$\Rightarrow$	$\downarrow$			-	+ ×	×			×	×	×	×		.	×	-	×		-  >	Ş	4			_		-		×	×	×												×					+	×		ļ	-+	+					┢		
averkas resolutions and the second states are an end of the transformed and the second states are the second st 	lest		0.002		00070	U.449	0.284	0.002	0.002	0.00	0.082	0.017	0.003	0.000	0.000	0.001	00000	0.022	0.681	0.014	0000	0000	0.011	0.184		5	0000	0.188	0.030	0.003	0.005	0.018	0.003	0.052	0.584	0.081	0.062	0.811	1000	0000	2000	0.082	0000	0.135	0.032	-	0.051		0.345	0.563	0.004	11/0	0.498	0.184	0000	0.087	0.037	0.960	0.070	1000	0.011	
AEENIZAN Ive	ence (					-				-	Ŧ	H	H		H				-		- -	-	-	-0			+					-		-	•	~	-					_												-								
COMPACES Reist	to refer			1	1			1											l					Ł								1										ľ			ENH ENH		C ENH	1												1		
0024175	ซก	1	82.0	1		I					ł						1	L			L		ł					ļ				1						ŀ					1		197.8		92.0											197.8		Ł		
STRAND TO	ror	ł	13.4			1	1		1								Į.	Ł		Ł		L					l														ł		Į		168.6		73.4											169.0	1			ļ
ALC: NO	Ref			1		_E			1					I	Ł	ŧ.	Ł	Ł		E.		1	÷.		1				1	1								1			1		L		402.0		188.0	F		ł	-	1	- 1	- 1	-		÷	402.0				
	Renge		126.0														l																								ļ				276.2		128.0														275.2	ļ
	Reference		38.4						ļ										l	•				ľ		l																			912		39.4		* 85	38.4	4.82	39.4	91.3	91.3	139.6	139.6	138.5	01.5	01.0	91.2	91.2	
	STD		43.3	43.3	43.3	43.3	43.3	57.0	57.0	57.0	67.0	57.0	57.0	57.0	57.0	57.0	57.0	57.0	57.0	813	813	613	04.2	01.0	0.10	2.10		43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	613	92.0	0.00	0.00	0.00	0.00	0.00	92.0	82.0	92.0		43.3		43.3	43.3	43.3	43.3	57.0	67.0	81.3	81.3	5.15	0.00	0.00	92.0	92.0	
	Ref	Mean	62.7	7.28	7.20	82.7	82.7	148.3	148.3	148.3	148.3	148.3	148.3	148.3	148.3	148.3	148.3	148.3	12821	0000	2008	0000	0000	80000	8000	R'077		82.7	82.7	82.7	82.7	82.7	82.7	82.7	82.7	220.91	183.2	193.5	102.01	102.0	0.001	100.6	189.	183.2	183.21		82.7		82.7	82.7	82.7	82.7	148.3	148,3	220.9	220.9	8.0.22	183.2	102.5	183.2	183.2	
	Station	Value	1138.4	327.8	1.61	61.0	130,01	1446.2	1774.4	27.6	410.6	223.0	522.0	782.2	2080.2	47.8	22.01	822 B	119.0	4110	03.4	10746	0 300	0.000	÷ 101	1700		178.8	272.0	7.4.7	231.7	858,8	127.0	782.0	85.01	337.3	310.6	6844	10.4	0.00	0.001	274.2	637	117.0	272.2		618.0		147.2	74.7	157.2	79.6	320.3	263.01	147.8	311.8	182.3	140.00	0.02	105.3	85.0	
	Station		KG-01	SS-04	12	1408	1608	EW-04	EW-11	NH-03	NH-08	SS-11	MWV-08	WW.11	WW14A	EWIDT	EWL07	Elar 40	1612	40.04	EWINE		70 111		CVV-14	1003		PS-01	34	48		34	208R	34	305R	13	10-HN	10.20	ELAL 45	NO OX	10000	20-01	20	1120	32		QM-1		NS-08	68	61	49	35	35	NS-03	PS-02	40	PS-03	10-01	22-04	09	
	Survey		EBCHEM	<b>3CHEM</b>	5D18803	,	- L	. 1	- 5							1	1		1			1		-	3	1 P P S		<b>3CHEM</b>	ED18903	D18903	ED 19003	D19103	D19103	D19203	D19203	1	1	1	NUTER	None of the second	COEW -	1		1	SED19103		SEA1		EBCHEM	- 1		. 5			•	- 1	· •	1			SED19003	
	Habitat		100	1		- 1	1	80 EE			Ļ				1							ł	1	1		Τ		- 1	- 1		100 SE				Ł	Ł	ł			ł	1				20		100 SE		1		1	1				- 1	1				20 SE	Ł
	Chemistry		Post and bash																									>cs(but <bas < th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>sage but ceal obset</th><th></th><th>2101, 241</th><th><cri and="" baal<="" th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></cri></th></bas <>																			sage but ceal obset		2101, 241	<cri and="" baal<="" th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></cri>	-											

09/02/97

Page 1

BMAT808.WK4

÷

12 Ref Ref 95th Mean Ranna I Ci	X	X			+	 	× × ×	-	-	×	-	_			_		X X X	x x	××××					×		×	××××			× × ×		x x		× ×		x x x		XXX		×	×		× ×			X			×	
t-test 1/2	×				+	-	×			×	+	+	Ŷ	+	+		×	-						×		×	_			+	×	×		×	+	XX					×	,				_		X	- ×	
t-test	0000	0.466	0.016	0.276	0.204	0.003	0.000	0.031	0,540	0.00	0.000	0000		0000	0.381	0.346	0.000	0.060	0.000	0.019	A JZ D	0.018	0.697	0.047	0.093	0.016	0.000	0.420	0.175	00000	0.001	0.002	860.0	0.047	0.683	0.003	0.095	0.494		0.109	0.047	0.021	0.000	0.005	0.124	0.064	0.303	0.046	1 000.0	0000
to reference		DEP			ENH DED																	ENH	ENH	DEP	ENH	DEP	DEP	LINI	LUC HN	DEP	DEP	DEP	ENH		ENH	DEP	ENH	DEP		DEP	DEP	ENH		DEP 1	ENH	DEP	ENH	DEP	UEY	255
ГCГ	8.5	8.5	8.5		12.3																	8.5	8.5	8.5	8.5	8,5	8.5	0.0	10.01	15.6	16.6	15.6	15.8	10.01	15.8	15.6	15.6	8.5		8.5	8.6	8.5	10.0	12.61	12.01	12.01	12.0	15.6	10,01	0.41
Range		11.8			11.5														15.3	20.01	0.01															19.7		11.8		11.8	11.8	11.8	10,11	18.0	15.3	15.3	15.3	18.7	1 J'AL	5 4 4
Reference Range					0.5																	6.4	6.4	8.4	8.4	6.4	6.4	4.0	10.4	12.7	12.7	12.7	12.7	12.61	12.7	12.7	12.7	6.4		8.4	8.4	6.4	0.4	9.6	10.1	10.1	10.1	12.7	1771	101
STDEV	2	2.7			2.1																	2.7	2.7	2.7	2.7	2.7	2.7	7.4	9.4 9.4	3.5	3.5	3.5	3.5	200	3.5	3.5	3.6	2.7		2.7	2.7	2.7	27	2 2	2.6	2.6	2.6	3.5	3.01	¢
Ref Mean	4.5.10				1.8								-				12.7	12.7	12.7	17.1	1.21	9.1	9.1	8.1	9.1	9.1	9.1		12	10.2	16.2	16.2	16.2	10.2 10.2	18.2	16.2	16.2	9.1		9.1	8.1	8.1	10.51	13.2	12.7	12.7	12.7	16.2	12.01	1001
Station	5.8	7.8	17.0	9.0	11.0	72	1.4	9.6	12.8	7.8	6.2	8.7	2.4	107	10.7	14.2	1.4	9.2	3.6	9701	2.8	12.2	10.01	10.7	13.3	7.6	0.0		17.01	7.4	11.6	11.8	19.0	10.51	17.3	5.3	19,6	5.5		7.01	10.2	13.2	0.0	A A	15.0	11.4	14.3	13.8	11.01	
Station	KG-01	SS-04	12	1408	FW.NA	EW-11	NH-03	NH-08	SS-11	80-MM	1.1-1/1	WW-14	EWL07	EW.10	1512	AB-01	EW-05	NH-02	NH-04	1EW-14	toool	PS-01	34	48	×	34	208R	24	200L	NH-01	PS-04	EW-12	NG-04	10	22	112R	32	OM-1		NS-08	48	21	80 A5	35	NS-03	PS-02	40	PS-03	ING-01	
Survey	FRCHEM	EBCHEM	SED18903	TPPS	TPPS	EBCHEM	EBCHEM	EBCHEM	EBCHEM	EBCHEN	EBCHEM	EBCHEM	EVCHEN	EVCHEN	TPPS	EBCHEM	EBCHEM	EBCHEM	EBCHEM	EVCHEM	1773	EBCHEM	SED18903	SED18903	SED18003	SED19103		1	1				T	1	1	SED19003		SEA1	П	Т	Т	SED19103	ED18003	ŧ	4			EBCHEM		
Habitat	Ι	Γ			88	Г	П		П	Т	T	T		Т	Т	Γ	Γ			T	1			F .			- F	1	Į.			- F			1	20	-	100	11	- 1		-	1	1		11	11	20	- 1	
Chemistry	Seel and heat																					Post but shaal							-									seque but ecst, >bast		>sqs, but	scal and baet									

Page 1

BMAT808.WK4

'

08/30/97

	95th					Ī	×		×	×		×	×	×	×	×	×	-	Ī	×	×	×					T	×		×	<	~		Ţ	×							×	×	Ņ	ł	×	×		X	×	×		,		T	Π		×
	Ref	Range					×		×						×	×				×		×						-			×		×		×						_	×			<	×			X	×								_
	1/2 Ref	Mean			·		X		X						×	×	×			×		×									×	-	×		×							×		2	<	×			×	×	×							
15.74 M 44	t-fest				-		×		x		-	×			×					×		×					×	×			X		×		×					-		×		>	<	×	×		X	×	×		ĥ		-			
a subaction	t-test		0.232	0.738	URL'N	0.169	0.000	0.038	0.000	0.228	0.059	0.038	0.124	0.005	0.000	0.000	0,001	0.000	0.019	0.000	0.012	0.000	0.2951	0.818		0.001	0.001	0000	0.197	0.478	0000	0.275	0000	0.683	0000	0.018	0,185	0.001	0.002	0.166	0.223	800	0.459	0000	200	0.002	0.000	0.001	0.000	0.000	800	0.001	330		0.008	0.000	0.00	0.063
ala ana ana amin'ny faritr'oran'i Analana. Ny INSEE dia mampimampika amin'ny faritr'oran'i Analana.	to reference	ពាទនា	ENH	ENH	ENH	ENH	DEP	ENH	DEP	DEP	ENH	DEP	DEP	DEP	DEP	DEP	DEP	ENH	ENH	DEP	DEP	DEP	DEP	ENH		ENH	DEP	dig Dip	ENH	DEP	DEP	DEP	DEP	ENH	DEP	ENH	ENH	ENH	ENH	ENH	HNE	DEP	DEP	CED .		DEP	DEP	ENH	DEP	DEP	DEP	ENH		ENH -	ENH	ENH	ENH	DEP
NASSAU		_	51.8	51.9	510	51.9	77.1	77.1	77.1	77.1	77.1	77.1	77.1	17.1	77.4	1.17	77.1	1.77	78.0	76.0	76.0	76.01	78.0	78.01		51.9	51.9	51.9	51.9	51.0	51.9	6.18	51.9	78.0	73.8	73.8	73.8	73.8	73.8	73.8	73.8	73.8	73.8	64.0	2 55	51.9	51.9	61.9	51.9	711	1.7	76.01	(0.0)	73.8	73.8	73.8	73.8	73.81
A MARINE AND	Range		85.8	85.8	00.0 A A	85.81	188.2	188.2	188.2	. 189.2	168.2	188.2	188.2	188.2	188.2	188.2	188.2	188.2	138.9	138.9	138.9	138.9	138.91	138.9		85.8	85.81	85.8	85.8	85.8	85.8	85.8	85.8	138.9	124.4	124.4	124.4	124.4	124.4	124.4	124.4	124.4	124.4	0 20	~~~~~	85.8	85.8	85.8	85.8	188.2	188.2	138.91	100CF	124.4	124.4	124.4	124.4	124.41
L. C.	Reference Range		30.2	30.2	202	30.21	9.0	9.0	9.0	9.0	9.0	9.0	9.0 }	8.0	9.0	9.0	0'6	9.0	40.3	40.3	40.3	40.3	40.3	40.3		30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	40.3	38.8	36.8	36.8	36.9	36,8	36.8	36.8	38.8	38.8	- 6.06		30.2	30,2	30.2	30.2	9.0	0.0	40.31	40.3	38.8	36.8	36.8	36.8	36.81
	STDEV		ł		8.75		1				- 1											1	ŧ	Ł		27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	49.3	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43,8	43.8	97 B	2.4	27.8	27,8	27.8	27.8	89.6	89.6	48.3	49.3	43.8	43.8	43.8	43.8	43.8
1022050000	Ref	Mean	58.0	58.0	20.0 68.0	58.0	<u> 98.6</u>	98.6	<b>98.8</b>	98.6	88.8	99.6	98.6	<b>98</b> ,88	98.6	<b>98.6</b>	98.6	93.6	83.6	89.68	89.6	89.6	89.6	89.68		58.0	58.0	58.0	58.01	68.0	58.0	58.0	58.01	89.68	80.6	80.6	80.8	80.6	80.8	80.8	80.6	80.8	80.61	50 D	202	58.0	58.0	58.0	58.0	9.8	99.6	89.61	0'60	BOB BOB	80.6	80.6	80.6	80.61
	Station	Vetue	71.8	66.0	158.0	327.0	3.8	155.6	1.6	65.0	195.0	53.8	66.8	69.01	0.4	5.8	38.4	241.7	259.0	7.2	59.4	12.01	69.69	111.3		154.2	63.7	34.7	124.7	34.4	0.0	41.3	101	10001	27.8	221.8	140.0	314.4	272.6	198.0	158.3	27.3	71.21	300		28.2	34.7	306.6	22.4	8.3	35.6	425.21	320.01	278.6	172.6	585.2	103.7	<b>55.3</b> I
	Station		KG-01	SS-04	1408	1606	EW-04	EW-11	NH-03	BO-HN	SS-11	80-WW	WW-11	WW-14	EW-01	EW-07	EW-10	1512	AB-01	EW-05	NH-02	NH-04	EW-14	1603		PS-01	34	48	4	34	208R	S.	305R	33	NH-01	PS-04	EW-12	NG-04	PS-02	0	22	112R	2	044.4		NS-08	48	21	9	5	5	NS-03	20-02	08.03	NG-01	VG-03	6	6
	Survey		EBCHEM		TPPS																					EBCHEM	SED18903	SED18903	SED19003	SED19103		1			1	1				- 1	- 1	SED19003	- 1	oc 44	T	Т		1	ED19103	ED18903	- 1	-				EVCHEM	łł	<b>_</b>
	Hebitet		÷	. ş.	35		1 - I			1										Į –		1	Ł	•	1	1			F .		1		1	1	1	F.				- 1	- 1	8	- 1	101			1			. !	- 1			1		20	11	- 1
	Chemistry		>cri and bast																							>cel but <bast< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1080 105 100 804</td><td>2444, but</td><td><csi and="" bast<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></csi></td></bast<>																			1080 105 100 804	2444, but	<csi and="" bast<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></csi>											

76/06/80

i...

	F	Γ	Π	Ţ	T	-	Ţ	Γ	T	Γ			Π	1	-1	Ţ	1	Т	T	T	Т	Г	Г	Π	1	Т	Ţ	T	Т	Т	Т	T	Π	Π	T	1	Т	Ţ	T	1	Т	Π		1	T	Т	-	Т	η	П	Ţ	Т	Т	
	951h	rci	×			ļ	×		×	×					×	-			>				×						>		×		×			×	×	×	×	×					>	<>	$\langle \times$	×			×	<>	<×	×
	Ref	Range							×						×				×				×						λ.	<	×							×	×	<											×>	××	4	×
NAME AND	1/2 Rof	Mean							×						×				×				×		**********				×		×																					-		
TASHSAS	t-test						×		×						×				×										À		×		×			,	Ż	×							<b> </b>						×	ţ	T	×
North Contraction	t-test		0.089	800	10,809	0 444	0.025	0.777	0.001	0.360	0,000	0.171	0.025	0.183	0.00	2000	0000	0000	0.000	0.667	0.721	0.008	0.140		0.009	LUC O	0.004		0000	0.1911	0.000	0.017	0.000	0.702	0.004	0.343	0.039	0000	0.120	0.525		0.726		U.B.I.B.		0.350	0.191	0.487	0.180	0.518	0.027	1090.0	0.388	0.028
and a version of the state of the Restate of the state of the	reference	meen	DEP	ENH		dep -	DEP	ENH	DEP	DEP	ENH	ENH	ENH	ENH	DEP				DFP	ENH	ENH	ENH	DEP		ENH				DEP	ENH	DEP	ENH	DEP	OED	ENH					ENH		ENH					DEP	DEP	ENH				DEP	DEP
NYEIONALSEI	LCL 16		4.6	4.6	40	4.6	8.4	8.4	6.4	6.4	6.4	8.4	6.41	8.4	6.4	4.0	84	80	9.6	9.6	9.6	8.8	9.6										1	-1			1	ł	ł	11.6		4.6	Ī	1										11.4
	abua		6.3	6.3	0.0	6.9	9.4	9.4	9.4	9.4	9.4	9.41	9.4	9.4	84	4'8	170	13.1	13.4	13.4	13.4	13.4	13.4		6.3	0.0	0.0 R A	6.9	8.9	6.3	6.3	13.4	16.7	15.7	10.1	1.01	101	1.01	12.1	15.7	_	6.3		0.0	83	6.3	8.4	9.4	13.4	13.4	13.4	16.7	16.7	16.7
1	Reference Range	ļ	3.5	36	0.0	3.5	4.6	4.8	4.6	4,6	4.8	4.6	4.8	4.8	4.6	4,0	10 T	174	7.4	7.4	7.4	7.4	7,4	-	3.5	3.0	2 2	35	3.5	3.5	3.5	7.4	8.5	8.5	200	0 4 2 0	0.0	0.0	0.0	8.5		3.5	30	0.0	3.5	3.5	4.8	4.6	7.4	7.4	1.4 8.5	8.6	8.5	8.5
1857-1875/jrd	STD		1.4	1.4	P.1	14	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	4'7 4 C	2.4	U C	3.0	3.0	3.0	3.0	3.0	ļ	1.4	5.1	2.1		21	1.4	1.4	3.0	3.6	3.6	0.0	0.0	0.0	00	000	3.6		1,4		4,1	14	1.4	2.4	2.4	3.0	3.01	3.01	3.6	3.6	3.6
1.26 (10) (1)	Ref		I	4.9									-												4.8		404	101	49	4.9	4.9	10,4	12.1	12.1		2	17.1	17.21	191	121		4.9		0	0.2	4.9	10.2	10.7	10.4	10.4	10.41	12.1	12.1	12.1
	Station	Value	3.8	10.8	50.5	4.0	4.8	7.6	2.2	5.4	15.8	10.6	10.0	3.5	4 0	0.00	0.0	18.4	22	11.2	11.0	17.8	5.0		0.8	4.1		N R	80	6.5	0.3	12.0	8.6	11.6	20.02	8.01	14	1.6	100	12.8		6.6		1 <u>20</u>	3.8	4.0	5.3	6.2	12.8	11.8	0.0	8.4	10.01	0.7
	Station		(G-01	SS-04	40A	808	W-04	W-11	H-03	H-08	S-11	60-VM	WV-11	P1-14	W-01	10-14 10-14	512	8-01	W-05	H-02	H-04	W-14	×03	100	12-21	e a			208R		<b>5</b> 8	_	NH-OI	5-04		\$ 50	20-0		90	32		QM-1	No 20	00-0					103	-02	-	101	NG-03	
	SUNBY 5		- 1	EBCHEM S		1				- 1	- 1	- 1	-		- 1	4		1	1	1					Т	45	+	Diaina h	-	1				1		1	1		•	SED19103 B2	F I	A1 Q	Т	Т		1	1.	- 1		ł	3			SED18903 9
+-	Habitat			100 100	ŧ		•		1				- 4			2	+	1																						20 SE		100 SE	E	+	1			i				1		20 SEI
	Chemistry		>csi and bast											-	-									T	>cel but voiet																	rage but ccel, >baet		Prof. pur							-			

Page 1

BMAT808.WK4

08/30/97

	, T	П	ГТ	- 7		T	Ē	T	1	T						r	r	r	T	F	Т	1	7	1	7-	7	T	Т	τ-	T	1	T	T	Ŧ	Т	-	7-	7.	T	<b>T</b>	<b>-</b>		1		r1	<del>. r</del>		-1	- <b>T</b> -	-7-	~~	~	-	<b>.</b>	<b></b>	<del>ر</del>		<del>- r</del>	<u></u>	
	95th	LCL.	×						,	×	×					X	×				×		×									>	<	>		ŀ				Ŷ	< >	ł	×	<				Y		>	<			×		×			,	<
	Ref	Renge	×						,	×						×					×		×									X	¢	À									×				,	<												<b>h</b>
	1/2 Ref	Mean	×						,	×	×					x					×		X									×	ł	>			Ī						×							T										-
	t-test		×						ļ	×	×					×					×		×									×			+	Ī				Ì			×				,			>				×						-
Constant State	t-test		0.000	0.206	0.384	0.3931	1101-0	0.100	0.028	0.000	0.00	0.045	0.075	0.011	0.051	0000	0.315	0,040	0.304	0.299	0.000	0.752	0000	0.070	0.681		0.002	0.0531	0.078	0.0921	0.015	0000	0.016	0000	1000	0 2681	0000	0.00	0.010		0.164	0.078	0.000	0.813		0 10			0000	10000	0 107	0,000	0.003	0,040	0.998	0.173	0.00	0,000	0.010	<u>U.U.S.</u>
SAN AN A	to reference	mean	DEP	ENH	ENH	LNI				CEP DEP	UEP	ENH	ENH	ENH	ENH	DEP	DEP	ENH	ENH	ENH	DEP	ENH 1	DEP	ENH	ENH		ENH	ENH	ENH	ENH	ENH	05D	ENH	020	ENH	ENM	ENH	ENH	ENH	DED	020	ENH	DEP	ENH		ENH					ENH	ENH	ENH	DEP	ENH	DEP	ENH	ENH		
FORM	LCL LCL		43.7	43.7	43.7	43.7	10.00	22.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.01	88.2	88.21	88.2	88.2	88.2	88.2		43.7	1.64	43.7	43.7	43.7	12.54	102	14.57	RA 2	107.71	107.71	107.7	107.71	14 401	107 7	107 7	107.7	107.7		43.7	+ 4	40.1	13.7	10.01	32.01	32.01	88.2	88,2	88.2	107.7	107.7	15.007	+	17571
STATES -	Range		93.6	93.8	93.8	83.8	0.00	0.80	0.60	69.0	69.0	68.01	69.01	69.0	69.0	69.0	99.01	69.0	68.0	158.61	158.61	158.61	158.61	158.6	158.61		93.8	93.8	93.81	93.8	93.8	93.81	0.00	03.0	158.6	185.0	185.0	185.01	185.01	10801	185.0	185.0	185.0	185.0		93.81		0.05	0.00	03.00	69.0	69.01	158.6	158.6	158.6	185.0	185.0	102.01	102.01	10.00
111111111111111111111111111111111111111	Reference Range		12.0	12.0	12.0	0.21	2.2	0.2	9.9	8.8	9.6	9.6	8.6	9.6	9.6	9.6	9.6	9.6	9.6	46.6	46.6	46.6	46.6	46.6	46.6		12.0	12.01	12.0	12.01	12.01	120	10.01	10.61	48.61	512	512	613	613	513	613	513	512	51.2		12.0		10.01	12.0	12.0	88	9.6	46.6	46.6	46.6	51.2	512	01210	21.5	1246
	STD							1.42															ł				40.9	40.9	40.9	40.9	40.9	40.4	807	10.08	68.0	6.83	68.9	88.9	88.0	AA O	689	AA 9	6.9	66.9		40.9	000	40.4	0.05	0 UF	29.7	29.7	68.0	56.0	58.0	689	6.89	19'00 8'00	010 88.01	
	Ref	Mean	52.9	52.9	52.9	07'A	8.20	04.5	0.00	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	102.6	102.6	102.6	102.8	102.6	102.6		52.9	52.9	62.9	52.9	52.9	6 69	82.0	82.0	100.8	118.1	118.1	118.1	11911	110 1	118.1	118.1	118.1	118.1		52.9	443	0 02	62 GY	80.03	39.3	39.3	102.6	102.8	102.6	118.1	118.1	110,11	11011	11.01
	Station	Value	10.2	705.8	613	0.911	7.701	120.4	4.44	2.6	15.4	227.8	181.21	761.8	93.2	6.2	28.0	345.0	59.3	170.21	2.6	111.0	18.81	249.81	176.7		183.6	160.3	181.7	10.701	116.4	0.81	0.5		154.8	183.2	175.8	1084.4	181 4	65.01	69.71	102.7	10.01	120.2		68.51	00	10.0	105.61	000	270.0	181.2	271.8	80.4	102.7	89.6	192.0	1 10 207	0.5.30	1.000
	Station		KG-01	5S-04	12	1400	000	EW-04	EVV-11	EO-HN	BO-HN	SS-11	60-MM	WW-11	WW-14	EW-01	EW-07	EW-10	1512	AB-01	EW-05	CO-HN	NH-04	EW-14	1603		PS-01	34	48	4	04	208R	Ad	3050	63	NH-01	PS-04	EW.12	NON	05.00	40	22	112R	32		QM-1	10 00	00-01		50	35	35	NS-03	PS-02	40	PS-03	10-DN	NG-US		20
	Survey		EBCHEM	- 1		- 1	ł			- 1		- 1	- 1					1.		r -			1	ş.,			EBCHEM	SED18903	SED18903	SED18003	SED19103	SED10103	SED 10203	1.	Ł	4		1	1	-	Т			SED19103		SEA1	Т	Т			1	1	ł			EBCHEM	1	Т	ECTORUS 1	
	Habilat			- 1		-1		36	-10	1	1	ł	- Į				F.			j .	1	1.	4	1	ł	Ł	÷ .	ŧ.	E		1	1	1.1	1	Ł	1			1	F	1	1	1	20		<u>\$</u>	1	1			E	Ł				20 E		1		1
	Chemistry		>csi and beel																			Contraction of the second s					Seel hid chant																			Paga but cost abant		7405, 514												<u> </u>

Paga 1

٦

BMAT808,WK4

16/00/80

		and the second se			The second									
Habilat	Survey	Station	Station	Ref	STD	Reference Renge	e Renge	ГCГ	to reference	t-test	t-lest	1/2 Ref	Ref	95th
	EBCHEM	KG-01	67.61	77.2	8.9	67.3	87.1	75.2	DEP	0000		UEBW	60187	3
	EBCHEM	SS-04	64.0	77.2	9.9	67.3	87.11	75.2	DFP	0000	< 		~	÷
		12	82.7	77.2	9.9	67.3	87.1	76.2	ENH	0.135				
		11406	60.0	77.2	9.9	67,3	87.1	75.2	DEP	0.000	X		×	×
	1	1806	1080	11.2	6.9	87.3	87.1	75.2	DEP	0.466			×	×
1		EW-04	10.0	2.07	0.7	63.2	17.71	2.88	DEP	0.000	l	×	×	×
1	LEBUTEN		0000	10.2.07	0.7	03.2	277	1.85	OEP CLO	0000	×;		;	×
	÷.	NHOR	68.3	202	204	2.22	10 22	00./		0000			×	×
1	1	SS-11	67.8	70.2	10,1	63.2	772	68.7	DEP	0.009		ŀ		\$
1 1		WW-09	69.0	70.2	7.0	63.2	77.2	68.7	DEP	0000	I			<×
		WW-11	65.4	70.2	1.0	63.2	77.2	68.7	DEP	0.000				×
		WW-14	66.2	70.2	0'2	63.2	77.2	68.7	DEP	0.000				×
	- ł	EW-01	0'0	70.2	0.7	63.2	77.2	68.7	DEP	0.000		×	×	×
	- 1	EW-07	13.4	70.2	7.0	83.2	77.2	69.7	DEP	0.000			×	×
-		EW-10	4.4	70.2	7.0	63.2	77.2	68.7	DEP	0.000			×	×
	- 1	1512	61.7	70.2	0.7	63.2	77.21	69.7	DEP	0.242			×	×
- T	1	AB-01	68.0	71.6	6.7	85.9	7.3	70.2	DEP	0.005				×
	- 1	EW-05	26.6	71.8	5.7	65.9	77.3	70.2	DEP	0.005			×	×
Ŧ	- 1	NH-02	61.4	71.6	5.7	65.9	77.3	70.2	DEP	0.000			×	×
3	- 1	NH-04	62.8	71.6	5.7	65.9	77.3	70.2	DEP	0.000	×	-	×	×
Т	- ł	EW-14	84.2	71,6	5.7	65.9	27.3	70.2	DEP	0.000			×	×
Т	Sdd	1603	68.3	71.8	6.7	62.9	77.3	70.2	DEP	0.807				×
Ţ	Т	10 00		0.55	~~~	010	-	4 52						
	Т	PS-01	10.17	17.2	9.9	67.3	1728	76.2	DEP	0.001	×			×
Ţ	Т	10	14.0	+++++++++++++++++++++++++++++++++++++++	200	01.0		17:07		0.167				×
Ť	Т		10.84	++++	00	87.9	07.1	75.0			$\langle \rangle$		×	×
	ED19103	P1	89.8	16 44	00	A7 3	11.12	75.0		0000				
Ť	$\mathbf{T}$	2090	87.0	14.14	00	67.3	0/	10.21		1910.0	ļ		-+- ;}	^
Ĺ	Τ.	1	83.8	77.5	00	67.3	R7 1	10.24				-	<	x
	Ł	305R	68.5	77.5	00	873	A7 4	75.5	DED	10000			,	>
60 IS	1	33	68.3	71.6	5.7	85.9	12.77	70.5	020	2000	l			\$
		NH-D1	818	74.4	87 87	87.7	414	14.07		200.0	$\uparrow$		>	Ŷ
T	1	PC-24	73.8	17.12	a 7	87.7		1.02		1900-0		-	<	<
T		EW-12	GR 4	12 74	87	87.7	111	100		0.000				ļ
ľ	1.	NO ON	a7 a	1 12	1 C G	1.12		+	122	0000				
	. E.	50.00	0,10	1.12	10.	1.10	110	13.4		0.000		-	×	×
	1	20-02	000	14.41		1.10	1.10	10.4		0000	×		×	×
10	1	25	10,10	125	100	54.0	+	+ 20		10000			×	×
10		1 1 1 2 2	1012	1.12	4 A	01.1	110	1.04		0.084			×	×
24	SED10102 B	11617	R7 B	1 1 1 1	87 87	01.1 a77		10.4		0.228	+			×
1	-				,	5				7000			<	~
100 S	EA1	QM-1	66.0	77.2	9.9	67.3	87.1	75.2	DEP	0.002	×		×	×
- 1	T													
- 1	Т	80-SN	12.95	12.77	<u> </u>	67.3	87.11	75,2	DEP	0.008	×		×	×
300	¥#	8	64.7	77.2	9.9	87.3	87.1	75,2	DEP	0.000	×		×	×
Ł	Т		03.61	11.2	8.8	67.3	87.1	76.2	DEP	0.000	×	-	×	×
Ŧ		1	000		B 8	6/.3	1.78	75.2	DEP	0.000	×	_		×
	т		0.20	10.2	2.7	00.4		1.00	ENH I	0.141				
		0.00	070	10.2	<u>.</u>	03.2	2.77	68.71	ENH	0.032				
<u>u u</u>		S-02	19.20	0.11	1.2	8'C0	0.5	202		0.000	×		×	×
		20-02	10'01	0.17	15.2	A CO	2.1.2	10.2		0.669				
<u>i</u>			0.12	0.12			5.12	12:07		0.802				
ΒĹ		340	717	4'41	0.10	7.70		13.4		0000	×		-	×
		10-01	00.0	4.4	1.0	1.10	1.10	/3.4	DEP	0.000	×			×
		10-02	12.4	14.4	0.7	21.1	81.7	4.0	OEP	0.089				×
2				-						and the second s				

09/02/197

BMAT808.WK4

**.** .

<b>1</b> 74	<u> </u>	r					<b>T</b>	<b>T</b>		<del></del>		Ŧ	- F	<del>-</del> -			r	<b>T</b> ~~	<del>.</del>	<del></del>	<del>.</del>	T.	Ţ	1	·		3	·	<b>,</b>	<del></del>		<b>~</b> ~			~~~~			·	_	-		<del></del>	-	- <u></u>	<b></b>							<b>.</b> .							<b>.</b>	-
	92fp	×	×		×	×	×	×	X		<>	<:	×	×	×	×	×	×	×	X	×		<	×	×		×		×		×	×	×	: ×		×		×	< ×	X	: ×	×	۲,			×	~		< }	<>	<>	</th <th>Ŷ</th> <th>Ŷ</th> <th>&lt; &gt;</th> <th></th> <th>~</th> <th>×</th> <th>×</th> <th>×</th>	Ŷ	Ŷ	< >		~	×	×	×
	Ref Renne	X	÷	3	×	~	×	×		<>			×	×	×	×	×	×			X		×		X				×		×	×	×	×				×	~		×	~	< ×	<		×	Ņ	\$	<		,	<	Ŷ	Ŷ	<	<b> </b>	×	×	×	×
WARNESS OF	SDI \$50	ľ	×			×	×	×	×					×	×	×		×			×		×		×				×			×		×				T								×	,	+						+		T	×	×		-
Tristering	1/2 Ref Mean	ľ	, ×			×	×	×	×	t	Ť	+	צ	×	×	×	×	×			×		×		×				×			×		×		-		×			-	×				×	>	+			+	<		+		  >	÷,×	×	×	
are and the fig	t-test	t	- (×	t	×		×	×	×	Š	+ •>	+	Ť	×	×	×	×	×		×	×	-	×	×	×		×		×			×	×	X		×		×	×	×	×	×				×	>	+ \$	- 		^	+ \$	×		<	  ×	×	X	×	×
an waa ye aa ku	t-test	0000	0010	0.108	0000	0.335	0000	0000	0000	0000	0000	0000	0.000	NO'N	0,000	0.000	0.001	0.000	0.158	0.008	0000	0.118	0,000	0.018	0.018		0.017	0,499	0.008	0.499	0.164	0.000	0.035	0.001	0.101	000	0.051	0000	0000	0.001	0000	0000	11000	0.001		0000	0.000	2000	10000	1010	10000	0.000	200	200.0	0.000	0000	00000	0.000	0.002	0.000
NOMINANCE:	to reference mean	)ED	DEP	HN	50	)EP	DEP	JEP	EP	01						)EP	DEP	DEP	EP	d3	EP	01	EP	EP	EP -		d	HN	EP	HN	EP	EP	EP	d	HN	ED	ED ED	ED C		EP	ED	ED .	ED.	ENH		DEP	00						200					DEP	d	EP
8		L	10		L	L						Ĺ															L						ŀ							l				14.3 E		8.1 D		l										14.3 D	ŀ	
NEW YOUNG	5 -	L								ŀ															ľ																																			
1.900-1.000	s Range		104	l				l	l														l																					21.7		10.4												217		
2885 (T) 38-18	Reference Range		88																																									8.9		8.8	aa					0.0	A Q C	0.21	100	80.0	8.8	8.9	8,9	8.9
State State	STDEV		0	Ł	1	1		İ.	1	1		1	1		-			1	Ł	1	Ł	Ĺ	1	1	Ł.		1.8	1.9	1.9	1.9	1.8	1.9	1.9	10	4.2	R A	A A	R A	8.4	9.4	84	84	A A	8.4		1.9	40	21		<b>D</b>	10 H	0.0	2.0	107	404	4.4 R.A	04	6.4	6.4	6.41
	Ref Mean	A F	85	2 8	A 5	8.5	12.5	12.2	10.0	0.01	10.01	777	12.2	12.2	12.2	12.2	12.2	12.2	12.5	15.1	191	15.1	15.1	151	15.1		8.8	8.5	8.5	3.5	8.5	8.5	8.5	8 6 I	16.1	16.31	16.3	16.31	15.3	15.3	15.3	16.31	15.21	15.3		8.5	40	200	0.0	2 0	0.0	144	7.71	1.51	181	15.1	1531	16.3	15.3	15.31
R. C. W. W. W.	Vation	I S I S I S I S I S I S I S I S I S I S	101	10.01	202	40	8.4		1.8	9.9	0.0	2.6	8.0	3.0	1.8	2.0	5.2	22	00	11.8	1.8	12.8	101	12.4	4.0		7.8	0.6	4,0	9.0	5.8	01	5.5	00	0.61	8.6	9.8	6.2	24	7.8	80	63	8.9	24.6		1.0	CC	V.0	200	0.0	0.0	2,0	8.0	0.0	10.0	6.2	4.8	3.4	7.3	8,01
	Station	KG.01	Se Ma	10	HADR	1606	EWINA	EW-11	UL HN	NHAB	00-11	11-00	60-WW	11-WW	WW-14	EW-01	EW-07	FW-10	1512	48-01	EW-05	CU-HN	NH.04	EW-14	1603		PS-01	34	48	-	z	208R	34	SURP .	13	NHJOH	PC-Sd	EW.13	NG-DA	20-Sd	40	20	1128	32		QM-1	No. AG	07-24	0		25	53	50 Mic 7/3	N3-U3	20-0X	00.00	NG-01	NG-03		39
	Survey		EBCHEN	1		ŧ .	E .	Ł			E	ŧ	- 1	- 1	1			Ł	ì.		4	Ł		4		4	£	1	ŧ -		1	1			1	-	1	1		1		1	1	SED19103	1	SEA1	Ŧ	Т	T	Т	Т	Т	Т	Т	Т	-	T	EVCHEM		SED19003
	Habitat		35	4			1.		1	-	1	1	1	- 1			ŧ .		ı.	Ł	1	1	1		ι	•		5	1		Ł	1	E	1		1	1	1	1	1		1	1	20	1	<u>1</u> 8	- 1		ł	1			ł	1	1			20		1
	Chemistry	And had been	1020 DUS 1824																								Seal but shaat																			>sqs but cost >bast		>\$0\$, but	<cil and="" bael<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td></cil>											·

Page 1

BMAT808.WK4

09/02/97