State of Washington DANIEL J. EVANS, Governor

Department of Conservation H. MAURICE AHLQUIST, Director

DIVISION OF WATER RESOURCES

MURRAY G. WALKER, Supervisor

Water Supply Bulletin No. 21

GEOLOGY AND GROUND-WATER RESOURCES OF THE WALLA WALLA RIVER BASIN WASHINGTON-OREGON

By R. C. NEWCOMB

Prepared in cooperation with the U. S. Geological Survey, Ground Water Branch, the Office of the State Engineer of Oregon, and the Board of County Commissioners of Walla Walla County, Washington.

1965

STATE PRINTING PLANT, OLYMPIA, WASH.

A NUMBER OF A DESCRIPTION OF A DESCRIPTI

State of Washington DANIEL J. EVANS, Governor

Department of Conservation H. MAURICE AHLQUIST, Director

ł

DIVISION OF WATER RESOURCES

MURRAY G. WALKER, Supervisor

Water Supply Bulletin No. 21

GEOLOGY AND GROUND-WATER RESOURCES OF THE WALLA WALLA RIVER BASIN WASHINGTON-OREGON

By R. C. NEWCOMB

Prepared in cooperation with the U. S. Geological Survey, Ground Water Branch, the Office of the State Engineer of Oregon, and the Board of County Commissioners of Walla Walla County, Washington.

1965

STATE PRINTING PLANT. OLYMPIA, WASH.

Price \$2.50, Division of Water Resources, Olympia, Wn.

• Ľ • ļ

FOREWORD

A demand for more water than was available from presently developed surface and ground water sources for irrigation, domestic, and industrial use in the Walla Walla Basin led the State Division of Water Resources and the Walla Walla Board of County Commissioners to request the U. S. Geological Survey, Ground Water Branch, to make a comprehensive geohydrologic study of that part of the Walla Walla Basin lying within the State of Washington. Since the Walla Walla Basin also includes a large area in Oregon, the Oregon State Engineer agreed to cooperate in the program in order that the study would cover the entire Walla Walla Basin as a unit. The study is a part of the State Division of Water Resources' overall geologic mapping and water resource inventory program for the State of Washington.

Field work for the Walla Walla Basin study was started in 1946 and culminated with a preliminary report being released to open-file in 1951. Since that time, the author has collected additional basic data for hundreds of wells which have been drilled since the open-file report was released. In addition, the author has updated certain geologic interpretations and incorporated some new ideas based upon findings made during his continuing study of the geohydrology of the area.

Ŀ.

Although the report was prepared primarily to assist water resource planners and developers, the data and material are presented in a manner which will make it useful for all geologists, engineers, architects and others who are to take an active part in the evaluation, design and maintenance of structures to be constructed on or below the earth's surface in the Walla Walla Basin.

The Division of Water Resources is pleased with the results of the author's findings and interpretations and wishes to convey its appreciation for an outstanding contribution to a better understanding of the geology and ground water conditions of the Walla Walla Basin.

> -Robert H. Russell Assistant Supervisor Division of Water Resources

¥ . •

CONTENTS

	₽age
Abstract	1
Introduction	2 2 3 3
Purpose of the investigation	2
Location and extent of the area	3
Cooperation and personnel	3
Acknowledgments	5 5
Location symbols	5
Climate	6
Physiography and streams	9
	9
Blue Mountains section	9
Secondary upland elements	11
Valley section	11
Álluvial slopes	11
Terraces	12
Streams	14
Geology	18
Consolidated rocksColumbia River Basalt	18
Unconsolidated rocks	20
Old gravel and clay of Pleistocene age	20
Ringold(?) Formation	22
Palouse Formation	23
Deposits of the upper valley terraces	24
Touchet beds	25
Recent alluvium	26
Loess, undifferentiated	26
Glaciofluviatile deposits, undifferentiated	26
General structure of the rocks	27
Postbasalt deposits	27
Columbia River Basalt	27
Occurrence of ground water	28
Ground water in the Columbia River Basalt	28
Nature of the permeable zones	28
Transmission of water	30
Structural control	30
Folds	31
Faults	31
Joints	32
The top of the ground water	32
The base of the ground water	35

٧.

2

CONTENTS

	Page
Occurrence of ground water (continued)	
Ground water in the Columbia River Basalt (continued)	
Average yield of the basalt aquifers to wells	35
Nonproductive wells in the basalt	35
Permanence of water levels in basalt wells	36
Ground water in the old gravel of Pleistocene age	37
Lithologic characteristics of the gravel	37
Regimen of the ground water in the gravel	40
General features of the ground water	40
Recharge	40
Transmission	44
Discharge	45
Form of the water table in the old gravel	45
Hydraulic condition of the ground water	46
Minor ground-water occurrences	47
Ground water in the Palouse Formation and other loess	
deposits	47
Ground water in the deposits of the upper valley terraces	47
Ground water in the Touchet beds	48
Ground water in the Recent alluvium	48
Chemical quality of the ground water	48
Hardness	49
Sodium and potassium	49
Chloride	50
Fluoride	51
. Other constituents	51
Other published data on water quality	54
Temperature of the ground water	54
In the Columbia River Basalt	54
In the old gravel	57
Use of the ground water	58
Types of use	58
Irrigation	58
Public supply	59
Domestic supply	60
Industry	61
Annual use of ground water	61
Development of the ground water	62
"Shallow" ground water of the old gravel	62
History of development	62 62
Future developments of ground water in the old gravel	62 64
Future development of other shallow-zone ground-water bodies Ground water in the Columbia River Basalt	64 64
History of development	64
History of development	04

1

5

¥

3

CONTENTS

Ŧ

٧.

÷

ŧ

	Page
Development of the ground water (continued)	-
Ground water in the Columbia River Basalt (continued)	
Nature and extent of present ground-water development	66
Construction of wells in the basalt	67
Future development of ground water from the basalt	69
Indications of amount of water available annually from	
the basalt	69
Areas subject to ground-water development	70
Precautions to preserve high ground-water levels	71
Artificial recharge to the basalt aquifers	71
Ground water in structural traps on the Blue Mountains	
slope	72
Ground-water supplies for the future	72
Tables of ground-water data	73
References cited	74

ILLUSTRATIONS

.

Plate	1.	Geologic and hydrologic map of the Walla Walla River basin, Washington-Oregon.	
	2.	Map showing altitude of Columbia River Basalt (bedrock surface) beneath the Walla Walla Valley.	
	3A.	Geologic section along line A-A'.	
	3B.	Geologic section along line B-B'.	
		Plates 1, 2, 3a and 3b in pocket	
Figure		Index map of the Walla Walla River basin	4
	2.		-
	3	with greater altitude eastward Precipitation and cumulative departure from average	7
	2.	precipitation at Walla Walla during water years ending	
		on September 30, 1891-1959	8
	4.	View of the Blue Mountains slope	9
	5.	View south across a characteristic part of the alluvial	
		plain of the Walla Walla River from the Whitman Monument	13
	6.	View northeast across the Walla Walla River canyon at the	
	_	confluence of the North and South Forks	15
	7.	· · · · · · · · · · · · · · · · · · ·	
	~	Walla Walla River basin	17
	8.	Old gravel in the east bank of the Walla Walla River at	
		Stiller Eronwater	

ILLUSTRATIONS

è

÷

.

D a a a

			raye
Figure	9.	Water levels in three wells in the basalt	36
	10.	Water levels in five basalt wells at Milton-Freewater,	
		Oregon	38
	11.	Water levels in four wells of the city of Walla Walla,	
		Washington	39
	12.	Water levels in three wells in the gravel aquifer	41
		Water levels in three wells in the gravel aquifer	42
		Water levels in two wells in the gravel aquifer	43
		View east up Mill Creek valley and across the Walla	
		Walla reservoir	65

TABLES

Table	1.	Records of representative wells in the Walla Walla River	
		basin	76
	2.	Drillers' logs of representative wells	103
	3.	Analyses of water from wells, springs, and surface	
		waters of the Walla Walla River basin	142
	4.	Representative springs in the Walla Walla River basin	146

GEOLOGY AND GROUND WATER RESOURCES

OF THE

WALLA WALLA RIVER BASIN, WASHINGTON-OREGON

By

R. C. Newcomb

ABSTRACT

The Walla Walla River, whose drainage basin of about 1,330 square miles lies astride the Washington-Oregon boundary, drains westward to empty into the Columbia River. The basin slopes from the 5,000-foot crest of the Blue Mountains through a structural and topographic basin to the terraced lands adjoining the Columbia River at an altitude of about 340 feet. The main unit of the topographic basin is the valley plain, commonly called the Walla Walla Valley, which descends from about 1,500 feet at the foot of the mountain slopes to about 500 feet in altitude where the river cuts through the bedrock ridge near Divide. In the Blue Mountains the streams flow in rockbound canyons. Beyond the canyons, near Milton-Freewater and Walla Walla, they pass onto the broad alluvial fans and the terrace lands of the valley.

The growing season is long and the climate dry but equable. The average annual precipitation ranges from more than 40 inches on the higher uplands to less than 10 inches on the lower parts of the basin. The storm runoff is highly seasonal and typical of drainage from a maturely dissected upland. In consequence of the small amount of rainfall in summer, the streamflow is far short of irrigation requirements in the late summer months. Storage is a prime water problem; aside from some short-term storage as snow, ground water supplies the only storage of water within the basin.

The only consolidated rock in the basin is the Columbia River Basalt. These accordantly layered lava flows are the bedrock exposed in the canyons and other declivities. Beneath the valley plains the bedrock is covered by unconsolidated sedimentary deposits. The basalt dips westward from the Blue Mountains, southward down the "Touchet slope," northward from the Horse Heaven ridge, and eastward from a divide ridge in the lower valley. These dips converge into a synclinal trough whose bedrock surface extends below sea level in at least two places west of Walla Walla. In places faults cut the basalt and cause displacements in the even slopes that characterize the basalt of most of the basin.

1

2 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

The basalt is overlain by unconsolidated deposits of Pleistocene and Recent age. The oldest, thickest and most extensive unit of these deposits consists of the old clay, up to 500 feet or more thick, that partly fills the Walla Walla synclinal trough. The old clay is interfingered with the old gravel which descends in a tabular stratum from the mouths of the canyons. Successively younger deposits-the Palouse Formation, the deposits of the upper valley terraces, the Touchet beds, and the Recent alluvium---in places overlie the basalt as well as the old gravel and clay of Pleistocene age.

Significant ground-water storage occurs in two rock units--in the old gravel, which in places has a mantle of water-bearing alluvium of Recent age, and in the basalt. The regimen of the ground water in the two materials is considerably different. The ground water in the gravel is recharged directly by the infiltration of precipitation, by water from the surface streams, and by water infiltrated from irrigation; it percolates downvalley below the surface of the alluvial fans to its discharge points in springs and seepage areas. The ground water in the permeable parts of the basalt is recharged through the outcrops of permeable rock and by percolation of water from the overlying sedimentary deposits.

Most of the ground water in the old gravel is unconfined, but that in the basalt is largely confined (artesian). The water in the top part of the basalt is confined beneath the old clay in the central part of the valley. In its downgradient progress the ground water in the basalt is dammed in places by impermeable zones along structural barriers created by faults and sharp folds.

٠

3

Annually about 48,000 acre-feet of ground water from the gravel and 16,000 acre-feet from the basalt is taken for irrigation, industry, domestic, or public use. The annual basinwide recharge to the aquifers is much greater than the present ground-water withdrawal, but overdrafts now occur locally.

Largely to appraise the size of the ground-water resources of the river basin, some estimates of recharge and storage are made. The average annual total basinwide recharge to the ground water is about 300,000 acre-feet of water--125,000 acre-feet of this is recharged in the Blue Mountains and discharges to the streams. An estimated 500,000 acre-feet of water stored is in the old gravel and in the top saturated 100 feet of the basalt. The pumping lift is commonly less than 200 feet.

In the downvalley part of the old gravel some additional ground water in storage is available for use. Much greater use can be made of the space ready for storing water in the old gravel. More water than is now used can be developed from the basalt. Plans for development of large quantities of additional water from the basalt should provide for proper dispersement of well draft and the utilization of geologic and hydrologic knowledge to obtain the optimum benefits.

INTRODUCTION

Purpose of the Investigation

The valley was endowed with sufficient surface and ground water for the pioneer irrigators, but, after more extensive use, the natural supply locally fell short of the increased requirements.

INTRODUCTION

The shortage of water for irrigation during late summer and fall has been a chronic problem for 60 years. The narrow, steeply graded valleys do not afford prospects for cheap surface storage. The best of the plans for the sites of small canyon reservoirs on Mill Creek seem to require a minimum original capital outlay of \$350 and a yearly operational cost of \$16 per acre-foot of storage capacity (unpublished data, the District Engineer, Walla Walla District, U.S. Engineer Dept., public hearing at Walla Walla Air Base, June 28, 1960). Storage of the plentiful winter and spring supplies to meet the requirements of summer and fall is still a prime need of the basin. Aside from some delay in runoff afforded by snow, ground water forms the only water storage.

Ground water has been increasingly used to supply part of the water needs, but locally the development has been illogical. Problems of local overdraft, conflicts between withdrawals for public-supply and irrigation purposes, and uncertainties as to the adequacy of the ground-water supplies prompted the request for this study.

The size and extent of the water-bearing units, their probable recharge and their discharge areas, and the general regimen of the ground water form the basis of a ground-water appraisal. This report outlines the broad aspects of the geology and hydrology that govern the amount of ground water available for development. The report lays a base for subsequent quantitative ground-water studies.

Location and Extent of the Area

The Walla Walla River basin is a roughly triangular area of about 1,330 square milesthat extends 45 miles eastward from the Columbia River to the crest of the Blue Mountains in southeastern Washington and northeastern Oregon (fig. 1). The main stream and tributaries drain an area nearly 40 miles wide athwart the Oregon-Washington State boundary. The basin is crossed by the boundary between the Walla Walla Plateau and the Blue Mountain section of the Columbia Plateaus physiographic province (Fenneman, 1931).

As used in this report, the term "Walla Walla River basin" excludes the tributary Touchet River drainage basin. That tributary basin was excluded in order to concentrate on the diverse ground-water situations of the main valley area.

Cooperation and Personnel

The work was done by the Ground Water Branch of the United States Geological Survey in cooperation with the Washington State Department of Conservation, Division of Water Resources, the Board of Commissioners of Walla Walla County, and the office of the State Engineer of Oregon.

The canvass of representative wells and springs was begun in the fall of 1946, completed largely in 1948, and maintained thereafter. The mapping and study of geologic formations were done during 1947-48. The well canvass was made by John Manning, Frederick D. Trauger, Frank A. Watkins, Jr., and the writer. Available data, such as drillers' logs, water-level data, and chemical analyses were collected, organized, and incorporated in the report. The geologic mapping of the Blue Mountains slope was done by Sherwood D. Tuttle during the summer of 1947; the Horse Heaven upland, the Touchet slope, and the details of the valley floor were mapped by the writer during 1947-48.

.

*

•7

.

18

.

INTRODUCTION

Compilation of the information in the report was done in 1962. A preliminary report (Newcomb, 1951) was released to the open file in 1951.

Acknowledgments

People connected with the construction and operation of water wells were cooperative and helpful. Special acknowledgment of generous help is due A. A. Durand and Paul Durand, Harry H. Harding, and Harold Yager. Help from drill records also was given by Earl Shortridge and W. E. Ruther, who contributed their well records and those gathered by their fathers. Records were obtained also from George Scott, Ted VanVoorst, L. W. Marlatt, and the firms of Moore and Anderson and Heistuman Brothers. The Soil Conservation Service furnished aerial photographs and records of wells. The district office of the Bureau of Reclamation, under the direction of M. Boyd Austin, was very helpful, and its measurement of an extensive well net weekly for nearly a year aided greatly during the early part of the study. The supervisors of the city water departments contributed records of water level and other data regarding their wells.

Many of the data on ground-water levels were obtained by Harlow Barney, Watermaster of Walla Walla County, and W. C. Mason, Deputy Watermaster of Umàtilla County.

A report by A. M. Piper and others (Piper, Robinson, and Thomas, 1935) described the geology and ground water of the shallow ground-water zone beneath the valley floor. Charts and tables of that report, as well as the ground-water-level and spring-discharge measurements, continued since that study, were used in the present work.

Location Symbols

In this report, wells and springs are designated by symbols which indicate their locations according to the rectangular survey of public lands. For example, in

the symbol for well 6/35-12P2, the fraction preceding the hyphen indicates township and range; because all parts of the river basin are in the northeast quadrant of the Willamette base line and meridian, this part of the symbol indicates T. 6 N., R. 35 E. The number following the hyphen indicates the section (sec. 12); the letter denotes the 40-acre subdivision of the section, according to the following diagram; and the final digit is a serial number among wells and springs in that particular 40-

Ē

٤,

ŧ

D	С	в	А
E	F	G	H
м	L	к	J
N	Р	Q	R

acre tract. Thus, well 6/35-12P2 is in the SE $\frac{1}{4}$ SW $\frac{1}{4}$, sec. 12, T. 6 N., R. 35 E., and is the second well or spring to be listed in that tract.

In tables 1 and 4, these location symbols are not given in full for each well. Rather, the symbols are grouped by townships under appropriate subheads and

only that part of the symbol is tabulated which indicates the section, 40-acre tract, and serial number. All wells and springs listed in the tables are located on plate 1.

In a few places, such as for the location of the sample points of surface water whose analyses are listed in table 3, the part of this number giving the township, range, and section is used only for brevity in location of the sampling site.

۸

3

Climate

In general, the type of climate is continental, but some oceanic storms from the west occur in winter. The climate varies with the altitude--from warm and semiarid at the western, lower part of the river valley to cool and less arid at the headwaters in the Blue Mountains.

The precipitation comes mainly in the winter; ordinarily 70 percent falls in the 6-month period October-March. It increases progressively eastward with the altitude--from an average annual total of 10 inches for the 500-foot level at Lowden to 42 inches for the 4,200-foot level in the Blue Mountains (fig. 2).

The annual precipitation for the region is remarkably constant; the lowest year of the 69-year record at Walla Walla (1891-1959) having 61 percent, and the highest but 153 percent, of the average 16.1 inches. The record of the annual rainfall (fig.3) shows a general below-average condition in the 1920's and 30's and a gradual above-average condition since 1941.

In the lower parts of the drainage basin the precipitation comes mainly as rain and in the upper parts, as rain and snow. Snow does not often accumulate to a depth of more than 1 foot on the valley floor at Walla Walla, but it builds up to depths of several feet in the Blue Mountains during most winters.

According to the Weather Bureau records, the average annual temperature at Walla Walla for the 45 years ending with 1929 was 53.5°F. The highest temperature recorded each year is rarely higher than 100°F., and the lowest seldom reaches 0°F. The average relative humidity is 71 percent at 8:00 a.m. (43 years of record), 50 percent at 12 noon and 53 percent at 8:00 p.m. (15 years of record). The monthly average relative humidity has ranged from 84 percent at 8:00 a.m. during the winter months to 25 percent at 8:00 p.m. in July.

The wind at Walla Walla is recorded as prevailingly from the south. That may in part be due to local terrain control, because a more southwesterly direction is common for the region as a whole. There is good movement of air through the valley; monthly average wind velocities at Walla Walla, for the 45-year period 1885-1930, range from 5.7 to 7.2 miles per hour. March and April were months of highest wind velocities, and October of lowest. Maximum annual wind velocities are recorded as 32 to 51 miles per hour and their occurrence seems evenly spread through the year. Winds of tornado velocities are virtually unknown. A mild wind, though prevalent and often rather continuous in the daylight hours, is not usually strong enough to bother the application of irrigation water by sprinklers.

The sky is usually clear. An average of only 56 days per year were called cloudy during one 26-year period when this weather element was recorded at Walla Walla.

INTRODUCTION

4

Water Years, 1905 - 30, inclusive

Station	Altitude, in feet	Distance east, miles	Average annual precip, inches	Period of record
Lowden	500	0	9.77	1905 - 30
Milton ⁰	1.000	10	14.38	1915 - 30
Walla Walla	1,000	12	16.66	1891 - 1930
Nilton Rdwier House	1, 300 ^b	20	20.26	1908 - 50
Mill Creek	2,000°	23	38.05	1916 - 31
Blue Mtn. Mill	4,200	30	42.75	1910 - 17
^a Not shown on ^b Adjacent hills Adjacent hills	ore above	e 3,000 feet		

Figure 2.- Average monthly precipitation for five stations and average annual precipitation for six stations, showing greater precipitation with increase in altitude eastward in the Walla Walla River basin.

7

departure from the 1921-45 average over the period 1891-1959,

6

r

.

PHYSIOGRAPHY AND STREAMS

The growing season is long--averaging 218 days at Walla Walla for the 46 years, 1885-1930. The average date of the last frost was March 31, and the average date of the first frost in the fall was November 1. Unseasonal frosts during the growing season are rare, though killing frosts are listed as having occurred as late as May 9 and as early as September 24.

PHYSIOGRAPHY AND STREAMS

Physiography

The principal physiographic elements of the Walla Walla Basin are the Blue Mountains section, consisting of a deeply canyoned upland surface and a ramplike slope called the Blue Mountains slope, and the valley section composed of plains and terraces. These two main elements join rather abruptly where the upper limit of the valley floor intersects the Blue Mountains slope. Secondary physiographic elements are the north slope of the Horse Heaven ridge and the southerly inclined Touchet slope which flank the valley plains on the southwest and north respectively.

Blue Mountains Section

An inclined surface, formed on the Columbia River Basalt, rises from beneath the unconsolidated deposits at the eastern edge of the Walla Walla Valley. In its lower altitudes of 1,200 and 2,000 feet, stream-valley notches set off the ramplike ridges, which ascend eastward at about 3° to 5° (figs. 4 and 5). The

Figure 4.--View of the Blue Mountains slope with upper part of the valley plains along Cottonwood and Russell Creek valleys in foreground.

even interstream surfaces narrow progressively as the ridges gain greater altitudes; nevertheless, in the headwater areas at the crest of the Blue Mountains several broad upland areas remain undissected. The broad crests of the mountainous heights reach a rather common altitude of 5,000 feet along the drainage divide, and a maximum of just over 6,000 feet at Table Rock (pl. 1 and fig. 15). The even surfaces of the ramp slope and the upland levels have a smoothly curved profile which is mostly parallel to the dip of the underlying basalt flows.

.

ð:

One of the largest undissected remnants of the upland surface is nearly 10 square miles in area. It lies between the canyons of the North Fork of the Walla Walla River and Mill Creek. Its smoothly undulating surface has less than 50 feet of local relief. The old surface is covered by a deep silty-clay soil on which fir, pine, yew, and associated conifers stand in dense thickets interspersed with occasional glades and more open stands of trees. The depth of the soil cover in the central parts of this upland is apparently greater than the 10 to 20 feet exposed in the banks of some of the road grades. The high precipitation results in wet areas at poorly drained places, and mountain meadows are common.

Shallow valleys of what once must have been large creeks remain on this upland surface. Probably they are modified remnants of the gentle valleys that drained this basalt surface prior to its uplift and dissection. Two of these are narrow and branched grassy swales that wind about for a mile or more and are known as Little Meadows and Big Meadows.

Blalock Mountain, lying between the forks of the Walla Walla River, and Table Glade, in which Langdon Lake and Tollgate Ranger Station are located, are two other remnants of this old upland surface.

Small springs occur about the edges of the upland plateaus. Most are the seepage outlets of water that has infiltrated the soil and moved laterally perched on the basalt. Such seepage outlets occur at Dusty, Bone, Husky, Deduck, and many other springs.

The valleys that dissect the upland surface are steep-sided, mostly narrow, canyons which are as much as 1,500 feet deep in places. The canyon walls are marked by the stairlike edges of stratified basalt flows. The South Fork and Mill Creek canyons are the deepest and grandest.

In valleys cut parallel to the direction of the strike of the basalt, as are the upper parts of Mill Creek and South Fork, the canyon profiles are asymmetrical-the wall on the west, the downdip side, is steeper. In reaches of the canyons that trend downdip, perpendicular to the strike of the basalt, cross-section profiles of the valleys are more symmetrical and generally V-shaped. The transverse profiles of the valleys of both Mill Creek and the South Fork, as well as of most other valleys, have "two-story" shapes--a narrower inner gorge of several hundred feet depth has been cut below an older, wider valley. Travel into and out of many of the canyons is difficult except at certain places and for those experienced in the area. These canyons are one place where the old admonition to go downslope when lost may well lead the uninitiated hiker into difficult, if not dangerous, circumstances.

The dominant directions of the stream canyons correspond to the direction of the structural elements of the basalt. In the upper, more gently dipping part of the arch, as in South Fork of the Walla Walla River and Mill Creek, the canyons generally follow the strike of the basalt flows. A consequent, downdip, direction of the stream canyons is more common in the lower parts of the Blue Mountains slope. Most of the reaches that trend parallel to the strike of the basalt layers seem to have inherited their ancestral locations from preuplift streams. Those which course straight down the dip seem to occupy canyons that are subsequent to the tilting of the surface. The regional jointing and the fault zones exert some control on the intrenchment of the streams-both by providing softer zones for downcutting and by bringing out ground water to nourish the streamflow. The large Hite fault seems to have played an important part in the location of the upper part of the North Fork as well as part of Mill Creek and its branches (pl. 2).

In longitudinal profile, the stream channels are rather evenly graded and have few noteworthy falls or plunges. In their lower parts the mountain canyons are partly choked with bouldery alluvium. At the present time, tributary streams from the side canyons are building fans of coarse alluvial debris into the larger valleys faster than the main streams can carry the material downstream. The canyon valley of the South Fork is backfilled in places to a depth of 60 feet or more, as far upstream as the mouth of Elbow Creek. Mill Creek valley is backfilled to a lesser degree.

Secondary Upland Elements

The eastern part of an elongate upland, known as the Horse Heaven ridge, separates the lower part of the Walla Walla River drainage basin from the Umatilla River valley to the south. Within but 2 or 3 miles of the valley floor, the north side of the Horse Heaven ridge rises a thousand feet over a series of steplike escarpments connected by "flat" stretches or by short ramp slopes. The Horse Heaven ridge itself is a rather even plateau which, in contrast to its abrupt descent northward, slopes southward evenly and gently in the Umatilla Valley.

The fourth topographic unit is the undulating plateau surface that descends in 12 miles from the 2,100-foot divide just south of the Touchet River to 1,200 feet in altitude at Dry Creek and, still farther southwest, to an altitude of 600 or 700 feet where it overlooks the floor of the Walla Walla valley near the mouth of the Touchet River. This gentle slope, which forms the north side of the Walla Walla Basin, is herein referred to as the "Touchet slope."

Valley Section

<u>Alluvial slopes</u>.--From the Horse Heaven ridge at Milton-Freewater $\frac{1}{2}$ northeastward to the Prospect Point Ridge and from the foot of the Blue Mountains slope at Tracy northwestward to Dry Creek near Buroker, an old gravelly surface on coalescent alluvial fans formerly sloped uniformly downvalley. The old surface and its present thinly covered "reflection" descend from an altitude that ranges between 1,200 and 1,500 feet in the canyons of Mill Creek, Walla Walla River, and their main tributaries. Downstream from Whitman that ancient surface became flatter and was underlain by silt and fine-grained deposits, but it formed the lower part of the valley floor. The upper part of this alluvial surface was buried by later unconsolidated materials which now thinly overlie it. Its covered form is the main physiographic feature in the upper part of the Valley.

 $[\]mathcal{V}$ The formerly separate cities of Milton and Freewater are now combined in Milton-Freewater, but in places within this report the upper part, Milton, and the lower part, Freewater, are referred to separately for brevity.

12 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

The valley floor slopes at a rate of 50 to 100 feet per mile to the center of the valley near Whitman. It wraps around the west end of the basalt bedrock ridge (known as Prospect Point Ridge) that extends from the Blue Mountains slope westward nearly to Walla Walla.

÷.

.

١.,

The unconsolidated deposits which overlie and mantle the original alluvial surface do not mask its larger features. In the west part of the Prospect Point Ridge and in the Tracy area, that old alluvial-fan surface is covered by a deposit whose composition and topographic expression are quite similar to the Palouse Formation of eastern Washington and northeastern Oregon. In the Cottonwood, Birch, Reser, and Russell Creeks section and in the Sapolil-Sudbury section this old alluvial-fan surface is overlain by a silty clay that is somewhat like the Palouse Formation, and in the lower valley-floor area it is covered by glaciofluviatile and Recent alluvial deposits. These deposits that overlie the old alluvial surface are described beyond, in the section on unconsolidated deposits.

Near Freewater and Walla Walla, much of the present land surface is believed to be close to the former level of the old fan surface. It is a sloping gravel plain upon which the streams run in shallow channels. The ground-water level is near the surface during much of the year and springs in the swales are fed by ground water whose interplay with the surface streams is readily evident. Where the overlying deposits have been swept from the old fan surface, the gravel is exposed in strips between the interstream terraces or along the front of the terraces at the edges of the valley floor. These alluvial strips and interstream terraces are prominent physiographic features in the central parts of the valley plains.

<u>Terraces.--</u>Low terraces form the upper part of the valley floor at an altitude of 1,300 to 1,500 feet. They remain along the sides of the valley plains, or as islandlike remnants among the stream-swept flood plains all the way down the valley to an altitude of 400 feet at the bedrock canyon near Divide. The terrace fronts range in height from a few feet to the 150-foot escarpment at the lower end of the Gardena Terrace.

A slightly different type of terrace predominates along the lowest part of the Walla Walla River and the Columbia River in the Pasco Basin downstream from Divide.

In the upper part of the valley pieces of the older terrace lie at an altitude of 1,250 feet on the ridge just south of Dry Creek below Buroker and on the Prospect Point Ridge south of Mill Creek. These terrace remnants are underlain by soil that is typical of that formed on the Palouse Formation. They are eroded into hilly topography, such as also is typically of the Palouse Formation. The Palouse Formation beneath these old terraces is in part underlain by a gravel and conglomerate belonging to the old gravel of Pleistocene age, which in turns lies upon the basalt bedrock. Much of the higher part of the valley lands in the Birch-Cottonwood-Reser-Russell Creeks area also may belong to this older terrace level.

A second and lower terrace level abuts against the older "1,250-foot terrace" and extends farther downvalley. It slopes downvalley from the 1,500-foot level above Tracy in Mill Creek valley. A remnant of this second and lower terrace occurs on the end of the Prospect Point Ridge east of Walla Walla. It is well preserved in the broad area northeast of Milton, from where it slopes uniformly downstream and passes, nearly imperceptibly, into the wide-spread terrace level of the lower valley, which is typified by the plain around Gardena and is there known as the Gardena Terrace. Below 1,150 feet altitude, this second terrace is underlain almost entirely by silt or clayey silt which is part of a glaciofluviatile deposit.

The surface of the second terrace is but slightly eroded. It occurs as broad inclined plains south of Spofford and northeast of Walla Walla. The Walla Walla City-County Airport utilizes a part of it. In places, the materials underlying the second terrace have been completely removed by the tributaries and distributaries of the Walla Walla River near Freewater and, in strips, downstream from Freewater, and by Mill Creek and associated streams east and west of Walla Walla.

The Gardena Terrace consists of the main broad remnant of this second terrace on the south side of the Walla Walla River. It slopes from about 800 feet altitude at the State Line district to about 500 feet, 14 miles farther west near Gardena School. Several fairly large remnants of this terrace level lie at equivalent altitudes on the north side of the Walla Walla River. In places at its upper end the Gardena Terrace tapers evenly from the level of the stream-swept gravel surface of the Freewater district. It extends downstream with progressively higher escarpments separating it from the Recent flood plains of the Walla Walla River (fig. 5).

Figure 5.--View south across a characteristic part of the alluvial plain of the Walla Walla River from the Whitman Monument on an erosional remnant of the Gardena Terrace, near center sec. 32, T. 7 N., R. 35 E. The low bluff at the right upper center is one scarp near the upper end of the Gardena Terrace.

14 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

The terraces are underlain by some of the best soils of the Walla Walla Basin. The loess of the Palouse Formation beneath the older, higher terrace and beneath the uppermost part of the younger second terrace, has different waterabsorbing and water-transmitting characteristics than the Touchet beds which underlie most of the lower and main part of the younger, second terrace. The two main soil types are recognized by soil surveyors as the Palouse and Sagemoor types with many gradational changes between the two type specimens in opposite ends of the Walla Walla Valley (Newcomb, 1961).

Streams

The main Walla Walla River is formed by the confluence of the South and North Forks. The South Fork \bot' is the principal tributary and is actually the upstream continuation of the main stem. The North Fork is a smaller, shorter river that progressively is being robbed of both surface- and ground-water drainage by headward extension of the tributaries of the larger and more deeply cut South Fork. Together these two tributaries drain the southern part of the Blue Mountains slope (fig 6).

The headwaters of the South and North Forks both flow southwestward along the strike of the layered basalt for 5 or 6 miles before taking a more westerly direction down the dip of the rock layers, which are inclined from $1/2^{\circ}$ to 5° toward the Walla Walla Valley. At the apex of its alluvial fan at Milton, the Walla Walla River divides into 2 main distributaries, the Tum-a-lum Channel (main stem) and the Little Walla Walla River. The latter in turn gives forth another distributary called the East Fork of the Little Walla Walla River. Below where the main stem, Tum-alum Channel, turns westward in the swale between the alluvial fans of the Walla Walla River and Mill Creek, it is rejoined by the other distributaries, the flow of many springfed creeks, and the distributaries of Mill Creek (pl. 1).

Mill Creek, which heads in the high central part of the Blue Mountains slope, is the largest of the continuously flowing tributaries, all of which rise in the Blue Mountains. It passes northwestward onto its alluvial deposits in the lower part of its mountain canyon, and joins the main stream on the valley floor below Walla Walla. It also has several distributaries. These distributaries course southwestward off the south slope of the alluvial fan and are augmented by spring-fed branches, locally called "spring branches," through which the outflow of ground water augments the creek.

The Touchet River is formed by the confluence of several large creeks draining the northern part of the Walla Walla River basin. At the foot of the mountain slope the river abruptly changes direction to follow an unusual type of course westward to the Eureka Flats, from where it flows southward to the Walla Walla River at Touchet. The divide between the Touchet River drainage and the other parts of the Walla Walla River drainage is part of the northern limit of this investigation. t

×.

¹/For brevity the South Fork and the North Fork of the Walla Walla River are referred to hereafter as the South Fork and the North Fork.

Figure 6.--View northeast across the Walla Walla River canyon at the confluence of the North and South Forks. The eroded upland surface and the flow layers of the basalt both rise about 150-300 feet per mile eastward toward the Blue Mountains upland. (Photo by A. M. Piper.)

Creeks whose headwater areas are in the lower part of the Blue Mountains slope are mostly nonperennial, though streams like Pine, Dry (Oregon), Couse, Birch, Cottonwood, Reser, Russell, and Dry (Washington) Creeks carry some water in parts of their courses throughout some years. Blue Creek, a tributary of Mill Creek, has a permanent flow.

Most, if not all, of the mountain-fed streams lose water while crossing unconsolidated deposits underlying the upper parts of the valley floor. That infiltrating water returns again to the streams in the middle and lower parts of the alluvial fans, as described below under "Ground-water occurrence in the old gravel of Pleistocene age."

The Horse Heaven ridge and the Touchet slope have no perennial streams; only storm water or snowmelt runoff reaches the valley floor from the dry washes of those uplands.

The discharge of water by each of the through-flowing tributaries is characterized by topographic and hydrologic conditions that provide: (1) a headwater area of rockbound canyons wherein the streams that are deepest cut receive a steady perennial spring supply, (2) a large storm-water and snowmelt runoff, and (3) a downstream course across the alluvial slopes of the valley floor wherein the streams first lose and then regain water. Farther downstream the main stem of the Walla Walla River follows, in succession, a normal meandering flow through a valley section that reaches past the mouth of the tributary Touchet River and a more rapid passage through a shallow, partly rockbound, gorge in which it descends to the level of the Columbia River.

8

٠

The gradient, in feet per mile, of the main Walla Walla River decreases from more than 200 on the South Fork above Elbow Creek, to 100 near the mouth of the North Fork, to 50 near Milton in the mountain canyons and across the alluvial fan, and to 25 along the terrace lands as far as the mouth of the tributary Touchet River.

The discharge of the Walla Walla River comes from three principal sources. These are (1) storm water (precipitation shed directly or nearly directly to the streams and not lost to infiltration from the channels), (2) snowmelt conveyed entirely without infiltration, and (3) ground-water discharge. The discharge from each of these sources appears as characteristic parts of the annual discharge curves shown in figure 6. The storm runoff is especially dominant in early winter; the snowmelt, in the spring and early summer, and the ground-water outflow is dominant during the summer and the long cold periods of winter.

The flow of the South Fork during the year ranges from about 400 to 500 cfs (cubic feet per second) down to a base flow of about 100 cfs. The North Fork flows in a shallower canyon that does not reach down to the regional water table; consequently its summer base flow amounts to only about 5 cfs compared to an annual peak flow of about 275 cfs. In discharge per unit of surface area, the annual peak flow (surface runoff) of the North Fork is comparable to that of the South Fork (fig. 7). Mill Creek has basin discharge characteristics similar to those of the South Fork. It has a base flow in summer of about 40 to 50 cfs coming from springs where the canyons reach down to the regional water table or to some of the zones of perched ground water deep in the basalt.

Much of the precipitation runs off the mountainous section. The total discharge of Mill Creek at a station half a mile downstream from the State boundary for the climatic years of 1914 and 1915 was equivalent to 30.8 and 26.6 inches of precipitation, respectively, on the drainage area (Johnson, 1933, p. 18). Johnson also reported the discharge of the South Fork above the Pacific Power & Light Co.'s intake (half a mile above the mouth of the North Fork) equaled a basinwide yield of 30.4 and 28.2 inches respectively for those same years. The precipitation recorded at Blue Mountain Sawmill on the upland at McDougal (altitude 4,200 feet) was 43.14 and 33.09 inches respectively for those years. If this precipitation is taken as representative for that part of the drainage basin, the percentage of the precipitation that passed the gaging station during those years would have been 71 and 80 for Mill Creek and 70 and 85 for South Fork. These quantities are rude, but still they would suggest remarkably high basin yields and would indicate that only 15 to 30 percent of the precipitation had been taken from the basins by evapotranspiration.

The contribution of ground water to the total yields of the basin in 1914 and 1915 may be approximated from parts of the discharge records shown on figure 6. The infiltration to ground water represents a considerable part of the precipitation on the mountain areas. Published records of streamflow in the Touchet River to the north, the Grande Ronde to the east, and the Umatilla River to the south indicate the summer base flow of those rivers per unit area of drainage basin is similar to that of the Walla Walla River and Mill Creek. This similarity between basins indicates that the ground-

1

.

17

\$

.

water divide of the Walla Walla drainage basin lies approximately beneath the surface drainage divide, and the runoff represents precipitation on this basin only.

4

Figure 6 shows that the uniform summertime base flow of the South Fork and North Fork combined is about 100 cfs and of Mill Creek about 50 cfs. Based on the continuity of this base flow during the dry months of each year and its uniformity from year to year, such a ground-water discharge may be postulated for the whole year and computed as an average depth of water that infiltrates and reaches the ground water beneath the respective drainage areas. The resulting outflow of ground water which reaches the streams and passes these measuring stations annually is equal to an average of 13 inches of precipitation on the drainage basins above these stations, which are near the lower ends of the canyoned courses of the Walla Walla River and Mill Creek. Thus, when compared to Johnson's total yield figures, given above, it is apparent that ground water supplies nearly half of the total annual discharge of these streams to the Valley'. Also it is clear that ground water supplies much more than half of the water these streams discharge to the Valley during the growing season of each year.

The size of this ground-water base flow discharging from the Blue Mountains part of the drainage basin may be estimated as about 125,000 acre-feet of water per year.

After the discharge of the last of the snowmelt, by about July 1 of each year, the 150 cfs of ground-water outflow carried to the Wałła Walla Valley by these two main streams, along with the water pumped from ground-water storage beneath the valley, forms the bulk of the water supply on which the economic life of the valley is based.

GEOLOGY

Consolidated Rocks--The Columbia River Basalt

The only consolidated rock exposed in the Walla Walla Basin is the Columbia River Basalt, a thick sequence of lava flows of generally basaltic composition (pl. 2). The basalt is exposed in a thickness of about 2,000 feet in the canyons of the South Fork and of Mill Creek, and has been drilled to a depth of 2,500 feet at Walla Walla.

The rock on which the basalt rests is not exposed and has not been reached in drilling in the Walla Walla River basin. In the Tucannon River canyon, about 35 miles northeast of Walla Walla, a few small inliers of Paleozoic(?) and Mesozoic(?) sedimentary, metamorphic, and igneous rocks are exposed beneath the basalt (Huntting, 1942), which in that vicinity is at least 3,000 feet thick.

The Columbia River Basalt covers a large area in Oregon, Washington, and Idaho. The main body of the basalt extends in general from the Okanogan Highlands southward to the east-west mountain systems of central Oregon and from the Cascade Range eastward to the Rocky Mountains. The Walla Walla Basin lies southeast of the center of that vast basaltic area. The basaltic lava is considered to have been extruded largely during the Miocene Epoch, on the basis of fossils gathered from sedimentary deposits with which the basalt is interlayered at places about its margins, but its extrusion apparently continued into the early part of the Pliocene Epoch in at least some parts of its occurrence. The basalt is a dense dark-gray, brown, or black rock with very finely felted crystallites set in a glassy groundmass. Vesicular texture is common in most flows; the tops of some flows are spongy in places.

Characterically, the basalt flows have three main sets of joints resulting from shrinkage during cooling. Two of the joint sets are generally vertical and one horizontal. One vertical set separates the basalt into polygonal, usually hexagonal, columns that extend perpendicular to the cooling surface of each flow. These columns range from about 6 inches to 5 feet or more in diameter and in some thick flows extend from top to bottom. The second vertical set separates the basalt into straightsided, irregularly shaped blocks only 6 inches or so in diameter. That joint structure is often called "cubical" or "brickbat." The third joint set embraces the horizontal platey cracks. The three types of cooling joints may occur in the same flow, but when they do one always seems to be more strongly developed than the others. Besides the cooling cracks, or joints, which separate the basalt into columns, blocks and platey slabs, as described above, there are master joints, sometimes called regional joints. The regional joints are linear cracks, or multiple cracks in a band a few inches wide, cutting nearly vertically through the basalt of a flow and continuing for a distance of several hundreds or thousands of feet. In some places these master joints continue vertically into the overlying and underlying flows. In many places these master joints are aligned with fault planes and may be a part of the structural accommodation of the rock to deforming stress, but elsewhere they may be a gross feature of the cooling and solidification of the individual lava flow. Generally there is little displacement of the sides of these regional joint planes, but displacements of several inches or a few feet occur locally.

1

The basalt sequence is composed of successive flows of lava, built up accordantly one over the other, with relatively few interflow deposits or soils. A few dikes of basaltic lava cut across the layers. On the whole, the interflow planes are remarkably parallel and uniform, although locally the contacts are irregular, particularly near the tapering ends of individual flows. In the South Fork canyon above Elbow Creek and in Mill Creek canyon, as well as at other places in the Blue Mountains, sections nearly a thousand feet thick are well exposed, and have accordant inclination of interflow planes throughout the vertical section in which the layered structure extends uniformly as far as the individual flow lines can be followed laterally. One angular discordance of about 1° is present between prominent flow lines in the cliff along the South Fork in sec. 21, T. 5 N., R. 36 E. The discordance described by Erdmann (1933, p. 28 and fig. 4B) was not verified in the field. Instead, the apparent discordance may represent differences on opposite sides of a fault displacement or between flow layers and a low angle dike rather than a discordance in the dip of successive lava flows.

Individual flows range in thickness from 5 to 150 feet. Individual flows exposed in the South Fork canyon average about 40 feet thick (Erdmann, 1933, p. 16).

Only a few sedimentary interbeds are visible in the basalt outcroppings. A few thin buried soil zones between the lava flows are exposed in the thick sections in Mill Creek and South Fork Canyons. Though sedimentary deposits may be present between flows in canyon exposures and be hidden from view except in the sheerest slopes, it seems evident that sedimentary interflow deposits are thin and rare. Logs of deep wells in the basalt (table 2) show that, on the average, only one interflow "clay," "shale," or tuffaceous zone averaging 10 feet in thickness was logged by drillers for each 340 feet of drilling. Some reddish interbeds were listed in those logs but no extensive interflow zones are identified from drilling records. The tuffaceous beds commonly encountered 100 to 300 feet below the top of basalt in the Yakima River valley, the Richland area, and the Pasco district to the west were not identified in the basalt beneath the main part of the Walla Walla River basin. However, such extensive interflow deposits may be penetrated by wells as far east as Wallula. Also, one 10-foot-thick volcanic ash or tuff bed is exposed over a wide area near the top of the basalt section in the south side of the canyon of the South Fork.

The tops of many lava flows are oxidized to a deep red color that diminishes progressively downward for 2 or 3 feet--into the normal dark rock of the flow. The tops of some flows show a rather rough "cooling-breccia" type of fragmentation, the pore spaces of which were not closed by the lava of the overlying flow. These cracks and vuggy spaces are large in the tops of some flows; however, cavernous conditions are rare. The rock texture indicates that the basalt in the Walla Walla Basin largely solidified after the fluid lava came to rest. Flow brecciation, resulting from selffragmentation by movement after partial solidification, is very rare in these flows.

ŝ

•

Unconsolidated Rocks

Old Gravel and Clay of Pleistocene Age

The oldest of the unconsolidated deposits that lie below the plains of the Walla Walla Basin consists of clay as much as 500 feet thick, and of gravel 10 to 300 feet thick. The gravel was laid down as coalescent alluvial-fan deposits whose materials were washed from the mountain canyons of Mill Creek, the Walla Walla River, and their tributaries.

These deposits are referred to locally as the "old gravels and clays" or the "cemented gravels" and the term "old gravel and clay" is used here informally in conformance with local custom.

So far as known, the old clay does not crop out at the surface. Drilling records show it lies upon the basalt bedrock in the deep parts of the Walla Walla syncline (plate 3A and 3B). At depth it extends across the valley from Mill Creek to the bedrock near Umapine. Longitudinally it extends down the valley from Free-water to the rock rim at Divide. The old clay may be the time equivalent of part of the Ringold Formation which lies on the basalt in the broad synclinal area of the Pasco Basin west and northwest of the rock rim of the Divide anticline.

The old gravel occurs as remnants at the valley floor level, as a widespread layer beneath most of the valley floor, and as narrow trains buried beneath later deposits and extending far down the southern part of the lower valley floor. Locally, near the margins of the valley, as at the top of the river bluff just below the Milton powerhouse and in the road banks in sec. 5, T. 5 N., R. 36 E., the gravel rests on the tilted surface of the basalt. The main gravel deposit is exposed beneath a thin soil cover in parts of the Walla Walla city and Freewater areas (fig. 8).

GEOLOGY

Figure 8.--Old gravel exposed to a height of 20 feet and overlain and silt in the east bank of the Walla Walla River at Milton-Freewater, just north of center of sec. 1, T. 5 N., R. 35 E.

Some of the old gravel deposit lying on the basalt in the upper part of the valley may be older than Pleistocene. However, because of the apparent Pleistocene age of the main stratum of the old gravel, and in the absence of other age data, this possibly older gravel is included with the gravel of Pleistocene age because they are similar.

The old gravel is composed largely of well-rounded, undecomposed pebble, cobble, and boulder gravel entirely of basaltic material. The gravel materials in most places are set in a matrix of sandy and silty material, although beds and irregular flat zones without such matrix do occur. Sand constitutes a minor part of the gravel zone. In some places considerable calcareous cement is present. Exposures of gravel in the sides of dug wells show that compaction and imbedding of silt and sandy matrix is of greater importance than cementation in making the gravel semiconsolidated. Much of the footage drilled in the old gravel is recorded as "cemented gravel." The gravel is so compacted that in most places it stands unsupported in the walls of dug wells; loose gravel, or gravel sufficiently free to transmit water readily, forms but a small part of the material observed or reported in wells.

22 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

From an irregular thinly tapered edge on the lower slopes of the Blue Mountains the old gravel thickens downvalley into a 200-foot stratum in the area between Walla Walla, Milton-Freewater, and Whitman Station. The gravel extends in narrow trains farther downvalley along the southern side and apparently thickens and widens in places beneath the area south of Gardena School. Downvalley from College Place and the State line, the gravel is interlayered with clay and silt of the old clay described above. Along the northern side of the lower part of the valley the gravel largely terminates upstream from Lowden, where wells penetrate only a few layers of sand and fine gravel interbedded with silt and clay.

Downvalley from the common western limits of the main stratum of the old gravel, some coarse sand and fine gravel are penetrated by wells in the Mud Creek and Pine Creek areas as well as beneath the Gardena Terrace itself. Those sand and gravel layers are largely interstratified with finer materials, in which respect they contrast with the continuous thicknesses of the old gravel that occur beneath areas farther upstream.

Laterally across the valley, the old gravel may be followed in wells from the bouldery zone found above bedrock in the Buroker and Sapolil districts on Dry Creek southwest to the Horse Heaven escarpments southwest of Umapine. The main bulk of the deposit lies beneath the alluvial fans of the Walla Walla River and Mill Creek where it has a general thickness of 100 to 300 feet. Downvalley, the old gravel tapers out, in both vertical and horizontal planes, as tongues that extend into the old clay. The long trains that extend beneath the Umapine area, widening and thickening again beneath the south side of the lower valley, are the most important among these tonguelike extensions.

-

Feet

The old clay is apparently the quiet-water equivalent of the old gravel and was deposited where the gravel-bearing currents were unable to reach. The general downslope limit of the main body of this old gravel occurs along an arc about a mile beyond the outer spring zone (pl. 1). This outer limit of the main body of the old gravel extends northeastward from a mile or so west of Umapine, crosses the State line northward to where the old gravel strata of the Walla Walla River merge with those that originated in the Mill Creek valley. The limit of this main body of the old gravel then extends northeastward about through Whitman Station.

Ringold(?) Formation

In the railroad cut along the north bluff of the Walla Walla River $2\frac{1}{2}$ miles west of Reese the westward-descending top of the Columbia River Basalt is overlain by layers of silt and conglomerate. These deposits may be part of the Ringold Formation which underlies a large part of the Pasco Basin north and west from the bedrock ridge at Reese.

The exposed section is:

Siltstone, yellowish-gray, semicompact (eroded top is	
overlain by Touchet beds and by slope rubble from	
basalt croppings higher on slope)	10

GEOLOGY

Conglomerate, weakly indurated, 70 percent of pebbles	
and cobbles are basalt, 30 percent exotic types.	
Basaltic particles have a decomposition rind.	
Siliceous sand fills interstices	50
Siltstone, similar to 10-foot bed at top, lies on	
basalt	20
Exposed thickness	80

Deposits of this type were not seen elsewhere in the Walla Walla River basin. These beds probably continue beneath the glaciofluviatile deposits to the west and north and form part of the water-bearing gravel deposits above the basalt bedrock in the Wallula area to the west.

Palouse Formation

The Palouse Formation is an extensive deposit of loess in eastern Washington, northeastern Oregon, and northwestern Idaho. The gentle slopes of the uplands, particularly the higher parts of the Touchet slope, Prospect Point Ridge, the foothill slopes east of Milton, and the higher parts of the Horse Heaven ridge, are mantled largely with this thick cover of fine-grained massive light- to dark-buff silty loess.

Most of the constituent grains are microscopic in size. The loess has a mealy cohesion and is of low or low-medium plasticity when wet. Temporarily it stands steeply in cut banks. In general, the loess is progressively finer grained and more clayey to the eastward within the Walla Walla River basin. Where observed on Prospect Point Ridge, it is a massive clayey silt with some irregular caliche lines that follow sandy streaks. The deposit ranges in altitude from about 1,100 to 3,000 feet. The upper parts constitute a prominent soil type.

Exposures up to 50 feet in height occur in road banks and adjacent hill slopes but the maximum thickness locally may be more than 100 feet. The deposit has characteristics of grain size, color, structure, and mineralogical composition distinct from that of the Touchet beds of Flint (1938)--a widespread glaciofluviatile deposit of the lower part of the valley (Newcomb, 1961).

In the western part of the basin the Palouse Formation is overlain by Touchet beds. A younger loess, wind-worked largely from the Touchet beds, extends beyond the Touchet beds as a mantle of light pink-gray silty loess on the type Palouse Formation. North of Touchet and Lowden this mantle of Touchet-derived loess is visibly distinct, but in the uplands farther east it thins and becomes progressively less distinct.

In much of the foothill and upland land south, east, and north of the Walla Walla Valley the Palouse Formation lies directly on the basalt. Beneath the upper terrace the Palouse Formation lies on the old gravel of Pleistocene age. This relation is well known (at 1,200 feet) in the vicinity of the flood-control reservoir on the Prospect Point Ridge in sec. 26, T. 7 N., R. 36 E., east of Walla Walla (pl. 3B). This higher terrace south of Buroker on the Dry Creek-Mill Creek divide is also formed upon the Palouse Formation. The Palouse at this place is underlain

24 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

by a coarse basaltic boulder stratum that is apparently continuous with the old gravel in the Mill Creek valley to the south. At those two localities the Palouse is typical of the formation in the so-called type, or core, area of the "Palouse region" (Newcomb, 1961). This type area is commonly taken as the Colfax-Pullman-Moscow area 80 miles northeast of Walla Walla. The erosion of the Palouse Formation underlying this upper (1,250-foot) terrace has produced the billowing rounded convex-upward hill slopes characteristic of the "Palouse topography."

Deposits of the Upper Valley Terraces

Downslope from the lower areas underlain by definite Palouse Formation, several terraces and alluvial plains are underlain by deposits which pass imperceptibly beneath the younger Touchet beds. These deposits, here referred to as "deposits of the upper valley terraces," are composed largely of clay and silt. They may be in part equivalent to the Palouse; generally they contain a large amount of reworked Palouse material. For the most part, the deposits of the upper valley terraces overlie the old gravel. In places they overlie the Palouse Formation or, as in the Birch and Cottonwood Creek districts east of Freewater, the Columbia River Basalt.

Westward from both these localities of the Palouse Formation to and beyond Prospect Point, and down the Mill Creek-Dry Creek divide, the Palouse Formation is present at progressively lower altitudes. In many of these lower places its upper part has been altered by reworking and by incorporating post-Palouse loess and volcanic ash, which become progressively more evident westward. An arbitrary line on plate 1 was used to separate the Palouse from the later loess to the west.

The isolated upland occurrences of the Palouse Formation, as well as the undifferentiated loess, are roughly outlined on plate 1 between the bedrock exposures on the Blue Mountains Slope, Touchet Slope, Divide ridge, and Horse Heaven ridge. Boundaries are arbitrarily drawn where the loess gets only 5 to 10 feet thick and rock is mixed with the loess. In the mapping of the margins of the loess on the Horse Heaven ridge, the soil maps (Harper and others, 1948) were consulted frequently to expedite the work.

For the most part these deposits of the upper valley terraces seem to be loess of the Palouse Formation, which was deposited on valley plains, underwent some reworking in places by streams and had some streamborne debris incorporated in the deposit. Because of these stream-laid features in part of these deposits the unit Is separated from the Palouse Formation in this report, although the deposit resembles the Palouse in many respects.

The lowest terrace in Mill Creek valley is formed on an extensive part of these deposits. This terrace descends about 50 feet per mile from an apex nearly 1,500 feet in altitude near Tracy. It broadens to about 3 miles in width north of Walla Walla. The same general terrace level continues in a considerably more eroded condition along the north side of the valley to the vicinity of Whitman and Lowden where it matches the altitude of the broad Gardena Terrace on the south side of the river. In its western part, below 1,150-foot altitude, the terrace is formed on progressively thicker deposits of the Touchet beds until in the Whitman area no

GEOLOGY

materials comparable to the "deposits of the upper valley terraces" are visible. It is difficult to escape the inference that this lowest terrace in Mill Creek valley, underlain by the complex fine-grained materials of "deposits of the upper valley terraces," was a gravel-free alluvial slope aggraded to one of the levels of Lake Lewis during deposition of the Touchet beds in the lake.

In the most massive phases of the materials, stratification is poor or is entirely lacking in the deposits of the upper valley terraces. At the Walla Walla Air Force Base, the deposits beneath the Mill Creek valley terrace may well be reworked Palouse Formation or material of Palouse type laid over a valley plain late in the first phases of the Palouse deposition. South of the Prospect Point Ridge these deposits apparently underlie the broad terraces of the Russell Creek-Birch Creek area. The materials there also appear to be partly reworked deposits of loess of the Palouse-Formation type.

The "deposits of the upper valley terraces" in general transmit only minor quantities of water, sufficient for domestic wells. The deposits underlie much of the best land in the basin.

Touchet Beds

A deposit of horizontally bedded silt and fine sand, marked by distinctive gravel, cobble, and boulder inclusions and by peculiar structural features, overlies all other Pleistocene and older materials. The Touchet beds $\mathcal V$ are more than 100 feet thick beneath the terrace lands in the lower part of the Walla Walla Valley. They extend upslope to a taper edge at a maximum altitude of about 1,150 feet. These beds are principally light-gray silt and very fine sand with some clay, diatomaceous earth, and volcanic ash. Considerable sand and a little gravel occur interbedded, particularly in the lower parts of the deposits, and is exposed in deep cuts in the thicker sections, such as that along the north front of the Gardena Terrace just south of Touchet. Distinctive of these deposits is some pebble-to-boulder debris of granitic and metamorphic rock that has come from the upper part of the Columbia River basin. The presence of large erratics of such material is ascribed to rafting by icebergs. These deposits apparently were laid down in glacial Lake Lewis at a time when a lava flow, ice jam, or landslide dammed the Columbia Gorge near Hood River, Oregon, to an altitude of about 1,150 feet (Allison, 1933, p. 675-722). They underlie the Gardena Terrace and other similar terraces that line the Walla Walla Valley and its tributary stream valleys, such as those of Dry Creek and Spring Valley Creek. Upvalley, this material tapers to a few scattered erratics like those found on the terrace west (but not east) of the Walla Walla Air Force Base. Downstream below the bedrock rim at Divide, the deposits underlie the rolling terrace lands and form much of the surficial material around the margins of the Pasco Basin.

The Touchet beds, like the "deposits of the upper valley terraces," are significant mainly from the standpoint of soils and topography and only in a lesser way are significant to the ground-water situation in the lower part of the valley.

¹/ The name "Touchet beds" was applied first to these deposits by Flint (1938, p. 494).

26 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

Recent Alluvium

The gravel and silt laid down by the present streams comprise the Recent alluvium. Recent alluvial material now above the reach of the streams is called "older alluvium"; that submerged by the streams in flood is referred to in this report as "younger alluvium." Sandsize material forms only a very minor fraction of the deposits of the streams of the Walla Walla River basin. It is mostly pebbles, cobbles, and silt. On the Walla Walla River alluvial fan in the State Line district considerable course alluvium is carried by the present river. Farther upstream, the coarse alluvium is backfilled 50 to 60 feet deep up its mountain canyon, and is spewed out near the apex of the alluvial fan for several miles in a thin layer lying on the old gravel.

Most of the streams that cross the valley floor have cut into or through the Touchet beds, deposits of the upper valley terraces, and the Palouse Formation and are temporarily base leveled on the exhumed gravel surfaces of the old gravel and clay of Pleistocene age or on the basalt bedrock. Across this exhumed surface the alluvial materials are being transported or have been thinly deposited.

Loess Undifferentiated

A sandy sllt loess, light gray in color, manties the Palouse Formation in the uplands of the western and lower parts of the valley. In places it also covers the Touchet beds to a thickness that ranges from 1 to 10 feet. This distinctly sandier loess is apparently derived largely from wind working of the Touchet beds and glaciofluviatile deposits in the westernmost part of the Walla Walla River basin and in the terrace lands along the Columbia River farther northwest. Lines separating this loess from the Palouse Formation and other adjacent deposits were arbitrarily and tentatively drawn on plate 1. The true distinction of this loess deposit was not possible during this investigation. The deposit has little or no significance to the ground-water situation.

,#

Glaciofluviatile Deposits, Undifferentiated

Gravel and sand with some interbedded silt underlie broad terraces in the lowest part of the Walla Walla River basin and along the Columbia River farther northwest and west.

These materials are glaciofluviatile and fluviatile deposits of the ancestral Columbia River. A part of them may be remnants of the Touchet beds, or time equivalents of the latest part of the Touchet beds. They have little significance to the ground-water occurrences in the Walla Walla River basin and are shown on the geologic map (pl. 1) largely to complete the basin coverage.
GEOLOGY

General Structure of the Rocks

Postbasalt Deposits

2

ž

The latter Quaternary deposits, at least those from the Palouse Formation to the Recent alluvium, lie in the essentially horizontal position of their deposition.

The earliest part of the old clay and old gravel may have been tilted in some of the last of the main deformations of the bedrock. A few scattered remnants of gravel exposures, too small to map, on the upland a few miles east of Milton suggest that the early part of the old gravel in places may have preceded the last of the bedrock warping.

Columbia River Basalt

The bedrock is deformed in broad open folds and in local lines of more Intense displacement. The broad warpings have determined the large elements of the basin's geography.

The principal upwarped (anticlinal) segments of the region form the Blue Mountains anticline, Horse Heaven anticline, a broad but low arch whose axis lies to the north side of the Touchet River and the small north-south warp, known as the Divide anticline, west of Touchet. The downwarped (synclinal) unit, which is a counterpart to these anticlines, is the broad and slightly complex Walla Walla syncline. The traces of the axes of these folds, except the one north of the Touchet River, are shown on plate 1.

The largest fold is the broadly arched anticline of the Blue Mountains. The basalt is elevated about 3,000 feet above its relative position at the western foot of the mountains. In generalized cross section the arch is simple and symmetrical. A 5- to 10-mile-wide belt of nearly horizontal basalt in the axial crest is flanked on each side by a 10- to 20-mile-wide slope wherein the basalt layers dip basinward at 2° to 4°. Locally the uniform dips and even ridge crests give way to steeper descents or interruptions where more intense displacements, faults, or sharp folds mark the basalt. The anticline extends into other river basins to the northeast and southwest.

A second large fold forms the Horse Heaven ridge which extends eastward from the Cascade Range for 130 miles to where its diminishing end forms a spurlike prominence on the west flank of the Blue Mountains anticline just east of Weston. Where the fold is crosscut by the Columbia River Gorge, in the Wallula Gap just south of the mouth of the Walla Walla River, it is a symmetrical anticline. The basalt is elevated about 1,000 feet in the anticlinal crest of the 10-mile-wide fold. Farther east the north limb is marked by an en echelon series of northwest-trending normal faults along each of which the basinward block is tilted and displaced downward as a part of the drag toward the Walla Walla syncline to the north. Vansycle Canyon is the southwesternmost of these fractures and is not itself a fault, although its lower part follows a linear fracture away from which the block on the northeast side has rotated so that its basalt dips basinward about 3° .

The low arch north of the Touchet River is apparent in the Walla Walla Valley only as a monoclinal dip of the basalt southward from the Touchet River

beneath the Touchet Slope and on down into the Walla Walla syncline beneath the valley floor. The poorly exposed bedrock beneath the Touchet Slope seems to have a rather even monoclinal dip and fewer lines of severe deformation than are present in the basalt at many other places in the Walla Walla River basin.

2

The Divide anticline is a minor warp in which the basalt is arched up about 300 to 500 feet in a belt 1 to 3 miles wide trending north-south across the lower part of the Valley. The basalt seems to be rather uniformly arched and to lack intense deformation except along its southern edge where a normal fault separates it from the Horse Heaven uplift. The main importance of the Divide anticline arises from its functions as a bedrock closure across the lower part of the Valley where it forms a rock boundary between the Walla Walla Valley and the Pasco Basin farther west.

The inward dip of the basalt from the anticlines on all four sides, as described above, terminates in the Walla Walla syncline, a broad and irregularly boat-shaped downwarp beneath the unconsolidated deposits that underlie the valley floor. The approximate axial trend of this downwarp is shown on plate 1, the bedrock surface is reproduced by contours on plate 2, and cross sections are given on plates 3A and 3B. Apparently the top of the bedrock where it is deeply covered within the syncline, as elsewhere in much of the drainage basin, rudely follows the structure of the flow layers.

Drilling records indicate that the top of the basalt continues underground at even dip and slope for considerable distances beneath some parts of the valley floor, but in other places it is marked by abrupt changes in altitude. The best known of these abrupt changes is the College Place flexure, the subsurface escarpment of a fault or sharp fold, is shown on plates 1 and 2. Its importance as a ground-water barrier in the basalt is described beyond. Other such subsurface escarpments are indicated as probably present and important to the ground-water situation. The faults extending northwest from the north side of Horse Heaven ridge continue as abrupt changes in the altitude of the bedrock beneath the unconsolidated deposits, but few of these displacements can be shown accurately by the bedrock contours with the sparse data now at hand.

OCCURRENCE OF GROUND WATER

Ground Water in the Columbia River Basalt

Nature of the Permeable Zones

The discharge of ground water from the basalt in its canyon and hill exposures occurs almost entirely along the line of contact between one basalt flow and another. These permeable parts of the rudely tabular zones of contact are the principal water-bearing parts of the basalt. Vesicles in the basalt increase the porosity by enlarging the fracture planes, but, because the vesicles generally are not connected, they do not in themselves greatly increase the permeability of the rock. The openings in these interflow zones are mainly cracks and crevices produced primarily by the incomplete closure of one flow over another and by the unhealed fragmentation and the inflated character of the basalt at the top of some of the flows.

OCCURRENCE OF GROUND WATER

à,

×,

Fractures and vuggy texture make some thin flows permeable through their whole thickness. When such a basalt flow lies between porous interflow zones the thickness of the water-bearing zone may be 25 feet or more. The thickness of any one porous water-bearing zone can vary greatly in a lateral direction, but many of the zones are fairly extensive. Some individual porous zones crop out continuously for a mile or so. Though the individual flows seldom can be traced in outcrop for as much as a mile, some of the individual porous zones are penetrated by wells in more or less uniform thickness for even greater distances underground.

The permeability and transmissive qualities of even the thickest aquifers differ from place to place. Tight, nonporous places are present at intervals along most aquifers. Stratigraphic discontinuities--the pinching out, overlapping, and fusion of flows and interflow zones--are present. Stratigraphic traps, in which the permeable zones taper out between less permeable strata, in places cause ground water to be impounded back to a point of overflow or leakage around the obstruction. These stratigraphic reservoirs are well known above the regional water table where they create many of the small bodies of perched ground water tapped by upland stock and domestic wells.

The type of lava flow that is massive throughout, or at least in its central part, commonly does not allow water to pass vertically across it. Water can pass vertically through the fractured "brickbat" type of flow--as is evident especially near the surface in wells and excavations. Many of the open joints and fractures visible in nearly all flows at and near the land surface (in even the most massive flows), apparently are at least partly closed deep underground. Vertical separation of ground water by the nonpermeable massive zones is common. In outcrop this separation is shown by the perched nature of the water in surficial deposits like the Palouse Formation and by the layered character of seeps and springs in the basalt canyons and hillsides.

Changes in the static water level, as found during the drilling of some wells, are a direct expression of the tabular separation of the ground-water zones in much of the basalt. (See table 2, particularly logs of wells 4/37-9H1, 5/35-1E1, 6/34-35D1, 6/35-10P1, 6/36-13C1, 6/37-5F1, 7/36-19R1, 22N1, 31J1, and 7/37-18R2.) In some upland places the perched water found in the upper part of a well commonly drains into lower porous zones as an uncased well is drilled deeper. Also, in valley areas, as a well is deepened below the water table it is common for successively deeper aquifers to contain water under greater pressure and for this water to rise and flow out into any uncased permeable zones higher in the well. A change of static water level of as much as 100 feet within a few feet of drilling through the massive confining parts of the basalt is a well-known drilling circumstance.

Thus, the fundamental pattern of aquifers in the Columbia River Basalt is that of separate tabular zones, each of which is interrupted in many places but is of rather widespread lateral extent. "Brickbat" and other types of fractured basalt allow hydraulic continuity in places between nearby permeable zones. The water of some aquifers is completely separated by the impervious and massive parts of flows. In all, the tabular permeable zones--the aquifers-- make up about one-tenth of the average vertical section of the basalt.

29

Transmission of Water

From points where it infiltrates, water spreads down the hydraulic gradient through the openings in the rock. The passage of this saturated or unsaturated transfer of water follows the permeable paths, especially those of the porous interflow zones, as gravity takes it downward. In places the water descends to lower porous zones until it is brought to a water table, beneath which the pores of the rocks are filled with water. Directly below a water table the ground water is under the pressure of the atmosphere only and is called unconfined. The upper surface of large bodies of perched ground water may be referred to as a water table, but the water surface beneath which the pores of the earth's crust are saturated universally is commonly referred to as the water table or the regional water table.

In unconfined conditions the ground water travels by mass movement downward and laterally as permeable openings in the basalt permit. Where erosion has provided an outlet, the water discharges as seeps, or springs. Residents of the Walla Walla region are familiar with the many such seeps and springs that flow from the Columbia River Basalt in ravine and canyon sides. Most of those which flow permanently are topographically low and are at the intersection of a water table with the land surface. Few of the higher seeps discharge large volumes of water; discharges of as much as 50 to 100 gallons a minute are exceptional. The large springs are those whose discharging level is considerably below the level of the regional water table. The main mass of the unconfined water below the regional water table moves laterally toward the lowest opening available to that body of water--generally an outcrop of the aquifer in the bed of the principal local stream or an opening of the aquifer into overlying gravels. Beds of the streams are mostly rubble- or gravel-covered and the regional ground-water body commonly feeds the perennial streams in an inconspicuous manner.

à

....

Where enclosed aquifers pass below the level of the principal local drainage, or where inclined aquifers pass beneath an impervious confining layer with which they terminate against a barrier, the water becomes confined under hydraulic pressure, and is commonly called artesian if it flows from wells. The two conditions of ground-water travel in the basalt--confined and unconfined--are hydraulically distinct, but confined and unconfined water can occur in different parts of some aquifers. Most of the confined water in the Walla Walla River basin occurs in the basalt where inclined porous zones conducted It beneath a confining cap of less permeable rock, or beneath the old clay, where its aquifer terminates. The movement of confined water, even more conspicuously than that of unconfined water, is by hydraulic pressure whose force is commonly stated as a hydraulic gradient (feet drop per unit of distance) between horizontally separated points.

Structural Control

The flowing or pumping level of confined water where wells tap it in the basalt beneath downwarped areas, is a dynamic condition that is also an expression of the resistance a given quantity of water meets while it is percolating in the aquifer. Thus, the flowing or pumping level at places is a reflection of the structural as well as the petrologic and stratigraphic conditions the water meets in the aquifer.

30

OCCURRENCE OF GROUND WATER

Folds.--Because ground water moves down the hydraulic gradient in tabular zones, the synclines, the downwarped areas, are the "lows" where ground water accumulates and are the most important areas of ground-water storage in the basalt. Conversely, the anticlines underlie areas away from which water percolates downdip, and are areas where the water table lies at relatively greater depth. The lands between the axial areas of the synclines and anticlines are underlain by inclined basalt with ground water moving toward the synclines. In general, localities high on the monoclinal slopes and on the upland, share the ground-water deficiencies of the anticlinal areas, and localities on the lower slopes have some access to the large ground-water supplies of the synclinal areas. It is in these lower parts of the monoclinal slopes around the edges of the valley floor where many of the ground-water supplies are most desired and where the data presented in this report may be of greatest service.

Faults.--Master or regional joints, along which slippage or shearing may be present, are common in most areas of deformed rock. These impede or block percolation at many places. Even more effective as ground-water barriers are the longer lines of fracturing. These are similar to the master joint planes, but the rocks at the sides have had much greater displacement. Zones of rock-crushing "gouge" at places occupy the planes of minor displacement, and wide zones of crushed rock occur along some faults.

Both the regional joints and the fault displacements, though in many places difficult to detect and to map, are believed to have a much more important place in the ground-water regimen than has been accorded them heretofore. Most of the faults are effective barriers to ground-water movement. At places they are known to control ground-water levels, and to affect such aspects of the ground water as recharge, discharge, spring location, temperature, chemical quality, static and pumping water levels, and many other related factors.

Sharp folds in the basalt also may form complete or partial ground-water barriers. Observations made on ground-water levels at places like the O'Sullivan Dam site and elsewhere outside the Walla Walla Basin indicate that sharp flexures, especially where the bending is accompanied by interflow sliding and shearing, may be effective ground-water barriers. Together the fault and sharp fold barriers form the class known as structural barriers (Newcomb, 1959). The fault of large displacement typically contains a wide zone of crushed and decomposed rock that forms an impervious barrier. The barrier effect of fault and shear zones commonly impedes lateral more than vertical percolation. Many of these steeply inclined planes of crushed rock permit small amounts of water to pass vertically, parallel to the direction of the planes of shear in the fault zone, and the outcrops of transverse faults in creek valleys are commonly sites of seepage springs.

The width of the impermeable parts of fault zones may range from a few Inches to many hundreds of feet wide. Crushed and sheared gouge zones as much as 1,000 feet wide have been observed along faults of the Walla Walla Basin. (An outcrop of a wide fault zone is well exposed southward from the Walla Walla River at "The Slide" 3 miles west of Gardena School.)

A few of the older faults contain basalt dikes that follow the walls. Such a dike is exposed in the Mill Creek valley a mile above Kooskooski (pl. 1).

并

<u>Joints.</u>--The joints, cracks which resulted from a shrinkage of the rock while cooling from the fluid melt, are a means of water penetration, although in some places they may be too narrow to permit rapid percolation.

In some tunnels, wells, and other excavations where the natural conditions have not been greatly disturbed, the slow percolation of water downward solely in joint planes can be observed as an important transfer of water in the basalt.

The Top of the Ground Water

In the uppermost part of the Walla Walla drainage basin a partly dissected upland about 5 miles wide is underlain by basalt whose layers are essentially horizontal. At all altitudes on the edges of this area of horizontal basalt small springs discharge to the slopes or into the river's tributaries. Some of these small springs are located at the edges of the upland soil where the water seeps out along the top of the basalt bedrock. This is perched water many hundreds of feet above the water table. In other places and at other altitudes small bodies of ground water occur perched on impervious layers in the basalt above the regional water table.

In the Blue Mountains slope a 10-mile-wide section of the basalt has a general $2^{\circ}-4^{\circ}$ dip toward the Walla Walla Valley. This downslope dip of the basalt causes ground water to move westward down the dip wherever permeable paths are available.

As shown by the location of the stronger springs at low altitudes in the stream canyons and by the few wells in that area, the regional water table beneath the interstream ridges of the Blue Mountains slope lies near the level of the most deeply cut streams. There are many places where aquifers are intercepted by part of a stream which follows along the strike of the basalt. In the South Fork of the Walla Walla River such a large spring outflow occurs in secs. 19, 30, and 31, T. 5 N., R. 39 E. An instance of overflow of water from an aquifer cut in a down-dip segment of the same canyon was told by Erdmann (1933, p. 55) who described a spring near the center of sec. 14, T. 4 N., R. 37 E., as issuing "... on the top of a basalt flow (B-1) on the right bank *** about 50 feet above the valley floor. Water moves up the dip ... indicating that there is a slight head. The temperature of the water is about 70°F., and is in decided contrast to the very cold surficial waters."

Because, in this basalt bedrock, fault zones generally form barriers to ground-water movement, it seems evident that in parts of the basalt in the Blue Mountains slope ground water in each aquifer must be dammed. This damming raises the pressure level of the ground water to where the water can percolate either around the barrier or to the surface. Above a fault barrier conspicuous outflows of ground water at or near the barrier do not occur everywhere; rather, each dammed aquifer probably remains full to its point of intake, which in most cases is some distance upstream from the barrier. The Hite fault and Elbow Bend fault in the South Fork Canyon and the fault near Kooskooski in Mill Creek and Blue Creek canyons are known as probable ground-water dams (Newcomb, 1962, fig. 5).

A ground-water reservoir system, such as is formed in aquifers terminated by fault barriers, probably occurs in and around the Russell and Reser Creek districts just east of the foot of the Blue Mountains slope. Wells 6/37-4B1, -5F1, -7Q1,

OCCURRENCE OF GROUND WATER

and -7Q2 show extraordinarily high pressure levels with progressively greater pressure in aquifers of successively greater depth, whereas wells just west of that barrier-beyond the sharp topographic break at the foot of the mountain slope (wells 7/37-32P1 and 6/36-10E1)-- have much lower pressure levels and find successively lower pressure with greater depth. Similar ground-water reservoirs behind structural barriers may occur at many other places above the several faults that cross the dip in the Mill Creek and Walla Walla River canyons (pl. 2).

Above the Cause Creek fault the ground water in the shallow layers of the basalt is confined and flows from the few wells that have been drilled into the basalt, but the deeper aquifers may have water at levels low enough to be in agreement with normal ground-water slope to the water in the basalt farther west. The natural static water level in the basalt was 100 feet below river level in the southern part of Milton, 70 feet in the northern part of Milton, and 40 feet in the northern part of Freewater. Downvalley from the sharp drop in the bedrock north of Freewater (pl. 3) the ground water in the basalt is largely confined beneath the old clays as far downstream as the barrier zone in the bedrock along the College Place flexure, at the northern part of College Place.

The levels of the water surface in the basalt at Freewater indicate a groundwater high or "mound." Whether that mound on the water-pressure surface is due to recharge, damming, or to artificial depression of the water level in surrounding areas is not yet known.

Westward from about the longitude of Prospect Point the water table in the basalt passes under the "blue clay" strata of the old gravel and clay of Pleistocene age, and the water becomes confined. The maximum natural pressure level of the ground water in the basalt at College Place was at about the same altitude as the unconfined water level in the basalt and overlying gravel at the upper edge of the confining clay. The pressure (piezometric) surface of the confined water now has an average gradient of 25 or 30 feet per mile downvalley to the abrupt 200-foot rise in the bedrock, the College Place flexure, that runs east-northeast beneath the northern part of College Place and the junction of the Little and the main Walla Walla Rivers in sec. 31, T. 7 N., R. 35 E. (pls. 2 and 3). Northwest of this flexure the waterpressure surface is now 50 to 100 feet lower than on the southeast side, and a free flow from wells does not occur. Under the natural conditions, when wells were first drilled, the difference in ground-water pressure on opposite sides of this barrier was about 200 feet. Downvalley from the College Place flexure, the ground water in the basalt is mostly unconfined and has a static water level about equal to the level of the Walla Walla River except in a few subordinate districts where some structural confinement is present. Such areas occur southwest of Touchet (well 6/33-5B1) and along the foot of the Horse Heaven slope (well 6/34-35D1).

The east-northeast-trending College Place flexure, which terminates this confined water and causes the high water pressure in the basalt at College Place, must have some complementary barriers. Northwest-trending barriers must pass through the area between Whitman and Umapine, intersect the College Place flexure, and form a

southwestern limit to this high-pressure water best known at College Place. Such a northwest-trending lateral barrier would fit the fault patterns common to the north slope of the Horse Heaven ridge (pl. 1), but so far the barriers that close this area of high-pressure ground water on the southwest have not been located specifically.

Water levels in a few scattered wells on the Touchet slope show that the pressure level of the ground water in the basalt in the hill lands south of the Touchet River is inclined about 50 feet per mile southwestward through the Hadley-Sudbury district and about 25 feet per mile southward in the Rulo-Lowden district. The water table is considerably below the level of all the intermittent streams but above the level of the Touchet River. Where the Touchet Slope merges into the valley floor of the Walla Walla River, the level of the ground water in the basalt descends in 10 miles from an altitude of about 550 feet near Whitman to about 400 feet just west of Touchet.

The ground-water level in the basalt was not observed along the Walla Walla River downstream from the Divide anticline, the bedrock ridge west of Touchet. Near Reese It undoubtedly lies close to the level of the Columbia River, which, at the mouth of the Walla Walla River, has a usual reservoir altitude of about 340 feet. Three miles west of Reese the basalt descends below river level and for 40 miles to the northwest is covered by the Ringold Formation, glaciofluviatile deposits and alluvial materials.

Ŕ

The tilted blocks of basalt that make up the en echelon steps and the escarpments of the north slope of the Horse Heaven ridge contain ground water under diverse conditions. As indicated by a few wells and springs, the different blocks of the slope contain ground water under more or less separate hydrostatic conditions. Some of these separate units of the ground water are trapped in the tabular interflow aquifers by the relatively impermeable fault zones which mark these escarpments. (Some of the prominent faults are shown on pl. 1.)

Wells 6/34-33C1 and -34C1, near the foot of the slope from Horse Heaven ridge, have remarkably high water levels, possibly representing perched ground water. Well 6/34-35D1 was started on the downthrown side of a northdipping normal fault, crossed the fault, and obtained flowing artesian water from the upthrown (upgradient) side of the fault (pl. 1). That well is not cased in the fault zone, and water leaked upward along the fault zone to the surface nearby when the control valve of the well was closed. Ten years after the well was drilled, the flowing pressure head had declined, largely because of discharge within the well.

Thus, the overall shape of the top of the saturated zone, or of the piezometric surface of the ground water, in the basalt bedrock is a subdued replica of the valley floor and its mountainward extensions up the main stream canyons. However, local details of the topography and the water-transmitting characteristics of the basalt cause the piezometric level of the ground water, in places, to range from 300 feet below to more than 100 feet above the land surface of the valley floor. Because the shape and position of the top of the ground-water body in the basalt is of prime importance to pumping levels and economic withdrawal of the water, extensive data on it are presented in the tables (1 and 2) and descriptions of it are given in the text.

OCCURRENCE OF GROUND WATER

The Base of the Ground Water

So far as is known, the overall average permeability of the basalt persists throughout its thickness of 2,500 plus feet. Thus the shape of the bottom of the ground-water body in the basalt bedrock may be assumed to be determined by the top of some underlying less permeable rock. The underlying metamorphic rocks that crop out in the Tuocannon River canyon to the northwest and the sedimentary, metamorphic, and granitic rocks that crop out beneath the basalt in the Umatilla River basin to the south could form, at some now unknown depth, such a lower limit to the ground water in the basalt.

Average Yield of the Basalt Aquifers to Wells

A tabulation of all available information on properly constructed wells in the Columbia River Basalt Indicates that, over its regional extent as a whole, the basalt yields to a 10- or 12-inch percussion-drilled well an average of 1 gallon per minute per foot of penetration below the regional water table, when it is pumped at such a rate as to produce a drawdown of 50 to 100 feet (Newcomb, 1959, p. 14). That average is a little low for wells in the upper part of the valley--above College Place, but is about in agreement with yields obtained in the few wells located downvalley from Whitman. In general it is low for the better designed and engineered wells that have been drilled in recent years.

Nonproductive Wells in the Basalt

Records are incomplete for many of the older wells drilled into the basalt, but the writer knows of only one inadequate well among the 40 or more large wells constructed according to modern methods during the period since 1940. That inadequate well was the Walla Walla Memorial Park well (7/36-17K1). The reason why the rock penetrated by the Memorial Park well was so exceptionally barren is not known. Among many possible explanations is the one that the site may unfortunately mark a place where the juxtaposition of the horizontally changing permeable zones has resulted in a vertical zone devoid of good aquifers. Such vertical sections, lacking water-bearing strata known to be present in adjacent wells, are numerous, but such "blank" (aquifer-deficient) zones are usually only a few hundred feet thick. In few places would such an aquifer-devoid spot be considered statistically possible for the full depth of the well cutting more than two thousand feet of the basalt.

The linear continuation of either the sharp bedrock flexure that terminates the area of flowing artesian wells at College Place (pl. 3), or the possible bedrock displacement beneath Mill Creek along the north side of Prospect Point Ridge (pl. 4B) could, beneath the deep alluvial cover, pass through or near the site of the Memorial Park well. Such a fault or sharp flexure, with its associated vertical zones of sheared rock, may have caused a nonwater-yielding condition in the aquifer zones that would elsewhere have yielded water to a well. Among other causes mentioned for the nonproductiveness of the Memorial Park well was the excessive use of cement to hold raveling rock in the well during drilling. Such cementing, in places, can prevent water from entering a well.

Some other wells yield less than the average. Wells 6/35-2E1, -3N1, -23D1, 7/35-35G1, and 7/36-33A1 afford below-average yields. Wells 6/35-2E1 and 7/35-35G1 do not penetrate the basalt deeply and the other three are small-diameter (6-inch) wells.

It is apparent, from an overall tabulation of the production for known wells in the Valley above Whitman, that not more than one out of each ten wells fails to provide at least the average water-yielding capacity ascribed above to the Columbia River Basalt as a whole. Nevertheless, the investor should bear in mind that such chances do exist for obtaining an inadequate well in the basalt.

Permanence of Water Levels in Basalt Wells

The water levels observed in basalt wells (table 1 and figs. 9, 10, and 11) show that in some areas the ground water moves actively from areas of infiltration and sustains a perennial water level in the pumped wells, but in other areas the transmission of water is sufficiently restricted that water levels are not entirely restored after each year's withdrawal.

Figure 9 shows the water level in well 6/37-5F1 has remained constant, about 172 feet above the land surface, since the well was constructed and the amount of water withdrawn has been restored to the aquifer each year by natural recharge. Also, that wells 7/36-36J1 and 7/36-20N1 have had a nearly constant water level since 1955 and 1952, respectively, when the annual recharge had established a balance with the withdrawal from wells of their localities. The water levels in these two wells in recent years were a few feet below their original levels.

Figure 10 shows water levels observed in five public-supply wells at Milton-Freewater. A persistent decline is evident in the level of water in three wells which are in localities of extensive pumping from these and other wells. The two wells with stable water levels are in places where there is less pumping from other wells. The records show that the transmission of ground water through the basalt into parts of the Milton-Freewater area has not equaled the withdrawal from some of the wells; however, the decline of water level in the three wells is distinctly due to inadequate spacing of wells drawing water from similar stratigraphic zones in the basalt.

Figure 11 shows the persistent decline in three wells (7/36-13F1, -F2, and 7/35-18F1) of the city of Walla Walla. These records indicate that the three "Mill Creek valley" wells of Walla Walla are in an area of the basalt that has been receiving sufficient water from the surrounding areas.

Ground Water in the Old Gravel of Pleistocene Age

Lithologic Characteristics of the Gravel

J.

Although a matrix fills the interstices of the gravel, in most places there are some beds, streaks, and zones of openwork, partly loose, gravel. As seen in the sides of the dug wells, strata of openwork gravel were mostly flat, thin zones through which water travels rapidly; but they are highly irregular in horizontal extent and occur at haphazard levels in any vertical section. On the average, probably less than 10 percent of the gravel exposed in the sides of wells may be called loose, relatively free of intergranular matrix, and available for the rapid passage of ground water.

In the upper parts of the alluvial fans the old gravel is mantled thinly by gravelly alluvium of Recent age. Apparently the shallow cover of Recent gravel plays an important function in spreading the water from the streams outward through the old gravel. However, these Recent gravels do only a small part in the transmission of the main bulk of the ground water downvalley in the gravel unit.

It is important to the correct understanding of the ground-water regimen that one grasp the longitudinal section view of a flat gravel stratum tapering upvalley to pointed ends in the stream canyons and separating downvalley principally into thin strata which pinch out in the old clays. In plan, the gravel stratum lies in the shape of several coalescent fans whose "handles" are the gravel trains extending up the canyons from the apices.

The tabular gravel mass has a complex permeability that differs greatly in detail but averages rather uniform overall.

2

٤.

38

Figure 10:- Water levels in five basalt wells at Milton-Freewater, Oreg.

OCCURRENCE OF GROUND WATER

Figure II — Water levels in four basalt wells of the City of Walla Walla. Wells 1,2 and 3 show a progressive decline in the water levels of that area, while well no. 4 shows a water level rise since it was drilled in 1953.

,

The factors of (1) variable permeability in the gravel mass, (2) relatively low overall average porosity, (3) restricted local continuity of individual permeable zones, (4) irregular vertical and horizontal distribution of the more permeable zones, (5) general downstream decrease both in grain size, width, thickness, and permeability of the deposit, and (6) a steep (50-feet-per-mile) inclination of the deposit, all contribute to the complexity of the ground-water occurrence.

The principal part of the ground-water body in the gravel occurs beneath the Walla Walla River alluvial fan, the largest of the separate parts which form the coalesced deposit. The part under the Mill Creek fan stores and yields less water. Subordinate parts of the ground-water body occur in the Russell, Cottonwood, and Pine Creek areas.

Regimen of the Ground Water in the Gravel

General features of the ground water.--Beneath the alluviated sections of the downstream parts of the mountain canyons, the level of the water table coincides with the level of the adjacent Walla Walla River, Mill Creek, and the other associated creeks. At these places the water table in the gravel is in balance with the streams.

Farther downstream, where the gravel fan widens, the water table in places stands below the level of the adjacent surface water as the ground water spreads out and adjusts itself to a flatter gradient in the larger area of gravel. In crossing these areas where the water levels are lower, the streams lose substantial amounts of water to the gravel. This infiltration increases greatly when the streams are high. With the water table standing a little below creek level, the infiltrated water moves downslope until its level intersects the surface. The outflow to the surface occurs where the underground passage of the water is impeded by the progressively decreasing permeability and size of the gravel aquifers.

Recharge.--Because, during average years, there is little surface runoff from the area underlain by the old gravel, about 3 to 4 inches, or nearly one-third of the annual precipitation is estimated to percolate to the ground water. That recharge comes mainly as rain during the fall, winter, and spring months or as melting snow and ice--mostly in the late winter and spring months. By estimating such recharge as 3 inches of water over 50 or more square miles, an approximate annual recharge of 8,000 acre-feet of water is computed as entering the old gravel from direct precipitation on the alluvial fans of Walla Walla River and Mill Creek. In some years the additions to the ground-water body in the gravel from in situ precipitation cause distinguishable rises in the water levels in some wells.

During periods of low stream discharge across the upper part of the alluvial fans, where the water table normally lies below stream level and where water infiltrates from the streams in large quantities, a large part of the river's flow may percolate to ground water. During the high water of spring and winter particularly, large additions are made to the ground water. On Mill Creek and the small creeks of the basin, such infiltration does not involve so great a volume or so great a percentage of the streamflow as it does on the Walla Walla River. Nevertheless, the infiltration on the upper part of the Mill Creek fan was, under natural conditions, sufficient to maintain a substantial ground-water body of great importance to the economy of the valley area about Walla Walla and College Place.

Figures 12, 13, and 14 give graphically the water-level records in eight wells that tap gravel aquifers beneath the alluvial fan of the Walla Walla River. The winter and spring peak levels produced by infiltrated recharge during high stages of the river are evident, as are the summer and fall rises due to recharge from infiltrated irrigation water. In some wells one recharge source produces much higher levels than the other recharge source. The wells near the apex of the fan (fig. 12) show a predominance of the river-infiltration recharge. Records of wells 5/35-1Cl and 6/35-36H1 indicate a rather constant average rate of annual recharge except for the years 1940-42, when the recharge was less in agreement with the smaller river discharge for those years (fig. 6), and for the years since 1951 when the infiltration from the river has not raised the ground-water levels so high as their former annual high levels.

41

42

GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

-*

1

ė

-

River between the upper edge of the fan and the lower spring zone.

OCCURRENCE OF GROUND WATER

The higher levels of the ground water are particularly important because of the great increase they induce in the yields of many irrigation wells. The arrival time and duration of the high levels are vital factors in the capability of the wells for meeting the irrigation requirements. Figure 13 gives the water levels in three wells alined downgradient on the alluvial fan. A progressively later time of arrival down the slope is shown for most water-level peaks. Also evident in these graphs is the downslope increase in the relative size of the water-level rise produced in summer by recharge from the infiltration of irrigation water. The plot of water levels in wells 6/35-24Q1 and -14L1 on figure 14 shows the lesser range of waterlevel change and the more uniform upper peak levels that occur near the discharge outlets of the ground water.

Several hundred acre-feet of water for irrigation is diverted each year from Mill Creek above Walla Walla and an estimated average of 60,000 acre-feet is taken from the Walla Walla River, mostly at and just below Milton-Freewater. A large part of that irrigation water, probably half on the average, infiltrates to the ground-water body. Another 20,000 acre-feet of water is diverted by the Burlingame ditch from the river below State Line. It is used for irrigation on the Gardena Terrace; a much smaller percentage of this water infiltrates to the ground water because of the finer grained soils and subsoils of the Gardena Terrace where the irrigation is done.

Waste water, industrial wastes, and sewage water do not make up a large return to the ground water in the gravel. Though it has occurred in the past, return of large amounts of objectionable fluids to the ground water is being diligently avoided. The treated effluent from the Milton-Freewater sewage plants is turned into Dry Creek or used for irrigation on land in Dry Creek valley west of Milton; the fully treated effluent from the Walla Walla sewage plant and some untreated industrial wastes are returned to Mill Creek or used for irrigation below the city. There are many suburban homes using septic tank disposal, and health authorities doubt if the gravel stratum can be used much longer for domestic water supplies in some of the more thickly settled suburban areas.

Transmission. -- The ground water moves downslope in the old gravel largely by pressure transfer and also by downgradient percolation along porous and permeable zones of loose gravel. After each separate addition of water, the groundwater level rises nearer the surface; the "rise" progresses outward and down the oradient as a wave. Each transmittal of ground water down the comparatively steep hydraulic gradient shows as a wave in the water table. Within each year the largest of these waves beneath the Walla Walla River's alluvial fan are commonly as much as 20 to 30 feet high. Across the slope of the water table above the upper spring zone (see pl. 1), the gravel newly saturated by each main annual ground-water wave has a width of about 4½ miles and an average thickness of about 20 feet. The waves in the water table spread out from beneath the streams during periods of great streamflow and move downgradient at an average rate estimated to be about a mile per week. Downgradient about three miles from the main points of recharge, the large waves still show on the records of water level in the wells, but, beyond about two miles, much of the individuality of each wave is obscured and only the seasonal high groundwater levels attest to the period of great recharge which had occurred along the streams farther upslope.

Under the natural and irrigation recharging of the 1930's and 1940's about 50,000 acre-feet of water passed through the gravel unit and flowed from the outlets during the average water year (year ending on Sept. 30). Water diverted by pumping from wells has modified this formerly normal discharge as have changes in the recharge resulting from irrigation and other water regulation practices.

Downvalley from the outer spring zone of the Walla Walla River alluvial fan, the ground water--especially that within the isolated tongues of gravel within the old clay--is in a less transient condition. There, as shown by observations in wells 6/35-4B1 and 6/34-3M1, the ground-water level remains more nearly constant through the year.

OCCURRENCE OF GROUND WATER

Beneath the Mill Creek fan, the comparable gravel section newly saturated by each annual main wave of transmission has a width of $2\frac{1}{2}$ miles (between Shelton and Butcher Springs shown on pl. 1 and table 4) and a height of 2 to 10 feet. It is estimated that not more than 6,000 or 7,000 acre-feet of ground water was transmitted down the Mill Creek alluvial fan section during each of the recent years. The smaller ground-water transmission of the Mill Creek fan, as compared to the Walla Walla River fan, is also illustrated by the fewer wells and springs of large yield. The main conduits of the shallow ground water seem to be in the form of a composite of smaller and shorter subsurface courses that are of lower permeability than those beneath the alluvial fan of the Walla Walla River.

Discharge.--The ground water in the old gravel beneath the Mill Creek fan discharges mainly to two spring zones, known as the inner (upper) and the outer (lower) spring zones. The inner zone extends southward from Butcher Springs to Shelton Springs (table 4. pl. 1) in the eastern part of Walla Walla. The inner spring zone contains the springs which feed Shelton, Yellowhawk, Stone, and the other creeks that drain through the southeastern part of Walla Walla. The outer zone includes the springs in the western part of Walla Walla and in College Place.

From beneath the Walla Walla River fan the ground water emerges in springs, most of which lie within two belts known as the inner and outer spring zones. Other springs lie outside or between these zones, and some ground-water discharge occurs undistinquished in stream channels. These main spring zones arc across the surface of the fan (pl. 1). Study of the lithologic continuity of the old gravel as recorded in drillers' logs (table 2) indicates that outwardly descreases in the permeability and in the thickness of the gravel stratum may determine the amount of water that can be transmitted at a given gradient (water level) and thus cause the average water table to intersect the surface at these two principal levels. The fact that the upper end of the fine-grained terrace-forming deposits, such as the Touchet beds, overlie the gravel downvalley from the inner spring zone is probably only a result or a coincidence, but it may indicate that the mantle of fine-grained deposits-overlying the gravel downgrade from that level--is a factor in bringing the shallow ground water out at the level of the inner spring zone.

Ξ.

4

On both the Walla Walla and Mill Creek fans the location of the principal spring orifices has remained fairly stable in recent years. However, at times of high water table, other low places, normally dry, become spring orifices and some of the established spring zones become widespread bogs lacking distinctive orifices. Likewise, during periods of low levels of the water table, flow from some springs diminishes and even stops.

Form of the water table in the old gravel.---Upgrade above both Milton and Walla, ground water fills to stream level the pore spaces of the gravel deposits that underlie the alluviated parts of the stream canyons. Downstream to and beyond Milton and Walla Walla, the water table lies close beneath the surface of the two main alluvial fans. The main body of shallow ground water occupies the gravel beneath the fans which trend into the valley floor at right angles, coalesce in the Walla Walla-College Place district, and terminate irregularly in the valley floor a short distance downvalley. Also, the ground water fills to stream level the smaller gravel bodies associated with Russell, Cottonwood, Reser, and other tributary creeks originating in the Blue Mountains slope. The lower limit of the ground-water body in the gravel is the base of the gravel where it overlies the basalt in the mountain canyons and in the upper parts of the valley and overlies the old clay farther downvalley. At places in the canyons and the upper parts of the alluvial fans, the ground water in the gravel is in contact with the ground water in the basalt and there is considerable interplay of water, but at other places the water in the gravel is perched above the basalt and there is little connection.

Farther downvalley the basalt passes beneath the old clay which forms the base of the ground water in the old gravel beneath the main part of the valley. The upper edge of the old clay lies at depth beneath the valley floor in an arc passing about through Prospect Point and Freewater. In the lower part of the main valley area the clay zone separates the ground water in the overlying, and interfingering, gravel from the ground water in the underlying basalt.

From the upvalley end of the old clay downslope as far as an irregular terminus near longitude 118°30' west, the ground water in the old gravel extends laterally under essentially all the valley floor. Vertically, this ground water in the old gravel extends upward from the top of the old clay to the level of the streams (pl. 3A and 3 B). In places downvalley from College Place and Umapine the thinner and less widespread continuation of the old gravel is overlain by later deposits, particularly the Touchet beds, up to a maximum of about 100 feet thick. These younger deposits lie mostly above the water table.

£.

÷

Thus, the shape of the ground-water body in the old gravel is that of a flat stratum whose top is largely parallel to the lowest of the valley plains and whose base is 20 to 300 feet lower on the top of the underlying old clay or basalt bedrock. In the approximately 90 square miles of its occurrence the gravel aquifer may be estimated to have a saturated thickness of about 100 feet and to have an average effective porosity of 5 percent. This would indicate storage space is occupied by at least 250,000 acre-feet of water in the gravel.

A basis for an estimate of recharge is given by the water-level records during the last 30 years, the measurements of spring discharge, the estimates previously compiled for some types of recharge, and the estimates and measurements of the water withdrawn. From these factors an estimate of about 75,000 acre-feet of water may be deduced for the average annual recharge to the old gravel of the Walla Walla Valley during the period 1933-1960.

Hydraulic condition of the ground water.--The water in the old gravel occurs under unconfined or water-table conditions, with exceptions in a few places. Near the upvalley edge of the old clay, where gravel beds tongue into it, there is some ground water under confinement (artesian pressure) in the gravel tongues interfingered with the old clay. Such water in the gravel, under sufficient pressure to flow, was found in wells along the Walla Walla River near the State boundary (wells 6/35-12N1, -12P2, and -13H1). Likewise, water from some of the old gravel in the Russell Creek and Cottonwood Creek areas is under sufficient confining pressure to flow at the land surface (wells 7/37-31R1 and 6/36-13C2). In these latter places the ground water in the gravel aquifers may have become confined in isolated gravel strips that have been buried beneath later less pervious deposits. In places near the mouths of the mountain canyons, such as downstream from Couse Creek to Freewater and downstream from Tracy to Walla Walla, the ground water in the old gravel stands perched above the piezometric level of the ground water in the underlying basalt, as mentioned above.

Minor Ground-Water Occurrences

Ground Water in the Palouse Formation and Other Loess Deposits

At some places the Palouse Formation, and to a lesser extent the other loess deposits, receive more moisture than they can retain against the pull of gravity. Under these conditions water passes either into, or laterally outward over, the underlying materials. Such an excess of water over the retention capacity of the loess is seen along low places in gentle slopes where the stratum of ground water in the Palouse Formation may reach the surface. Where loess lies on a relatively impervious material, such as the dense centers of some of the flows of the Columbia River Basalt; or, where it is at or below the local drainage level, a small body of ground water may be accumulated. The level of such ground water is subject to marked fluctuation with the annual and periodic rainfall cycles, as well as with the effects of local soil management. Marks on the curbing of well 7/37-6D1, which taps shallow ground water in alluvium, which is reworked material of the Palouse Formation, show that its water level has declined about six feet concurrently with an equally deep erosional entrenchment of the adjacent small branch of Dry Creek.

Ξ.

2

The small amounts of ground water in the Palouse Formation occur mostly in the uplands and are perched. Many of these perched-water zones crop out at sharp changes in the slope where the top of the basalt bedrock is exposed. These outlets of perched ground water form the small springs developed for farmstead supplies over much of the region underlain by the Palouse Formation.

As is typical with loess deposits, the vertical permeability of the Palouse Formation is greater than its horizontal permeability. This is evident in the soilmoisture, drainage, and sprinkler-irrigation characteristics of the Palouse Formation. It makes the Palouse Formation a relatively efficient collector of small increments to ground water wherever water exceeds the retention capacity of the loess.

Ground Water in the Deposits of the Upper Valley Terraces

Much of the area of the "upper valley terrace deposits" is underlain by old gravel, and the upper valley terrace deposits at many places lie above the level of the ground water. However, beneath the alluvial slopes about Birch and Cottonwood Creeks northeast of Milton-Freewater some of these terrace deposits lie sufficiently low that their gravel and sand members contain small amounts of ground water. Wells 6/36-10J2 and -33B1 are believed to tap ground water in these deposits.

The level of the ground water in these upper valley terrace deposits rises to approximately the level reached by the nearby streams during the wet season and recedes about 5 feet to an annual low point during the fall of each year. The observed water levels indicate that the lows and highs in some of these small ground-water bodies do not occur at the same time as similar levels of the nearby streams.

Ground Water in the Touchet Beds

Beneath the Gardena Terrace and the equivalent terrace northeast of Touchet, the water table is at or near river level. Some of the sand and gravel in which the ground water occurs apparently belongs to the lower part of the Touchet beds and some to part of the downvalley extensions of the old gravel deposit. Farther east there are small amounts of ground water within the Touchet beds; for example, the quicksand reported at 90-110 feet in well 6/34-5F1 is a saturated sand stratum of the Touchet beds. The ground water in this well stands considerably above river level; apparently the ground water drains to the north into the ravine at old Mud Creek School (N_2^1 sec. 5, T. 6 N., R. 34 E.).

The upper part of the Touchet beds is composed mostly of fine-grained materials whose horizontal laminations have a water-shedding or lateral-directing effect that tends to bring water out to the slope surfaces--a characteristic that contrasts with the ease of vertical movement of water in the loess of the Palouse Formation and other loess deposits. Near irrigated areas, the evaporation of this lateral seepage in late summer leaves mineral incrustations on the slopes of knobs and on escarpments of the Touchet beds. In some places these white mineral incrustations give the Touchet beds the appearance of being much more alkaliimpregnated than they actually are.

Ground Water in the Recent Alluvium

, ک

r

The bulk of the ground water in Recent materials occurs along streams in the Blue Mountains section of the drainage basin. In the Walla Walla River and Mill Creek canyons the water table in the alluvium is at the level of the streams and its level rises and falls simultaneously with the level of the streams.

The most important ground-water function of the Recent alluvium of the main valley floor seems to be the acceleration of infiltration recharge to the larger aquifers below.

CHEMICAL QUALITY OF THE GROUND WATER

Comprehensive chemical analyses were obtained or made of water samples taken from 27 representative wells and partial analyses were made of water samples from about 140 representative wells and springs. All are listed in tables 1 and 3. The ground water was examined, where possible, for color, odor, sediment, or iron precipitates.

The ground waters of the Walla Walla River basin are of generally excellent chemical quality. With few exceptions, the sources sampled yield water that is low in mineral content, soft to only moderately hard, and free of undesirable concentrations of detrimental elements.

Hardness

The average hardness of water from 72 wells drawing water from the Columbia River Basalt was 66 ppm (parts per million). That hardness is in the low part of the moderately hard designation on the scale given below.

Hardness as CaCo (parts per million)	Degree of Hardness		
0- 60	Saft		
61-120	Moderately hard		
121-180	Hard		
181-	Very hard		

The hardness of the water is rather uniform within a given locality but differs from place to place and differs slightly with depth. Thus, the hardness of the water from 15 wells in the basalt at College Place ranges from 45 to 62 ppm; from 6 wells in the basalt on Dry Creek below Sudbury It ranges from 90 to 130 ppm; and from 5 wells in the basalt on Russell Creek It ranges from 40 to 65 ppm. Hardness seems to decrease with depth. Three wells exceeding 1,000 feet in depth near the State Line district yield water having a hardness in the range from 25 to 35 ppm. Of 14 wells in the basalt (table 3), only 1 shows any noncarbonate hardness; the rest have solely the carbonate, or temporary, type of hardness.

÷

4

The hardness of the water from the old gravel averages 63 ppm for samples from 59 wells. The extreme range of hardness is from 30 to 219 ppm, but most of the wells yield water within the range of 30-95 ppm. The average hardness is equivalent to the designation of moderately hard on the above scale. The fact that the old gravel and the Columbia River Basalt yield ground water of similar chemical qualities is logical in view of the lithology of the gravels--they are composed almost entirely of the basaltic materials.

The ground water from the silt, sand, and gravel beneath the Gardena Terrace is harder (generally having a hardness that ranges from 75 to 200 ppm) than the water in the basalt and the old gravel.

Sodium and Potassium

Sodium and potassium occur dissolved in most ground waters and when their content is small, or is not greatly more than that of the other common chemical bases, their effect on water use is negligible. However, when they are present in excessive quantities they may be detrimental to use of the water for irrigation, industry, and even domestic supply.

The usual means of indicating the relative abundance of sodium in water are by the two criteria called percent sodium and sodium-adsorption ratio.

Percent sodium of a water is the percentage sodium forms in the total of the common bases, all expressed as equivalents per million. In 16 analyses of water from the basalt (table 3), the percent sodium ranged from 12 to 60 and averaged 30; in the 3 analyses from the sedimentary deposits above the basalt, the range was from 11 to 60 and the average was 30. The percent sodium is used along with the dissolved solids and the boron content in appraising the probable suitability of a water for irrigation of alkali-sensitive crops. The content of dissolved solids is approximated by the electrical conductivity (specific conductance) of the water. When the 19 analyses of water are plotted on the usual diagrams (Wilcox, 1948, p. 26) combining percent sodium and electrical conductivity, all fall in the excellent to good category.

The sodium-adsorption ratio is the index most commonly used to show the degree of alkali hazard of an irrigation water. The ratio for a given water sample may be calculated from the formula

$$S A R = \underbrace{Na^{++}}_{\underline{Ca^{++} + Mg^{++}}}$$

where the cations are expressed in equivalents per million (Richards, 1954). The sodium-adsorption ratios (table 3) computed for the 12 samples of water from the basalt range from 0.3 to 2.3. The sodium-adsorption ratio of one sample from the old gravel near College Place is 0.4 and of one sample from the alluvial deposits at Touchet is 4.2.

In appraising the suitability of water for irrigation, the sodium-adsorption ratio is plotted against the electrical conductivity to determine the salinity and the sodium (alkali) hazards of the water to crops on average soils. When the sodium-adsorption ratios and the specific conductances for 14 analyses are plotted on the standard diagram (Richards, 1954), the 12 samples from the basalt show both a low sodium (alkali) hazard and a low salinity hazard, sample (7/35-33J1) from old gravel shows a low sodium and a low-to-medium salinity hazard, and sample (7/33-34P2) from shallow alluvium at Touchet shows low sodium and high salinity hazards. Apparently, sodium hazards are generally significant only in the ground water in the alluvium and in other near-surface materials beneath the lowest part of the valley. Downvalley from Whitman, the sodium and the salinity hazards, even in this ground water, are generally moderate, but great enough to warrant extensive sampling and analysis before the water is used on some crops.

Chloride

The chloride content of the water from 82 wells in the basalt ranged from 1 to 14 ppm and averaged 5 ppm. The chloride content of water from 63 wells in the old gravel was similar--ranging from 3 to 23 ppm and having an average of 5 ppm.

CHEMICAL QUALITY OF THE GROUND WATER

The water from the Touchet beds beneath the Gardena Terrace south of Touchet and from some of the alluvium beneath the flood plains of the lower valley is relatively high in chloride for this valley but still low as chloride concentrations go some places. Two wells in the Touchet beds yield water that have chloride contents of 11 and 65 ppm, and one in the alluvium yields water that has a chloride content of 17 ppm.

Fluoride

The average fluoride content of the water from the basalt in nine wells situated in the central part of the valley floor is 0.6 ppm. It averages 0.57 and 0.17 ppm, respectively, in four public-supply wells of Walla Walla and three wells of Milton Freewater (table 3). Of the available fluoride determinations on ground water, the lowest figures (0.1, 0.2 and 0.3 part) were for water in wells (5/35-2H1, 7/36-13F1, and 5/35-12L1) that are either comparatively near the edge of the valley lowland or have water of otherwise slightly different quality than the rest of the ground water in the basalt. Water from three wells (7/35-33J1, 7/36-35R1, and 7/37-18G1) in the old gravel contains fluoride in the amounts of 0.2, 0.6, and 0.2 ppm, respectively. The maximum fluoride content analyzed, 1.0 ppm, is near the concentration generally recommended for the optimum effect in prevention of tooth decay, but the average (0.6) is somewhat less than the recommended content for optimum benefits to children's teeth. However, the experience with tooth decay shows that even this average content of fluoride is better than if the fluoride content were zero (Dean, 1942, p. 1176-77). The two cities, Walla Walla and College Place, whose primary domestic water supplies are from Mill Creek and from the basalt respectively--one nearly fluoride-free and the other containing approximately 0.5 ppm of fluoride--might furnish contrasting backgrounds for study of the relative rates at which dental caries afflict children who live in otherwise similar environmental and nutritional circumstances.

Ŧ,

16

Other Constituents

Ground water from the basalt and from the old gravel generally has an iron content of only a few hundredths of a part per million. The maximum iron content determined in this study (see table 3) was 0.17 ppm, a concentration that generally is not troublesome.

In places, the ground water at depth within the basalt has a faint sulfurous odor. The odor seems much more prevalent in new wells. Either the odor decreases with time and pumping or the users become accustomed to it, for the complaints tend to diminish with use. The consensus of well users is that the odor decreases with the pumping of the well. Odor may, in some cases, make it desirable to include aeration in the preparation of supplies for domestic use. The gaseous content is not known to have any detrimental effect; in fact, it has been suggested by some irrigators that any sulfur content would have a beneficial effect.

,	Adams' description	Location obtained during this work					
No.	Owner	Township and Range	Section	40-acre tract	County	State	Aquifer
5	Dillard York #1	7/35	34	NWłNWł	Walla Walla	Washington	Old gravel
11	White Bros.	Indeterminate	-				ond grater
12	Baker & Baker	(?)6/36	9	NEISWI	Walla Walla	Washington	Basalt
13	Dweily Jones	7/36	25	SEINWI	Walla Walla	Washington	Old gravel
21	Dillard York #3	7/35	34	SEINW	Walla Walla	Washington	Old gravel
24	Lawrence McBride #1	6/35	20	NEINWI	Umatilla	Oregon	Old gravel
25	Ed Seeholt (Czyhold)	6/35	15	NEINE	Walla Walla	Washington	Old grave
29	Grant York	(?)5/35	4	NEINEI	Walla Walla	Washington	Old grave
31	Miller Bros. ,	(?)6/34	1	NEINWI	Walla Walla	Washington	Old gravel
34	Hubbs (nursery)	6/35	25	NEŻNWŻ	Umatilla	Oregon	Old grave
35	Edwards	6/35	29	NEINEI	Umatilla	Oregon	Old grave
36	Gibbons	(?)6/35	18	SEISEI	Umatilla	Oregon	Old gravel
40	D. York #1	7/35	34	NMŦNMŦ	Walla Walla	Washington	Old gravel
41	D. York #2	7/35	34	SWINWI	Walla Walla	Washington	Old gravel
77	L. McBride #2	6/35	18	NEISEI	Umatilla	Oregon	Old gravel
85	E. Key #3	5/35	5	NEINWI	Umatilla	Oregon	Basalt
86	E. Key #4	6/34	36	NWISEI	Umatilla	Oregon	Basalt
87	E. Key #2	6/34	36	SWISEI	Umatilla	Oregon	Basalt
88	E. Key #1	6/34	36	SWISWI	Umatilla	Oregon	Basalt
25	Archie Harris #2	6/33	23	NWINEI	Umatilla	Oregon	Basalt
40	Well #1, Walla Walla	7/36	13	SEłNWł	Walla Walla	Washington	Basalt
42	Well #4, Walla Walla	7/36	22	SMJSWJ	Walla Walla	Washington	Basalt
73	Dillard York #2	7/35	34	SWINWI	Walla Walla	Washington	Old gravel
75	V. Weitz	7/35	23	NWŁSWŁ	Walla Walla	Washington	Old gravel
76	W. W. College Farm	7/33	33	SEINEI	Walla Walla	Washington	Basalt

52

4

à

.

•

1

a.

	Adams' description		Lo				
No.	Owner	Township and Range	Section	40-acre tract	County	State	Aquifer
277 278 279 280 281 282	J. Harding E. Burlingame O. Helberg White Bros. (at house) White Bros. (NE house) White Bros. (W house)	7/35 6/33 (?)6/34 6/34 6/34 6/34	33 14 14 20 20 20	NE‡NE‡ SW‡SE‡ NE‡SW‡ SW‡NW‡ SE‡NW‡ SW‡NW‡	Walla Walla Umatilla Umatilla Umatilla Umatilla Umatilla	Washington Oregon Oregon Oregon Oregon Oregon	Old gravel Old gravel Old gravel Old gravel Old gravel Old gravel

 \mathcal{A}^{k}

r'

•

•

*****1

.

CHEMICAL QUALITY OF THE GROUND WATER

4

U.

Boron in very small amounts in the soil or water is essential to the growth of many crops, but in slightly greater amounts it may be detrimental or even injurious. Water with boron concentrations of less than 0.33 ppm is considered excellent for the sensitive plants and water with more than 3.75 ppm is regarded as unsuitable even for the boron-tolerant plants. Two water samples from the basalt in the Walla Walla River basin had 0.07 ppm (well 5/35-12F2) and 0.04 ppm (well 7/37-18F1) boron. (See analyses in table 3.) From these determinations and from the general lack of boron in the normal-temperature ground waters of the Columbia River Basalt of this region, boron is believed present in the ground water in only negligible or beneficial amounts.

Other Published Data on Water Quality

The only other group of analyses of water from wells in the Walla Walla River basin is contained in the lists of Adams (1957). Because Adams did not specifically locate his sources, a tabulation is given on page 52 to show the location and the aquifer source of the ground-water samples for which he lists analyses, as these sources were reestablished by the writer.

Temperature of the Ground Water

In the Columbia River Basalt

The measured temperatures of the ground water, compared with the earth temperature normally to be expected in the zone reported as the main basalt aquifer of the respective wells, are listed on the following pages.

Ground water having a temperature lower than the assumed normal earth temperature is found in wells about the edges of the valley--at Milton, Weston, Pine Creek, and on Russell Creek above Maxson School. The low temperatures found in those wells suggest that recharge with cold surface waters is probably taking place nearby and the water does not become completely warmed before being withdrawn.

Most of the wells in which the ground water is warmer than normal are in a strip that extends northeastward toward Walla Walla from about the State Line crossing of the Walla Walla River, but some also are located near College Place. The ground water may pass through a warmer zone of basalt that extends northeastward past the southeast corner of Walla Walla. The warmest water is from a flowing artesian well (7/37-31R1) that may tap ground water near a fault zone or water that has circulated more deeply than that tapped by most wells.

Besides the above two general exceptions to the normal temperatures of the ground water, some of the deep wells, such as 6/36-9P1, 6/36-31L1, and 7/36-31J1, obtain cooler water than might be expected, while others, such as 7/36-19R1, obtain water whose temperature agrees with the assumed earth gradient. Overall, the ground water from the basalt in depth seems to be a few degrees warmer than would be expected from a normal earth-temperature gradient--a fact that may indicate a slightly higher than normal earth-temperature gradient in the basalt. .

÷

۰.

4

~

4

Q,

	······································		<u> </u>
Well	Water temp (°F)	Expected earth- gradient increase ²	Observed deviation ^{b/}
4/35-15P1	63 ¢⁄	11	None
15P2	70c	20	4-
5/35-2D1	56c	4.5	2-
1E1	55	4	2/
281	55	4	2/
6C1	63	5	3/
12F1	61	5	3/
12G1	62c	11	2-
6/33-23B1	72	6	. 11/
6/34-35D1	63.5c	11	None
6/35-1C1	67	8	67
1M1	67	11	. 2.5/
3N1	. 68	9	. 5/
-4G1	67	13	None
10P1	76	18	4.5/
12H1	71	9	8≁
12N1	73	8	11/
13P1	62	5	47
33J1	64c	6	. 57
34P3	62.5c	. 5	47
6/36-5G3	58	5	None
5M1	70.5	8	97
5R2	81	17	11/
6M1	71.5	8	10/
7D1	72c	9	10≁
9L1	71.5	16	None
9P1 -	74	33	12-
31L1	77	32	8-
6/37-4Bl	54.5c	2 9 3 4	None
5F1	54	9	8-
7/33-32M1	65	5	8/
33N1	60		2.5/
34N2	67	3	107 Nort
7/34-25N1	68	16	None
7/35-4H1	58	1 7	47
23M1	68		7/
25F1	68c	10	47
25G2	68	10	47
25N1 25D1	67 69	8	67
25P1	07	7	67

Well	Water temp (°F)	Expected earth- gradient increase ^{a/}	Observed deviation b∕	
7/35-26Q1	67	8	67	
35A1	68c	9	5≁	
36C1	69	9	7/	
36F1	68c	9	67	
36F2	70c	9	77	
36F3	69c	11	47	
36R1	70	7	97	
7/36-19F1	76	16	67	
19R1	82c	27	None	
22N1	61	5	37	
31J1	70c	21	4-	
31N1	68c	9	67	
35D1	62c	2	77	
36J2	62c	6	2.5/	
7/37-18F1	59	6	None	

a/ Normal earth gradient is taken as 1.8°F for each hundred feet of depth beyond the first 100 feet below the surface. Ordinarily the temperature of ground water in the 10- to 100-foot zone should approximate the mean annual air temperature, which is 53.5°F at Walla Walla.

 Observed deviation less than (-), and more than (/), assumed normal earth gradient temperature. The word "none" means variation less than 2 degrees from normal earth gradient, as nearly as can be , determined.

Depth of aquifers not reported. Total depth of well used in calculation.

In the Old Gravel

2

۰.

2

The temperature of the ground water in the old gravel agrees generally with the mean annual temperature plus the assumed normal earth gradient for the depth of the aquifer. The temperature of the water in the upper 50 feet is generally 54°F and that at 200 feet is about 57°F. Some observed temperatures of the ground water of the old gravel are listed below:

Well	Depth (feet)	Aquifer (in feet below land surface)	Water temp (°F)	Normal earth gradient	Date water temp measured	Observed deviation ^a
6/35-401	107	20-63	54.5	53.5	7-15-48	
15A1	42	20-36	52.5	53.5	7-16-48	
15B1	60	9-60	54,5	53.5	7-15-48	
15P1	130	0-130	53	54	7-19-48	
19L1	140		52.5	54	7-19-48	2.5-
19R1	20		53	53.5	7-19-48	
21H1	19		52	53.5	7-19-48	1.5-
22F1	300	175-275	54	55 ·	7-19-48	4-
23M1	12		52	53.5	?	1.5-
24M1	50	9-50	48	53.5	7-16-48	5.5-
25B1	25	0-27	48	53.5	7-23-48	5.5-
25P1	90.	0-90	51	53.5	7-23-48	2.5-
2601	64	18-64	56	53.5	7-23-48	2.5+
27B1	220	· · ·	52	55 .	7-21-48	3-
27H1	56	0-34	51	-53.5	7-21-48	2.5-
2701	· 73	19-73 -	54.5	53.5	7-21-48	1 I
28R1	200	:	55 J	55 ·.	7-20-48	
29B1	- 29		56	53.5	7-20-48	2.5+
29K1	35		52.5	53.5	7-20-48	1.5-
33M1	81	•	54.5	53.5	.7-20-48	
34C1	. 54		54	53.5	5-6-33	
34P1	34	1 1	56	53.5	7-20-48	2.5+
34R2	35		. 55 🤖	53.5	7-21-48	
7/35-33J2	85	15-85	56	53.5	10-29-59	. 2.5+
7/36-19H1	216	0-9	56	55 ·	533	1. <u>1</u> . 1
7/37 - 31R1	220		58	. 55	10-19-46	3+

a/Water temperature less than (-) and more than (+) assumed normal earth gradient temperature.

.

·

The gravel wells, whose water temperature deviation is greater than 1°F, are mostly cold-water wells and are located principally in the area north of Freewater. Upvalley from and within that district there is much irrigation and natural recharge of the ground water with cool water from the Walla Walla River. It seems probable that this cooler ground water is the recently recharged water which has not yet become heated to normal ground temperature.

USE OF THE GROUND WATER

Types of Use

At least a roughly derived figure for the quantity of the ground water withdrawn was obtained from most of the users. From those reports, some measurements, and some projected estimates, an approximation was made on the total ground-water withdrawals for an average year in the period 1948-60. Domestic, public-supply, irrigation, and food processing purposes are the most common and wide-spread uses for which the ground water is withdrawn.

Irrigation

Ground water drawn or flowing from the old gravel of Pleistocene age in the Milton-Freewater and State Line areas, and, to a lesser extent, in the Walla Walla and College Place areas, provides a principal supply for irrigation. On the Walla Walla River alluvial fan from Milton to Umapine, wells in the old gravel are present on an average of one for each 40-acre tract. They furnish supplemental or primary water supply to about half the land irrigated. In addition, an average of about 50,000 acre-feet (Piper et al, 1935, p. 132A) of water flows from the springs in the inner and outer spring zones of that alluvial fan. Practically all the spring flow during the period May through September each year, or 60 percent of the annual flow from these springs, is used for irrigation. Thus, on the Walla Walla River alluvial plain, approximately 30,000 acre-feet of spring water and about 10,000 acre-feet of well water is derived mainly from the old gravel.

On the Mill Creek alluvial plain about 1,000 acre-feet of ground water is taken from the old gravel in the area above Walla Walla; about 1,500 acre-feet is taken from springs, and 2,500 acre-feet from wells--in the area downstream from Walla Walla to Whitman. For irrigation west of Whitman about 1,500 acre-feet of ground water is taken from the alluvium and from permeable beds that may be equivalent to the old gravel.

Other than on the Mill Creek and Walla Walla River alluvial fans and in the Umapine-Gardena area, the ground water from the old gravel aquifer is little used for irrigation. Thus, the total irrigation use of water from the old gravel is in the order of 45,000 acre-feet per year in the Walla Walla River valley.

From the Columbia River Basalt, the water used for irrigation is derived from wells clustered around College Place and others distributed around the margins of the valley plain near Weston, Milton-Freewater, Maxson School, Walla Walla Air Force Base, and Whitman. Near Weston, wells supply about 200 acre-feet of water for irrigation. In the Milton-Freewater district, the wells numbered 6/35-34P3, 33J1, and -J2, and 5/35-2D1 withdraw about 100 acre-feet of ground water for irrigation each year. Farther north, wells 6/35-23C1 and 10P1 furnish about 200 acre-feet of water, though the latter, the old Jaussand well, is capable of much greater yield. Eight wells in the Dry Creek-Pine Creek area southwest of Umapine supply about 1,000 acre-feet of water per year. In the Maxson School and Cottonwood Creek districts, the three Baker wells and the Reser and other wells are drawn upon for a total of about 1,000 acre-feet and the strongly flowing "Sweazy Quarter" well (6/37-5F1) for about 500 acre-feet. Near the Air Force Base in Mill Creek valley, two wells supply 200 acre-feet of water most years. Near Whitman, the Charles Baker well and Bergevin wells are drawn upon for 300 acre-feet of water per year, and several wells near Lowden and on Dry Creek obtain about 300 acre-feet of water.

Most of the remainder of the irrigation water drawn from the Columbia River Basalt comes from 30 wells near College Place. During 1958, about 2,000 acre-feet of ground water from the basalt was being applied to 1,200 acres in the College Place district. Thus, a total of about 5,600 acre-feet of ground water was being drawn for irrigation annually from wells in the Columbia River Basalt during 1958 and 1959.

The crops grown are mainly fruits and vegetables, grain, hay and forage, peas, and sugar beets. The farms in the Freewater district use an especially diversified crop plan, with emphasis on crops of early summer maturity like cherries and apricots. The largest farm-irrigation operations in recent years were those using the Baker and Baker wells, 6/36-9L1, 9P1, and 5R2, and the "Sweazy Quarter" well; 6/37-5F1.

Most irrigators use the sprinkler method of water application. With sprinkler application, water, averaging about 2 feet per year for the irrigation of some crops, is spread during about 150 days of the growing season. Management of the water application requires that a minimum of about 5 gallons of water per minute per acre be available throughout the season. The greatest stretching of the available water is done by some farmers who are raising sugar beets on small fields of silty soil with a supply of only 3 gallons of water per minute per acre. However, most authorities in agronomy advise that a capacity of 7 to 8 gpm per acre is necessary for most crops on average soils. Particularly is this greater capacity, or even one as great as 10 gpm per acre, advisable on crops like alfalfa that draw heavily on their water supply during certain periods of ecceptionally rapid growth. Also, irrigation specialists advise that the total annual water requirement for full irrigation of most crops during the average growing season on the average loam soil is 3 feet.

Public Supply.

Of the incorporated communities, Walla Walla and Milton-Freewater use wells for standby supply during periods of excess turbidity or of low streamflow in Mill Creek and the Walla Walla River, their primary supplies. The College Place Water Company obtains its supply from 2 wells, and Weston uses spring water augmented by a well supply. Several suburban public-supply districts near College

Place operate wells, most of which are used for both public supply and irrigation. Nearly all the ground water, both from the wells and from the Weston springs, is derived from the basalt. Other, smaller communities do not have central municipal water systems but are supplied by private installations that utilize springs or wells.

The water withdrawn for public supply by the largest systems during 1957, 1958, and 1959 is tabulated below from information supplied by the water departments of those cities:

	Wells in use	<u>1957</u>	<u>1958</u>	<u>1959</u>
Walla Walla	4 and 5	554	400	467
Milton-Freewater	6	1,126	1,099	1,098
College Place	2	1.65	182	. 164
Suburban public-supply districts near College Place (estimated)	8 <u>+</u>	200	200	200
Total, million gallons		2,045	1,881	1,929
Total, acre-feet		6,280	5,560	5,920

Weston annually uses about 100 acre-feet of spring water and an additional 50 acre-feet of water is pumped from a well during the summer months of the year.

The U.S. Veterans Administration Hospital at Walla Walla, the State Penitentiary, and the Walla Walla College at College Place are the principal institutions using ground water for institutional supply. The hospital annually withdraws about 200 acre-feet of ground water, about three-fourths of which is from the old gravel of Pleistocene age and the remainder from the basalt. The college well annually takes from the basalt an estimated 150 acre-feet of water for domestic supply in addition to the approximately 100 acre-feet that the well furnished for irrigation. The State Penitentiary used three basalt wells for water supply in addition to the water received through its connection with the Walla Walla city distribution net. About 200 acre-feet of water is estimated as the average annual withdrawal from the three wells.

Thus, for public supply purposes during the years 1957 to 1959, an annual average of about 6,370 acre-feet of ground water was taken from the basalt wells, 100 acre-feet from springs, and 150 acre-feet from wells in gravel aquifers.

Domestic Supply

Outside the incorporated cities and towns the household water is almost entirely from wells and springs. Most suburban houses have an individual domestic supply, though some are connected to the municipal systems. It is estimated, on the basis of visits to many of these domestic installations, that a total of about 1,800

USE OF THE GROUND WATER

individual domestic systems using ground water are in use to furnish the private domestic water supply in the Walla Walla River basin. Of those domestic sources, about 1,600 are wells and 200 springs. There is only a small difference between shallow wells and springs in some of the spring-zone areas of the valley plain--in some cases the difference is only a matter of the current position of the water table, which varies greatly during any one year and differs some between wet and dry years.

Of the wells, about 1,350 obtain ground water from the old gravel and the hydraulically continuous Recent alluvium, 180 from the basalt, and 70 from other water-bearing materials, such as the lower part of the Touchet beds, the Palouse Formation, and the deposits of the upper valley terraces. An estimated total of about 1,000 acre-feet of ground water is used for domestic purposes in the Walla Walla Valley, divided about equally between the two states. Of this total, about 830 acrefeet of ground water is extracted from the old gravel, 130 acre-feet from the basalt, and 40 acre-feet from the various other water-bearing materials.

Industry

Food canning and processing plants, particularly pea canneries, are by far the largest industrial users of ground water in the Walla Walla River basin. Very minor users include creamerles, hatcheries, fruit-boxing plants, railroads, electricpower stations, and lumber-processing plants.

The canning companies pump large quantities of water during the summer packing season. The nine cannery wells in 1958 and 1959 withdrew from the basalt a total of about 2,200 acre-feet of water. This withdrawal supplemented the water they obtained from the public-supply systems. The combined annual total withdrawal of the other minor industries using ground water is not over 200 acre-feet-all but a small part of which comes from the basalt. Most of the industrial processing water is released to private conduits or to the surface streams after treatment and is reused for irrigation.

Annual Use of Ground Water

Total Basalt Old gravel (acre-feet) (acre-feet) (acre-feet) 52,300 46,500 5,800 Irrigation 6,570 6,720 Public supply 150 1,000 870 130 Domestic supply 2,400 Industrial 100 2,300

47,620

Totals

14,800

62,420

The annual use made of the ground water in 1958 and 1959, with its aguifer origin, is as follows:

: 1

Of the acre-feet of water used from the old gravel, 40,000 is in Oregon and 7,620 in Washington; and from the basalt, 7,000 acre-feet of water is in Oregon and 8,800 is in Washington. . **.** .

DEVELOPMENT OF THE GROUND WATER-

"Shallow" Ground Water of the Old Gravel

History of Development

The early settlers found the springs and spring-fed creeks of the alluvial plains readily adaptable to diversion for irrigation. This period was mainly concerned with use of the spring flows and development of the ground water by shallow wells.

Household wells were dug and, as techniques of well construction were perfected, a number of infiltration galleries of tile and wooden conduits were laid in deep trenches and led downslope to bring the ground water out at the surface level without pumping. Walla Walla used an infiltration gallery system for municipal supply in 1897; it was located near Mill Creek above the town. After the increasing density of the nearby settlement made these local shallow ground waters difficult to protect from pollution, the main cities, Walla Walla and Milton, constructed conduits to stream sources farther upvallev.

As demand increased for more irrigation water and for irrigation of dry lands higher upon, and around, the alluvial fan, large ditch diversions were made at the apex of the alluvial cone at Milton. The discharge of the springs of the inner and outer spring zones increased greatly after the enlargement of the irrigated acreage on the upper part of the alluvial fan. Subsequently, the unused part of this discharge from springs and other excess water was diverted to the lower part of the valley by the Burlingame Ditch (pl. 1).

About the time of World War I, dug wells, a type that previously had been used mainly for domestic and stock-watering purposes, were put into irrigation service with centrifugal pumps. That system of well construction and pumping of ground water from the old gravel remained dominant until World War II. The recent period of development has resulted in the drilling to greater depth within many of the old dug wells, a practice that has not produced much additional water from some wells, and in the drilling of many new wells for irrigation on the terrace lands downvalley from Freewater and College Place. Many wells were drilled for suburban homes. In recent years some irrigation wells, such as 6/34-13A1 and 14G1, have been drilled into the downvalley extensions of the old gravel in the Whitman and Umapine districts; also, the ground water in the extension of the old gravel beneath the Gardena Terrace has been extensively developed.

Future Developments of Ground Water in the Old Gravel

The tracts of good soil underlain by the old gravel in the Milton-Freewaterto-State Line and Walla Walla-College Place districts are now partly irrigated by a system of combined surface water and ground water, the principal supplies being obtained from the Walla Walla River and Mill Creek. Because of the shortage of
surface water, much of the land does not receive a full irrigation in the latter part of the growing season.

المراجع المراجع والمراجع والمراجع (م. 2014) المراجع محرفي المراجع والمراجع (م. 2014)

Monthly measurements made in 1942 and 1943 showed total annual discharge of the springs on the alluvial fan of the Walla Walla River to be about 50,000 acre-feet, as it was in 1933. The less frequent measurements since 1943 do not permit comparison of total annual discharge as of 1960. There is some evidence that the total annual discharge from the springs on the alluvial fan of the Walla Walla River has decreased progressively during the period 1950-60. All spring discharge is used in the growing season by holders of water rights down-stream. Some holders of water rights to spring outflow find the springs no longer yield the amount of water they did 10 and 20 years ago.

Some preliminary plans have sought means to augment or prolong the early summer high level of the ground water in the old gravel. Such plans, to have practical effect, must take into account (1) the rapidity with which the ground-water level declines after its annual crest passes and (2) the large volume of river flow or artificial recharge necessary to produce great infiltration to the ground water. Some initial tests at artificially recharging the gravel aquifers by placing excess surface water into gravel pits and onto unused gravelly fields have reportedly helped raise temporarily the water level in wells of their vicinities. A comprehensive plan for the systematic management of the old gravel as a water reservoir is an obvious need that will surely come about ultimately. Such a comprehensive plan and systematic management will need to include all phases of natural and artificial recharge in order to obtain the maximum benefits from this important natural water-storage facility.

There is some feeling by many water users that the future will see a different type of water management for the water-storage space in the old gravel. Those making this prediction note the gradual and progressive change from the former use of the gravel as a full reservoir, from which only the overflow from the springs was used. They contend that the progressively greater pump withdrawal from wells in the summer has obtained full-season water and utilized "dead" storage space of the entire gravel stratum with bonus benefits from increased recharge opportunity, the salvage of winter runoff, and other advantages. There is little doubt that this type of transition has come about progressively. In the long run, the amount of water that 'can be gotten underground to sustain the summer draft may be the critical factor that determines the optimum utility of the old gravel as a reservoir.

Protection and increase of the water resources of the old gravel are vital to the established economy of the Walla Walla Valley. Actions that might permanently decrease the natural infiltration recharge from the surface or the artificial recharge by irrigation and other means may be detrimental to full use of this water-storage resource.

As is amply shown by the water-level graphs previously discussed, the greatest infiltration of water from the Walla Walla River and Mill Creek occurs during and just after their highest rates of runoff. This type of peak recharge to the ground water is commonly attributed to the cleaning and scouring of the channel and the greater height, hence greater pressure downward, of the river during its periods of greatest runoff. Artificial changes in stream regimen, such as some types of storage in upstream impoundments or alterations in channel-scour and water-depth situations, can diminish the infiltration to recharge the ground water. Consequently, any such plans for changes in river regimen could well be required to provide for compensatory recharge or to sustain counter charges for their diminution of natural recharge and storage.

64 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

The vulnerability of this ground water to contamination by noxious wastes is an ever-present threat. The prevention of such contamination should be aided by the public's constant appreciation of the value of the resource provided by the water which uses this ground route on its way down the valley.

Future Development of Other Shallow-Zone Ground-Water Bodies

In the lower central part of the Walla Walla Valley, some gravel aquifers occur beneath the Gardena Terrace and its extensions. The ground water in these gravels may, in the future, support a slightly larger withdrawal. Beneath the area south of Gardena School sand and gravel aquifers occur in places. Until recent years they have been used solely for domestic and stock purposes. By 1950, the records of wells showed enough permeable material had been encountered in wells like 6/33-10J1 and 11H1, respectively 1 mile southeast and 2 miles east of Gardena School, to warrant test wells for supplemental irrigation water. Since then, about a dozen irrigation wells have been constructed having average yields of about 800 gpm from the gravel aquifer.

Beneath the isolated segments of the Gardena Terrace north of the Walla Walla River a 20-foot-thick horizontal sand aquifer has long supplied each year a few hundred acre-feet of ground water for irrigation (wells 7/33-35C1, C2, E1, and others). So far the water levels in that aquifer have not been drawn down and the aquifer seems capable of sustaining some additional withdrawal by properly constructed and managed wells. Quantitative studies of this aquifer may be required to determine actual amounts of water available perennially. Such careful inventory of the storage capacity of the shallow aquifers will become the normal order of water management as the optimum withdrawal of ground water is progressively approached.

Ground Water in the Columbia River Basalt

History of Development

During the earliest period of development, prior to 1900, some ranches on the flanks of the Walla Walla Valley were equipped with wells in the basalt for domestic and stock water.

The well (7/35-26Q1) that resulted in the discovery of flowing artesian $\frac{1}{2}$ conditions in the College Place district was drilled in 1903 on the Blalock place, apparently in response to Russell's (1897, p. 85) suggestion of the possibility of artesian conditions in the valley. During the ensuing 20 years about 30 wells were drilled for flowing artesian water in that vicinity. Well 7/36-36H1 is reported by the driller, A. A. Durand, to have had a pressure of 60 pounds per square inch at the surface when drilled in 1910. It was early determined that wells northwest of

[✓] The reader may note that hydrologists in general, as well as those of the Geological Survey, use the work "artesian" to mean any confined ground water whether or not its level stands above the surface. Some dictionaries define artesian water as ground water that flows at the surface.

DEVELOPMENT OF THE GROUND WATER

a certain line (herein called the "College Place flexure" and located on pl. 1. Also, on pl. 2, see line of sharp bedrock rise running east-northeast through the northern part of College Place) did not yield flowing artesian water. Most of the wells drilled in that area of non-flowing artesian water were abandoned or destroyed because the water did not flow from them. Of these, only the Ganni well (7/35-26P1) was found during this investigation. Farther west, well 7/34-29C1 at Lowden and well 7/35-8A1 on Dry Creek were left unused because the water failed to flow at the surface.

During the years 1920 to 1940 a few wells were drilled to obtain water from the basalt and some of those for municipal or industrial supply were equipped with deep-well turbine pumps (fig. 15). Many of the originally flowing artesian wells were equipped with centrifugal pumps to augment their lessened flow. Except for the water from the flowing or near-flowing artesian wells in the College Place vicinity, little or no ground water from the basalt was being used for irrigation.

Figure 15.--View east up Mill Creek valley and across the Walla Walla reservoir with discharge from wells 7/36-13F1, 13F2, and 7/37-18F1 emptying into the reservoir. Dark escarpment at right is at north side of Prospect Point ridge. Table Rock, to the left of the center, tops the skyline of the Blue Mountains upland.

66 GEOLOGY AND GROUND WATER, WALLA WALLA RIVER BASIN

The advent of the pea-canning industry during the decade of the 1930's necessitated the drilling of a few wells into the basalt. The increase in population and the industrial activity during and just after World War II brought about the drilling of additional public-supply wells at Walla Walla, College Place, and Milton-Freewater.

...

Nature and Extent of Present Ground-Water Development

As shown by the records of water levels in the wells, the withdrawals of ground water from the basalt do not approach the total amount of water that each year naturally recharges and reaches the basalt below the valley floor. Locally, closespaced wells, as in the College Place and Milton areas, interfere by drawing down their mutual water level. Also, one area of persistent decline of the water level exists east of Walla Walla, but the basinwide situation shows an annual excess of recharge over pumped withdrawal from the basalt.

So far, the withdrawal of water from wells has not resulted in the water level of unpumped wells being drawn down beyond a general level about 50 feet below the surface during the summer in the College Place district, where the water level is normally at or near the surface. Also, it has not resulted in the water level being drawn generally more than 160 feet below the surface in the Milton district, where the water level was originally about 100 feet below the surface.

The water level in the Whitman Hotel well in Walla Walla declines a few feet each year about when the heavy pumping is begun from the large cannery wells (7/36-19F1 and 19R1) (see fig. 9), but the few pumping wells in the basalt at Walla Walla apparently produce a drawdown in only that locality. The three Walla Walla City wells in Mill Creek valley (7/37-18F1 and 7/36-13F1 and F2) along with several other basalt wells in that area have drawn the water level down about 40 feet during the period 1950-60. That area of the basalt seems to be partly isolated from lateral percolation that might otherwise maintain a near-natural water level.

Some wells in the basalt of the Russell Creek district do not show a reduction of water level in response to pumping of other basalt wells of that district. The owner of well 7/36-35D1 stated in 1948 that the static level of the water in the well had not changed materially since the well was drilled in 1910. There is an annual cyclic fluctuation of 1 to 2 feet in the water level of well 7/36-36J2. It appears to be a climatic effect on the recharge infiltration, but may partially result from summer withdrawals of water elsewhere. Well 6/37-5F1, the strongly flowing "Sweazy Quarter well," has an unusually stable static water level. It stands at about 75 pounds (172.5 feet above the surface) at all times—even a few minutes after flowing for several months at the rate of 600 or more gallons per minute. Such behavior indicates that some water source keeps the aquifer full to the overflow point at all times.

The withdrawals from the early wells during the period 1903-20 apparently used nearly as much water as is now taken from the basalt in the College Place area. In effect, those wells drew all the water that the aquifers in the upper part of the basalt could provide when the water level was drawn down to the surface throughout each summer. Judging from the drillers' reports of the original static water levels, that amount-of annual water use drew the average static water level down something between 20 and 50 feet throughout College Place. Thus, at this place, we can get 4

÷

111

9:1

÷.,

an appreciation of one hydrologic characteristic of the top part of the basalt. By 1948, a 30-foot cone of depression in the regional piezometric surface was needed to maintain a supply of 3,000± acre-feet of ground water from the wells scattered through a 2,500-acre area. During the ten-year period 1948-58 the increased pumping had induced an average additional decline of about 15 feet in the water level of the basalt wells in the College Place area.

Measurements of the water level in well 7/35-36H1 just east of College Place show that the water level varies from about 10 feet below the land surface in winter and spring to 30 feet in the late summer and fall--an annual decline that accompanies the summertime withdrawal of about 2,500 acre-feet of water from the basalt in an area 1 to $1\frac{1}{2}$ miles wide arcing around the north, west, and south of this well (36H1). The wintertime pressure level in this well is largely restored by December, 4 months after the cessation of heavy summertime pumping.

The development that has evolved for the ground water in the basalt thus comprises one area of heavy development and overdraft around College Place, one locality of concentrated heavy pumping from one depth zone of the basalt at Milton, a few areas where wells are drawing down their mutual water level, several areas of well-separated and efficiently constructed and operated wells, a number of places that the public seems to consider disproved for ground-water development, and several extensive areas of untested ground-water potential. On a valleywide basis the basalt wells are withdrawing less water than the annual recharge. The technology of artificially recharging the basalt aquifers with excess surface water is just getting started (Price, 1960 and Paul F. Meyer, personal communication).

Construction of Wells in the Basalt

Essentially all the wells in the basalt have been drilled by standard cable tool (churn) drilling. A few have been drilled to shallow depths by rotary machines of the normal mud circulation type, but the rotaries have not been economically competitive with churn drills. One deep diamond drill hole (6/34-22G1) was put down as an "oil and water test."

One water well (7/36-17K1) was drilled to a depth of 3,000 feet, one (6/36-9P1) to 2,061 feet, and about fourteen to more than 1,000 feet. Most of the basalt wells penetrate a few tens of feet below the water level for domestic and stock supplies and from 100 to 1,000 feet for irrigation; industrial, and public water supplies.

The diameter of the early wells was commonly 6-, 7-, 10-, or 12-inch for irrigation wells and 4-, 5-, and 6-inch for domestic water supply. Recent practice utilizes larger and heavier casing pipe--6- and 8-inch for domestic and 11 stock wells and 10- and 20-inch for irrigation, public-supply, and industrial wells.

A drill diameter greater than 12 inches in the water-bearing zones is difficult to justify for wells which are designed to produce 1,000 gpm or less. Greater diameter in the upper, pump-occupied, part of the well is for pump accommodation only and the diameter of this upper part of the well is generally dictated by the specifications of the pump and water-level measuring facilities. The waterbearing parts of the basalt commonly "over break" while being drilled and slough out to a diameter greater than the well bore through the more massive parts of the basalt, this overbreakage can be induced if it does not occur normally. Thus, the

67 🗄

10

÷j∂.

effective diameter of the well bore at the water entrance is generally greater, or can be made greater, than the tool-diameter with which the well was drilled. This circumstance accounts for the fact that test wells of 6- or 8-inches diameter have yielded virtually as much water per foot of drawdown as they did after they were reamed to much larger diameter.

The factor of frictional resistance to the flow of water, as it affects the selection of the well diameter, can be stated in part by analogy to water movement in steel pipe of similar size. The frictional resistance which must be overcome in forcing 1,000 gpm through 500 feet of steel pipe is equal to 15 feet of water pressure in a pipe of 8-inch diameter, to 10 feet in one of 10-inch, and 4 feet in one of 12-inch diameter. Though a well bore in basalt presents greater frictional resistance than steel pipe, it is plain from the comparison that the frictional resistance, expressed as increased pumping lift for water entering the well 500 feet below the pump, is only a foot or so more for 1,000 gpm rising in a 12-inch than in a 16- or 18-inch well bore.

The wells are commonly cased to, or slightly into, the bedrock and left open-wall in the basalt, except for caving interbeds or fractured zones in the basalt. In these unstable parts of the wells, liner sections or the complete extension of casing from the surface may be required. Only one well (penetrating the fault-sheared rock in the roadside park at the Wallula highway junction, outside the primary area covered by this report) is known to have required casing support for its entire depth (295 feet) in the basalt. Casing was run for the entire 1,590 feet depth of the well (7/36-19R1) of the Walla Walla Canning Co. and perforated opposite the water-bearing strata so far as they could be determined.

The proper casing of some basalt wells demands careful attention to many factors, particularly to the static level of the water in each important waterbearing zone penetrated by the drill. In wells where the water is found to occur perched, and the water in successively deeper aguifers stands successively farther below the surface, the well bore will serve as a conduit toward the deeper permeable zones and may even drain all water away to a dry, but permeable zone. Casing off, or otherwise sealing, all except the best water-bearing zone may be necessary to secure the maximum yield in such perched-water situations, which characterize the domestic and stock well sites of some of the upland areas. In wells where the water occurs with successively higher static level as deeper aquifers are encountered, a sealed casing to the deepest aguifer is required to prevent wasteful leakage into the upper permeable zones which may have been dry or had water of lower pressure level. Such within-well leakage has helped to dissipate the natural pressure head in many flowing and nonflowing artesian wells in the Walla Walla Basin. In wells where no significant changes in the static level of the water occur throughout its depth, as was the case in the Charles Baker well (7/34-25N1) north of Whitman, casing can be limited to that necessary for sanitary and pump protection needs.

The basalt is not an easy rock in which to drill a good straight well. The massive centers of some of the lava flows are tough and hard, and drill progress in places may not exceed 2 or 3 feet per 8-hour drilling shift. The tops and bottoms of the flows are considerably less tenacious, and the average drill progress is commonly about 10-15 feet per shift of drilling.

DEVELOPMENT OF THE GROUND WATER

2

÷

ú,

Irregular hard and soft parts of the rock cause difficulty in drilling some of the lava flows because the drill may in places persist in deflecting towards the side of the well bore which is drilling the easier. Most drill operators agree that the primary cause of crooked wells lies in attempting to make the hole too rapidly and that deflections of the well bore are corrected most readily at their first inception. Many drillers undertake corrective measures as soon as the drilling cable is seen to be drifting consistently from the center of the casing at the surface.

The upper part of the well, in which the pump is to be set, is the part for which alignment requirements are most rigid. Contract specifications usually require that these sections pass tests such as visual check, with drop light or reflected light as far as the water level; persistence of the drilling cable to the casing center while full-gauge tools are being lowered slowly in the well; barrel gauge alignment surveys; passage of rigid "dummy" sections of the next smaller pipe; or other alignment-testing methods.

As engineering design of water wells and better drilling equipment and methods have come into use a number of improvements have come to well construction in the basalt. The cement sealing of the casing into the massive center part of a lava flow at some depth below the top of the basalt has become common practice. Excessive cement grouting of minor areas of rock slough in the water-producing section of a well are no longer done unless absolutely necessary for the construction of the well. The old belief that water-bearing zones are always identified by a clearing of the drilling sludge or a disappearance of the drill cuttings has been amply disproven; prolonged bailing and pumping tests are now considered the only valid demonstrations of the potential yield of a well.

Future Development of Ground Water from the Basalt

Indications of amount of water available annually from the basalt, --In one area of some 2,500 acres at College Place, ground-water withdrawals from the top part of the basalt totaled about 3,000 acre-feet annually and is producing further progressive decline of the static water levels. This ground water is brought to the locality by keeping the water level about 50-100 feet below its original natural position. This is an unusual condition and the annual withdrawal of $1\frac{1}{2}$ acre-feet of water per acre at College Place, since the water level was reduced about 70 feet below its natural position, may be much more than double the quantity that could be withdrawn perennially throughout the basin.

An estimate of the amount of ground water stored in the top 1,000 feet of the basalt, the part commonly tapped by wells, can be made empirically by applying some rude quantities observed in various dewatering operations. These observations estimate the average drainable porosity as 10 percent within water-bearing zones which form about 10 percent of the rock beneath 400 square miles of the valley floor. For the uppermost 100 feet of basalt, such empirical reasoning would indicate about 250,000 acre-feet of water would be removed when the water levels in the basalt were lowered 100 feet throughout the valley floor area. This rude estimate is similar to that obtained above for the gravel aquifers, and along with the ground water in the gravel it gives 500,000 acre-feet of water as an estimate of the storage in the first 100 feet of the two water-bearing units beneath the Walla Walla Valley. When Price's (1960, p. 29) value of 400,000 gpd for the transmissibility L of the 1,000 feet of basalt in Walla Walla well 3 (7/37-18P1) is extended to a yearly basis for a section of the basalt 40 miles long surrounding the valley floor above Lowden, and the smaller factor for an average ground-water gradient of 5 feet per mile is introduced, the transmission capacity of the basalt through this peripheral plane is computed as about 90,000 acre-feet of water per year. This theoretical projection of too meager data gives a value nearly 6 times the present withdrawal of ground water from the basalt.

A precise, or even preliminary, figure will have to be based on much more quantitative work than could be included in this investigation. Nevertheless, the records of the present wells, and the structure and transmission characteristics of the basalt, indicate that, as a whole, the basalt beneath the valley will afford, to properly spaced wells, much more ground water without exceeding the annual amount naturally recharged and transferred laterally beneath the valley floor. In addition, increasing water storage in the basalt by artificial recharge holds promise for the future.

The water-level information in table 1 and figures 10 and 11 show that about 30 wells near College Place have drawn down the pressure level of the water in basalt, as have about 10 wells at Milton-Freewater and 5 wells on Mill Creek northwest of Walla Walla. Elsewhere the levels of the water in the basalt are comparable to the native conditions or are due to the temporary lowering inherent to the annual reestablishment of ground-water levels depressed by pumping.

<u>Areas subject to ground-water development</u>.--Some valley areas where the basalt obviously warrants exploration of ground water for irrigation are described below:

Around Spofford Station, and particularly to the north and northeast, the water level in the basalt aquifer should stand within 100 feet of the land surface. The wells marginal to this area (6/36-31L1, 19B1, 9P1) are good producing wells.

In the Russell Creek district below Maxson School and southward to Cottonwood Creek the static ground-water level is less than 100 feet below the surface. Wells 7/36-36J2, 6/37-5A1, and 7/37-32P1 are marginal wells of good yield.

Other districts where the basalt obviously warrants exploration of the ground water for irrigation include Spring Valley in secs. 1, 2, 10, and 11, T. 8 N., R. 36 E.; lower Dry Creek northeast and southwest of Sudbury station; the dissected terrace lands north of Whitman, for which 7/34-25N1 and 7/35-23M1 are the marginal wells; the lower few miles of the Touchet River valley; the Blue Mountains foothill strip of high static ground-water levels between wells 6/37-4B1; 5F1, and 7Q1; many other localities where few wells now tap the basalt aquifers; and many localities of reservoired water behind structural barriers in the upland valleys of the basin (Newcomb, 1962). When the technology of recharging excess surface water to the basalt is worked out, many other districts, even those now deemed to have too high a water lift, may become feasible areas for development of the ground water in the basalt.

 $[\]overline{V}$ The coefficient of transmissibility is defined as the number of gallons that will pass in 1 day through a vertical strip 1 foot wide extending the height of the aquifer under a hydraulic gradient of 1 foot in 1 foot.

DEVELOPMENT OF THE GROUND WATER

Precautions to preserve high ground-water levels. --The continued availability of adequate ground water ordinarily is indicated by a relatively high static: water level. It is imperative that everything possible be done to maintain water. Is levels commensurate with optimum use of the ground water. If developments are started to withdraw large amounts of ground water they should incorporate judicious spacing of the wells to avoid undue local drawdown of the water level. Such developments may wisely plan to provide irrigation water at first for only about one-eighth or one-fourth of each section until sustained ground-water levels indicated that more to water is available without persistent overdraft. At best, the ultimate capacity of the basalt aquifers without excessive decline of water levels probably will not permit the withdrawal of irrigation water for more than half the acreage in any given locality. Where wells have been overcrowded, as at College Place, additional or.

replacement wells should extend the casing and explore to horizons deeper in the basalt in an effort to avert further overdraft on the aquifers near the top of the basalt.

Every well should be provided with both an air gauge-air line assembly, which can be used to indicate water level, and an entry port through which the water level in the well may be checked by means of a measuring tape. These should be provided by the well driller or pump installer as a regular part of the well's construction and equipment, as has long been done in many other parts of the nationary

Artificial recharge to the basalt aquifers. -- The possibility of augmenting ground-water storage in the basalt by artificially recharging wells with excess surface water during the winter months has long been foreseen as a future practice of great promise. Its feasibility was thought to depend upon several important considerations. Theoretically, a well should accept the same amount of water under a given pressure head of application as it will produce with an equal amount of drawdown. In practice, however, certain reactions may occur to reduce the recharge capacity of a well. Any sediment may ultimately plug the pores of the aquifers, chemical deposition or exchange may also take place to reduce porosity, and dissolved air or other gases may come out of solution and air-lock the pores of the rock. Water used for recharge by injection through basalt wells should be quite clear, chemically stable, and preferably as warm and air-free as the water in the basalt.

The first experiments have yielded optimistic results. The second stage, the design and operation of permanent but still-experimental recharge plants, is close at hand.

In 1957 and 1958 the city of Walla Walla, the Washington State Department of Conservation, Division of Water Resources, and the Ground Water Branch of the Geological Survey conducted an artificial recharge test on Walla Walla well 3 (7/37-18P1) (Price, 1960). Water from the city's Mill Creek conduit was injected at the rate of about 660 gpm from December 11 to 20, 1957, and from December 23, 1957, to January 8, 1958, during which time 71.3, acre-feet of water was placed in the basalt aquifers. The artificial recharge raised the water level in the recharged well by about 8 feet and the water level in Walla Walla well 1 (7/36-13F1) by at least several feet. However, some temporary reduction in the well's yield occurred because of the greater viscosity of the cold water recharged or because of air______ entrained and dissolved in the recharged water. Some technological improvements. were planned for subsequent tests of these recharging experiments.

. 260 . . .

.

t,

In the winter of 1961-62 the city of Walla Walla carried on further experiments in artificially recharging the ground water in the basalt through their No. 3 well. It was found that the practice of pumping the well after only 1 to 5 days of recharging was effective in preserving the normal specific yield of the well (Paul F. Meyer, personal communication). By the end of the recharge period in April they had recharged 65 million gallons, about 200 acre-feet, of water which had raised the static level of the well (7/37-18P1) by about 5 feet.

Favorable results from similar recharge experiments in wells in the same basalt rock were carried out in 1961 and 1962 at The Dalles and South Salem, Oregon (B. L. Foxworthy, personal communication).

<u>Ground water in structural traps on the Blue Mountains slope.</u>--The prevailing westward inclination of the basalt flows causes the westward-flowing streams to cross the outcropping edges of the flows. In the main stream valleys the interflow zones, some of which are aquifers, remain full of water. Apparently the level of the water in each aquifer slopes laterally toward the streams from the interstream areas. When tapped by wells farther downstream, the water entering the well from an enclosed aquifer will rise to the level of the aquifer's outcrop. Such wells are the small one (4/37-9H1) at the boys' camp on the South Fork and the Bureau of Reclamation exploratory drill holes at proposed dam sites on the South Fork and the main stem of the Walla Walla River (4/37-12Q1 and 5/36-18P1).

Some faults cut transversely across the Blue Mountains slope (see pl. 2). Their shear zones provide barriers that dam up the water in some of these inclined aquifers. Wells drilled on the upslope side of those barriers should tap stored ground water under pressure. The yield of such wells might be used to augment the flow of the stream during the low-water months. Some of the water taken from a well (and delivered to the stream) would be offset by some loss from the stream to the aquifer at its outcrop farther upstream. However, it is likely that the removal of ground water from storage and from flanking areas would secure a "new" source of water that would substantially exceed any dimunition of the streamflow. Such a ground-water with-drawal probably would be replaced by recharge during the winter months. The system recommends itself for trial; its workability should be determined in an effort to augment late summer streamflow with otherwise unused ground-water storage (Newcomb, 1962). The preliminary estimates indicate that augmentation of the ground storage may be far cheaper and more advantageous than some of the surface storages now under consideration.

<u>Ground-water supplies for the future</u>.--The water in the ground will be the main part of the water resources of the basin in the future as it is now. The ground-water sotrage in the mountainous part of the basin will provide the base flow of the streams--the average 150 cfs of water that Mill Creek and the Walla Walla River deliver to the valley floor in the vital growing months of summer and fall. Also, storage and transmission to points beneath the sites of water use will continue to be provided by the gravel stratum and the basalt aquifers. The approximate 250,000 acre-feet of storage space in the uppermost saturated 100 feet of the basalt and a similar storage space in the old gravel will continue as the principal operational reservoir of the Walla Walla Valley.

TABLES OF GROUND-WATER DATA

A transition in the use of the water-storage space of the old gravel is underway. From a more or less static concept of the "full tank" from which only the overflow was used, development of the water is progressing toward a more dynamic situation in which the reservoired water is drawn down in months of need and refilling permitted during the winter and spring months. Providently, measures to retain all the present opportunities for recharge and for augmenting them with artificial recharge could be included in the planning of this transition.

The ground water in the basalt will support greater withdrawals than now prevail in many parts of the basin. In some localities the water in some zones of the basalt is already overdrawn by crowded wells. The whole basalt reservoir also is susceptible to operation on a dynamic basis with recharge enhanced by a judicious lowering of the water level during months when the extracted water has the greatest value. Also, like the gravel reservoir, the increased use of the basalt reservoir will need a planned and managed basinwide operation.

The greatly increased use of ground water and of the ground-storage space for water in the future is bound to require more management and operation based on more and better information than has been customary under the near-native conditions of the past. The serious neglect, which in the first 100 years witnessed a basinwide expenditure of less than \$50,000 for study of this principal water resource, must give way to considerate management and husbandry.

Certainly the ground-water resources in all their occurrences are of such importance to the economy of the Walla Walla Valley that the determination of their optimum utility and their wise management are worthy objectives with progressive and perpetual rewards.

TABLES OF GROUND-WATER DATA

Some detailed information on the ground water, wells, and springs is condensed in tables 1 to 4. The tabulated data contains the basis for many state- . ments of the preceding text; also, it contains additional information beyond the text presentation. The tables and the maps and cross sections (pls. 1 to 3) supplement each other in presenting this additional ground-water information. The wells listed in table 1 and the springs listed in table 4 are located on the map, plate 1. The ground-water and geologic data given in tables 1 and 2 and on the geologic map (pl. 1) also form the basis for the geologic cross sections (pls. 3A and 3B) and the bedrock contour map (pl. 2).

Table 1 (p. 76-102) lists the pertinent data on wells chosen as representative of the wells in their respective localities. This selection for representativeness is not strictly followed for the larger and deeper wells which obtain water in the bedrock basalt -- most all of those wells are listed in table 1. For each well that has additional information in the other tables or in the figures, the pertinent references are given in the remarks column of table 1.

Table 2 (p. 103-141) contains drillers' logs that record the general geologic and ground-water conditions observed by the drillers in many parts of the river basin. In general, the logs were selected for their representation of subsurface conditions in certain parts of the valley; however, several logs of wells are included ά.

. .

...

.

÷

for each of a few well groups--such as the Milton-Freewater group of deep wells (which includes 5/35-1E1, 2H1, 2J1, 12F1, 12F2, and 12G1), the Russell Creek group (including 6/36-9L1, 9P1, and 10E1), the Walla Walla group (including 7/36-19F1, 19R1, and 20N1), and the College Place cluster (including 6/35-K1, 1D1, 1M1, 2E1, 7/35-23M1, 25F1, 25P1, 26Q2, 33D1, 36A1, and 36 D1). The drillers' logs show the main stratigraphic divisions, but within the main rock groups the logs do not identify specific beds or strata as is commonly done in subsurface exploration done specifically for stratigraphic detail. Some of the logs include the static levels of the ground water as observed during drilling, in further illustration of the text description of this factor in ground-water occurrence. Some of the logs describe well-casing installations in addition to the casing bottom locations given in table 1.

Table 3 (p. 142 - 145) gives the chemical analyses obtained on ground waters of the basin and contains a few analyses of surface water for comparison. These data form the basis for the text generalizations on the quality of the ground water. To supplement table 3, the hardness and chloride determinations in table 1 are given from field analyses of samples taken at some wells during the data collections of this investigation.

Table 4 (p. 146 - 151) lists data on representative springs which are located on plate 1. It lists nearly all of the main permanent orifices of the ground water that flows from the gravel aquifers of the alluvial fans in the valley floor part of the basin. The discharge from these valley springs is described in the text under the sections dealing with ground water in the old gravel and with the development of the ground water. Also included are data on a few springs that illustrate types numerous in the upland and slope areas.

.

REFERENCES CITED

- 1. Adams, M. F., 1957, Water resources of the State of Washington: Washington State Institute of Technology, Bull. 237.
- Allison, I. S., 1933, New version of the Spokane flood: Geol. Soc. America Bull. 44, p. 675-722.
- 3. Dean, H. T., et al., 1942, Domestic water and dental caries: Public Health Repts., v. 57, no. 32, p. 1176-1177.
- Erdmann, C. E., 1933, Report on geologic investigations of miscellaneous dam sites on the Walla Walla River, and the South Fork of the Walla Walla River in the vicinity of Milton-Freewater, Oregon: U.S. Geol. Survey interdepartmental report, 65 p., 2 figs., 18 pls.
- 5. Fenneman, N. M., 1931, Physiography of western United States: McGraw-Hill Book Co., Inc., New York, 534 p., map.
- 6. Flint, R. F., 1938, Origin of the Cheney-Palouse scabland tract, Washington: Geol. Soc. America Bull., v. 49, no. 3, p. 461-523.

REFERENCES CITED

7. Harper; W. G., Youngs, F. O., Glassey, T. W., Torgerson, E. F., and Lewis R. D., 1948, Soil survey of the Umatilla Area, Oregon: U.S. Dept. of Agriculture and Oregon Agr. Expt. Sta., Series 1937, no. 21, 8. Huntting, M. T., 1942, Geology of the Middle Twocannon area: Washington State UniverMaster's thesis in geology, unpublished: and we have a set of the 9. Johnson, Arthur, 1933, Water-power resources of Walla Walla River, Oregon: state days U.S. Geol. Survey, Conservation Division, unpublished interdepartmental report, 108 p., 27 pls. 10. Newcomb, R. C., 1951, Preliminary report on the ground-water resources of Arc. Southe Walla Walla Basin, Washington-Oregon, U.S. Geol. Survey openfile report, duplicated, 223 p., 13 pls. 11" 1999, Some preliminary notes on ground water in the group Columbia River Basalt: Northwest Sci., v. 33, no. 1, p. 1-18. 12: _____, 1961, Age of the Palouse Formation in the Walla Walla and Umatilla River basins, Oregon and Washington: Northwest Sci., v. 35, no. 4; p. 122-127. 1 , 1962, Storage of ground water, behind subsurface dams in 13. . ~ the Columbia River Basalt, Washington, Oregon, and Idaho: U.S. Geol. Survey PP 383 A, 16 p., 9 figs. 14. Piper, A. M., Robinson, T. W., and Thomas, H. E., 1935, Ground water in the Walla Walla Basin, Oregon-Washington: Transcript of record, The State of Washington, Complainant vs. the State of Oregon; Supreme Court of the United States, October term, p. 72-142. 15. Price, C. E., 1960, Artificial recharge of a well tapping basalt aquifers, Walla Walla area, Washington: Washington Div. of Water Resources, Water Supply Bull. no 7, 50 p., 4 figs. 16. Richards, L. A. (editor), and others, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture, Handbook no. 60. 17. Russell, I. C., 1897, A reconnaissance in southeastern Washington: U.S.

Geol Survey Water-Supply 4.

18. Wilcox, L. V., 1948, The quality of water for irrigation use: U.S. Dept. of Agriculture, Technical Bull, 962. and the state of the second second

Table 1. - Records of representative wells in the Walla Walla River basin

(Location of wells is shown on plate i)

- Topography where well is located: Ap, alluvial plain; Fp, flood plain of river; S, slope to major volley; T, herrace; Td, herrace dissocted; U, upland; Uv, upland volley of minor stream. Altitudes interpolated from hopographic maps or from berometric froverses.
- Type of well construction: Bd, bared; Dg, dug; Dn, driven; Dr, drilled.

Ground-water occurrence: U, unconfined; C, 'confined; P, perched,

.

- Water-level information: Depths and water levels expressed in feet and decimals were measured by the Geological Survey or cooparating personnel; those in whole feet were reported by owner or driller; those with plus and minus signs were estimated. "F," flowing well, static level not known; "+" measurement, static level above land surface. Datum is lend surface.
- Type of pump: B, bucket; C, centrifugal; J, jet; N, none; P, plunger; R, rotary; Sy, syphon; T, turbine.
- Use of water or well: D, domestic; E, exploration; Ind, industrial; Irr, irrigation; N, none; O, observation; PS, public supply; S, stock.
- Chemical data given in remarks column were determined in the field. Hardness and chloride of water given in remarks column with only one use of the ppm abbreviation.

Abbreviations used in remarks column: Co, analyses of water in table 3; L, log of well in table 2; WL fig. 7, water-level record in figure 7; Dd, drawdown of water level; Gpm, gollons of water per minuto; Ppm, parts per million; Tpd, test pumped.

	γ	· · · ·		<u> </u>	<u> </u>	1				<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·	
			•		1	_		Water-be	oring zone(s)	ğ	Wat	or level			
Well	Owner or occupant	Topography and altitude (feat)	Type of well	Depth of well (fear)	Diameter of well (inches)	Depth of cosing (feet)	Depth to top (fact)	Thickness (feet)	Charact er of moteriol	Ground-water occurre	Feet below datum	Date	Type of pump and yield (gpm)	Use	Remorks
									T. 4 N., R. 35 E.	•					
11G1 12C1 15P1 15P2 22A1 22Q1	Geo. Winn Geo. Lieuallen Lamb-Weston Inc. Lamb-Weston Inc. Weston Cemetery City of Weston	Uv, 1,500 Uv Uv, 1,775 Uv, 1,775 Uv Uv, 1,790	Dr Dr Dr Dr	280 346 737 1,200 1,000 534	10 8 20-12 16-8 10	165 471 893 40	897 152 508	209 194 26	Basalt Da Da Da Da	UDUUU UUUUU	F 40 252 100	9-26-53 3-24-59 3-26-55 1939	T, 1,500 T, 1,200 T, 500	생각 5월 각 1 19 19 19 11	Tpd 108 gpm with dd of 100 ft. L. Water level reported drawn down by pumping 3 of well 15P1; L.
7R	Don Olinger	Ur .	Dr	70	B	36	59	. 11	T. 4 N., R. 36 E. Bosolt	ų	37	2-28-59			
9H1 12Q1	William Coleman Bureau of Reclamation	Uv, 1,950 Uv, 2,290	Dr Dr	97 156	5 5-2	61 55	87 137		T, 4 N., R. 37 E, Basalt Da	с с	1.0 +22	11-23-48 7-23-51	P	D, S E, O	C G Hardness,40; chloride, 3 ppm; L. Test hole at dansite. A 380-ft test hole to northwest and higher on canyon wall had water level at similar altitude.

.

á

3

ś

101 105 201 201 201 201 201 201 211	John Clark Henry Betts Utah Canning Co. C. Townsend Gus Seibold City of Milton- Freewater, No. 6 City of Milton- Freewater, No. 5 City of Milton- Freewater, No. 5 City of Milton- Freewater, No. 3	Ap, 996 Ap, 994 Ap, 1,010 Ap, 976 Ap, 950 Ap Ap Ap Ap, 995 Ap, 1,010±	Dg Dr Dg Dr Dr Dr	37 20 528 23 344 952 374 502 550	84 72 16 60 8 16-12 ?-8 18-12 20-16	109 100 61 172 100	468 308 435	 60 23 ; 67	T. 5 N., R. 35 E. Gravel Basalt Gravel Basalt Do Do Do		14.4 11.2 49 12.8 53 77 47(7) 82 50(?) 78	5-8-33 5-8-33 2-16-45 8-22-32 346 1952 1953 646 2-26-53	C, 100 C, 100 T, 150 T, 850 T, 1,500	स्त्र संस्कृत्व	WL fig. 12. Co; L. Hardness, 60; chloride, 14 ppm; L. L; WL fig. 10. Water level 47 ft below surface when pumping 750 gpm { 1930; Co; L; WL fig. 10. L; WL fig. 10.	
3C1 энт	P. S. Gibbons, Jr.	Αρ Αρ, 959	Dg, Dr	141 36.5	8 42		75 16	66 16	Baselt Gravel	U P P	17.4 22.3	7-21-48	C, 100 P	Ът 	WL fig. 10.	
4A1 4D1 5A1 6C1	Grant York Coffman Nellio Smith Ernest Key City of Milton-	Ap, 959 Ap, 889 T T S Ap, 1,070	Dg Dr Dg Dr	62 62 60 777 651	42 48 72 12 12	 202 100	 572	 20	Sand Sand Basalt Do		33.9 60 47.0 36 85	5-8-33 1948 7-21-48 356 5-28-37	N T, 100 J, 5 T, 1,000	अन्वन् z	Penetroted to basalt bedrock, Later destroyed, Hardness, 120; chloride, 16 ppm. Tpd 730 gpm with dd of 113 Å. Water level reported dd 10 fr when well	GROUND
12F2 ² 12G 1	Freewater, No. 1 City of Milton- Freewater, No. 2 Rogers Canning Co.	Ap, 1,065 Ap, 1,080	ł	902 702	12 20-16	99 65			Do	U U	107 136 105 105	745 552 9-21-45 9-21-45	T, 1,000 T, 1,200	PS Ind	12Q1 is pumping; Ca; L; WL fig. 10. Ca; L; WL fig. 10. L.	WATER
12G2 13L1 23P1	Rogers Canning Co. Umatilla Canning Co. Lowell Steen	Ap, 1,075 S, 1,170 S, 1,300	Dr	700± 918 1,000	18 18-16 14	286	 286 800	632 200	Do Do Do	ບ ບ ບ	132 222 152	9-17-52 651 852	T T, 950	Ind Ind Irr	Tpd 1,000 gpm. Tpd 920 gpm with dd of 46 ft. Tpd 1,000 gpm; in basalt entire depth.	·
111	Baker Estate	s, 2,750		600	60-6	105			T. 5 N., R. 36 E.						Basolt was dry 20-600 ft.	
2F1	H, A, Miller	\$, 1,550 ⁴	Dr Dr	450	6	50	200 450	1± 4±	Basalt Do	PU	375	1912	P, 10	D,S		
5A t 8D t 9D t 18P1	C.O. Whiteman Von Der Ahe G.S. Cockburn Bureau of Reclamation	S, 1,150 S, 1,170 S, 1,220 Ap, 1,177		500 240 400 204	6 6 4-3	 155		 43 114	Do Do Do Gravel Basalt	0 = 200	180 380(?) 6 +5	1946 1948 1951	P, 5 P 	D D, S D, S E, O	Hardness, 65; chloride, 6 ppm. Foundation test well at dam site.	
18P2 26G1	Bureau of Reclamation H. Poulsen	Ap, 1,371 Ap, 1,515	Dr Dr	210 10	5-2 18	43 	209 6	1	Do Gravel	Ċ U	95 6.0	1951 11-23-48	 с, 10	E,O D	Foundation test well at dam site; reported drilled in faulted rock, on left abutment. Typical well of river canyon floor above Milton; hardness, 40; chloride, 3 ppm.	77

4

٩.

•

a)

ì

					Ťœ.	ole 1,R	e cords	o <u>f repr</u> e	sentative	wells in the Walla	Wall	a River ba	sinContinu	ed-		
			1		-	3		•	Water-be	caring zone(s)	8	Wate	r level			-
Well	Owner or occupant	Topogr and altitu (fee	rde	Type of well	Depth of woll (feet)	Diameter of well (inches)	Depth of casing (feel)	Depth to top (feet)	Thickness (feet)	Character of moteriol	Ground+water occurren	Feet below datum	Date	Type of pump and yield (gpm)	Use	Remarks
										T. 5 N., R. 37 E.	•.					
14L1	Emmett Lynch	U, 3	, 500	Pr	502	6		200 490	2	Basalt Do	PU	300±	1939	P	D	Water about at level of adjacent canyon's floor.
9G1 21Q1	John Ankany Rogers	U, 1	720 720	Ďr Dt	170 827	8	80	160 540	10 2	T. 6 N., R. 32 E. Bassit Do T. 6 N., R. 33 E.	C(7) P	80 540	1936 1950	9 9	D D,5	Gives small yield. Located on drainage divide. Inadequate yield for full supply of formstead.
581 5M1	Wayna Martin Wm. Martin	Ар, Т,	425 425	Dr Dr	174 214	8 6		170±	4	Basalt	c c c	12.03 6	10-27-48 1935±	þ	Бл	Flowed at surface until about 1930. Drilled in sand to about 75 ft; basait balow. Upper water zone cased off.
6L1 7J1	Wm. Martin A, Demaris	T, S,	460 500	Dr Dr	250± 150	6 10	 138	210 138	12	Basalt	ĉ	4 55.75 16	3-19-49 1256	N T	чZ	Only loose baselt above 118 ft; Tpd 350 gpm with dd of 140 ft.
8L1 8Q1 9A1	A. Demaris Notson (formerly) Hugh Snider	Td, Td, T,	500 525 535	0 7 0 7	60 177 154	10 5 4 ¹ / ₂	53 150	33 175 150	20 2 4	Slope rubblo Basalt Coarso black sand	C C C	14 75	1056 733	т -Р Р, 4	001	Tpd 540 gpm with dd of 55 ft. L. Aquifer overlaid by 150 ft of madium and fina sand interlayorod.
9F1	A, Munna	Т,	510	Dr	170	12-10	120	129	19	Gravei	U	39	1153		hr	Woll filled with sand to 120 ft during pump test; 10-inch screen set inside perforation 102-120 ft; Tpd 550 gpm with dd of 102 ft.
10A1 10C1 10H1	U. Mousser Wagner B. J. Johnson	I. 1, T,	550 560 560	Dr Dr Dr	184 200 256	5 6 8	223	190 170	 10 86	Black sand Gravel	C C U	75 75 61	1147 1146 1055	P, 3 J, 3	D,S 0 64	Clay and silt overlies aquifer. Tpd 420 gpm with dd of 28 ft.
10) I 11HI	D., Gilkorson Dan Fisko	Td, T,	545 565	Dr Dr	225 230	6 6	200	175 180 200	50 10 30	Do Silty send Peg grovel	c	20(?) 40	1239 1945	20 P, 12	D,S D,S	L.
12K1 13G1 14J1	H. M. Ahlquist E. C. Burlingame Jess Sutharland	Т, Т, Т,	570 560 550	Dr Dr Dr	211 185 300	5 5 6	 	=		Coarse black sand Black sand	c c			P, 6 P, 5	D, S D, S	Water from lower part of well. Three similar wells on farm. Hardness, 200; chloride, 20 ppm.

.

11

42

4

ł

ř

- 15

÷

F)

p

#1

4

1

14Q1 15C1 16A1 20N1 23B1 24A1 31J1	E. C. Burlingame A. L. Farley J. Herman A. Campbell A. Harris J. L. Geyer A. Campbell	T, T, S, T, T, Uv,	560 510 550 1,200 610 570 1,350	Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr	220 180 730 778 700 250 130	12 5 8 10 12-8 8-6	720 129 250	175± 275(7) 450 1 198 100	. 5±	Grovel Sand and grovel Rubble Basalt Grovel Basalt		16 650 78 45 60±	3-8-58 1-7-58 4-2-56 1929	T, 1,000 J, 5	Irr D,S Ir D Ir D S	Irrigates about 100 acres. Well bottomed on bedrock or large boulder. Bedded silt and sand drilled to 140 fr and broken basalt rubble and clay to bottom; Tpd 340 gpm with dd of 40 fr. Tpd 330 gpm with dd of 190 fr. Tpd 600 gpm with dd of 27 fr. Alluvium 15 and basalt 85 fr thick overlie aquifer.	
						• •		•		T. 6 N., R. 34 E.				•		(a) A set of the se	
2R1	Frog Hollow School	Ap,	580	Or	480	6		470±		Sitty cand	c	3	1932	P	Ð	No other water strate encountered.	
3D 1	District R. B. Melton	Αр,	525	Dr	40 187	.6	40 172	40 122	1± 3	Gravel and sand Sand and gravel	c	8 92.2	1947 10-23-47	J, 6	D,S D,S	Hardness, 95; chloride, 10 ppm.	
3M1	- ·	T,	620	Dr		8-6	~	152	3	a 4			1946		D, Irr		•
4C1 4E1	Minnie A. Williams Charles Mang	Ар, Т,	525 600	Dr Dr	42 800	6 8	41	41 700	100	Grovel Basalt	c	101.0	10-23-47	N	N	Bedrock overlain by 150 ft of silt and sand and 550 ft of mostly cemented grovel (?).	
581 5F1 5F2	Jim Kelly Jim Kelly Gardena Farms Dist. 13	Td, Td, T,	555 550 610	Dg Dr Dr	26 66 189	36 4 5		25 	<u> </u>	Gravel Sand	U 	5 ,9 90	849 1945 1930	C P, 5	D. I	Former Mud Creek School well:	GROUND
5K1	L, J. Noland	T,	660	Dr	166	5		90 160	20 6	Quicksand Comented gravel				P, 5	D,S	Reported 90 ft of silt at top and 50 ft of blue clay between aguiters.	-
5N1 6C1	Ed Tucker R. C. Moore	T Td,	510	Dr Dr	312 500	12 14	224	102		Gravel Cemented gravel	U U	35 35.6	1158 10-23-47	T, 400 N	Iп 	Tod 400 gpm with dd of 200 ft. Drilling stopped on besalt bedrock.	WATER
6N1 6N2 7B1	R. C. Moore R. C. Moore John Merry	Td, Td Td	500	Dr Dg Dr	180 31 68	8 36 12	175 28 53	125 29 29	2 24	Sand and gravel Gravel	UUU	4	12-11-51 1-30-52	T, 425	न म म	Tpd 350 gpm with dd of 14 ft.	90
8F1	W, F, Dolling	T ,	525	Dr	618	10	485	505	113	Sandstone (basalt?)	Ċ	42	1-2-51		l r r	Tod 450 gpm with dd of 197 ft; entered basalt(?) bedrock at 505 ft.	٠.
9A1 9F1 11B1	B. F. Gibson Clayton Prusia Roy Kally	Td, Td, Ap,	600 610 570	Dg Dr Dg	33 196 65	60 12 5	98 	28 60	 93 5	Sand Gravel Sand and gravel	UUU	25.0 +2 7	5-12-33 12-15-53 1947	P, 5	D,S Irr D,Irr	Tod 300 gpm with dd of 14 ft; L.	
11/11	A. P. Fredrickson	Τ,	775	Dr	190	12	166	51	130	Grovel	U	32	1-14-54	T.	Ιπ	Tpd 35 gpm with dd of 104 ft; typical of many similar wells in this immediate area.	
1281 1201 13A1	Floyd Miller J. Miller R. M. Emigh	Ар, Ар, Т,	590 585 700	Dr Dr Dr	140 100 310	6 10	 125	93 170	 7 10	Gravel Do	UUUU	13 9 60	10-16-47 1945 1945	J C, 5 T, 500	D D,S Im	fron-bearing water encountered above 80 ft. L.	. '
13E 1	Krumbaugh	Td,	700	Dr	300	6		220	4							Dry hole, all silt and clay.	
13M1 13M2	Krumbaugh Krumbaugh	Ар, Т,	630 655	Dr Dr	300 300	10 10				Gravel	1			N ·	N	Yield 100 gpm from one grovel bed.	
13M3 13R1	Krumbaugh M. O. Beauchamps	Т, Ар,	640 649	Dr Dg	300 11	10 18				Gravel	ŭ	4.1	5-31-33		D	Dry hole, clay and silt only.	•
13R2 14C1	M. O. Beouchamps O. L. Hellberg	Ap, Td,	655	Dr Dr	100	10 10				Gravel and sand	UUU	5.4 14.7	11-8-47 11-7-47	C, 400	ात ति		
14G1	O, L, Hellberg S, C, Weatherman	Td, Ap,	600 600	Dr Dr	80 200	8 12	 84	18	189	Do	U U	16.1 26	11-7-47 1948	C, 300	ीत कि	Tpd 290 gpm with dd of 140 ft.	79

			•			a			Water-b	earing zone(s)	80	Wat	ar lavel	·		
Well	Owner or occupant		graphy and titude aet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Depth of casing (feet)	Depth to top (faet)	Thickness (fact)	Character of moterial	Ground-water occurren	Feet below datum	Date	Type of pump and yield (gpm)	Use	Remarks
	1								т. с	5 N., R. 34 ECo	ntinu	ed i				· · · · · · · · · · · · · · · · · · ·
15K]	K. Dickerson	Tđ	-	Dr	225	8	70	120 170	8 25	Gravel	U	25	12-10-51		lrr	Tpd 300 gpm with dd of 50 ft,
16K1 17A1 17L1	Grant Low H. V. Dickerson R. Bevan	Ap, Ap, Td,	548 520 550	Dr	12 12-8 10	60 350 292	320 125	37 67	183 151	Gravel Do	U U U	8.4 28 7 8.2 6.7 11.6	5-12-33 2-11-53 3-15-51 11-26-54 12-23-54 3-5-58	т, 500	되고	Tpd 400 gpm with dd of 200 ft. Penetrated mostly clay below 218 ft; tpd 500 gpm with dd of 63 ft.
18C1 20F1 20F1 22C1 22C1 22G1 22R1 24A1	Dole Jacobs O. A. White O. A. White Lane Hune Lane Hune Dan Kinney Roy Huffman	I, Ap, Td, Ap, Id, Ap, T,	530 550 560 563 590 600 675) Dr) Dr 5 D7) Dr 0 Dr	200 195 210 79 3,000 16 80	12 10 5 4-2 1 2 48-6	109 105 102	60 38 35 75	153 175 4 	Gravel and sond Do Do Gravel Do		30 28 29 10± 9.7 30	3-3-36 1-8-54 1951 1951 1947 5-31-33 1947	T, 600 T, 650 P N P J, 5	0 0 2 년 도 도 되	Tpd 900 gpm with dd of 50 ft. Owner's no. 2 of 5 wells. Owner's no. 3. Oil-test well; L.
24F1 24G1	J. L. Richarts J. T. Roberts	Ap, Ap	650		50 217	10 10	80	 80 190	 4 20	Do Do	U U	 15	9-20-58	C, 300	br tr	Tpd 400 gpm with delof 140 ft,
24P1 26A1 26A2 33C1 34C1	Roy Trump H. C. Frenklin W. W. Schubert W. W. Schubert	Αρ, Αρ, Αρ, Ur, Ur,	640 640 800) Dg) Dr	22 35 60 150	30 48 10 5 8	 50 	29 50	6 10	Do Do Sand 	U U U 	4.5 6 8 	11-6-47 1147 1147 11-6-47	C C, 175 C, 200 P, 5	0 Lr Lr Lr D, S	Pumps dry in late summer. Silty clay overlies aquifer.
35D1 36K1	M. A. Cockburn Clark Key	Ар, Ар,	650 640		650 970	18-12 12-8	60 748	500 	200	Basalt Do	с с	F 22 +34	748 5-5-49 1951	N T, 1,000 T	lrr trr	Flowing 400 gpm; hardness, 60; chloride 5 ppm; L.
36N1	E. Kay	, s,	740	í Dr	300	12	255	255	45	Do	¢	100 +16	1954 1953		ĺπ	Flowed 1, 200 gpm when drilled in 1953;
ыQ1 I	E. Key	s,	800	Dr	402	12		354		Do	c	29 44.2	1953 3-5-58	Т	lrr	owner's No. 7. Tpd 1,500 gpm with dd of 6 ft.
101	Frank Daccio	т,	810	Dr	535	8-6	535	529		T'. 6 N., R. 35 E. Basalt, porous	c	+30 +15	148 4-12-55	C, 400	tir	Known as old Kelly well; hardness, 62; chloride, 4 ppm; L.

ы

¢

•

. 87

٩.

.....

¢

וסו	Tony Lampeiti	т,	800	Dr	549	6	400	524	25	Basolt, poros	uz	c	33.8 +15 +14 F +28 30 +28	10-4-56 2-26-57 2-22-58 148 4-12-55 9-15-55 4-17-56	c,	300	, Irr	Former Nalson well; hardness, 60; chloride, 4 ppm; L.
1E I	L. Fanciullo	τ,	800	Dr	618	6		535	83	Basalt, poro	us	с	+28 +23 +35 +31 +5 +24	4-17-38 5-10-60 148 4-12-55 10-26-55 .4-17-56	N		hı	Known as Harmon well.
1G1 1M1	L. Davin Harold Wagoner /	Т, Т,	800 805	Dr Dr	650 703	6 6	 500	540 700	110	Basalt, crevi Do	ced	c	+29 +31 F +20	2-26-57 2-22-58 1951 148	с		lır lır	Former Hansen well; hardness, 60; chloride, 4 ppm; L.
TP1	D. A. McAuslan	Аρ,	780	Dr	610	6				T. 6 N., R. Basalt		с	F	148	N		D	Former Russell well.
		ĺ					i	;	ļ				+36 +29 21 +22	4-12-55 4-17-56 10-4-56 2-26-57		·	•	GROUND
2E 1	Mrs. Mary Seeliger	Αρ,	730	Dr	814	10-6	540	800	14	Basalt		c	+30 6.5	2-22-58 7-15-48	'N		N	L. ≯ Well penetrates quicksand below upper ₩
2J1	Casey Hatchery	Τd,	780	Dr	95	8		40 93	40 2	Gravel		U U	11	1947	J,	20	D, Ind	Well penatrates quicksand below upper 🛱 gravel zone
3C1	C. W. Zwanzig	Аρ,	730	Dr	140	8		73	2	-D o		υ	5	Winter 1945	T,	200	lina	Hardness, 60; chloride, 6 ppm.
3E 1 3E 3	Mojonnier and Sons Ernest Freepons	Ар, Ар,	690 680	Dg Dg; Dr	30 190	144 60-10		6 10	24+ 80	Sand and gra Gravel		U U	6.3 10	7-15-48 	P, J	30 10	D, Im Im	Hardness, 65; chloride, 9 ppm. One of two wells drilled in a 30-ft dug well.
3N1		Ap,	685	Dr	1,365	6		625	20	Basolt		c	34.1- 37.2 58.5 32.3 53.8 32.5	7-15-48 4-13-55 9-22-55 4-18-56 10-4-56 2-26-57	. J,	10	D	Former É. C. Burlingame'woll. Barely flowed when drilled 19:14±; hordness, 35; chloride, 6 ppm.
4G1	F. R. Travoille C. E. Shaw G. J. Heiser	Ар, Ар, Ар,	680 680 685	Dr Dr Dr	92 796 165	8 6 12	90 792	15 792	52 	Gravel and s Basalt Gravel		U C U	33.7 9.1 10± 14	2-22-58 1-21-48 1946 Summer 1947	т, т, с,	200 400 200	lır D, lır lır	L. Reported to flow in wintertime, 1948.
4Q1 6A1 7B1	William Rasor D. D. Wright R. Rimpler V. Hastings L. Locker	Ар, Т, Тd, Т Ар,	675 685 630 660	Dn Dr Dr Dr Dr	9.5 107 75 189 220	11 12-8 6 12 12	107 43 86	20 56 18 17	43 17 136	Sand and gra Do Gravel Do Do		U U U U U U	7.8 10 13 18 16	5-11-33 645 946 4-26-56 656	P, T J,	2 	ם דיי סיים סיים	Hardness, 55; chloride, 4 ppm; L. L. Tpd 290 gpm with dd of 124 ft. Tpd 370 gpm with dd of 152 ft. co

V D

.

Ŷ

	<u> </u>			.	To	<u>фю 1, —</u>	Racorda	of rep		<u>a walls in the Walla</u>	Wal	la River b	asinContin	ued			
0	an a		0,1		1	(F	L_		Water -b	oaring zone(s)	§	Wat	or level			1	the second se
wiii 77	Owner or occupant	a Ita	graphy nd itude itude itat)	7 9	Depth of well (foot)	Diamotor of well (inches)	Depth of casing (foet)	Depth to top (feet)	Thickness (feet)	Character 	Ground-water occurren		Date	DUR DUR	pe of ip and (gpm)	Uso	Remarks
			7						T. 6 N	., R. 35 EContir	iuad		· · · ·	•			
BE 1 9D 1	Date Hastings C. H. McGilvray	Ţd, Ap,	690 . 670	Dr ; Dg	84 26 1	4	-83	83	tt	Groval	U U	0.5	1940 1948	с, с,	10 300	D In	Aquifor overlain by 29 ft comented gravel beneath 54 ft of quicksand. Water draws down 10 ft when well is
981 10H2 10P1	Fentacss and Malden Mss, M. Rosor Frank Berard	Ap, Ap, Td,	740 730 735	Dr Dr Dr	190 205 1, 145	8 8 8	91 1,100	14 58 1, 120	64 14 2	Gravel in clay Gravel Basalt, porous	U U U U U U U U U U U U U U U U U U	15 10 +25 +24 +38 +23 +41	1946 3-13-48 4-13-55 9-22-55 4-17-56 10-4-56 2-26-57	τ, Ν	100	년 11년 11년	operated at pump capacity; hardness, 60; chloride, 4 ppm, Penetrated only thin gravel bods. Tod 85 gpm with dd of 135 fr.
0Q1 1C1 1D1	Mrs. Bussel R. L. Carr Ivor Williams	Αρ, Αρ, Αρ,	740 740 730	Dn Dg Dr	8 28 51	11 48-10 10	28 51	20 15 35	 8 17 38	Gravel Do Do	U U U	+32 5.7 5.7 6.5	2-22-58 5-12-33 12-17-46 3-25-48	Р С, С,	25 250	D D,lrr lπ	на стана (тр. 1997) Политика Политика
	M. Teal Ed Meliah	Αρ, Αρ,	731 750	Dn Dr	13 142	1 1 10	43	18	 1 60	Do	Ų	6.1 9	5-9-33 348	Р Т,	300	D Irr	
1J1 1J2	U.S. Dept. of Agriculture M. A. Harrah	Αρ, Td,	760 780	Dr Dr	642 58	6-6 8		630 15	12 -43	Baselt, perous Gravel	C	+20	Winter 1948	c,	100	PS	Old Wobb farm well; hardness, 47; chloride 6 ppm; L.
211	D; A., McAuslan	Αρ,	800	Dr	700	8			-	Basalt, porous	č	6.8 F / 15 0	7-17-48 1948 10-28-59	с,	200	lır D, lır	Old McCall woll; hardness, 62; chlorida, 4 ppm.
- 1	A. A. Durand	Αр,	775	Dr	590	10-8	495	345 565	5 25	Gravel Bosalt, porous	ç	+46 +100±	5-10-60 1913	c,	300	ler	Former Juvenal wall; Ca; L.
Ì	G. H. Thomas G. H. Thomas	Td, Ap,	776 770	Dg Dr	25 650	120 8 6	91 420	135 550	177 130	Gravel Do Basalt	ŭ c c	10,8 F F	5-12-33 3-25-48	N		4	Located just east of well 12P2. Found baselt at 366 ft depth. The 8-inch coaing carries flow from gravel aquifer interbodded in blue clay.
UI IMI	O. O. Black D. D. Nicholas George Matz Grandview Irrigation	Ар, Т, Т,	790 810 830 835	Dr Dg Dg Dr	59 65 400±	8 38 60 6	=	4	 20	Grovel Do Boxolt	C U U C	9.5 28.09 45 20	1-16-48 12-9-46 1947 1933	NPCT,	300	а С С И	Formerly flowed during wintertime.
381	Trocts D. D. Nicholas	T		Dr	1,030	10-8				Do	c	·F	252	τ,	500	١rr	Flows during wintertime.

Table 1, —Records of representative walls in the Walla Walla River basin--Continued

1

ŧ.

وھ.

Ъ

t

1401	Ray Elffert	Αφ,	775	Dr	160	· 8		70	3	Grave	U	to.o	7-16-48	N		trr	Other water occurs in gravel at 23, 35,
14L1	Conrod Miller	Ap,	790	ъŋ	15	84				Do	υ	5.05	8-22-32	с		D	and 160 ft depth. WLfig. 14.
15A1	S. T. Cauvel	Аρ,	760	Dŕ	42	8	42	20	16	Sand and grovel	Ů	7.43 7.06	7-19-48 7-16-48	с,	100	lır	Water level fluctuates from 2 ft down; hard-
1581	Mrs. Carro Chapman	Ар,	740	Dr	60	8		9	51	Gravel	Ù	12	Summer	с,	220	Іп	nass, 35; chloride, 6 ppm; L. Tpd 220 gpm with dd of 3 ft; hardness, 50;
1511	E. C. Babcock	Ap,	768	Dg	25	48	<u> </u>	12	13	Do	U	12.73	1947 5-11-33	.8		D	chterido, 4 ppm.
15N1	Mrs. L. Weiss	Аρ,	770	Dg,	90	60-6				Oo	U	15.15 26.84	7-19-48 7-19-48	.J,	5	D	Drilled in bottom of 30-ft well.
15P1	K. Babcock	Αρ,	770	Dr Dr	130	8				Do	Ü	35	Winter	т,	150	lп	Grovel drilled for full depth of well; hard-
16 A3 16B1	Knowles and Cathoon Claude Winn	Ар, Ар,	740 740	Dr Dg,	80 74	`B 48−8	· 			Do	U U	7.52 3.91	1947 7-15-48 5-1-33	с. Т.	100 -100	ीत . रिक	ness, 45; chloride, 5 ppm. Hardness, 42; chloride, 5 ppm. Dug 13 ft, later drillad to 74 ft; hardness,
16K1	P. E. Oliver	Td,	755	Dr Dg,	171	60-8				Do	υ	- 25	1948	л,	180	tri	45; chlorido, 4 ppm.
16K2 16N2	J. B. Renckan F. E. Kralman	Αρ, Αρ,	745 750	Dr Dg Dr	24 46	60 8	 43	10 12 32	14 10	Do	U U	10-17 7.4	1947 - 11-7-47	с, с,	300 130	ы Ц	L.
16P2 17E1	William Rand C. A. Burggaff	Åр, Ар,	. : 749 680	Dr Dg,	71 71 60	- 8 8	48	44 62 50	2 9	Do Do Gravel, loose	UU	9.	· . 9-5-52	.T J,	5	D, וח D	Tpd 400 gpm with dd 65 ft.
17F1 17G1 1881 1882	V. M. Anderson L. Davin George Locker George Locker	Ар, Ар, Ар, Ар,	675 670 674	Dr Dr Dr Dg Dr	220 95 25 226	10 10 36 12-10	 17 25 204	 60 	 35 	Do Do Do	U U U U	20 6 20.25 32	1948 1948 5-11-33 1156		100	D,lm Im D Im	Only gravel drilled below 16-ft depth. Tpd 350 gpm with dd of 150 ft.
18M1 18Q2	R. E. Been D. Christerson	Ap Ap	666	Dg Dr	26 290	48 12-10	26 290	169. 68	13 217	Do Gravel	Ů	18.07 67	1156 9-1-57		10	р Гл	Clay underlies equifor; tod 250 gpm with dd of 112 ft.
19G1 19Kî 19L1 19N1	Harp Estate J. E. Myers J. B. Heitsuman Mrs. M. Graves	Ap, Ť, T;	683 685 685	Dg Dr Dr Dr	12 200 170 59	24 8 8	12 81 	18 56	182	Do Do Grovel	U U U U	4.35 50 	6-6-33 3-18-58 	P T, J,	200 35	0 1 1 0	Ted 128 gpm with dd of 95 ft. Hardness, 80; chloride; 8 ppm: Cemented grovel 26-ft thick and 30 ft of soll and silt above aquifor. Shallow well
1981	J. E. Myen	т,	727	Dg	20	84				Do	ΰ	3.39	5-6-33	c,	250	lır	typical of Umapino district. Tpd 250 gpm with dd of 15 ft; hardness, 50;
20G1	J. E. Courtney	т,	734	Dġ,	22-7	60-7	4	<u> </u>		Do	U	1,25	5-15-33	ç		D, 14	chlorida, 5 ppm. WL fig. 13.
20Q1 2181	R. P. Lilo Fruitvala School Dist.	T Ap,	-758	Dr Dg Dr	38 -41	60 .6				Do	Ŭ	27.11 16.76 23.0	7-26-33 6-23-33 7-19-48	с Ј,	10	lır PS	rive .
2101	D. E. Kralman			Dr	. 67	8	67	58	29	Do	Ű	10	5-12-58)	ыт	Gravel from 4 ft to bottom, all compact except in aquifer.
21H1 22F1	Behnke T. Fertienbocher	Ар Т,	800	Dg Dr	.67 -19 300	66 12	<u>;;</u> 90	12 175 275	7 54 54	Gravel, cemented	U C	14.94 80		T. T.	200 200	. hт . l.т	Hardnoss, 70; chlorido, 5 ppm. Owner reports bosolt bedrock struck at 300 ft; hardness, 45; chlorido, 4 ppm.

•

Ν.

11

_**?**†

*1

\$

a la Tanana

> ۰<u>،</u> ،

> > ÷

	 				<u></u> To	<u> e 1</u> i	Ra cords	of repr		e wells in the Walla	Wal	la River bo	sinContin	ved			
						1	ſ		Water~b	earing zone(s)	2 e	. Wat	or level				
Well	Owner or occupant	a olti	graphy nd ltude sat)	Type of well	Depth of well (feet)	Diamater of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-water occurrence	Faet below datum	Date	pump	e of p and (gpm)	Use	Remarks
23C1	E. E. Stevens						r –		I _	<u> </u>	- T	1		r		r	
		Аρ,	800	Dg, Dr	50	60-8		49 33.		Gravel	U	6	1933	1		Ð	
23D1 23M1	E. E. Stevens B. J. Owen	.Т. Ар,	825 826	Dr · Dr	1,007	8-4 11	800	687	48	Basait Gravel	C L	+21 3.7	1948 6-1-33	Ţ,	150	lr.	Hardness, 25, chloride, 4 ppm; L.
24C1	William Pomeringin	Ap,	851	Dg	34	108-48				Do	Ιū	29.84	8-22-32	Ń		S D	•
24M1	W. K. Nixon	Αр,	845	Dr	60	8		9	51	Do	U	1.42	7-16-48	с,	100	lrr '	Well located in spring area; hardness, 25; chloride, 4 ppm.
24P1 24Q1	George Nelson George Ransom	Ар, Ар,	851 860	Dg Dg, Dr	11 165	48 72-10	45	28	47	Do Do		3.46 14	6-2-33 746	P C		D, irr	Well located in spring area; hardness, 25; chloride, 4 ppm. Well located in spring area. WL fig. 14.
25B1 [°]	D. Goodman	Ap;	870	Dg,	402	60-8	54	15	12	Do	U			с,	160	D, Irr	Hordness, 30; chloride, 3 ppm; L.
25C3	H. M. Williams	Ap,	868	Dr De,	56	48-6				Do	U.	9.90	7-24-33	c,	100	irr	Herdness, 30; chloride, 3 ppm; L.
25D 1	M. Clarkin	Аρ,	870	Dr Dg	24	60	8			Do	U	7.85	7-23-48 7-21-33	с		D, Irr	
25E1	Duff	Ap,	888	Dg	26	60	12			Do	U	5.55 19.85	7-23-48 7-24-33	c.		Irr	
25M2	Strumpfer	Αр,	902	Dg	46	72	14			Do	U	15.33 28.80	7-23-48 7-27-33	с		Iл	
25N 1	Demonts (formerly)	Аρ,	919	Dġ	36	48				Do	0	32.60	7-24-33 7-24-48	Ρ		D	
25N2	Jerome Hill	Аρ,	920	Dg	58	72	15			Do	U	39.43 30.06	8-22-32 7-23-48	с		Іл	
25P1	Hayden Estate	Ap,	907	Dg, Dr	90	72-8		40	50	Do) U	11.58	5-9-33	T,	100	Irr	
25R1 25R3	Starkel (formerly)	Аρ,	906	Dg	25	72	12			Do	U	1.24	5-8-33	J,	5	D	Hardness, 32; chloride, 3 ppm. Well is in spring area. Drill penetrated clay 150-262 ft, cemanted
20103	George Ransom	Ap,	910	Dr	458	8	56	122	38	Do	U	10	4-17-45			lre	grovel and boulders to 400 ft, and clay
26C1	John Starkel	Ap,	858	Dg	19	60	12			Do	u	12.55	8-22-32	с,	300	lrr -	and rock (basalt bedrock?) on to bottom.
26C2	Earl Ransom	Аρ,	868	Dg,	46	72-8				Do	U	1.50 14.82	7-23-48	с,	250	br	
26E 1	Dan Finley	Αρ,	860	Dr Dg,	63	72-8				Do	U	13.48 17.02	7-21-48				· · · · ·
26F1	A. Avey	Αр,	880	Dr Dg	32	60				Da	u	14.29 24.94	7-21-48 8-22-32	c, c	100	lr br	
26P1	C. Morse	Ар,	909	Dg	74	42	망	 -		Do	U	18.78	7-21-49 8-22-32	c		D	Deepened from 42-ft level, in 1944.

42

٦.

Table 1. --Records of representative wells in the Wolla Walla River basin -- Continued

è

.

9

-

•	• ،									4,	ji						45 L
																	:
26Q1	Propeck	Ap,	910		64	60	18			Grovel	U	33.95	7-31-33	c,	300	lrr	Hordness, 32; chloride, 3 ppm.
27B1	E. A. Knopf	Ap,	645		220	60-8				Do	U	,		с,	300	trr	Hardness, 45; chloride, 6 ppm.
27 D I	C. M. Bixby	Ap, '	832	Dr Dg	12	72				Do	U	2.55	5-8-33	с		İ۳	
27H1	J. E. Kessler	Ap,	860	Dg, Dr	56	48-6	46	15	19	Do	U	2.82 15.56	7-21-48 7-26-33	с,	400	lrr	Drilled 6-inch to 56 ft; yielded no additional water; now plugged; hardness, 45; chloride, 4 ppm; L.
27L1	M. E. Moon	Ap,	852	Dg, Dr	31	30-6				Do	U	12.68	5-8-33	c .		D	4 ppm; L.
27N2	Mrs. C. B. Marris	Αρ,	865	Dg, Dr	114	72-8	. 17 110	30 4±		Do	U	12.69 17.17	7-21-48 6-7-33	с,	200	Iπ	Two drilled wells in dug well. Older "dry" one passed through blue clay from 350 to 450 ft and into baselt bedrock to 701 ft.
·27Q1	John Budd	Ар,	885	Dg, Dr	73	72-8				Do	U	32.62	8-22-32	с,	300	Irr	Hardness, 50; chloride, 6 ppm.
27Q3 27R1	C. Feigner Frank Derrick	Αρ, Αρ,	890 890	Dr Dr Dg	480 34	- 8 60	⁻ 60 11			Do		30 25.80 23.20	8-20-58 7-26-33 7-21-48	<u></u> N	 ·	Ъ	Tpd 400 gpm with dd of 5 ft; L.
28D I	Mrs. C. Smiley	Аρ,	800	Dr	1,050	12				^{Do}				м		N	Entered clayey and broken bedrock about 840 feet; no water obtained in basalt.
28H1 28K1	W. J. Rand George Preston	Ар, Ар,	830 824	Dg Dg	16 15	48 60	12	11	4	Do	UU	7.50	6-5-33	 J,	<u> </u>	D	1994 - 19 - 19 - 19 - 19 - 19 - 19 - 19
28N1	Mc Knight Estate	Ар,	817	Dg	37	84	16			Do	U	9.01 18.35	7-20-48 8-22-32 7-20-48			'N	Water level same as nearby spring. Q WL fig. 13. Q
28Q1 28R1 29B1	C. O. Wheeler J. M. Hanson C. E. Eyller	Ар, Ар, Ар	820 825	Dr Dr Dg	73 200 29	8 8 72		 		Do Grovel		14.72	/-20-48 	т, т, с,	250 200 200	la Ia Irr	Hordness, 60; chloride, 10 ppm, Joill hole in wall to 80 ft yielded no additional water; hardness, 65; chloride, 7
29D 1 29J1	Everett Miller R. E. Edwards	'Ар Ар		Dr Dg,	340 57+	⊺4 60–6				Gravel	Ū	14 12,92	7-24-46 7-20-48	τ, c,	250 200	irr iπ	6 ppm. Hardness, 55; chloride, 5 ppm. Drill hole extends beyond the 57-ft dug well.
29KT	L. R. Edwards	Ap		Dg,	30	60				Do	·υ	9:58	7-26-33	с,	200	ler	Hardness, 65; chloride, 6 ppm.
30Ç1	A, F. Riggle	Ap,	700	Dr Dr	240	8	61	35	7	Do	U	14	5-11-55				Tpd 160 gpm with dd of 89 ft; L.
30L1	J. Linebaugh	Ap		Dg	·29	72	13 '	212		Do	U	6.36 9.17	5-6-33 7-20-48	N		N	• .
30M1 30M2 31A1 31A2	T. Shepherd G. L. Simmons Fred Phillips Fred Phillips	Ap, Ap, T Td	690 695	Og Dr Dr Dr	30 40 118 700	60 6 8 6	10 39 			Do Do Baselt	บ บบ บ บ บ	9.1/ 19.16 21:11 53.0	7-20-48 5-6-33 5-6-33 7-20-48 1910±	ZLL		2002	Hordness, 155; chloride, 4 ppm. Capped and not used because of failure to
3181 -31K1	Fred Sommers Clark Key	Td Ap		Dr Dr	62 970	6 12-8	 748	625		Gravel Basalt	U C	+20 5-10	1951 11- +54	J T,	400	D 	flow; known as "Old John Hall" well. Entered basalt at 362 ft, basalt badly frac- tured; loss flowing pressure and part of
32D 1 32E 1	Robert Dickerson Ivor Williams	Td		Dr Dr	140 715	10-8	 635	697		Bosalt	<u>-</u>			D		 Irr	yield in 1954. Nearby 340-ft well obtained less water. Tpd 550 gpm with dd of 28 ft; entered basalt at 520 ft
32H1	Harry Phillips	Ap		Dg	34	66			·	Gravel	ιü	14, 59	7-26-33	с,	300	in	at 520 ft. a

,1.	والم الم الم الم	1	1		•			Water-be	toring zone(s)	8	. Wate	n lavel , _{er})	د ا	812-1 · · · · ·
Well	Owner or occupant	Topograph and altitude (feet)	,	Depth of well (feet)	Diamater of well (Inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-water occurrence	Feat below datum it i	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Type pump (yiold (p	of	Uno	Ramerica.
					·	•	·	T. 6 N	., R. 35 EContin	ued				,		
33.J1 33.K1	J. Nelson H. O. Yatas	Ap, 87 Ap, 86	5 Dg,	442 66	8		415 62	27 4	Basalt Gravel	c U	15.12	6-10-33	T, :		н Т	Hardness, 45; chlorida, 5 ppm; L. L.
33M1	Harry Phillips	Ap, 83	3 0 0 , 3 0 0 ,	81	60-8				Do	υ	32.31	5-6-33	c, :	300	l m	One of three walls that irrigate 100 acres; hardness 65; chloride, 4 ppm.
34C1 34H1 34K1	Roose Estate F. Feigner C. W. Rasmussen	Ap, 88 Ap, 90 Ap, 91	2 Dg D Dg D± Dg	54 34 225	96 96 8	20 9 225	52	8	Do Do Do	U U U	32,33 16,39 37,	5-6-33 7-21-48 1-19-48	lci i	250 150 100	년 11년 12년	WL fig. 13.
34P1	F. Wollenschlasger	Ap, 91	Dr 5 Dg	36	48	15	35	1+	Gravel, loosa	U	16, 10	5-8-33	c, :	300	lrr	Penetrated 15 ft loose and 20 ft comented gravel over aquifer; nearby drilled well logged comented gravel with cloy inter- beds from 20 to 112 ft.
34P3	Alex Duff	Ap, 89	5 0g, Dr	410	60-B	410	410	1+	Basalt	c	10	1925± 1	c, :	300	D, Irr	Hardness, 50; chloride, 5 ppm; L.
34R1 34R2 35G t	Carl Philpott Fred Bull Elbo Rogers	Ар Ар Ар, 93	Dg	35 35 98	48 48 54~≎	12			Gravel Do Do	U U U	14.30 32.37	7-22-33 8-22-32	C, 2	200 200 200	त्व त र	Goes dry each Documber. Hardness, 75; chloride, 24 ppm.
35L1	J.L. Anderson	Ap. 94		27	48	·			Da	U	18.10	5-8-33 7-21-48		-	Ð	the production of the
3512	Mrs, C, H. Ansboch	Ap, 95	3 Dg, Dr	135	48-6	च्यत:	4	60	Do	V	12.92	8-22-32 7-21-48		:	١́ग	Ponetroted gravel to 60 ft and clay to bottom.
36C1 36D1 36E1	J. Busch John Roloff M. Grogan	Ap, 92 Ap, 93 Ap, 93	B Dg D Dr	40 700 740	60. 10 8	500	 550	190	Basalt	U C	33,54 100	7-21-33 1931	т,	,	म् । म	Old well, largely caved in. Penetrated thick zong of blue clay; baselt struck at 450 ft.
36H1	Wolter Hormann	Ap, 93	2 Dg	44	48	.18	 -		Graval	U,	13.20	5-8-33		-	D.	WL fig. 12.
							-		T. 6 N., R. 36 E.	<u>.</u>				13	. •	
1C1 3A1	C. O. Levin B. D. Resor	5, 1,20 5, 1,06		210 290	18- 18-	286	284	5	Basalt	ē	20 44 50	10-26-46 7-11-51 4-15-55	Ť	13	D.	Hardness, 80j chlarida; 3 ppm. Tpd 1,500 gpm with dd of 54 ft; L.
4À2	V. V. Duff	s, 1,00	0 Dr	295	8	140	290	·	Gravel or rubble	U	54 59	4-18-56 647	[_т		lrr	Tpd 40 gpm with dd of 140 ft.

Table 1. -Records of representative wells in the Wolla Walla River basin--Continued

.

۲

41

¥.

4D1 4D2 4F1 4L1 4N1 4P1 4P2	J. W. Henderson Relph Titus O. M. McCubbins C. W. Hoss William Hill W. E. Morrison L. O. Long	s, , , , , , , , , , , , , , , , , , ,	990 996 970 984 940 955 970	De Dr De Dr De Dr De Dr De	150 23 115 48 43 280 96	8 % 60 48 60 60				Gravel Do Gravel Do Gravel Do	0 000 1 0	13.30 48.75 44.04 34.90 14 8	10-29-46 11-19-46 5-16-33 11-19-46 1946 1945	ייי אייט.	5 7 12 15		
4P3 5F2	W.E. Morrison Franco Veneri	5, Ap,	955 880	Dr Da	838 40	- 8 36	553	547	291	Basait	U U	.10 130 730	647 9-4-50	÷ .	- 300 [°]	ांग र	Tpd 270 gpm with dd of 108 ft; besalt found at 547 ft.
5G1 5G3	Frank L. Rizzuti Frank L. Rizzuti	Αφ,	890	Dr Dr	108 675	6 10-6	585	630	45	Basalt	U.	5	12-5-46 12-5-46	C, C, T	30 80	म म म	Tod 380 gpm with dd of 4 ft; reached basait
5M1 5R1	R. E. Richardson Baker & Baker	•Ар, Ар,	875 930	Dr Dg	616 36	. g 96	510	500	116	Do	C P	50 29,94	648 12-11-46	Ţ,	450	म	at 538 ft. Hardnoss, 507 chloride, 6 ppm.
582 6C1 6C2	Bakers& Bakar Eugene Tausick Eugene Tausick	Ap,	870	Dr Dg Dr	1,817	16-12 72	814			Basalt		115.25	2-22-58 12-19-46	Ł		ыт 0, Іл	Ted 1,580 gpm with dd of 44 ft.
6D1	Eugene Tausick	Ар, Ар,	870 860	Dg	954 30	8 84	=	=		Basalt Grovel	Ū,Ū	16.56	12-19-46 3-24-48	N		Гл N	Tpd 500 gpm with dd of 50 ft.
6D2	Eugene Tousick	Ap,	880	Dr	641	6		 		ðasalt	¢	30 41.7	1940 4-20-55		 	h	Flowed when drillad in 1912.
												41.1 39.4 40.1	9-23-55 4-17-56 2-27-57				
••	en er og se e		•									40.4 40.9	2-21-58	÷]	
6F1	Milo Grey	Ap,	860	Dr	635	8	•	810		1	ć	40.9 41.3	10-28-59 5-11-60	: <u>.</u>	3		WATER
	Millo Grey		eou		635				. 25	Do		18 36.9 28.8	1940 4-20-55 9-21-55	• T	·]	Fr	Did not flow when drilled.
												26.2 27.6	4-12-56 10-6-56				
·.		'			110			•	.* •			26.0 26.3 25.3	2-27-57 2-21-58 4-24-59	•			1967 - Stangering Stangering States (States) (St
мт	Jess Courtney	Αρ,	806	Dr	610 -	6	- 	565	•	Basalt	с :	27.0 F +.1 50.9	5-11-60 3-25-48 4-17-55 10-6-56	c,	500	t r	Had 70 pounds pressure when drilled in 1910, now seeled up; hardness, 60; chioride, 4 ppm.
P1	Alfonzo Curčio	Ap,	840	Or	Å80 1	6			, 	а улан -Ф 9	1 ° C 7	7.4 7.0 20 21.2 71.0	2-26-57 2-21-58 12-6-46 4-20-55 9-22-55	.T _{eat}		tr .	Flowed from 1908, when drilled, until about 1930.
Q1 83	J. W. Yenny County School Dist. No. 9	Ар, Ар,	870 877	Dr Dr	59 100	8 6	;; 30 	-		Gravel	ко Ц U	26.5 12 25	4-17-56 1945 ,12-6-46], J,	32 10	и 0	L. Braden School well.
	• •				· · ·	P *'-4	11 v. v.	· • • •	₹n.	$\sim 10^{-10}$ M_{\odot}	19	5 i i i i i i	at see the art	. •	1	·	

• •

t e e t

.

هو بند .

. • 2

		1		1		(Water-be	aring zone(s)	8	Wate	r level			
Well	Owner or occupont	alt	graphy ind itude bet)	Type of well	Dapth of well (feet) .	Diameter of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (faet)	Character of moteriol	Ground-water occurren	Feet below datum	Date	Type of pump and yield (gpm)	Use	Re mar ks
	······, ·····			·	·				T. 6 N	., R. 36 EConti	nuad					·
7A1	J. W. Yenny, et al	Ap,	860	Dr	778	6				Basalt	c	25 41.7 88.0	12-5-46 4-20-55 9-22-55	T, 300	hr	Former Rizzuti well, krigates 100 acres.
וסד	Earl Prusia	Ар,	790	Dr	560	6 5	400 500			Do Do	c	46.2 +34 +4.3 16.3 12.6	4-17-56 553 4-17-55 10-26-55 4-17-56 10-6-56	C, 300	1rr	Flows from both casings.
7E1	John Schumacher		- 	Dr	750	8-6	532			Do	c	16.6 13.6 13.9 25.9 70.9 31.1 71.2 32.1 31.7	10-0-30 2-26-57 2-21-58 4-24-59 4-17-55 9-21-55 4-17-56 10-6-56 2-26-57 2-21-58	T, 250	lrr -	Entered baselt at 511 ft; tpd 250 gpm with dd of 50 ft.
7M1	Hancock & Yenny	Td,	850	Dr	680	6				Do	c	56.7 F 2	10-28-59 12-6-46 1953	C, 450	Irr	Drilled in 1912; in 1953 tpd 266 gpm with dd of 3 ft.
8D'2	Hahn	Ap,	870		670	14-6	500	500 589	170 52	Do	c c	57.66	7-14-48 8-22-54	N	lır tır	Reported 355 ft blue clay overlying basalt in 1953 tpd 740 gpm with dd of 93 ft. Entered basalt at 482 ft; tpd 750 gpm with
8M1 8N1 981	B. E. Hiller Ed Lyday B. M. Van Donge	Ap Ap	905	Dr Dr Dr	641 115 1 617	,12 ,6 8	495 115 362	589	25	Gravel Basalt	UC	50 35	12-7-46 5-7-48	J, 5 T	D	dd of 50 ft. Hardness, 50; chloride, 4 ppm. Entered basalt at 358 ft; tpd 500 gpm with
961 9L1	Baker & Baker	s,	1,000	Dr	1, 155	12-10	939	986	1, 155	Do	c	92 89 110	11-5-45 4-16-55 5-1-56	T, 1, 200	lrr	dd of 200 ft. Fix Farm well No. 1' hardness, 45; chlori 4 ppm; L.
9 P1	Baker & Baker	s,	1.000	Dr	2,061	16-5				Do	c	130 100 104 97 101 145	10-6-56 4-24-59 5-10-60 12-4-46 4-16-55 10-5-56	T	Irr	Fix Farm well No. 2; Co; L.

.

۲

10E 1 10J1 10J2 10J3	Lowrence Frazier Mrs. Eva Moss Mrs. Eva Moss J. D. Garred	5, 1,050 5, 1,122 5, 1,135	Dr Dr Dg Dr	184 60	6 36 10	221 516-	46 224 	176	Gravel Basalt Gravel Basalt	С Р U	125 148 115 126 100(?) 13.97 117	2-28-57 10-21-58 4-24-59 4-10-46 1946 10-29-46 855	T, 300+ P, 3 P, 2	Ir DO Ir	L. Hardness, 55; chloride, 3 ppm. Hardness, 40; chloride, 3 ppm. Tpd 1,200 gpm with dd of 21 ft.
12H1 13C1 13C2	G. Copeland Emmett Lynch C. R. Hagert	5, 1,320 5, 1,300 5, 1,320	Dr Dr Dr	795 135 67	16 6 8	46 263 62 65	250 60		Do Do Basolt (?)	U C	145 80 F	353 8-10-44 10-23-46	J, 6	lır D Irr	Tod 850 gpm with dd of 84 ft. Ca; L. Flowing at estimated rate of 70 gpm in 1946; hardness, 45; chloride, 3 ppm.
15C1 16A1 16N1 17G1	August Erdman Otto Erdman J. M. Buchanan J. M. Buchanan	S, 1,080 S, 1,050 U, S, 930	Dr Dr Dr Dg,	100 160 110 76 6	6						65 32 20 47.30	1946 1946 1946 5-12-33	P, 3 J, 10	ZOGG	Hardness, 65; chloride, 4 ppm. Well partially filled and dry in 1946.
1881 1981 1961 1971 2001 2001 2281 2381 2381 2581 2581	J. E. Wiseman Elmer Ferguson D. D. Nicholes W. H. Till Kirk Casper Harry Struthers A. E. Nibler G. M. Fulton	S, 880 Ap, 860 Ap, 838 Fp, 837 S, 935 Uv Uv, 1,300 U, 1,653 S, 915	Dr Dr Dg Dn Dr Dr Dr Dr Dr Dr		14-10 60 11 6 4 6 6		600 360 100	112 	Basalt Gravel and sand Basalt Do		24 17.42 6,91 90 125 228 55 20	3		D Irr D,S D,Irr D,S D,S D D,S D	Dd 7 ft at pump capacity. Hardness, 75; chloride, 5 ppm. Hardness, 65; chloride, 5 ppm, L. Hardness, 95; chloride, 5 ppm. Hardness, 85; chloride, 7 ppm. Hardness, 30; chloride, 4 ppm. Flowed when first drilled in 1905. Hardness, ≨ 80; chloride, 5 ppm.
30E1 30E2 30N1 30N2 30N3	Heidenrich Heidenrich Dan Colley Dan Colley Laura E. Dovis	Ap, 855 Ap, 865 Ap Fp Fp	Dr Dr Dr Dg Dg,	747 285 60 32 90		400 285 58 90	740±	7±	Do Do Gravel Do	C C U U U U	19.0 19.5 11.59 12.8	6-7-33 6-7-33 1946 12-9-46 12-9-46	T J, 10 C, 300 C	TTOZ T	Entered basolt at about 300 ft; some water 🛒 in basolt cased off. Basolt entered at 285 ft.
31D1 31D2 31E1	Jahn Hickman Jahn Hickman K. C. Turner	Гр, 907 Td Ар	Dr Dg Dr Dg, Dg, Dr	22 100 140	60 8 6	=			Do Do	U U 	0.09 30 24.84	5-8-33 1246 12-9-46	J, 6 J, 6	00 11	Hardness, 200; chloride, 12 ppm.
- 31L1 33B1 34R1	Milton Nursery John Cosper	Ap, 955 S, 1,052 S		81 306	4n	537	140	25	Basalt Gravel Basalt	כ ט 	115 62.47 200	1930 12-7-46 1948	T, 800 J, 10 P	л С С	
481 4J1 4K1 5A1	E, Pribilsky Steve Maxson Delbert Barger L. C. Lyons	Uv, 1,700 Uv, 1,950 Uv, 1,770 S, 1,700	Dr Dg Dr Dr	200 35 240 814	8-6 24 6 14	118 103	194 87	6 727	T, 6 N., R. 37 E. Bosolt Bosolt	C ນ ບ	+46 8.95 50 75	7-16-47 10-22-46 1917 648	N P, 1 P, 5 T	D D D,S Irr	Hardness, 45; chlorido, 10 ppm. Hardness, 75; chloride, 3 ppm. Usad to supplement spring. Tpd 630 gpm with dd of 75 ft. co 90

يو ا

.

ħ

٩

• •

						6			Water-b	earing zone(s)	Į į	Wat	er lovel			
Well	Owner or occupant	a alt	graphy Ind itude iet)	Type of well	Depth of well (fset)	Diamater of well (Inches)	Depth of cosing (feet)	Depth to top (feet)	Thickness (feet)	Character of moterial	Ground-water occurren	feet below datum	Dote	Type of pump and yield (gpm)	Use	Re mar ka
									T. 6	N., R. 37 ECont	_	A	·	·	L-	· · · · · · · · · · · · · · · · · · ·
5F1	Bakar & Baker	5,	1,560	Dr	612	12	125	417	195	Basalt	c	+176 +169 +177 +182 +179	12-10-46 3-25-52 2-22-55 2-28-57 2-22-58	N	मा	Well on former Sweazy quarter section; test flow 2,390 gpm in 1947; hardness, 45; chlaride, 2 ppm Aug. 2, 1946; hard ness, 40; chlaride, 9 ppm Oct. 1947; hardness, 37; chlaride, 5 ppm July 15, 1014;
581 6C1 7F1 7Q1 7Q2 18P1 20L1	E. L. Forest O. M. Shelton M. J. Lee Clyde Garland E. R. Davis Stoven Ringhofer	S, S, S, Uv,	1,700 1,440 1,650 1,620 1,500 2,000	Dr Dr Dg Dr Dr Dr Dr Dr	103 300 60 290 208 162 200	6 8 48 12 8 6 6	150 73	158 152 	142	Basalt Gravel (?) Basalt Gravel Gravel Basalt	0000000	13 23.57 38 F 130	1952 10-23-46 10-23-46 10-23-46 10-23-46 1945	1, 200 C, 10	D,S D,D D,D D,D D I	1948; WL fig. 9; Ca; L. Hardness, 70; chlorido, 3 ppm. Tpd 220 gpm with dd of 19 ft. Hardness, 90; chlorida, 4 ppm. Reported to pump 700 gpm. Hardness, 45; chlorida, 4 ppm. Hardness, 75; chlorida, 6 ppm; L. Owner reports water lavel is near surface.
10A1 24A1 24M1 25P1	DeRuwe and Weber H. Colley Hailson R. Taylor	Ар, S, U, T	550 505 610	Dr Dr Dr Dr	159 160 265 100	6 6-4 10	30 	144 50 70 79	15 110 5 11	T. 7 N., R. 33 E. Basalt Do Gravel	0 1 2 1	90 25 70	1940 1944 9-18-51	P, 5	о,5 0,5 0,5 0,5	L. Pumps dry in 3 hours, Pumps dry in 3 hours, One of 4 similar wells,
26P1 26Q 1 28G 1	William Schiffman, Jr. A. A. Lang R. L. Andraws	Т Т, Т	500	Dr Dr Dr	80 125 126	8 10 10	80 125 126	60 70 22 119	18 55 43 7	Sand and gravel Gravel Do		55 63.2 24	5-1-55 10-24-47 1957	z	125	Tpd 220 gpm with dd of 23 ft. Pumped onty 25 gpm on test; L. Tpd 400 gpm with dd of 60 ft.
318 1 32MI 33K1	X. Michallod E. Carlson	Td, Td, Ap,	500 475 435	Dr Dr Dr	97.5 300 60	<u>7-4</u> 6		200	100	Basalt Graval	c U	96.1 10 5±	11-24-48 1940 1935	N C, 300	N D,S Irr	Old homostood well. Supplies water for 30 ocros. Very good shellow well.
33L1 33N1	E. Carlson W. P. Warkman	Ар, Ар,	435 430	Dr Dr	135 275	6 5		 265±		Bosolt(?) Bosolt, porous	c c	, 6 F	1948 11-24-48		D D,S	Water lovel estimated as 4 or 5 ft above
34H1	W. J. Wobb	Td,	470	Dg,	97	60-10	78	16	12+	Sand	U	15.7	10-24-47	C, 150	եր	surfaca; formar Stockdale wall, L,
34L1	Union Pocific Railroad	Αρ,	442	Dr Dr	387	6	387	260 387	10	Gravel Baselt	с		10-29-48	C, 75	Ind	Hardness, 30; chloride, 7 ppm; L.

• • •

*

• 1

3412 34N2 34P1	Harry Nulph R. R. Dodd Darigold Creamery	Ар, Ар, Ар,	440 435 440	Dr Dr Dr	280 285 65	6 8-6 6	255	275 248 60	5 37 5	Basolt Gravel	C U U	4	1920 1940	С, Т, Ј,	10 7 10	D D Ind	Entered baselt at 275 ft. L. Water said less alkoline than shallower wells nearby, Hardness, 75; chloride, 11 ppm.
34P2 35B1	H. H. Taylor N. A. Davis	Ap, Td,	440 475	0r 0g,	30 70	1] 60-10	30 70-	40	8 30	Sond	U U	40	1947	с,	10 100	D In	Co.
35C1	Ruby May	т,	500	Dr Dg, Dr	90	60-10	90	70	20	Do	U	70	1947	c,	150	br	Used for irrigation of 50 acres.
35E2	Clarence Hansen	Td;	460	Dg, Dr	55	60-20	55	37	21	Do	U	34.2	10-24-47	с,	220	Ϊт	
35F1 36C1	Christino Hansen R. Taylor	Тз., Ар	490	Dg Dr	85 65	60-10 10	85 54	70 4	85 61	Sand and grovel	U U	70 4	1947 2-4-52	Ċ, Ţ	200	н Н	Tpd 110 gpm with dd of 44 fr.
1	.			•				•	•	T. 7 N., R. 34 E.	•						
3B1 13P1 20J1	C. R. Coyle P. F. Hedger J: B. Buckley	Uv, Ap, Td,	820 605 550	Dr Dr Dr	500 190 240	6 6 8	40	35	 5 50 140	Basalt Basalt (?) Gravel Basalt Da	 P P U	20 50 100	 1943 1943 1943	P, P, P,	5 5 5	D, 5 D, 5 D, 5	Hardness, 65; chloride, 6 ppm Hardness, 100; chloride, 10 ppm. Hardness 60; chloride, 8 ppm.
22F1 22M1 22N1	R, L. Tolbot J. B. Buckley J. B. Hall	Ар, Ар, Ар,	560 550 540	Dg Dr Dr	20 187 60	60 6 8	 57	32	2	Alluvium Basolt Gravel Sand	U U U	8.3 18 13	10-20-47 1945 12-28-53	P, J, T	5 5	D,S D,S	Hardness, 160; chlaride, 12 ppm. Gr Tpd 465 gpm with dd of 20 ft; 32 ft soil and Gr clay overlies 28 ft of sand and gravel.
24R1	W. P. Wallace	Τ ρ,	690	Dr	325	6	250	280	45	Basalt	с	80	7-`-47	Ŧ,	40	p,s	Sand, clay, and gravel drilled to reach basalt at 280 ft. Hardness, 45; chloride, S
25N1	Chartes Baker	Td,	600	Dr	1, 102	<u>,</u> 10	180	340	762	Basalt_	¢,	20	Summer 1947	Ŧ,	450	lır	6 ppm. At 300 ft and 800 ft well yielded 35 and 20, 100 gpm, with dd of 100 ft; and 442 gpm with dd of 70 ft at full depth; L.
26Q1	D. Bargerin	Td,	600	Dr	460	12	186	288	172	Do	с	22	12- 1-57	T		lrr	Entered bosolt at 249 ft) tpd 455 gpm with dd of 146 ft.
2711 2712 2841 2881	Ray Nibler Ray Nibler Patrick O'Brien J. B. Hall	Td Td Ap Ap	555 555 550 520	2 5 5 5 5	20 87 117 88	6 10 6 10	 57 90 70	 90 35	68 27 49	Sand Gravel Basalt Gravel	บ บ บ บ	7,95 6 102 33	10-21-47 855 1945 1955	P, J,	5 5	D,S D,S D,S	Hardness, 130; chlàride, 10 ppm. Tpd 315 gpm with dd ôf 38 ft. Hardness, 130; chlàride, 8 ppm.
28C1 29C1	J, B, Hall Lowden Johnson	Ар, Т,	530 500	Dr Dr	180 1,200	6 12 -6	610	610	590	Do Do	Ċ,	73.5	10-21-48	J, T	5	D,S Irr	Hardness, 115; chlarida, 5 ppm. Not used for years because didn't flow; rehabilitated and drilled 12-inch to 600 ft in 1956; tpd 1,056 gpm with dd of 14
29G1	County School Dist.	Ap,	490	Đr	180	6				Do				Ρ,	5	PS	ft; L. Hordness, 110; chloride, 5 ppm.
29J1	No. 4 Harold Buckley	Ap,	490	Dr	200	6		175±		Gravel and sand	U	10	1947	J,	5	D,S	Reported to have entered basalt bedrock for a few fit hardness, 115: chloride, 9 ppm, '
29M1	J. P. Dodd	Ap,	475	Dr	260	6	190	200±	60±	Gravel, comented (?)	U.,	32	1940	J,	5	D,S	a row regime and a regime root a bland
31M1 32C1 33E1	H. Stockdale Burgets J. E. Talbot	Ар, Ар, Ар,	500 485 510	Dr Dr Dr	157 300 115	10-6 6 12	93 62	72 	6 55	Sand Gravel	U U	; 6 5	947 	P, J,	35 5 	D,S D,S ៤ក	Hardness, 125; chlaride, 9 ppm. Tpd 525 gpm with dd of 16 ft; L. o

į¢,

a a

.

					To	<u>ble 1. – P</u>	le cords	of repr	esentativ	a wells in the Walla	Woll	la River be	sin-Contin	<i>r</i> ed		
		1				1 🤉			Water-b	earing zone(s)	8	Wat	er level	1	1	
,. Well	Owner or occupant	alt	graphy ind itude iet)	Type of welf	Depth of well (feat)	Diamater of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-water occurrer	Feet below dotum	Date .	Type of pump and yield (gpm)	Use	Re marks
					;				1.7	N., R. 34 ECont	invec					
34N1	G. Dow	Αρ,	530	D r	; 115	12	85	40	44	Grovel beds in clay	υ	10	8-12-59	т	lrr	Tpd 75 gpm with dd of 100 ft.
35A1	Clem Borgevin	Ap,	550	Dr	220	6	200	170	30	Sand, silty) U	1	733	C, 10	D,S	Well penetrated gravels and sand to about 50 ft, mostly blue clay below; hardness, 90; chloride, 8 ppm.
35J1 35N1	Clem Bergevin D. Bergevin	Ap, Td,	550 550	Dr Dr	200 429	6 12-10	200 428	410		Do Basalt	U C	6.1 9	10+22-47 5-31-59	N T, 600	N	Well drilled in only blue clay and silt. Entered basalt at 365 ft; obtained water at 410 ft; lower part of casing is perforated.
36A2	B. B. Cooley	Т,	600	Dr	290	10	91	17	78	Sand and gravel	U	17	10-16-50		lrr	Drilled only clay below 95 ft; Tpd 143 gpm with dd of 103 ft.
:]			T. 7 N., R. 35 E.						
4H I	Ralph Riley	Fp,	725	Dr	173	6	70	170	3	Basalt	ç	25	1933	J, 8	D	Sand and silt drilled in upper 45 ft; hardness 90; chloride, 8 ppm.
7F1 7Q1	G. Cavalli, et al County School Dist. No. 59	Fp, Fp,	650 630	Dg Dr	32 285	120 6	25 		18	Gravel Basolt		15 1.7 10.1 10.0	527 4-14-55 4-18-56 2-26-57	С, 200 Р	lrr PS	Tpd 110 gpm with dd of 6 ft.
8A1	Mrs. John Ankany	Εp,	700	Dr	1,000	12				Do	c	45.8 47.90	5-10-60 10-18-47	R, 10	D	Hardness, 95; chloride, 7 ppm.
881 18D1	T. Bodmer Clarence Bergevin	Fp, Fp,	680 625	Dr Dr	780 275	8 4		180	90	Do	ĉ	55 10 9.8 12.4	1957 1947 2-26-57 2-22-58	T J, 5	ιπ D,5	Tod 600 gpm with dd of 120°ft. Silt and black sand overlies aquifer; hard- ness, 90; chloride, 7 ppm,
23J2 23J2	Remo Fausti Hydro-Irrigation Dist. No. 9	Ар, Ар,	810 810	Dg Dr	21 618	72 6	535	12 535	.9 83	Gravel Basalt	U C	12.2 12.34 +20	10-27-59 5-9-33 Winter 1948	C. 5 T, 7	trr PS	Serving 30 houses in 1948; old Goss well drilled in 1909; has flowed In winter since 1936 quake; log shows gravel to 165, clay and gravel 165–220, clay 220–
23 K I	B. W. Bloir	А₽,	810	Dg,	350	48- 6	350	200±		Grovel		18	348	C, 75	lrr, D	535; hardness, 45; chloride, 5 ppm.
23M1 24M1	Bonneville Power Adm. R. Gluck	Ар, Ар,	772 825	Dı Dı Dı	515 572	10-8 12-8	464 507	35 464 498	5 51 74	Basalt Do	c c	59.51 75	941 8-10-54	50 T	Ind Irr	Ca; L. Tpd 255 gpm with dd of 26 ft; drilled mostly in gravel to 150 ft and clay 150-498 ft.

Table 1. -Records of representative wells in the Walla Walla River basin--Continued

.

25A1	Artesian Irrigotion Dist. No. 8	Αр,	890	D r	640	6		545	107	Basalt	c	+13 36 3	1914 7-1-36 8-1-36	Т,	50	PS	Drilled in 1909; hardness, 90; chloride, 8 ppm.
25A2	Artesian Irrigation Dist. No. 8	Ap,	890	Dr	772	10-8	538	637	772	Do	c	18 29	348 546	т,	250	FD	Drilled in gravel with some clay beds to 220 ft, and clay to 538 ft, where baselt entered; Tpd 495 gpm with dd of 5 ft, when drilled in 1946.
25C1 25C2 25F1	Joe Aliverti Joe Aliverti James Arbini, et al	Ар, Ар, Ар,	860 860 880	Dg Dr Dr	37 250 680	72 8 10-8	539	539	141	Gravel Grovel and sand Basalt	UCC	12 45 8,59 10 61 14	1945 1947 10-24-46 4-13-55 9-21-55 4-17-56	С, Т, Т,	50 50 300	य व य	Hardness, 55; chloride, 4 ppm; L.
25G3 25G4 25K1	Charles Criscola Remo Grassi Green Tank Irrigation	Ар, Ар, Ар,	875 875 880	Dg Dr Dr	30 563 628	60 8 6	511 600	25 502 620	3 61 8	Cobble gravel Basalt Do	U C C	61 16 1.53 55 20	10-6-56 2-26-57 3-22-48 7-28-51 Winter 1948	с, Т т,	3 350	न स्टब्स	Supplies water for 18 acres. About 75 households and 100 acres of irrigation supplied by 2 wells.
25K2	Dist, No. 11 Green Tank Irrigation	Ap,	875	Dr	752	10-8	645	555	97	Do	c	32	550	T;	500	PS,	irrigation supplied by 2 wells.
25 P1	Dist. No. 11 Ponti and Columbo	Ap,	820	Dr	618	6		610±	8	Do	c	F 5.4 9.9 10.2	3-18-48 4-18-55 4-17-56 2-26-57	c,	350	եր հո, Տ	Hardness, 60; chlorida, 4 ppm; L.
25Q1	Green Tank Irrigation	Ap,	840	Dr	618	6	590			Do	c	10.0	2-22-58	т		PS	Used as stand-by; drilled in 1910; originally flowed. Water table at level of swale to south.
25R1 25R2 26C1 26F1	Dist. No. 11 Louise Satori (former) A. W. Hawkins Frank Garrett Blalock Irrigation Dist.	Ар, Ар, Ар, Ар,	840 845 780 780	On Dr Dg Or	16] 214 15± 650	17 6 84 8	16½ 206 	13 	31 7	Sand Gravel Basolt		13.4 26 10.1 +35	5-16-33 7-28-58 1-23-48 348	Р С,	300	1 1 0 0	Water table at level of swale to south. Supplies 30-40 houses; casing sealed in 1950; hardness, 55; chloride, 4 ppm.
26H1	No. 12 Orchard Irrigation Dist, 10	Ap,	800	Dr	635	6		535	100	Do	c	5-10(?) F	348 Winter	с		PS	Supplies 24 houses; flowed for one year after the 1936 earthquake; entored baselt at 535 ft; hardness, 52; chloride, 3 ppm.
26M1 26P1	Lamb I. C. Ganni	Ар, Ар,	760 760	Dg Dr	19 550	120 10	220	8 		Gravel Bosolt	U C	10.0 F	1952 5-9-33 Winter	c, N	250	lr N	rr; naraness, 52; chioride, 3 ppm, Irrigates 10-acre orchard, Now covered over.
26P2 26Q1	L. Robinson (former) College Place trrigation Dist. No. 14	Ар, Ар,	770 780	Dg Dr	25 570	72 6	540	535	40	Gravel Basolt	U C	15± F	1920 Wintertime 348	N		z I	Original artesian discovery well; former Dist. 3 well; casing scaled in 1950; hard- ness, 55; chloride, 4 ppm.
26Q2	College Place Irrigation Dist. No. 14	Ap,	780	Dr	625	10	546	539	86	Do	с	F	352	-	,000	PS	Replaced 26Q1; L.
26R1	College Place Irrigation Dist. No. 14	Αρ,	790	Dr	650	6				Do	c	30±	148	c,	150	PS	Former Dist, 7 well; hardness, 60; chloride, 4 ppm.
27G1	W. Willioms J. Freeburn	Ар, Ар,	740 730	Dg Dr	25 300	30 8		10 280±	15	Gravel	UC	10±	148	L L		D, In 5	
	Young's Dairy	Fρ,	725	Dr	90	6		80		Do	Ē	6	148	Ĵ,	10	DS, Ind	

نۇ ،

•

•

GROUND WATER

•

<u>ج</u>،

				<u> </u>	Ta	<u>ble 1. – í</u>	<u>ke cords</u>	of repr	esentativ	e wells in the Walle	Wol	la River be	sin-Contin	ued		·····
							1	1	Water-b	earing zone(s)	8	Wot	er level			
Well	Owner or occupant		graphy nd itude aat)	Type of well	Depth of well (feat)	Diamster' of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-water occurrence	Feat below dotum	Date	Type of pump and yield (gpm)	Use	Remarks
									T. 7	N., R. 35 ECon	tinue	d		1		· · · · · · · · · · · · · · · · · · ·
28K1 28N1	H. M. Brown R. O. Spenser	Fp, Fp,	745 730	Dg Dr	15 30	48 6	15 30	8 20	7 10	Gravel	UUU	9.3 10.5	5-17-33 11-5-47	2	D, S D,	Clay and sandy clay over aquifer.
2881 2991 29Q1 30M1 31E1 31E2 31J1 32N1 32N1 32N1 33D1	C, A, Logan Ed Stiller J. F. Komm H. Ringhofer H. Ringhofer H. Ringhofer Myers Roy C. Shelden R. C. Nelson Fred Fuller	Αρ, Αφ, Τd, Fp, Fp, Fp, Ap, Ap,	740 650 590 590 600 610 645 660	Dr Dr Dr Dr Dr Dr Dr Dr	134 64 165 52 16 <u>1</u> 43 450 89 108 760	8 4 10 8 1 4 6 6 6 6 6 6 10-6	111 64 58 16 2 43 450 89 617	119 34 70 700	15 126 19 60	Do Do Sand Gravei Sand gravet Basalt	חכבה ב בכה	5 16.5 27 25.0 10.54 8.73 2±- 5 10± 20 25.9 34.1	2-2-51 5-17-33 8-8-44 10-20-47 5-17-33 6-19-33 148 148 148 9-19-46 4-14-55 10-27-55	P, 5	5 E S E I Z D S S S S	Clay and sandy clay over equifer. Tpd 180 gpm with dd of 120 ft. Tpd 120 gpm with dd of 90 ft. Well at abandoned farmstead. Water at level of river nearby. Believed to battom in sand abave basait. L. Tpd 400 gpm with dd of 71 ft. Ca.
33H1 33J1 33L1	Walla Walla College Walla Wolla College Frank Nelson	Ар, Ар, Ар,	695 700 680	Dr Dr Dr	710 89 618	9 8 6	550			Do Gravel Bosolt	C U 	25.1 15 15 F 28.9 38.5	4-20-56 148 1059 1059 4-12-55 10-25-55	T, 300 N	л Ч	Tpd 400 gpm with dd of 71 ft. Co.
3312	Frank Nelson	Ар,	685	Dr	650	6	550			Do		38.5 F 23.6 24.5	10-23-55 148 4-18-56 2-26-57	C, 300	br	
34A1 34G1 35A1	Herman Martin Herman Martin Walla Walla College	Ар, Ар, Ар,	730 720 778	Dr Dr Dr	750± 143 600	6 8 6	77	30	62 	Do Gravel Basalt	C U C	30± 8 +46	2-20-3/ 947 9-22-44 1953	N T	N D, In	Drilled in 1916, capped about 1958; hard-
35A2	Walla Walla College	Ap,	778	Dr	1,010	12-7	700	700	310	Do	с	F		T .	PS,	ness, 55; chloride, 4 ppm. Located 250 ft south of 35A1
35G 1 35H 1	C. N. Tillman Walla Walla College	Ар, Ар,	775 785	Dr Dr	730 100	8 12-10	 100	 32 49	 10 15	Da Gravel	c c	0 18.1	348 3-24-48	T, 280	<u>ь</u> -	Did not flow when drilled in 1910; hardness, 6 90; chloride, 8 ppm. L.
35P2	E. L. Keech	Fp,	760	0g	137	120		70	28	Do	U	9.28	5-9-33	C, 150	եր	Irrigates 5 to 10 acros of garden.
35R1	Franciullo	Fp,	780	Dg	37	96		6	31	Do	lu	8.77 8.38	3-22-48 3-22-48	C, 100	١ π	Irrigates 20 acres of garden.

Table_1, -Records of representative wells in the Walla Walla River basin--Continued

4 +

y

ê

.

ار ا

7

.

16A1	A. Zaro	Fp,	825	Dr	635	8-6	554	563	57	Basait	с	2.0	3-19-48	т.	ί π,	Hardness, 52; chloride, 4 ppm; L.
ייי, י		· · · ·		1						· .		21.3 79.2 26.1 26.0 26.0	4-13-55 9-22-55 4-18-56 2-26-57 2-22-58		D	
												66.4 57.4	10-22-58 10-28-59			
						,					с	39.9 F	5-10-60 1948	C, 100	 rr	Former Immonuel well; leaks badly; hardnes
6C1	G. Magnoni	Ap,	810	Dr	640	6		·		Do	_			-		62; chloride, 4 ppm.
6D1	College Place Water Col	Аρ,	790	Dr	640	6	535	600	40	Do	С	+20	3-18-48		N	Formar Cady well; sealed with coment, 195 hardness, 60; chloride, 4 ppm; L.
36F1	College Place Water Co	Ар,	800	Dr	810	6	500	600	.25	Do	с	+37 +15 33 +13 +12 19 3.1 62	3-18-48 4-18-55 9-21-55 4-1-56 2-26-57 10-27-59 5-11-60 8-2-60	C, 150	PS	Former Maple Street Water Co. well; recost and drilled to 810-ft depth about 1951; C sample from 36F1 and F3.
6F2	Richards, et al	Αρ,	805	Dr	610	6	100(7)			Do	с	F +8	3-19-48 4-19-55		PS	Former Campbell well; leakage around casing scaled about 1951; hardness, 62; chloride, 4 ppm; L.
6F3	Collage Place Water Co	Аρ,	600	Dr	708	20-12	552	620	80	Do	с	F	3-18-48	T, 1,800	PS.	Free flow 2,000 gpm, July 1947; pumping level 83 ft, Aug. 10, 1960; Co.
16G1 16Н1	Virgil Davin Wahluke Investment Co	Ар, Ар,	820 845	Dg Dr	15 600	60 6	 			Gravel Basalt	U C	13.4 6.7 24.9 77.4	12-17-46 3-24-48 4-19-55 9-21-55	B T, 200	D irr	Reportedly had pressure head of 138 ft whe drilled in 1910.
16P1 16R1	D: H. Kinzer Stone Creek Sanitarium	Т. Ар,	845 845	Dr Dr	600 618	6 8-6		 500+		Do Do	c c	31.4 15± F 20 28 51.9	4-18-56 3-19-48 3-24-48 6-7-54 7-28-54 9-2-54	C, 200 C, 150	lrr D, S	Hardness, 60; chloride, 4 ppm. Water level reportedly lowered by pumping of well 7/36-31N1.
										T. 7 N., 8. 36 E			1			
1ل	R, L. Moore	τ,	1,250	Dr	810	12	164	182	528	Basalt		65 74.8 81.3 79 94 76	8-8-55 4-25-58 8-20-58 4-23-59 8-26-59 11-29-59		hr	Tpd, 1,160 gpm with dd of 83 ft; L.
	Bass Blackson d	т, Т,	1.030	Da	80	48		45	30	Cobbles	U	64 61.95	5-10-60 10-15-47	P, 15	D,S	Silt or loass overlies aquifer; hardness,
4E 1	Roy Richmond	•		- I			77	75	5 17	Basalt (?) Gravel	Ū	13	3-16-48		lrr -	75; chloride, 7 ppm. Drilled in gravel containing some clay bed
4P1	W, E. Morrison	Τ,	1,050	Dr	205	8	<i>''</i>	105	13	Grave1	υ	13	3-10-40	P, 4	D,5	arrive in graver contenting with they are

		1			, Tal	<u>ble 1. – R</u>	e cords	ofrepr	1	wells in the Walla	T			and .		
i	x .			·		(i			Water-be	earing zone(s)	e u ce	Wate	er level			÷
Weil	Owner or occupant	Topogr and altitu (fee	d uda	Type of well	Depth of well (feet)	Diamater of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of materiol	Ground-water occurren	Feet balow datum	Dote .	Type of pump and yield (gpm)	Use	Rømarks
		•					·	<u> </u>	T. 7 N	., R. 36 EContin	nued				4	
10D 1 11B1	Walter Minnick Roy Frazier		,110 ,200	Dr Dr	241 807	8 16-12	145 170	104 170	132 637	Gravel Basalt	u c	93 20 49	946 2-1-47 1-8-58	T, 1,000	0 Irr	Gravel, containing clay beds, overlies baselt; tpd 1,500 gpm with dd of 33 fr.
13F1	City of Wolla Wolla, No. 1	Tđ, T	, 260	D٦	810	12-10	363	363	447	Do	с	64	4-4-42	T, 1,500	PS	Ca; L; WL fig. 11.
13F2	City of Wolla Wolla, No. 2	Td, 1	,270	Dr	808	16-12	140	140	668	Do	с	82	1942	T, 1,200	P5	WL fig. 11.
וננו וכנו וכנו	R, R, Brunton City of Walla Walla	Ap, 1 T, 1	, 280 , 135	Dg Dr	14 515	36 10(7)	14 35	 90		Cemented gravel Cobbles and gravel	P U	10.71 90	10-18-47 1931	P, 4 N	DN	Hardness, 35; chloride, 3 ppm. Gave poor yield; now covered near runway of airport; L.
15Q1	Mrs. E. B. Feathers	Ap, 1	, 115	Dr	435±	6	110	300 125	135± 175(?)	Basolt Gravel	U	35	1947			or on porty E.
16N1	J. H. Schurr	Αρ, 1	,035	Dg, Dr	60	60-6		40		Do	U	32	1946	C, 10	Ð	Typical of many wells nearby; 35 ft of silt overlies aquifer; hardness, 70; chlaride, 8 ppm;
16R1 17K1	Elmer Markham City of Walta Wolla	Αρ, 1 Αρ, 1	,000	Dr Dr	122 3,000	8 20-8	<u>48</u>	112	10	Do 	с 	34.5 40 49.6 54.2 80.8 74.7 49.5	12-10-46 3-24-48 4-24-59 6-25-59 8-26-59 10-27-59 5-10-60	1, 5 12	D 	L. Yielded but 180 gpm; top of baselt at 481 ft.
18/01	Washington State Penitentiary	т,	915	Dr	1,004	24-16	525	405	599	Basalt	с	74	3-18-56	T	hr	· .
1891	Do	Т,	920	Dr	920		525	525	-	Do	с	100	1933	t, 700	PS	Aquifer overlain by 40 ft of silty soil and 425 ft of sand and gravel.
18P2 18P3	Do	Td, T,	920 950	Dr Dr	915 640	12	525 100 250	525 		Gravel	C U	100 87	1933 1933	T, 300 T, 400	PS PS	Located 60 ft south of 18P1. Located 700 ft east of 18P1 end P2.
19C1 19C2 19E1	Do Do Mrs. Nina Anderson	Td, Td, Ap,	900 915 860	Dr Dg Dg, Dr	225 57 84	12 240 6	600 220 55	25 71	200 13	Basalt Gravel, cemented Gravel Do	ប ប ប	38 37 27	733 1946 746	C, 250 C, 150 J, 10	۱۳ D, ۱۳ D, S	Tpd 150 gpm with dd of 19 ft. L.
19F1 19H1	General Food Corp. Walla Walla Meat Co.	Αp, Αp,	890 940	Dr Dr Dg, Dr	1, 125 216	20-12 	836 190	836 210±	289 6± 90	Basalt Sand, white; grave!	C U	59 	546 1933	T, 1,000 P, 15	ind Ind	Ca; L. Dug well taps upper aquifer.
19MT	Joe Pratto	Ap,	880		26	60	20	20	6	Gravel	υ	17,61	5-16-33	P, 3	D	

۲

4

3

¥.

	l											, ,		ı		
19R1	Wello Walla Conning	Аρ,	920	Dr	1,590	12-6	1, 590			Basalt	ļç	94	12-7-42	T, 1,100	Ind	Co; L.
20A 1 20G 1	Company Sid McCool Whitman Collage	Ар, Ар,	995 985	Dn Dr	16 1,202	1뉢 20-16	16 425	 		Sand Basalt	U C	14.93 64	5-16-33 6-1-62	N T	N Ind	Tpd 700 gpm with 100 ft dd. Temp of water 72°F.
20Ņ1	Marcus Whitmon Hotel Assoc	Ар,	940	Dr	700	18-		402 20	298 207	Do Grovel	c	76.3 45	1-20-48	м		L; WL fig. 9.
0P1	Union Bulletin Publishers	Ap,	950	Dr	224					Do	Ú.				Ind	. L.
1G1 1KI 2H1	Roy Mindemann Frank Wright City of Walla Walla, No. 6	AD,	1,030 1,050 1,130	Dr Dr Dr	55 60 1,330	6 .6 24-16	54 285	44 264	11 1,046	Do Do Basalt	U U C	24 20 71	8-30-45 1946 10-24-61	C, 50 T	D Irr PS	L. Tpd 900 gpm with 180 ft dd whan at 900 ft depth, 1,400 gpm at 1,200 ft depth, and 2,600 gpm with 100 ft dd at final depth.
2N1	City of Walla Walla, No. 4	Ар,	1,045	Dr	789	30-20	400	400	389	Do	с	+16 +42 5 +7 +34	1953 4-18-55 9-21-55 10-5-56 4-23-59	т.	PS	Tpd 2, 800 gpm with dd of 116 ft. 9-4-53; Co; L; WL fig. 11.
22Q 1 2381	O. O. Crites Dwelly Jones	Ар, Ар,	1,090 1,175	Dr Dr	98 190	6 6		90 	8	Do Gravel	P P	17 +27 20 16.40 15.5 18.1 14.5 16.6	10-28-59 5-10-60 1948 10-28-48 4-14-55 2-27-57 2-22-58 5-10-60	5 را 5 زا	D D	Comented gravet overlies aquifer.
301	United States of America	Ap,	1,160	Dr	100±					Do	P				D	Near flood-control diversion gates; hard- ness, 45; chloride, 3 ppm. Well genetrated boulders near surface and
3E 1	Elmer Murray	Ap,	1,150	Dr	88	6		80	8	Grovel, loose	P	16	1948	J, 5	i i	cemented gravel down to aquifer.
3E2 3M1 3F1	Garry Huff William Hauber Dwelly Jones	Ap,	1,140 1,135 1,270	Dr Dr Dr	100 103 1, 100	6 6 12	98 157	56 95	40 5 	Gravel Sand and gravel Basalt	PPC	18 14 225 235 283 259 249	8-24-48 1945 845 4-19-56 10-6-56 12-19-56 2-27-57 2-22-58	J, S J, 5 T, 500	D	Hardness, 35; chloride, 4 ppm; L. Cemented gravel overlies oquiter. L.
26G1	United State of America	Аρ,	1,140	Dr	75	6		10	52	Gravel, comented	U	245 243 253 	2-22-58 4-24-59 5-10-60			Tast well penatrated Palouse-type looss (10 ft) above, and basalt (3 ft) beneath, aquifer,
26K1	Dwally Jones	Аρ,	1,120	Dg,	49.1	30-8					U	27.1	10-28-48	J, 5	D,S	Hardness, 75; chloride, 3 ppm.
27D1 28A1 28A2 28C3 28C3	Charles F. Baker Charles F. Baker C. A. McKenzie B. Campbell L. D. Felch	Ар, Ар, Ар,	1,060 1,030 1,035 1,005 1,000	Dr	50 100 55 90 215	6 6 6 8	49 72 52 71	48 95 43 71 208	2 5 2 19 7	Gravel Sand and gravel Gravel Do Do		24 6.54 18 8	745 12-9-46 845 745	J C, 10 J, 5 J, 5 J, 10	D	L. L. Hardness, 45; chloride, 4 ppm. L.
					,		1	193	2	Do				·	İ.,	

s.

7

a١

Ĵ,

s.

8-

	1.1.1		·	• •		3			Water-b	earing zone(s)	ğ	Wat	er level		5	,	
Well	Owner or occupont	olt	graphy ind itude aet)	Type of well	Depth of well (feat)	Diameter of well (inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (faet)	Character of material	Ground-water occurrer	Feet below datum	Dato	Type pump o yield (c	md	Use	Remarks
•									T, 7	N., R. 36 ECon	tinue	d		•			
28K1	Wilson and Messer		1,020	Dr	217	8	65	200	17	Gravel	υ	29.3	11-18-48			D	Supplies two houses; hardness, 35; chlorid 3 pom: L
2821	City of Welle Welle, No. 5	Αρ,	1,020	Dr	1,090	30-16	567			Basalt	C	86,1 95 118	2-22-58 4-23-59 10-28-59	т		PS	Entered baselt at 462 ft; tpd 1,600 gpm with dd of 23 ft in 1958; Co.
29J1 30J1	Ambrose Aliverti U.S. Vaterons Administration	Ар, Т,	960 900	Dr Dr	94 550	8 16-8	48 540	35 64 450	2 186 100	Grovel Do Basalt	č	6 25	546 234		20 00	ीत PS	L. '
	U.S. Veterans Administration	T,	895	Dr	275		 .	230	15	Gravel, Loose	U	23	1933	T, 5	00	PS	L.
3111 3171	A. J. Mathison Walla Walla Country Club	Αρ, Αρ,	900 880	Dr Or	60 1,715	12-10 12	55 538	17 538	48 1,279	Do Basolt	U C	22 75 78 131 79 86 106	545 946 4-17-56 10-6-56 2-27-57 4-24-59 10-22-59	J T, 1,5	00	о Н	Supplies water for irrigation of about 160 acres; L.
31N1 31P1	J. J. Chisholm J. J. Chisholm	Ар, Ар,	840 850	Dr Dr	600 142	6 8-6	519 140	130		Do	C	Έ	3-24-48		00	hu	Supplies water for about 40 acres; hardner 50; chloride, 5 ppm.
31R3	John Yenny	Αρ,	880	Dr	47	9	46	40	12 2 4	Gravel, comented Gravel	Ŭ	16 12	545 446	ć,	70	D,5 Irr	Hardness, 60; chloride, 5 ppm; L. L.
	J. C. Phillips J. R. Nostell	Ар, Ар,	960 960	Dg Dg, Dr	33.5 435	36 8	89	23 110 35	33 10 37	Do Do Do	0 0 0	32.4 35.5	12-11-46 12-11-46	В Ј,	5	D D	Well plugged back to 120 ft; L.
32F1 32L1 32P1 33A1	W. S. McCalley L. Taruscio A. L. Smith H. E. Studabaker	Ар, Ар, Т,	920 920 960 1,020	Dr Dg Dr Dr	85 39.0 150	10 96 6	80 64	35 39 65	44 1 85	Do Do	UUU	33:6 31.2 30	11-18-48 11-18-48 345	C, 1 J,	00 00 10	1 1 1 1	Supplies water for about 10 ocres.
33A2 33B1 33D1	H. E. Studebaker R. W. Stovens J. O. Parkins	Τ. Αρ, Τ,	1,000 960 960	Dr Dr Dg	762 152 668 36	8-6 8-6 	546 152 	535 34	2	Basalt Gravel Basalt Gravel	U U U U U U	70 12.5 40 34.1	1945 2-8-41 8-1-50, 5-16-33	J,	00 10 75	br D Irr,D D	Hardness, 72; chlorida, 3 ppm; Co; L. Hardness, 150; chlorida, 5 ppm; L.
33H1 33P1 3481	Storey G. A. Kraiman Karl Depping	Τ, Αρ, Αρ,	1,000 950 1,050	Dr Dr Dg, Dr	106 575 130	6 8 40-0	100 435 130	100 25 256	6 5 25	Gravel, comented Sand, silty Gravel	0000	30 21 18	1947 5-25-48 1948	Ĵ,	5 50	11	Upper water stands at about level of the creek from Shelton Springs. Did not reach the bassit. Supplies water for 11 acres.

Toble 1 -Passade	of representative wells in the	Welle Welle Block Luster County and
	of representioning walls in me	Wallo Walla River basinContinued

1

•

A.
34C1 34C2 34F1	Karl Depping Williams Mark Fowler	Td,	1,025 1,040 1,040	Dr	403 65 85	8 6 6	200 	200±	200±	Basalt Gravel Gravel, silty	C U U	99.05 26.0 15.7	10-28-48 10-28-48 10-28-48	P, 5 C, 100	р 0, Бт	Well has rather poor yield. One of three similar walls. Drill hole 40–85 ft abtained no additional
34N1 34Q1 35D1	M.R.Young Philip Reser Petrus DeBoor	Ар, Ар,	1,050 1,030 1,080	Dr Dr Dr Dr	505 234 240	8 6	409	388 230±	 	Basalt Basalt	c c	14 27 F	755 1946 10-22-48	P, 4 T, 150	ы,D	water. Tod 340 gpm with dd of 148 ft. Hardness, 50; chloride, 3 ppm. Owner reports (1948) same water level as
35Q1	Baker & Baker	Ţ.	1, 160	Dr	936	16	235	225		Do	c	72 84	554 4-16-55	т	եր	when drilled in 1910. Tpd 2,000 gpm.
				•								121 76.6 94	. 9-21-55 4-20-56 2-28-57	·		
•			-	2								83.7 81.4 89	2-22-58 4-23-59 5-10-60			
35R1 36F1 36H1 36J1	J. E. Lovin J. B. Mansfield F. M. Ralston F. M. Ralston	Ap, Ap,	1,150 1,200 1,250 1,270	Dr Dg	222 257 25 25 245	6 6 84 8	·135	255 220	2	Do Do Bossit		58.3 65 15.0	10-26-46 1941 10-19-46 10-19-46	P, 5 J, 10 P, 3 T, 100	D,S D,S S br	Ca. Wàim' at about level of nearby Russell Creek. Wi fia. 9: L.
36J2	F. M. Raiston		1,310		454	15-12	273	118 210	63 244	Gravel, comented Baselt		6.1	10-19-46	T	Irr	Ted 1,250 and with dd of 10 P, when
									1	T. 7 N., R. 37 E.						Ū. No
501 5K1	Gale Kibler Albert Kibler		1,290 1,350		118 106	6 6	110 44	104 84	14 19	Grovel, loose Basalt, soft,	č	21 28	2-28-41 5-15-45	J, 12 J, 7	DD	Co; L. And Colorido, 3 ppm; L.
6C1 6D1 13A1	Wallace Evans A. F. Kees John Meiners	Uv,	1,250 1,240 2,000	Dr Dg Dn	100 26.1	6 30 11				Soll, sandy	C U U	23.52	10-19-46 10-18-46	J, 5 P, 1 P, 1	D D,S	Hardness, 75; chloride, 3 ppm.
13J1 14G1 16L1	R. E. Meiners E. J. Meiners C. D. Hansen	Uv, Uv,	2,315 1,900 1,450	Dr Dr Dg	525 270 10	6 12		200	70	Basalt Do Sand and gravel	C	130	1938	P. 1 P. 1	0,5 D	Ca. Supplements spring flow, ^{Ca}
16Q1 18FT	Leo Gilkerson :- City of Walla Walla No. 3	Ap,	1,490 1,320	De	14	36 20-16	176	149		Basalt	P C	133 153	4-30-47 4-18-55	C, 6 .T, 1,800	D PS	In use since 1880; Ca. Ca; WL fig. 11.
18G1 18H1 18R1	David Kibler David Kibler Henry Copoland	Τ, Αρ,	1,400 1,400 1,350	Dg Dg	100+ 50 12	6 48 48				Gravel and sand Gravel	PPC	168 45.88 47.29 6.75	4-23-59 10-19-46 10-19-46 10-18-46 1949	P, - 3 P, 5 T	220	Thomas School well; Ca. Mardness, 60; chloride, 4 ppm.
1882	Olava Filan		1,400	Dr	770	12	102	102		Basalt		190 218 239	4-16-55 2-27-57		ur	L STAL
		·					•	-	.:			243 239 255	4-25-58 4-23-59 6-25-59	,		
28R t	Carl Ferrel	υ,	1,760	Ðr	160	-: 6	35	32	5 128 - 3	······································	Ů	249 236 55	10-27-59 5-10-60 11-13-45	J, 5	0	Boulders and gravel overlie equifer up to the operation of the second solution of the second

_ ≼,___≸

4

4

,

.

•

- **#***

					<u>ت</u> و	-		Water-b	earing zone(s)	DC .	Wat	er level			
Vell	Owner or occupant	Topography and altitude (feet)	Type of well	Depth of well (feet)	Diameter of well (inches)	Depth of casing (feet)	Depth to top (fact)	Thickness (føgr)	Character of moterial	Ground-water occurren	Feet below datum	Date	Type of pump and yield (gpm)	Use	Remarks
								T. 7 M	1., R. 37 EConti	nuad					
29F1 29P1 31C2 31E1	Ed Copeland John Yenny Leonard Garver Grace McGuire	U, 1,525 Uv, 1,450 S, 1,350 Ap, 1,300	Dg Dr Dr Dr	30 253 127 93	36 6 6		26 35	4 58	Basalt Basalt Do	U C	26 23.54 45±	1244 10-19-46 945 	P C, 100 P, 3 J, 7	D, S D, Irr D, S D	Hardness, 65; chloride, 3 ppm. Formarly flawed, now pumped; 35 ft of alluvium overlies basalt bedrock; hard-
FLT8 181	T. E. Wilson H. T. McGuire	Ap, 1,390 Ap, 1,410	Dr Dr	200 220	6 10-6	 171			Do	c c	F +8.5 +46 +37 +49 +44 +54	1936 10-19-46 10-23-46 4-15-55 9-22-55 4-19-56 2-27-57 2-22-58		D, S D	ness, 40; chloride, 2 ppm, Usual flow of 5 gpm; hardness, 50; chlorid 3 ppm, Estimated flow 25 gpm; Co; L.
2E 1 12N 1 12P1	Maxian School Thomas Estate C. N. Foster	Ap, 1,390 U, 1,440 U, 1,490	Dr Dg Dr	200 26 650	6 24 10-8	 650			Bosalt (?) Gravel Basalt		+46 +61 F 12± 20±	4-23-59 5-10-60 1946	J, 5 T	D D, lir	Hardness, 55; chloride, 3 ppm. Reported yield is 17 gpm. Well flowed when first drilled in 1928; hardness, 40; chloride, 3 ppm.
3N1 3P1	W. L. Kincheloe W. L. Kincheloe	Ap, 1,590 U, 1,730	Dg Dr	12,7 250±	48 6	12			Gravel	č	5.65	10-21-46	C, 7 Sy	D,S Irr	Water formerly syphoned to fields below wells.
1E1 2J1	R. E. Burrows Martin Marback	Uv, 990 Uv, 1,000	Dr Dr	600 350	6 6	40	 340	10	Baselt Do	c	76.7 230	10-22-47 1905	P P	 D	Reported to be good well. L.
2D1 3G1	R. E. Burrows Arch Collard	Uv, 1,000 Uv, 950	Dr Dr	330 565	6 6		 550 250	15 5	Do	C U	200± 550	1947 	P P	D,S D,S	Reported dry after brief pumping. Reported 90 ft of soil above basalt; hard- ness, 75; chloride, 9 ppm.
411	J, C. Scott	U, 1,000	Dr	531	8	135			Do	U	435	1947		D,S	Reported 131 ft of loess-type soil above baselt.
311	A, Drumheller	Uv, 900	D ₀	40	40		35±	5±	Palouse Formation	P	35±	1947	P	D,S	This soil-zone well of type was once numerous in region.

4,

٦

4

.

٠

25H1 32C1 33C1	Mrs. E. Donovan H. A. Dryer Merlín Phillips	U*, U*, U*,	875 860 850	Dr Dr Dr	98 540 1,000±	 6 6				Basalt Do	c c	60± 175± 	1947 1947 	P P P	ק מים	Hardness, 75; chloride, 9 ppm.
34J1 34Q1	Paul School Dist. Don Seavy	Ած, Մծ,	790 790	Dr Dr	75 1,026	6 16-10		51	975	T. 8 N., R. 35 E. Basalt	c	32.4 34.9 30.1 32.0 31.6	4-14-55 9-22-55 4-18-56 2-26-57 2-22-58	P T	PS In	Yield reported as 1,200 gpm; L.
35C1 36M1	Degg J. Martin	υ», υ,	790 850	Dg, D 7 Dr	75 175	60~6 6	 170	 170		Basalt	 C	32.4 31.7 10	4-23-59 5-10-60 1947	J P	D, 9	"Blue mud" overlies besalt to surface.
										T. 8 N., R. 36 E.						
10H1 10N1 11A1 21N1	P. L. Pentecost W. F. Spear A. A. Carey	Uv,	1,000 950 1,070 950	Dg Dr	300 160 703	60 60 12-10	144	252	451	Bosalt Silt, soll Basalt (?) Bosalt	С Р С U	24.8 281 280 286 287 311 287	10-15-47 4-14-55 4-18-56 2-26-57 2-22-58 10-21-58 4-23-59	Р Р Р Т	D,9 D,9 D,9	ő
29D 1 30B 1	J. H. Nordheim Mrs. J. D. Bergerin	Fp,	890 910	Dr - Dr	412 75	10 6	126 60	410	2	Do	c	286 100 109 129 138 9,22	4-23-37 5-10-60 4-14-55 4-18-56 2-26-57 2-22-58 10-17-47		. In	Tpd 600 gpm with dd of 87 ft. Hardness, 80; chloride, 6 ppm.
35A1	Frank McInroe	₩ ,	1,100	D₽	24	60		12	12	Cobble gravel	U	8	1947	P	D,S	
35D1 35M1 36E1 36K1 36L1	Forest Buroker McInroe W. F. Kibler W. R. White H. R. White	Uv, Uv, Uv,	1,140 1,130 1,130 1,160 1,155	Dg Dr Dg	72 70 50 18 143	48 60 6 36 8	22	65(7) 66 5 125	7(7) 4 13 15	Basalt (?) Cobble gravel Do Silt, sandy soil Basalt	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67 66 9.5	1947 1947 957	P P C, 1 C	D,S D,S D,S In	Hardness, 100; chloride, 7 ppm.
	Storey F. M. Wolker Mrs. J. R. Wolfa	Uv;	1,580 1,550 1,550	Dr	126 215 96.5	6 6 6	26 35 35	85 180	41 25	T. 8 N., R. 37 E. Basalt Da Da	001	150 23.2	 941 11-22-48	J P, P	5 D D	Hardness, 100; chloride, 4 ppm; L. Has small yield; hardness, 85; chloride, 6 ppm. Tpd 40 gpm with dd of 15 ft.

٠

اه...

E.

••

1+

.

		[l l	Ţ		<u>a wells in the Wollo</u> earing zone(s)	8		er level	<u> </u>	<u> </u>	
ell	Owner or occupant	Topography and altitude (feet)	Type of well	Depth of well (feat)	Diameter of well (Inches)	Depth of casing (feet)	Depth to top (feet)	Thickness (feet)	Character of material	Ground-woter occurrenc	Feet below datum	Data	Type of pump and yield (gpm)	Use	Ro mar ks
					1				1., R. 37 EConti	nued					
7R2 1 P1 5B1	Dixie Ana Growers, Inc. G. M. Rea Gardner	Uv, 1,510 Uv, 1,210 Uv, 1,650	Dr Dr Dr	267 94 360	 6 6	 25 25	235 69 275	4 25 85	Basalt Do	 C U	- <u></u> 20.4 240	 10-19-46 1945	 J, 10' P, 10	PS D D,S	L. Hardness, 80; chloride, 5 ppm; L. Hardness, 80; chloride, 3 ppm; L. :
211	Dale Scremon	Uv, 2,350	Dr	175	6	22			T, 8 N., R, 38 E. Bosalt	c	110	842	J, 10	D	Hardness, 70; chloride, 4 ppm; L.
						-						• ·			· · ·
		•	•		·				•						
			. •											-	· · · · · · · · · · · · · · · · · · ·
											1 		ัม		

.

`1

:	·•,	GROUND	WATER	·	·	•	 . *	

Table 2. -- Drillers' logs of representative wells.

Tentative stratigraphic designations by R. C. Newcomb.

Materials		Thickness (feet)	Depth (feet)
Well 4/35-	-15P2		:
Lamb-Weston. Altitude about 1,775 feet. Drilled	by A. A. Durand a	and Son, 1946	
Recent alluvium:			· • •
Soil		18	18
Gravel		3 .	21 .
Columbia River Basalt: "Rock, brown"		<u>ا</u> آ	÷
Basalt, dark, hard		5 · 45	26 A
Basalt, porous		14	85
Basalt, medium hard and hard		35	120
Basalt, porous, with green clay	·	10	130
Basalt, gray, softBasalt, black, hard		13 4 1 Mere	143
Basait, porous		11	158
Basalt, gray and black, hard, static water level	1 feet	67	
Basalt, gray, porous		45	270
Basalt, gray and black, hardBasalt, black, porous		31 20	301 321
Basalt, hard			. 351 -
Basalt, porous		5	356
Shale, brown and blue		16	372 -
Basalt, alternating porous and hardBasalt, porous, water-bearing		120	492
Basait, black, hard		35 12	.527 539
Basalt			1,200
Well 4/35-	.2201	,	
	• •	2.834.5 21.55	
City of Weston. Altitude about 1,790 feet. Drille	d by A. A. Durand	and Son, 1939	A Constant P
Recent alluvium:			
Soil		6	6
Bouiders		14	20
Columbia River Basalt:	_		
Basalt, honeycombed, with clay seams Basalt, black and gray, with occasional clay-sea		14 · · · 91	34
Basalt, honeycombed, with clay seams		35	125 160
Basalt, gray and black			185
Clay, blue		5	-190
Basalt, gray, hardBasalt, black, water-bearing			220
Basalt, gray and black		10 210	230 440
Basalt, black, with clay pockets	************	20	460
Basalt, very hard		26	- 486
Basalt, gray, water-bearing in part	·	22	508
Basalt, black, water-bearing		26	534
· ·	•		
			1

٠

٠.

103

ł

a a second and a second

Materials	Thickness (feet)	Depth (feet)
	(leel)	(IEED

Well 4/37-9H1

Wm. Coleman. Altitude about 1,950 feet. Drilled by A. A. Durand and Son, 1940.

No record - old dug well	28	28
Recent(?) alluvium: Gravel, with boulders	33	61
Columbia River Basalt:		01
Basalt, water-bearing; static water level 35 feet	14	75
Basait, gray	12	87
Basalt, red, vesicular, water-bearing; static water level 3 feet	10	97

Well 5/35-1E1

Utah Canning Co. Altitude about 1,010 feet. Drilled by A. A. Durand and Son; 1945.

Recent alluvium and old gravel of Pleistocene age:		
Gravel with boulders	. 20	20
Gravel; static water level 22 feet	10	30
Gravel with some clay	34	64
Clay, yellow, with gravel	28	92
Columbia River Basalt:		
Basalt, black	26	118
Basalt, gray and brown, with blue clay and shale; static level of		•
water is 15 feet	40	158
Basalt, black and red; with some yellow clay	70	228
Basalt, gray, blue and black, hard; static water level 15 feet	240	468
Basalt, black, hard and soft; static water level 41 feet	60	528

Casing, 16-inch, set to 109 feet, open 16-inch hole below.

Well 5/35-2D1

.

Gus Siebold. Altitude about 950 feet. Drilled by A. A. Durand and Son, 1946.

Dug well, no record Old gravel of Pleistocene age:	28	28
Gravel, coarse, loose, 20-55 feet Columbia River Basalt:	67	95
Basalt, black	10	105
Basalt, brown, porous	45	- 150
Basalt, black, creviced 189-190 and 214-218 feet	103	· 253
Basalt, porous	39	292
Basalt, black, firm	16	308
Basalt, red, water-bearing at 325 feet	23	331
Basalt, black	13	344

Casing, 8-inch, set from 12 to 100 feet; 6-inch hole below 150 feet depth.

1

Materials	Thickness (feet)	Depth (feet)
Well 5/35-2E1		
City of Milton-Freewater, No. 6. Altitude about 965 feet. Drilled b	y George Scotl	, 1950.
Recent alluvium and old gravel of Pleistocene age:		
Soil and dirty gravel	6	·6
Gravel, dirty, bouldery, water-bearing Columbia River Basalt	55	61
Basalt, porous and broken, some water at top	20	81
Basalt, black, hard and medium, layered, water level, 20 feet	120	201
Basalt, black, creviced	13 -	214
Basalt, broken, sloughing, static water level 39 feet	63	277
Basalt, broken and mixed with yellowish clay	19	296
Basalt, clean, hard	55	351
Basalt, broken, with intermixed clay of varied hue, fault-zone material	601	952
Well 5/35-2H1		
City of Milton-Freewater, No. 5. Altitude 995 feet. Drilled by A.	A. Durand, 19	36.
Recent alluvium and old gravel of Pleistocene age:		
Soil	3	3
Gravel, boulders, partly cemented and partly loose, water-		-
bearing	77	80
Clay	10	90
Boulders and gravel	45	135
Clay and sand	10	145
Gravel and boulders, loose	15	160 [.]
Columbia River Basalt:		
Basait, black, hard		
Basalt, red, porous	45 '	290

Basalt, black, water-bearing -----

Basalt, blue and black, hard -----

Basalt, red -----

Casing, 18-inch, set to 40 feet; 12-inch set to 172 feet.

•5

Z,

Well 5/35-2J1

115

30

67

405

435

502

.

City of Milton-Freewater, No.3. Altitude about 1,010 feet. Drilled by George Scott, 1946.

Recent alluvium and old gravel of Pleistocene age:		
Gravel with clay	43 ·	- 43
Columbia River Basalt:	•	
Basalt, black	36	79
Basalt, reddish brown	9	88
Basalt, black, brown, and gray, hard	43	131
Basalt, black with crevices containing "greenish shale" at 176,		
209, and 218 feet	108	239
Basalt, brown and black	228	467
Basalt, gray and black, broken, loose	25	492
Basalt, black	46	538
Basalt, black, porous	12	550

Casing, 20-inch, set to 43 feet; 16-inch set to 100 feet, 16-inch open hole to bottom.

Materials	Thickness	Depth
	(feet)	(feet)

17

.

Well 5/35-12F1

City of Milton-Freewater, No. 1. Altitude about 1,070 feet. Drilled by A. A. Durand, 1937.

Recent alluvium and old gravel of Pleistocene age:

Grave	30	30
Gravel, cemented	7	37
Gravel, with clay	9	46
Columbia River Basalt:		
Basalt, black	14	60
Basalt, with clay	38	98
Basalt, black	42	140
Basalt, brown, soft	5	145
Basalt	57	202
Basalt, gray, soft	10	212
Basalt, brown, soft to hard	68	280
Basalt, gray	87	367
Basalt, black and gray, medium hard	284	651

Casing, 12-Inch, set to 100 feet, perforated at 50 feet.

Well 5/35-12F2

City of Milton-Freewater, No. 2. Altitude about 1,065 feet. Drilled by A. A. Durand and Son, 1944. Recent alluvium and old gravel of Pleistocene age: Gravel, cemented below 28 feet -----63 63 Columbia River Basalt: Basait, alternately brown and black -----113 176 Basalt, brown and red -----9 185 Basalt, black and gray -----19 204 Basalt, brown, porous -----209 5 Basalt, black and brown ------109 318 Basalt, brown, porous -----7 325 Basalt, brown and black -----77 402 Clay, blue, sticky -----1 403 Basalt, black and brown, porous 459-479 -----158 561 Basalt, gray and black, porous 583-595 and 654-668 ------107 668 Basalt, black, porous, static water level 114 feet ------10 678 Basalt, black, static water level 105 feet -----43 721 Basalt, brown, black, gray, and red -----89 -810 Basalt, black, static water level 103 feet -----23 833 Basalt, black and brown 902

69

Casing, 20-inch, set to 41 feet; 16-inch set to 99 feet.

Material	Thickness (feet)	Depth (feet)

Well 5/35-12G1

Rogers Canning Co. Altitude about 1,080 feet. Drilled by A. A. Durand and Son, 1944.

Recent alluvium and old gravel of Pleistocene age:			
Gravel, cemented below 21 feet	46	46	•
Boulders	2	48	
Columbia River Basalt:		•	
Basalt, brown and black, porous 182-185	334	382	•
Basalt, gray with blue shale	7	389	
Basalt, black	62	451	·
Basalt, porous with some blue clay	11	462	
Basalt, black, with blue shale 478-486	41	503	
Basalt, black, porous	· 5	508	•
Basalt, gray and black, porous 569-584	195	703	• •

Casing, 20-inch, set to 41 feet; 16-inch, to 64 feet.

Well 6/33-8Q1

Mr. Nelson (former owner). Altitude about 525 feet. Drilled by Nelson about 1915.

Touchet Beds and other Pleistocene deposits undifferentiated:

Soil	5	5
Sand, fine, water-bearing	25	30
Clay	20	50
Sand, fine, water-bearing	50	100
Clay', blue	35	135
Sand, coarse	40	175
Columbia River Basalt:		• •
Basalt, water-bearing	2	177

Well 6/33-10J1

D. Gilkerson. Altitude about 545 feet. Drilled by A. A. Durand and Son, 1939.

Touchet Beds:		
Clay, silt, "hardpan" and pea gravels	80	80
Gravel and sand	40	120
Clay, blue, mixed with sand	55	175
Gravel, loose, water-bearing	50	225

Well 6/34-9F1

Clayton Prusia. Altitude about 610 feet. Drilled by Heitstuman Bros., 1953.

Touchet Beds:		
Soll, sand, clay	28	28
Unclassified:		
Gravel	27	55
Clay and gravel	35	90

Materials	Thickness (feet)	Depth (feet)
Well 6/34-9F1Continued		
Old gravel of Pleistocene age: Gravel, cemented with clay in center part Clay Gravel, cement Clay Gravel, loose, with some clay Clay, with 4 feet of cemented gravels near top	31 6 26 2 8 33	121 127 153 155 163 196

Casing, 12-inch, set to $97\frac{1}{2}$ feet.

Well 6/34-13A1

۴

R. M. Emigh. Altitude about 700 feet. Drilled by T. VanVoorst, 1946.

Touchet Beds:		
Soil	6	6
Clay, blue, with silt	94	100
Old gravel of Pleistocene age:		
Gravel, cemented	70	170
Gravel, water-bearing	10	180
Gravel, cemented	40	220
Gravel, water-bearing	4	224
Gravel, cemented	86	310

Well 6/34-22G1

Lane Hune, formerly E. C. Burlingame, Sr. Altitude about 590.feet. Drilled by Sullivan Machinery Company of Chicago, 1922.

Touchet Beds and old clay of Pleistocene age:		
Silt, blue "mud" and fine sand	1,000±	1,000 <u>+</u>
Columbia River Basalt:		
Basalt, fractured, no core over 4 ft long	2,000 <u>+</u>	3,000

Well 6/34-3501

Marion A. Cockburn. Altitude about 650 feet. Drilled by A. A. Durand and Son, 1948.

Recent alluvium: Gravel and soil Columbia River Basalt:	11	11
Basalt, layered, water-bearing; static water level 8 feet below surface	289+	300
Basalt, faulted, sloughed badly	200	500
Basalt, layered, water-bearing; static water level about 20 feet above surface	150	650

Casing, 18- and 14-inch, set to 60 feet.

1

÷.

÷

142

ų,

٠

Materials -	Thickness	Depth
	(feet)	(feet)

Well 6/35-101

Frank Decclo. Altitude about 810 feet. Drilled by A. A. Durand, 1910.

Older alluvium and old gravel and clay of Pleistocene age:		
Soil, clay, fine sand and gravel	470	470
Sand, partly cemented	10	480
Clay, blue	47	527
Columbia River Basalt;		
Basalt, water-bearing, violent flow at land surface	8	535

Casing, 10-inch, set to 70 feet; 8-inch, set to 470 feet; 6-inch set 470-510 and 0-90 feet.

Well 6/35-1D1

Tony Lampeiti. Altitude 800 feet. Log from memory of Nelson, former owner. Drilled by A. A. Durand, 1914.

Old gravel and clay of Pleistocene age;		
Soll, gravel	200	200
"Mud"	200	400
Gravel	100	500
Clay	24	524 ·
Columbia River Basalt;		
Basalt, water-bearing, water flowing at land surface	25	549

Well 6/35-1M1

Harold Wagoner. Altitude 800 feet. Drilled by A. A. Durand, 1911.

Touchet Beds: Soll and silt Old gravel and clay of Pleistocene age:	50	50
Gravel, cemented	200	250
Clay, yellow, sticky	225	475
Gravel, cemented ("solid rock")	50	525
Clay, sticky	75	600
Columbia River Basalt:		
Basait	100	700
Basalt, creviced, water-bearing	3	703

Well 6/35-2E1

Mrs. M. Seeliger. Altitude about 730 feet. Drilled by Harding Bros., 1948.

Clay	12	12
	L88 326	200 526
Columbia River Basalt: Basalt, creviced at 540 and 700, porous at places but not water-	288	814

Casing, 10-inch and 6-inch, set to 540 feet.

Materials	Thickness	Depth
	(feet)	(feet)

Well 6/35-4B1

F. R. Travaille. Altitude about 680 feet. Drilled by A. A. Durand and Son, 1946.

Recent alluvium: Alluvium Old gravel of Pleistocene age:	17	17
Gravel and sand	11	28
Gravel, loose	17	45
Gravel	20	65
Boulders and gravel	15	80
Gravel, coarse	8	88
Sand	4	92

Casing, 8-inch, set to 90 feet, perforated 15-20, 30-40, and 50-67 feet.

Well 6/35-4Q1

D. D. Wright. Altitude about 685 feet. Drilled by A. A. Durand and Son, 1945.

Recent alluvium:		
Soll, gravel and "dirt"	20	20
Old gravel and clay of Pleistocene age:		
Gravel and sand, water-bearing at 25 feet	43	63
Clay, brown with gravel	37	100
Clay, sandy	7	107

Casing, 8-inch, set to 107 feet, perforated 67-107 feet.

.

Well 6/35-6A1

R. Rimpler. Altitude about 630 feet. Drilled by Harding Bros., 1946.

Recent alluvium (slope alluvium);		
"Soil"	18	18
Old gravel of Pleistocene age:		
Gravel, cement	20	38
Clay and gravel	18	56
Gravel, water-bearing	19	75

Well 6/35-10P1

Frank Berard. Altitude about 735 feet. Drllled by A. A. Durand, 1922.

Recent alluvium:		
Soil and alluvium	8	8
Old gravel and clay of Pleistocene age:		
Gravel, loose, water-bearing	17	25
Gravel, cemented, with sand and clay	155	180
Clay with some gravel Interbedded, some water-bearing members;		
static level just above land surface	80	260
Clay, yellow	25	285
Clay, blue	295	580

e,

3

t

τ.

•

Materials	Thickness (feet)	Depth (feet)
Well 6/35-10P1Continued		
Columbia River Basalt: Basalt, water-bearing in places, first flow of water at 700, slight increased flow to 900, about 100 gpm increase in 900-910 zone	330 225 10±	910 1,135 1,145
Well 6/35-11D1		
Ivor Williams. Altitude about 730 feet. Drilled by A. A. Durand and	Son, 1946.	
Old dug well	18	18
Old gravel of Pleistocene age: Gravel and boulders Gravels and clay Sand, coarse	12 8 13	30 38 51
Well 6/35-11J1		
U.S. Dept. of Agriculture. Altitude about 760 feet. Drilled by A. A	. Durand.	
Recent alluvium: Soil	12	12
Old gravel and clay of Pielstocene age: Gravel and sand (some water) Clay, blue	210 325	222 547
Columbia River Basalt: Basalt, black, hard Basalt, porous, water-bearing	83 12	630 642
Well 6/35-12N1		
A. A. Durand. Altitude about 775 feet. Drilled by A. A. Durand, 1	913.	
Recent alluvium: Soll and gravel	10	10
Old gravel and clay of Pleistocene age: Gravel, loose	35	45
Gravel, cemented with clay interbeds	215	260
Clay, blue Gravel, water-bearing, static water level 25 feet above land surface	85	345
Clay, blue	5 185	350 535
Columbia River Basalt: Basalt, black	30	565
Basalt, black, porous, water-bearing	25	590
Casing, 10-inch, set to 180 feet, 8-inch, set to 495 feet, 6-inch	to 535± feet.	

111

Materials	Thickness	Depth
	(feet)	(feet)

٠.

.

Well 6/35-15A1

S. T. Cauvel. Altitude about 760 feet. Drilled by A. A. Durand and Son, 1945.

Recent alluvium:	5	5
Old gravel of Pleistocene age:	2	2
Boulders	15	20
Clay and gravel	6	26
Sand and gravel	10	36
Gravel, cemented	6	42

Casing, 8-inch, set to 42 feet, perforated 201 to 361 feet.

Well 6/35-16N2

F. E. Kralman. Altitude about 750 feet. Drilled by A. A. Durand and Son, 1945.

Recent alluvium;		
Soi!	8	8
Old gravel of Pleistocene age:	-	-
Gravel and boulders	8	16
Gravel, loose	17	33
Gravel, cemented	11	44
Gravel, water-bearing	2	46

Casing, 8-inch, set to 43 feet, perforated 12-22 and 32-43 feet.

Well 6/35-23D1

E. E. Stevens. Altitude about 825 feet. Drilled by O. E. Haig and T. VanVoorst, 1933.

Touchet Beds:		
Silt, sand, and clay	50	50
Old gravel of Pleistocene age:		
Gravel, water-bearing	50	100
No record	587	687
Columbia River Basalt:		
Basalt, dense, water-bearing	48	735
Basalt	185	920
Clay, blue, swelling	20	940
Basalt	67	1,007

Casing, 8-6-5-42-inch, set to 1,007 feet, perforated 687-735 feet.

Well 6/35-25B1

D. Goodman. Altitude about 870 feet. Drilled by Shortridge, 1934.

Recent alluvium and old gravel of Pleistocene age:		
Gravel, old dug well	27	27
Old clay of Pleistocene age:		
Clay, yellow	20	47
Clay, with gravel	43	90
Clay, blue, with some "boulders"	312	402
Casing Reinch and 27 54 fact area at Latter		

Casing, 8-inch, set 27-54 feet, open at bottom.

GROUND WATER

Table 2.--Drillers' logs of representative wells.--Continued

Materials	Thickness	Depth
	(feet)	(feet)

Well 6/35-27H1

J. E. Kessler. Altitude about 860 feet. Drilled by A. A. Durand & Son, 1945.

Recent alluvium and old gravel of Pleistocene age (old dug well): Soil, mostly cemented	5 <u>+</u>	5 <u>+</u>
Gravel, cobble size, mostly cemented; water-bearing in loose gravel members Old gravel of Pleistocene age:	29	34
	7	41
Gravel and clay	9	50
Gravel, clean, water-bearing	6	56
Gravel, washed Gravel and clay	7 9 6	50

Casing, 6-inch, set 5-46 feet.

.

4

 \mathbf{a}

-22

•

Well 6/35-27Q3

C. Feigner. Altitude about 890 feet. Drilled by Earl Shortridge, 1946.

Dug well, no record	50	50
Old gravel of Pleistocene age:		
Gravel, cemented	265	315
Clay, reddish	7	322
Gravel, cemented	58	380
Old clay of Pleistocene age:		
Clay, red	10	390
Clay, gray and blue	90	480

Well 6/35-30C1

A. F. Riggle. Altitude about 700 feet. Drilled by Lowell Marlatt, 1955.

Soil and unclassified:		
Soil and gravel mixed with clay	35	35
Old gravel of Pleistocene age:		
Gravel, water-bearing	7	42
Clay and gravel	17	59
Sand, fine	1	60
Clay with some pea gravel	72	132
Clay, yellow	77	209
Gravel with clay intermixed	3	212
Gravel, clean, water-bearing	18	230

Weli 6/35-33J1

J. Nelson, Altitude 875 feet. Drilled by Haig Bros., 1933.

Old gravel and clay of Pleistocene age:

Gravel, cemented	230	230
Clay, blue	45	275
Shale, gray	55	330
Clay, black, sticky	45	375
Sand	25	400
Clav	2	402

Materials	Thickness (feet)	Depth (feet)
Well 6/35-33J1Continued		
Sand	11	413
Columbia River Basalt: Basalt, red Basalt, water-bearing	2 27	415 442
Well 6/35-33K1		
H. O. Yates. Altitude about 865 feet. Drilled by Haig Bros., 1932	3.	
Recent alluvium and old gravel of Pleistocene age: Gravel, loose Old gravel of Pleistocene age:	30	30
Gravel, cemented with yellow clay matrix Gravel and boulders, loose, water-bearing	32 4	62 66
Casing, 8-inch, set to 62 feet.		
. Well 6/35-34K1		
C. W. Rasmussen. Altitude about 910± feet. Drilled by A. A. Dura	nd and Son, 19	946.
No record - dug well Old gravel of Pleistocene age:	37	37
Gravels, cemented	14	51
Cobbles, basalt-rock, hard	5	56
Crevel endy static water level 22 feet	5	60

·.

-2

ч

••

Table 2 .-- Drillers' logs of representative wells. -- Continued

Gravels, cemented	14	51
Cobbles, basalt-rock, hard	5	56
Gravel, sandy, static water level 22 feet	2	58
Gravel, cemented	7	65
Clay, yellow	2	67
Gravel, cemented, static water level 37 feet	106	173
Clay, yellow, and cobbles	2	175
Gravel, cemented	25	200
Gravel, cemented, with clay	25	225

Casing, 8-inch, 0 to 87 feet; 6-inch to 225 feet; perforated 52 to 60 feet and 210 to 225 feet.

Well 6/35-34P3

Alex Duff. Altitude 895 feet. Drilled by Haig Bros., 1925.

 \mathbf{r}

Recent alluvium and old gravel of Pleistocene age:		
Gravel, in part cemented	280	280
Old clay of Pleistocene age:		•
Clay, swelling	10	290
Clay, blue	60	350
Clay, green, much sand interbedded	50	400
Columbia River Basalt:		
Basalt, black and white	5	405
Basalt, red, water-bearing	5	410

. .

.

.

 \mathbf{c}

7

:

Table 2Drillers' logs of representative wellsContinued		· •
Materials	Thickness (feet)	Depth (feet)
Weil 6/36-3A1		
B. D. Reser. Altitude about 1,060 feet. Drilled by Wm. E. Ruther	, 1951.	ه. اور ۲۰۰۰ رو
Soil	6	6
Old gravel of Pleistocene age: Gravel, cemented, water at 17 ft	24	30
Old clay of Pleistocene age: Clay, brown	52	82
Clay, blue, some intermixed gravel Columbia River Basalt: Basalt	193	275
BasaltBasalt , water-bearing	9 5	284 289
Basalt	1	290
Well 6/36-6Q1		t get
John Yenny. Altitude about 850 feet. Drilled by A. A. Durand and	Son, 1945.	
Soil	17	17
Old gravel of Pleistocene age: Gravel	2	19
		17
Gravel, cemented	40.	59
Gravel, cemented Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet.	40.	
	40.	59 (1911) - 1913 - 1913
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet.	40.	59
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945.	40 Drilled by A.	59
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay	40 Drilled by A.	59
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay of Pleistocene age: Gravel, cemented: little water 62-70 feet	40 Drilled by A. 21 96	59 A. Durand and 21 117
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay of Pleistocene age: Gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles	40 Drilled by A. 21 96 58	59 A. Durand and 21 117 175
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay	40 Drilled by Å. 21 96 58 43	59 A. Durand and 21 117
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay	40 Drilled by A. 21 96 58 43	59 A. Durand and 21 117 175 218 336
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet	40 Drilled by A. 21 96 58 43 118 22	59 A. Durand and 21 117 175 218 336 358
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles	40 Drilled by A. 21 96 58 43 118 22 84	59 A. Durand and 21 117 175 218 336 358 442
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay with gravel and cobbles Clay blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440	40 Drilled by A. 21 96 58 43 118 22 84 16	59 A. Durand and 21 117 175 218 336 358 442 458
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay with gravel and cobbles Clay blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, brown streaks at 445	40 Drilled by A. 21 96 58 43 118 22 84 16	59 A. Durand and 21 117 175 218 336 358 442
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay, blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, brown streaks at 445 Basalt, gray and black Soapstone, green, and basalt, black, hard and soft; little water at 718 feet with static water level 77 feet, bailed out	40 Drilled by A. 21 96 58 43 118 22 84 16 162 110	59 A. Durand and 21 117 175 218 336 358 442 458 442 458 620 730
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay, blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, brown streaks at 445 Basalt, gray and black Soapstone, green, and basalt, black, hard and soft; little water at 718 feet with static water level 77 feet, bailed out	40 Drilled by A. 21 96 58 43 118 22 84 16 162 110	59 A. Durand and 21 117 175 218 336 358 442 458 620 730 879
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay, blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, crevice at 440 Basalt, black, brown streaks at 445	40 Drilled by A. 21 96 58 43 118 22 84 16 162 162 162 110 149 7	59 A. Durand and 21 117 175 218 336 358 442 458 620 730 879 886
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay with gravel and cobbles Clay blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, crevice at 440 Basalt, black, brown streaks at 445 Basalt, gray and black Soapstone, green, and basalt, black, hard and soft; little water at 718 feet with static water level 77 feet, bailed out Basalt, black and gray, hard and medium	40 Drilled by A. 21 96 58 43 118 22 84 16 162 110	59 A. Durand and 21 117 175 218 336 358 442 458 620 730 879
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay, blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, crevice at 440 Basalt, gray and black Soapstone, green, and basalt, black, hard and soft; little water at 718 feet with static water level 77 feet, bailed out Basalt, black, soft	40 Drilled by A. 21 96 58 43 118 22 84 16 162 16 162 110 149 7 53	59 A. Durand and 21 117 175 218 336 358 442 458 442 458 620 730 879 886 939
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay Old gravel and clay of Pleistocene age: Gravel, cemented; little water 62-70 feet Clay with gravel and cobbles Clay, blue Columbia River Basalt: Basalt, black, soft and hard Basalt, black, crevice at 440 Basalt, black, crevice at 440 Basalt, black, brown streaks at 445 Basalt, gray and black Basalt, gray and black	40 Drilled by Å. 21 96 58 43 118 22 84 16 162 110 149 7 53 61	59 A. Durand and 21 117 175 218 336 358 442 458 459 459 450 450 450 450 450 450 450 450 450 450
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay	40 Drilled by A. 21 96 58 43 118 22 84 16 162 16 162 110 149 7 53	59 A. Durand and 21 117 175 218 336 358 442 458 442 458 620 730 879 886 939
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay	40 Drilled by A. 21 96 58 43 118 22 84 16 162 110 149 7 53 61 56	59 A. Durand and 21 117 175 218 336 358 442 458 459 456 456 456 456 456 456 456 456 456 456
Casing, 10-inch, set to 30 feet; perforated 3 to 30 feet. Well 6/36-9L1 Baker & Baker. Fix Farm Well No. 1. Altitude about 1,000 feet. Son, 1945. Deposits of the upper valley terraces: Soil and clay	40 Drilled by A. 21 96 58 43 118 22 84 16 162 110 149 7 53 61 56 16	59 A. Durand and 21 117 175 218 336 358 442 458 458 442 458 458 442 458 458 458 458 458 458 458 458 458 458

Materials	Thickness (feet)	Depth (feet)		
Well 6/36-6Q1Continued				
Basalt, brown, soft; static water level 92 feet Basalt, soft, porous Basalt, black, hard Basalt, black, very hard	2 20 19 24	1,092 1,112 1,131 1,155		
Casing, 12-inch, set to 229 feet; 10-inch, set 215 to 652 feet; ce and 620 to 939 feet.	ment-lined 4	35 to 673 feet;		
Well 6/36-9P1				
Baker & Baker. Fix Farm Well No. 2. Altitude about 1,000 feet. Son, 1946.	Drilled by A.	A. Durand and		
Deposits of the upper valley terraces:				
Dirt and clayOld gravel and clay of Pleistocene age:	22	22		
Gravel, cemented, with clay	49	71		
Gravel, cemented, (water)	9	80		
Gravel, with clay	20	100		
Clay, yellow and blue	114	214		
"Rock"	10	224		
Columbia River Basalt;				
Basalt, black, hard	36	260		
Basalt, black, soft	6	266		
Basalt, black and gray	101	367		
"Rock, soft"	4	371		
Basalt, black, hard; static water level 88 feet	20	391		
Basalt, gray and black, hard	205	596		
Clay, blue, sticky	2	598		
Basalt, hard	67	665		
"Clay streaks"	2	667		
Unreported (caving)	5	672		
Basalt, hard	5	677		
Basalt, black, with streaks of clay	314	1,001		
Basalt, blackShale, brown	12	1,013		
Basalt	19	1,032		
Basalt, with ciay	20	1,052		
Basalt	8 22	1,060		
Basalt, soft, and shale	8	1,082 1,090		
Basalt, black; static water level 120 feet	47	1,137		
Basalt, gray, soft	46	1,183		
Basalt; static water level 98 feet	77	1,260		
Unreported	7	1,267		
Clay, brown (caving)	28	1,295		
"Rock, brown, hard"	11	1,306		
Basalt, hard	16	1,322		
"Rock, brown, soft"	28	1,350		
Basalt	7	1,357		
Basalt, black, porous; static water level 90 feet	18	1,375		
Basalt, black, gray, and brown	195	1,570		
Basalt, softShale, brown	14	1,584		
	11	1,595		
Basalt, gray, hard; static water level 90 feet	400	1,995		
Basalt, porous	66	2,061		

~

_

•

-4

-

.

Ma	teri	a	İS
----	------	---	----

.

.

7

•

Well 6/36-10E1

Lawrence G. Frazier. Altitude about 1,050 feet. Drilled by A. A. Durand and Son, 1946.

Recent alluvium:		
Soil	3	3
Gravel, with boulders	.11	14
Gravel	5	19
Clay, yellow	11	30
Old gravel and clay of Pleistocene age:		
Gravel	8	38
Gravel, cemented	12	50
Clay, sandy	15	65
Gravel, coarse	7	72
Gravel, cemented	15	87
"Basalt," hard	5	92
"Hardshell"	1	93
Gravel	2	95
Gravel, cemented	17	112
Clay	6	118
Gravel, cemented	12	130
Gravel, with clay	10	140
Shate, blue	4	144
Clay, brown	11	155
Clay, brown Clay, blue	īī	166
Gravel	17	183
Gravel, cemented		192
Clay, blue	20	212
Gravel, cemented	10	222
Columbia River Basalt:	10	LLL
Basalt, black	82	304
Basalt, gray, hard	5	309
Basalt, brown, with clay	6	315
Basalt, hard, with porous zones	115	430
Basalt, black, hard	19	449
Basalt	21	470
Not reported	7	477
"Lime".	3	480
Not reported	14	494
Basalt, black, hard	18	512
Basalt, gray	98	610
Shale, gray	5	615
Basalt, gray and black	185	800

Casing, 12-inch, set to 59 feet, 10-inch, set to 224 feet and perforated 46 to 222 feet.

Well 6/36-13C1

Emmett Lynch. Altitude about 1,300 feet. Drilled by A. A. Durand and Son, 1944.

Recent alluvium and Palouse Formation:		
Soil, sandy	10	10
"Shale and shells"	30	40
Columbia River Basalt:		
Basaít	5	45

. .

•

• • •

...

Materials	Thickness (feet)	Depth (feet)
Well 6/36-13C1Continued		
Basalt, broken, static water level 40 feetBasalt	15 18	60 78
Shale, red, sandy, static water level 60 feet; water level dropped 20 feet at 122 feet	10	
Basalt, static water level 80 feet	47	88 135
Well 6/36-20Q1		• .
W. H. Till. Altitude about 935 feet. Drilled by A. A. Durand and S	on, 1945.	. •
Dug weil, no record Old gravel and clay of Pleistocene age:	64	64
Gravel, static water level 65 feet	95	159
Gravel, static water level 65 feet Clay, blue	86	245
Gravel and sandy clay, static water level 70 feet	45	290
Clay, blue, sandy, static water level 100 feet Columbia River Basalt	55	345
Basalt, static water level 80 feet	15	360
Basalt, porous	25	385
Well 6/36-31L1 Milton Nursery. Altitude about 955 feet. Drilled by A. A. Durand, 1	1929.	•
Deposits of the upper valley terraces:		·
SoilOid gravel of Pleistocene age:	, 20	20
Gravel, water-bearing in 140-165 zone	180	200
Basalt rock	217	417
Shale	17	434
Basalt, gray and black	278	712
Basalt, black, water-bearingBasalt, black, water-bearing	3	715
Basait, gray	185	900
Basalt, black, with streaks of red	14	914
Basalt, gray	206	1,120
Basalt, black, water-bearing	2.	1,122
Basalt, gray	268	1,390
Basalt; black, with fine white water-washed gravel, water-bearing	3	1,393
Basalt, gray	457	1,850
Basalt, black, water-bearing	6	1,856
Basalt, gray	84	1,940
Basalt, black, water-bearing	4	1,944
Basalt; gray, water-bearing	56	2,000

Table 2. -- Drillers' logs of representative wells. -- Continued

Casing, 12-inch, set to 39 feet; 10-inch, set to 207 feet' 8-inch, set to 348 feet; 6-inch, set 417 to 537 feet. Casing perforations not recorded, but said to be perforated in 140-165-foot zone.

.

٠

ы,

đ,

۰.

.

Materials

....

Well 6/37-5F1

Baker & Baker, Sweazey Quarter well. Altitude about 1,560 feet. Drilled by A. A. Durand and Son, 1946.

	-	
alouse Formation:		
Clay	15	15
Ild gravel of Pleistocene age: Gravel, cemented		
Gravel, cemented	30	45
"Shale"Gravel, cemented	20	65
columbia River Basalt:	5	70
Basalt, red	• • • • •	
Basait, gray and black	10	
Basalt, yray and black	. 94	174
Basalt, black, water-bearing 185 to 190 feet; static water level		
40 feet below land surface Basalt, black, gray, and brown	40.	214
	177	392
Basalt, black; at 417 feet water flowed over casing head.		51
Pumped 265 gpm with drawdown of 100 feet Basalt, gray	66	458
	44	502 ,
Basalt, black, fractured; water overflowing at 5 gpm	13	515
Basalt, black, hard; crevice at 535 feet	20	535
Basalt, black, soft	18	553
Basalt, gray, hard	9	. 5 <u>62</u>
Basalt, black, soft; water-bearing 559 to 563 feet and flowing		
100 gpm; static water level 60 feet above land surface		.563 .
Basalt, gray and black, hard Basalt, black; water flowing 3 inches over 12-inch casing; water	16	579
Basalt, black; water flowing 3 inches over 12-inch casing; water	•	
has 55 pounds psi shut-in pressure	4	. 583
Basalt, porous, brown; water flowing 2,390 gpm and has 74 psi		· · · .
shut-in pressure	29	612
	- .	
Well 6/37-18P1	· · · · ·	
ner R. Davis. Altitude about 1,500 feet. Drilled by A. A. Durand		1945
		. 45
d gravel of Pleistocene age:		
d gravel of Pleistocene age: Gravel, with boulders Gravel and sand Sand, hard, cemented Gravel	6	
Sand hard compared	14	. . <u>. 65</u> . .
Gravel	8	73
	· ·	76
Gravef, cemented	46	122
	4	126
Gravel, cement; static water level at land surface "Gravel and broken rock, water-bearing"; static water level	26	152
winter and stored took, water weathing ; statte water level		
is 115 feet	•	3/0
is 115 feetGravel, with clay	8 2	160 162

Casing, 6-inch, set to 73 feet; perforated 57-73 feet.

. ;

Materials	Thickness (feet)	Depth (feet)

Well 7/33-10A1

DeRuwe and Weber. Altitude about 550 feet. Drilled by T. VanVoorst, 1925.

Recent alluvium: Soil	12	12
Gravel, sand, silt, water-bearing	12	24
Columbia River Basalt:		
Basalt, soft	4	28
Basalt, hard, with some water	116	144
Basalt, gray, soft, water-bearing	15	159

Well 7/33-26Q1

A. A. Lang. Altitude about 500 feet. Drilled by A. A. Durand and Son, 1945.

Loess, undifferentiated: Soil	а	3
	32	35
Clay		20
Sand, fine, "dry"	35	70
Uncorrelated, old gravel of Pleistocene(?) age:		
Gravel and clay, some water	25	95
Gravel with clay interbeds	5	100
Clay with gravel interbeds	25	125

Casing, 10-inch, set to 125 feet, perforated 83-115 feet.

Well 7/33-34H1

W. J. Webb. Altitude about 470 feet. Drilled by A. A. Durand and Son, 1945.

Touchet Beds:		
Old dug well	18	18
"Soil, sandy," water-bearing	10	28
Sand and gravel	26	54
Uncorrelated, old gravel and clay of Pleistocene(?) age:		
Gravel	25	79
Clay	18	97
Clay	18	97

Casing, 10-inch, set to 78 feet, perforated 28-54 feet--later perforated by owner 16-26 feet.

Well 7/33-34L1

Union Pacific Railroad. Altitude about 442 feet. Drilled by A. A. Durand, 1931.

Recent alluvium:		
Soil	. 12	12
Uncorrelated, old gravel and clay of Pleistocene(?) age:		•
Gravel, cemented	63	75
Clay	180	255
Gravel, cemented	35	290
Clay	67	357
Columbia River Basalt:		
Rock	30	387
		20.

Casing, 6-inch, set 0-260 and 272-387 feet.

4

-10

...

Materials	Thickness	Depth
	(feet)	(feet)

Well 7/33-34N2

R. R. Dodd. Altitude about 435 feet. Drilled by VanVoorst Bros., 1940.

Uncorrelated, Recent alluvium, old gravel and clay of			
Pleistocene(?) age:			
Soil, gravel and sand	69		69
Mud, bluish black, clayey	179		248
Columbia River Basalt:	••		•
Basalt, partly decomposed, water-bearing	7		255
Basalt, black, water-bearing	30	1.1	285

Well 7/34-25N1

Charles Baker. Altitude about 600 feet. Drilled by A. A. Durand and Son, 1946.

Soil	3	3
Deposits of the upper valley terraces and other Pleistocene deposits:		•
Sand, silty, with hard silt interlayers	20	23
Silt, blue, wet, static water level 8 feet	7	30
Gravel, quicksand layer 69-73 feet	44	74
Sand and clay	21	95
Clay, blue, brown and green	190	285
Sand and clay, water-bearing, static level 5 feet, pump test		
35 gpm with 100 feet drawdown	10	295
Columbia River Basalt:		• •
Basait, gray and broken	8	303
Sand, "water-bearing"	4	307
Clay, brown	19	326
Basalt, black	19	345
Clay, brown, static water level 8 feet	9	354
Basalt, black, broken lower 11 feet	52	406
Basalt, hard, pump test 234 gpm with 130 feet drawdown	570	976
Basalt	126	1,102

Well 7/34-29C1

Lowden Johnson. Altitude about 500 feet. Drilled by A. A. Durand, 1907 and 1956.

Recent alluvium: Soil	20	20
Pleistocene deposits, undifferentiated:	20	20
Gravel	30	50
Clay, blue	70	120
Columbia River Basalt:		
Basalt, blue, dense, "dry" to 600 feet and water-bearing in		
several places below	1,080	1,200

Casing, 6 5/8-inch, to 100 feet, 6 1/4-inch to 610 feet, pulled and replaced with 12-inch when rehabilitated in 1956.

۰.

Materials	Thickness (feet)	Depth (feet)
-		

,~

Well 7/34-33E1

J. E. Talbot. Altitude about 510 feet. Drilled by Wm. Ruther, 1959.

Alluvium: Soil Old gravel and clay of Pleistocene age:	12	12
Cobbles	16	28
Gravel, cemented	48	76
Gravel, sand and clay, water-bearing	16	92
Clay, brown with gravel layers, water-bearing	16	108
Clay, blue	7	115

Well 7/35-23M1

U.S. Bonneville Power Administration. Altitude 772 feet. Drilled by A. A. Durand & Son, 1946.

Recent and Pleiston	ene deposits.	undifferentiated:
	icite acpositor	what her cheracea.

Nevenie and i reisebuche depositor andrinerentateo.		
Soil	13	13
Boulders	7	20
Old gravel and clay of Pleistocene age:		•
Gravel, coarse	9	29
Sand, fine, mixed with gravel	8	37
Clay, brown	5	42
Boulders	82	124
Clay, brown	26	150
Sand, fine, with gravel	5	155
Gravel, coarse	15	170
Clay, brown	20	190
Clay, blue-gray	65	255
Sand, fine with gravel	10	265
Clay, blue-gray	112	377
Clay, brown	11	388
Clay, blue-gray	32	420
Clay, red	6	426
Clay, brown	37	463
Columbia River Basalt:		
Basalt, water-bearing	52	515

Casing, 10-inch, to 195 feet, 8-inch to 464 feet.

Well 7/35-25F1

James Arbini, et al. Altitude about 880 feet. Drilled by A. A. Durand and Son, 1946.

Sail	4	4
Old gravel and clay of Pleistocene age:	·	•
Grave	26	30
Gravel, cemented	8	38
"Mud" and gravel	13	51
Gravel, cemented	20	71
Gravel	79	150
"Mud" and gravel	15	165
Gravel, cemented	2	167
"Mud," brown	8	175

GROUND WATER

Table 2 .-- Drillers' logs of representative wells. -- Continued

Materials	Thickness (feet)	Depth (feet)
Match 1413		

Well 7/35-25F1--Continued

Grave!	25	200
Clay, brown	4	204
Clay, blue	205	409
"Rock" (probably angular cobbles cemented)	11	420
Gravel, cemented	10	430
Clay, sticky	5	435
Clay, blue, brown, gray	89	524
Columbia River Basalt:		
"Rock"	3	527
Basalt, gray, hard	16	543
Clay, "gumbo," tough	4	547
Clay and basalt	7	554
Basalt, gray and black, broken in places	66	620
Basalt and clay, brown	16	636
Basalt, gray and black	44	680

Casing, 10-inch, set to 129 feet; 8-inch set 127 to 539 feet.

Well 7/35-25P1

Ponti and Columbo. Altitude about 820 feet. Drilled by A. A. Durand, 1908.

Soil 8	8
Old gravel and clay of Pleistocene age:	-
Gravel, loose and cemented 202	210
Clay, blue and yellow 325	535
Columbia River Basalt:	
Basalt, water-bearing 83	618

Well 7/35-26Q2

College Place Irrigation Dist. No. 14. Drilled in 1952.

Alfuvium;		
Soil and clay	7	7
Old gravel of Pleistocene age:	•	
Gravel, cemented	33	40
Clay, brown, and gravel	93	133
Gravel	7	140
Clay, brown, and grave!	49	189
Old clay of Pleistocene age:		
. Clay, green	263	452
Clay, gray, brown, sticky	82	534
Clay, brown, with basalt inclusions	5	539
Columbia River Basalt:	-	
Basalt, black, hard, water flowing	60	599
Basalt, honey-combed; water flow increased	9	608
Basalt, black, hard	17	625

Materials	Thickness	Depth
	(feet)	(feet)

Well 7/35-33D1

Fred Fuller. Altitude about 660 feet. Drilled by A. A. Durand and Son, 1946.

Soil	18	18
Old gravel and clay of Pleistocene age:	•	
Gravel and clay, water-bearing	14	32
Sand, coarse, with pebbles	23	55
Clay and gravel	5	60
Gravel, fine and sand, fine	2	62
Gravel, cemented	10	72
"Mud" and gravel	4	76
Gravel. cemented	14	90
Sand and gravel, water-bearing	16	106
Clay	2	108
"Rock" (boulder?)	2	110
Gravel and sand	4	114
Gravel, cemented, muddy	12	126
Gravel, cemented, compact	30	156
Gravel, cemented	14	170
Clay, blue, sticky, with pebbles	35	205
Clay, yellow and blue	92	297
"Shale," blue	76	373
"Mud," green, sticky	5	378
"Shale," blue	12	390
"Shale," gray and blue, hard	45	435
"Shale," brown or yellow	55	490
"Mud," yellow and blue, sticky	43	533
"Shale," green	17	550
"Mud," blue, gray, green	23	573
"Shale," brown, black	42	615
Columbia River Basalt:		
Basalt, black and gray	99	714
Basalt, black, soft, porous	16	730
Basalt, black	29	759
Shale, black	i	760

Casing, 10-inch, set to 107 feet; 6-inch, set to 617 feet.

Well 7/35-34G1

Herman Martin. Altitude about 720 feet. Drilled by A. A. Durand and Son, 1944.

Soil	10	10
Old gravel and clay of Pleistocene age:		
Gravel, cemented	20	30
Gravel	7	37
Gravel, loose	28	65
Gravel and clay	14	79
Gravel, loose	13	92
Clay and gravel	13	105
Clay, brown	23	128
Gravel	5	133
Clay and gravel, mixed	10	143

-

Materials	Thickness	Depth
	(feet)	(feet)

Well 7/35-35H1

Walla Walla College. Altitude about 785 feet. Drilled by A. A. Durand and Son, 1946.

Recent alluvium: Soil and clay Old gravel and clay of Pleistocene age:	17	17
Gravel Clav, brown	26	43 49
Gravel, cemented	5	54
Gravel, loose Clay, brown	11 9	65 74
Gravel, cemented	26	100

Casing, 12-inch, set to 75 feet; 10-inch, perforated, set 75-100 feet.

Well 7/35-36A1

Ambrose Zaro. Altitude about 825 feet. Drilled by A. A. Durand.

Not reported	14	14
Old gravel and clay of Pleistocene age:		
Gravel, loose	6	20
Gravel, with clay	20	40
Gravel	5	45
Gravel and clay	40	85
Gravel, water-bearing	10	95
Clay, brown	114	209
Gravel, water-bearing	11	220
Clay, blue	100	320
Clay, blue with some gravel	100	420
Sand, green	40	460
Clay, brown, and gravel	27	487
Clay, gray	48	535
Clay, green	14	549
Columbia River Basalt:		
Basalt, black	14	563
Basalt, gray, water-bearing	33	596
Basalt, black	34	630
Clay, gray, with sand ("crevice")	5	635

Well 7/35-36D1

College Place Water Co. Altitude 790 feet. Drilled by A. A. Durand & Son, 1908.

Soil	5	5
Old gravel and clay of Pleistocene age:		
Gravel, loose	20	25
Gravel, cemented; water-bearing	140	165
Clay, yellow, with some sand	20	185
Gravel, matrix of sand and silt	15	200
Clay, yellow, with some sand	60	260
Clay, blue	275	535
Columbia River Basalt:		
Basait, dense	65	600 [°]
Basalt, porous and dense in alternating layers, water-bearing	25	625

Materials	Thickness	Depth
•	(feet)	(feet)

۰.

Well 7/35-36F2

Richards, et al. Altitude about 805 feet. Drilled by A. A. Durand, 1910.

Old gravel and clay of Pleistocene age:		
Soil, gravel, and blue clay	470	470
"Rock," broken, water-bearing	8	478
Clay, blue	57	535
Columbia River Basalt:		
Basalt	45	580
Basalt, water-bearing	30	610

Well 7/36-2J1

R. L. Moore. Altitude about 1,250 feet. Drilled by A. A. Durand & Son, 1955.

Palouse Formation: Soil, loam Old gravel of Pleistocene age:	36	36
Gravel, with some clay near base	17	53
Gravel, yellow and brown, with some clay	27	80
Gravel, cemented	8	88
Clay, yellow, soft	34	122
Gravel, cemented, with some clay	48	170
Columbia River Basalt:		
Basalt, fractured	12	182
Basalt, black, hard	380	562
Clay, blue	18	580
Basalt, brown, broken, with clay	40	620
Basalt, red, broken	37	657
Basalt, gray	153	810

Casing, 12-inch, set to 164 feet, 12-inch open hole below.

Well 7/36-13F1

City of Walla Walla well No. 1. Altitude about 1,250 feet. Drilled by A. A. Durand and Son, 1942.

Deposits of the upper valley terraces:		
Dirt, gravel, and boulders	32	32
Old gravel and clay of Pleistocene age:		
Gravel, cemented	8	40
Gravel, fine, and clay, brown	11	51
Gravel, clay, and boulders	8	59
Clay, brown, and boulders	31	90
Gravel, cemented	15	105
Clay, brown, and gravel	23	128
Gravel, cemented, boulders	-9	137
Columbia River Basalt:	-	
Basalt, black	53	190
Basalt, blue, with clay seams	57	247
Basalt, gray, hard	53	300
Basalt, softer	14	314
Basalt, black, porous	50	364
Basalt, black, gray, and brown	386	750
Basalt, black and gray, water-bearing at 733 feet and at		,
755 feet	60	810

.

.

÷.

~

Ċ

Materials	Thickness (feet)	Depth (feet)
Weil 7/36-15C1		
City of Walla Walla. Altitude about 1,135 feet. Drilled by Ebersol,	1931.	
Deposits of the upper valley terraces: Soil Old gravet and clay of Pleistocene age:	20	20
Gravel, cemented Clay, blue Columbia River Basalt:	115 200	135 335
Basalt	180	515

Well 7/36-16R1

Elmer Markham. Altitude about 1,060 feet. Drilled by A. A. Durand and Son, 1945.

Dug pit ("grave ")	38	38
Old gravel of Pleistocene age:		
Gravel, cemented	35	73
Gravel, with yellow clay	39	112
Gravel, pea-size, water-bearing	10	122

Well 7/36-19E1

Mrs. Nina Anderson. Altitude about 880 feet. Drilled by W. E. Ruther, 1946.

Soil	4	4
Old gravel and clay of Pleistocene age:		
Gravel, water-bearing below 27 feet	44	48
Clay	23	71
Gravel, water-bearing	13	84

Well 7/36-19F1

General Foods Corporation, Birdseye-Snider Division. Well No. 1. Altitude about 890 feet. Drilled by A. A. Durand and Son, 1946.

-Old gravel and clay of Pleistocene age:		
Gravel, coarse	14	14
Gravel, loose	26	40
Gravel, loose, with clay	10	50
Gravel, coarse, water-bearing, bailed dry at 53 feet	15	65
Clay and gravel	41	106
Gravel, cemented	3	109
Clay and gravel	6	115
Clay	20	135
Gravel, cemented	80	215
Clay, yellow	15	230
Clay, blue	165	395
Gravel, cemented	14	409
Clay, blue	10	419
Gravel, hard, cemented	24	443
Clay, brown, sticky	12	455
Gravel, cemented	5	460
Clay, yellow	32	492

Materials	Thickness (feet)	Depth (feet)
Well 7/36-19F1Continued		
Clay, blue	3	495
Clay, blue, with broken basalt	6	501
Columbia River Basalt:		
Basalt, black, medium and very hard	129	630
Clay, blue	10	640
Basalt, fractured	95	735
Basalt, black, very hard	106	841
Basalt, broken	102	943
Basalt, black, very hard Basalt, black, very hard	27	970
Basalt, black, water-bearingBasalt, black, water-bearing	80	1,050
Basalt, black, hard	5	1,055
Basalt, broken	7	1,062
Basalt, black, hard and broken	28	1,090
Basalt, black, broken, water-bearing	35	1,125

Casing, 20-inch, 0-253 feet; 16-inch, 243 to 511 feet; 12-inch, $494\frac{1}{2}$ to 836 feet; open at bottom.

٨

Well 7/36-19R1

Walla Walla Canning Company. Altitude about 920 feet. Drilled by A. A. Durand and Son, 1942.

Dug pit	9	9
Old gravel and clay of Pleistocene age:		
Gravel and clay; static water level 14 feet	96	105
Gravel, cemented, and clay; water at 125 feet	20	125
Unreported	5	130
Gravel, cemented	15	145
Clay, brown	8	153
Gravel, cemented	10	163
Clay, brown	8	171
Gravel, coarse and cemented; static water level 53 feet	19	190
Clay, yellow, blue, and gray	145	355
Shale, sandy, black and blue clay	50	405
Sandstone	4	409
Gravel, fine, water-bearing, static water level 80 feet	12	421
Gravel, fine, and caving clay	7	428
Clay, blue and brown	12	440
Gravel, fine, and sandy blue clay	40	480
Clay, yellow	30	510
Gravel, loose, and clay; static water level 90 feet	10	520
Conglomerate, brown, and sand, gravel, and clay	15	535
Clay, blue, sandy	25	560
Columbia River Basalt:		200
Basalt, brown and black; static water level 150 feet	5	565
Basalt, black and gray, hard	93	658
Basalt, black; static water level changed from 135 feet to 105		
feet at the 670-foot depth	22	680
Basalt, gray and black, hard and soft zones	35	715
Basalt, gray, very hard	14	729
Crevices	2	731
Basalt, black, hard, some green clay; static water level 100 feet	119	866
Basalt, hard and soft streaks; static water level 100 feet	117	983
Basalt, black; pump tested 72 gpm at 240 feet	106	1,089

.

m,

 \overline{a}

Â

Materials	Thickness (feet)	Depth (feet)
Well 7/36-19R1Continued		
Basalt, gray, very hard, with crevices Clay, sandy, and fine gravel; static water level 93 feet Basalt, gray, very hard	114 23 19 11 4 66	1,203 1,226 1,245 1,256 1,260 1,326
100 feetBasalt, black, very hardBasalt, black, very hardBasalt, gray, porous, water-bearing at 1,578 feetBasalt, black, porous; static water level 95 feet	32 207 15 10	1,358 1,565 1,580 1,590

Casing, 12-inch, 0 to 254 feet; 10-inch, 244 to 525 feet; 8-inch, 520 to 578 feet; 6-inch, 560 to 1,590 feet, perforated at each water-bearing stratum in basalt.

Well 7/36-20N1

Marcus Whitman Hotel. Altitude about 940 feet. Drilled by A. A. Durand and Son, 1946.

Recent alluvium and old gravel and clay of Pleistocene age:		
Gravel with boulders	20	20
Gravel, cemented	130	150
Clay, brown, with gravel layers	77	227
Clay, gray and blue	175	402
Columbia River Basalt:		
Basalt, black, broken	38	440
Basalt, broken, and blue clay, sticky	35	475
Clay, blue	13	488
Basalt, black	7	495
Clay, gray	12	507
Basalt, black	193	700

Well 7/36-20P1

Union-Bulletin Publishers. Altitude about 950 feet. Drilled by A. A. Durand and Son, 1946.

Recent alluvium: Soil Gravel	3 12	3
Old gravel and clay of Pleistocene age:		15
Gravel and cobbles	10	25
Gravel, cemented with cobbles	41	66
Boulders and gravel	16	82
Gravel, cemented	88	170
Clay, yellow	20	190
Gravel, cemented	33	223
Clay, yellow	1	224

Materials	Thickness (feet)	Depth (feet)
Well 7/36-21G1		
Ray Mindemann. Altitude about 1,030 feet. Drilled by A. A. Duran	d & Son, 1945.	
Dug well - no record	20	20
Old gravel of Pleistocene age: Boulder gravel	12	32
Gravel, cemented	12	44
Sand and gravel, water-bearing	11	55
Casing, 6-inch, set to 55 feet, perforated 40-52 feet.		
Well 7/36-22N1		
City of Walla Walla No. 4. Drilled by A. A. Durand & Son, 1953.		
Recent alluvium:		
Soil, sand, gravel, boulders	21	21
Old gravel of Pleistocene age:		~ 4

Recent alluvium:		
Soil, sand, gravel, boulders	21	21
Old gravel of Pleistocene age:		
Gravel, coarse, and cobbles	3	24
Gravel, with some clay	67	91
Clay, yellow and brown, and gravel	116	207
Gravel with clay	87	294
Old clay of Pleistocene age:		
Clay, blue, sticky	70	364
Clay, with some gravel	6	370
Clay, blue, hard sticky	16	386
Gravel, fine	3	389
Clay, hard, with basalt chips	8	397
Columbia River Basalt:		
Basalt, black, hard, broken 412-422	59	456
Basalt, broken, clayey, water-bearing; static water level rose		
from 35 to 20-foot level at 458 feet	12	468
Basalt, black, hard; bailer test at 475 feet gave 30 feet draw-		
down at 250 gpm	16	484
Basalt; static water level 14 feet at 496, flowing 10 gpm from		
511-519 zone	35	519
Basalt, black, medium hard, water flowing 50 gpm at 635 feet	116	635
Basalt, layered, hard and soft	31	666
Basalt, black, hard	52	718
Basalt, gray, hard; flowing 86 gpm at 763 feet	60	778
Basalt, black, hard; water flow increased to 103 gpm at 780		
feet	11	789

Casing, 30-inch, set to 35 feet, 24-inch, set to 400 feet. Free flow 400 gpm Sept. 6, 1953.

Well 7/36-23E2

Garry Huff. Altitude about 1,140 feet. Drilled by A. A. Durand & Son, 1945.

Recent alluvium and old gravel and clay of Pleistocene age:		
Gravel	55	55
Gravel, cemented	10	65
Gravel, with clay, water-bearing	35	100

Casing, 6-inch, set to 98 feet, perforated 59-96 feet.

4

×

.

÷.

÷

Materials	Thickness	Depth
	(feet)	(feet)

Well 7/36-25F1

Dwelly Jones. Altitude about 1,270 feet. Drilled by A. A. Durand & Son, 1945.

Palouse Formation: Clay	50	50
Clay, yellow	50	100
Old gravel of Pleistocene age:	_	
Gravel, cemented	32	132
Gravel, cemented, and basalt	8	140
Columbia River Basalt:		
Basalt, gray, hard; static water level at 147 feet; well bailed		
5 gpm	142	282
Basalt, blue	3	285
Basalt, dark, porous and broken zones	197	482
Basalt, blue	12	494
Basalt, hard, gray; static water level 210 feet at 510 feet	40	534
Basalt, red	5	539
Basalt, gray, hard	171	710
Basalt, black; hard; static water level 215 feet at 715 feet	35	745
Basalt, black	133	878
Basalt, black and gray, alternate streaks of hard and soft; static		
water level 225 feet in 1,020- to 1,100-foot zone	222	1,100

Well 7/36-27D1

---- Fields. Altitude about 1,060 feet. Drilled by A. A. Durand and Son, 1945.

Dug well, no record Old gravel of Pleistocene age:	25	25
Gravel with boulders	. 6	31
Gravel with clay	- 7	38
Clay, yellow	2	40
Gravel, water-bearing	· 1	41
Gravel, cemented, water-bearing	9	50

Well 7/36-28A1

Charles F. Baker. Altitude about 1,030 feet. Drilled by A. A. Durand and Son, 1946.

Dug pit, no record	12	12
Old gravel of Pleistocene age:		
Gravel and boulders	33	45
Gravel	5	50
Clay	5	55
Gravel, with some clay	6	61
Gravel, cemented	34	95
Sand and gravel; static water level 6 feet	5	100

Casing, 6-inch, set to 72 feet.

А

n

0

131

Materials	Thickness (feet)	Depth (feet)

R,

÷

7

Well 7/36-28C3

B. Campbell. Altitude about 1,005 feet. Drilled by A. A. Durand and Son, 1945.

Dug well, no record	13	13
Old gravel of Pleistocene age:		
Gravel, cemented	6	19
Sand	39	58
Grave1, cemented	31	89
Gravel, loose	1	90

Well 7/36-28K1

Wilson and Messer. Altitude about 1,020 feet. Drilled by Harding Bros., 1946.

Recent alluvium: Soil	8	8
Gravel and "dirt"	10	18
Old gravel and clay of Pleistocene age:		_
Clay with a little gravel	22	40
Clay	10	50
Gravel, static water level 30 feet	30	80
Gravel and clay	15	95
Clay with some grave!	105	200
Gravel, water-bearing, static water level 22 feet	17	217

Well 7/36-30J1

U.S. Veterans Hospital. Altitude about 900 feet. Drilled by A. A. Durand, 1933.

Soil	4	4
Old gravel and clay of Pleistocene age:		
Gravel, some cementation	35	39
Gravel, hard, cemented	25	64
Gravel and boulders, some water	15	79
Gravel, cemented	15	94
Clay, yellow	24	118
Gravel, cemented with boulders, water-bearing	32	150
Clay	8	158
Gravel, cemented	48	206
Clay and gravel, water-bearing	44	250
Clay, blue	178	428
Columbia River Basalt:		
Rock, solid	10	438
Clay	3	441
Rock	2	443
Clay	5	448
Rock	10	458
Clay, yellowish	10	468
Rock; static water level 25 feet	17	485
Rock and yellow clay in thin layers(?)	18	503
Clay, white	37	540
Rock, solid	10	550

Casing, 16-inch, set to 66 feet, 12-inch, set 60-250 feet, and 8-inch, set 245-540 feet.

.

.....

A

 \sim

1

Materials	Thickness	Depth
	(feet)	(feet)

Well 7/36-30K1

U.S. Veterans Hospital. Altitude about 895 feet. Drilled by A. A. Durand, 1923+.

Soil	4	4
Old gravel and clay of Pleistocene age:		
Gravel, water-bearing	31	35
Gravel, cemented	25	60
Gravel, loose, with boulders, water-bearing	10	70
Gravel, cemented	10	80
Gravel, loose	20	100
Clay, yellow	25	125
Gravel, cemented, with boulders, water-bearing	15	140
Clay, blue	8	148
Gravel, cemented with boulders	52	200
Clay, yellow, sandy	15	215
Gravel, partially cemented, water-bearing	30	245
Clay, blue, with gravel	30	275

Well 7/36-31J1

Walla Walla Country Club. Altitude about 880 feet. Drilled by A. A. Durand and Son, 1946.

Recent alluvium:		
Clay, yellow	12	12
Old gravel and clay of Pleistocene age:		
Gravel and boulders	48	60
Clay, yellow	4	64
Grave	18	82
Clay, gravel and boulders	48	130
Gravel, cemented, hard	17	147
Clay, soft, yellow	13	160
Gravel, cemented, coarse	20	180
Clay, yellow	10	190
Gravel, cemented	12	202
Clay, yellow, sticky	4	206
Gravel, cemented	24	230
Clay, yellow	9	239
Gravel, cemented	6	245
Clay, yellow	5	250
Clay, blue, and gravel, coarse	20	270
Clay, blue, with pebbles	95	365
Columbia River Basalt:		
"Rock," broken	15	380
Shale, blue	20	400
"Rock," broken	10	410
Clay, dark-blue	15	425
"Rock," broken	7	432
Basalt with interbeds of "shale, green"	83	515
Basalt, dark and gray, hard, water-bearing; static level 20 feet -	62	577
Basalt, broken	37	614
Basalt, gray, water-bearing; static water level 70 feet	126	740
Clay, brown, sticky		745
Basalt, brown, gray, and red, with four 5-foot-thick interbeds of	-	
"shale, green"	535	1,280
Basalt, "shells," and shale, dark and variegated	30	1,310
Basalt, creviced 1,655-1,679; static water level 68 feet	405	1,715

Materials	Thickness (feet)	Depth (feet)

Well 7/36-31P1

J. J. Chisholm. Altitude about 850 feet. Drilled by A. A. Durand and Son, 1946.

Dug well, no record	15	15
Old gravel and clay of Pleistocene age:		
Sand, gravel	25	40
Gravel, cemented	23	63
Clay, sandy	7	70
Gravel, sandy	20	90
Clay, sandy	40	130
Gravel, cemented	12	142

Casing, 8-inch, set to 51 feet; 6-inch, 40 to 140 feet; perforated 110 to 140 feet.

Well 7/36-31R3

John Yenny. Altitude 880 feet. Drilled by A. A. Durand and Son, 1946.

Dug well, no record	10	10
Old gravel of Pleistocene age:		
Sand	12	22
Clay, blue	6	28
Gravel with cobbles, water-bearing	4	32
Gravel, cemented	6	38
Clay, yellow, with sand	2	40
Gravel, coarse, with sand, water-bearing	2	42
Gravel, cemented	5	47

Casing, 8-inch, set to 46 feet, perforated 31 to 46 feet.

Well 7/36-32A2

J. R. Nestell. Altitude about 960 feet. Drilled by A. A. Durand and Son, 1944.

Dug well, no record Old gravel and clay of Pleistocene age:	35	35
Gravel, loose	2	37
Gravel, ćemented	70	107
Clay	3	110
Gravel, loose	20	130
Gravel and sand with clay	10	140
Gravel, cemented	31	171
Clay	10	181
Gravel, cemented, and clay	19	200
Gravel, cemented	5	205
Clay, brown	10	215
Gravel, cemented	31	246

•,
Table 2 .-- Drillers' logs of representative wells. -- Continued

Materials	Thickness (feet)	Depth (feet)
Well 7/36-32A2Continued		
Clay No record Clay, blue Shale, blue, decomposed Shale, black, soft, sandy Shale, blue, muddy	38 16 100 15 5 15	284 300 400 415 420 435

Casing, 8-inch, set to 90 feet, perforated at 35 feet.

Well 7/36-32P1

A. L. Smith. Altitude about 960 feet. Drilled by A. A. Durand and Son, 1945.

Touchet Beds:

Æ

z

Soi	23	23
Old gravel and clay of Pleistocene age:		
Gravel, cemented	12	35
Clay, brown, sandy	15	50
Clay, brown, and gravel	15	65
Gravel, cemented	85	150

Well 7/36-33A1

H. E. Studebaker. Altitude about 1,000 feet. Drilled by A. A. Durand and Son, 1942.

Deposits of the upper valley terraces:		
Soil and clay	25	25
Old gravel and clay of Pleistocene age:		
Gravel, cemented	25	50
Clay and gravel	7	57
Gravel, cemented	51	108
Clay, brown	2	110
Clay and gravel	2	112
Clay, brown	20	132
Clay and gravel	6	138
Clay, brown	8	146
Clay and gravel	5	. 151
Clay, brown	6	157
Gravel, cemented	81	238
Clay, brown and gravef	122	360
Clay, blue	28	388
Clay, brown	82	470
Columbia River Basalt:	•-	
Basalt, black	14	484
Basalt, black, and clay	173	657
Basalt, blue, black and brown	105	762
• • • • • • • • • • • • • • • • • • • •		TOL

Casing, 8-inch, set to 165 feet; 6-inch, from 150 to 546 feet.

Table 2 .-- Drillers' logs of representative wells .-- Continued

Materials	Thickness	Depth
	(feet)	(feet)

2

3

2

Well 7/36-33A2

H. E. Studebaker. Altitude about 1,000 feet. Drilled by A. A. Durand and Son, 1941.

27	27
4	31
34	65
10	75
10	85
20	105
45	150
2	152
	4 34 10 10 20 45

Casing, 8-inch, set to 152 feet.

Well 7/36-36J1

F. M. Ralston. Altitude about 1,250 feet. Drilled by A. A. Durand and Son, 1943.

Deposits of the upper valley terraces:		
Soil, clay, and gravel	27	27
Sand	3	30
Old gravel of Pleistocene age:	_	
"Basalt, brown" (probably cemented rubbly gravel)	61	91
Gravel, cemented	90	181
Columbia River Basalt:		
Rock and clay	39	220
Basalt, brown and gray	25	245
"Basalt, brown" (probably cemented rubbly gravel) Gravel, cemented Columbia River Basalt: Rock and clay	90 39	181 220

Casing, 8-inch, set to 136 feet, perforated 118-132 feet.

Well 7/36-36J2

F. M. Ralston. Altitude about 1,310 feet. Drilled by A. A. Durand and Son, 1946.

Deposits of the upper valley terraces:		
Clay, yellow, sticky	12	12
Clay, yellow, sandy	53	65
Old gravel of Pleistocene age:		
Gravel, cemented	5	70
Clay, yellow, with scattered boulders	15	85
Gravel with little clay	5	. 90
Gravel, coarse, and clay, yellow	5	95
Gravel, hard, cemented	61	156
"Rock, broken"	8	164
No record	3	167
Gravel, firm, cemented	18	185
Columbia River Basalt:	-•	
Basalt, black	25	210
Basalt	244	454
	- · ·	121

Casing, 15-inch, set to 185 feet, 12-inch, set 171-273, and 12-inch open hole to bottom.

Table 2.--Drillers' logs of representative wells.--Continued

ŗ,

ير.

×.

Materials	Thickness	Depth
	(feet)	(feet)

Well 7/37-5D1

Gale Kibler. Altitude about 1,290 feet. Drilled by A. A. Durand and Son, 1941.

Recent alluvium: Soil, silty clay Old gravel of Pleistocene age:	16	16
Boulders	3 .	19
Gravel, cemented	26	45 -
Gravel, water-bearing	2	47
Gravel, coarse	15	62
Gravel, cemented	28	90
Gravel, clay and sand	14	104
Gravel, loose	14	118

Casing, 6-inch set to 118 feet, perforated 98 to 118 feet.

Well 7/37-5K1

Albert Kibler. Altitude about 1,350 feet. Drilled by A. A. Durand and Son, 1945.

Recent alluvium:		
Soil, silty loam	17	17
Old gravel of Pleistocene age;		
Gravel, coarse, cemented	12	29
Gravel, cemented, and large boulders	11	40
Gravel, cemented	4	44
Columbia River Basalt:		
Basalt, black, water-bearing in 84-103-foot zone	62	106
Well 7/37-18R2		
Olaus Filan. Altitude about 1,400 feet. Drilled by George Scott, 19	49.	• • •
Recent alluvium:		
Soil	12	12
Gravel	. 5	17
Columbia River Basalt:		

Basalt, black and gray, sound rock	-164	181
Basalt, black with gray layers, firm, hard, water-bearing; static		
water level 98 feet at the 271-foot depth, 135 at 301-foot,		
and 190 feet at 504-foot	589	770

Casing, 12-inch set to 102 feet.

Table 2.--Drillers' logs of representative wells.--Continued

Materials	Thickness	Depth	
	(feet)	(feet)	

۲.

14

Well 7/37-31R1

H. T. McGuire . Altitude about 1,410 feet. Drilled by A. A. Durand and Son, 1946.

Deposits of the upper valley terraces:		
Soll	5	5
Clay, sandy	9	14
Gravel	12	26
Clay	47	73
"Rock, " black (angular cobbles)	13	86
Clay, sticky	11	. 97
Old gravel of Pleistocene age:		
Gravel and sand	3	100
S and	1	101
Gravel, with boulders	9	110
Gravel, cemented	55	165
"Rock," loose	2	167
Clay, with coarse gravel; static water level above land surface	8	175
Gravel, cemented, water-bearing	24	199
Sand, with boulders	3	202
Sand, yellow, fine	8	210
Clay, with gravel	10	220

Casing, 10-inch, set to 65 feet; 8-inch to 171 feet, and 6-inch hole to 220 feet.

Well 8/34-2J1

Martin Marbach. Altitude about 1,000 feet. Drilled by W. S. McCausland, 1905.

Loess, undifferentiated: Soil and sand, brown Uncorrelated:	35	35
Sand and rock particles; sand is medium and coarse "quartz" Columbia River Basalt:	5	40
Rock, black, hard; water seep at 60 feetRock, black, hard	100	140
Rock, dark, massive, hard	26 169	166 335
Rock, dark, soft, fine-grained to glassy texture, water- bearing	15	350

Well 8/35-34Q1

Don Seavy. Altitude about 790 feet. Drilled by A. A. Durand and Son.

Recent alluvium;		
Soil and clay Old gravel of Pleistocene age:	31	31
Gravel, hard, gray	13	44
Gravel, water-bearing	7	51

Table 2 .-- Drillers' logs of representative wells-- Continued

....

1

-

٠

1

:	• Materials	Thickness (feet)	Depth (feet)
	Well 8/35-3401Continued		

Columbia River Basalt:		
Basalt, dark brown, with clay 72-74 feet	28	79.
Basalt, broken, with "clay"	36	115
Basalt, gray, black, brown, hard	457	572
Sedimentary interbed zone:		
Clay, light brown	27	599
Conglomerate	7	606
Shale, dark brown	49	655
Clay, dark brown and black	16	671
Basalt, broken, contains red and yellow clay	67	738
Basalt, black, hard	178	916
Basalt, black, with red and gray clay	14	930
Basalt, black, hard	25	955
Basalt, broken, with clay	3	958
Sedimentary interbed:		
Clay, blue, sticky	7	965
Ciay, black and brown	10	975
Basalt, brown, with clay	18	993
Basalt, black	30	1,023
Clay and medium sand, brown	3	1,026

Well 8/37-26L1

---- Storey. Altitude about 1,580 feet. Drilled by Moore and Anderson, 1946.

Recent alluvium:		
"Dirt and soil"	20	20
Columbia River Basalt:		•
Basalt, brown, soft	25	45
Basalt, gray	40	85
Basalt, brown, water-bearing	41	126

Well 8/37-27R2

Dixie Pea Growers, Inc. Altitude about 1,510 feet. Drilled by A. A. Durand and Son, 1942.

Recent alluvium:			
Not reported	10	10	
Gravel, cemented	9	19	
Columbia River Basalt:			
Basalt	42	61	
Clay with boulders	24	85	
Basalt, black, hard, broken 107-178 and 233-237	182	267	

Well 8/37-31P1

G. M. Rea. Altitude about 1,210 feet. Drilled by Moore and Anderson, 1944.

Recent alluvium: Soil, silty clay	20	20
Columbia River Basalt: Basalt, brown, soft, water-bearing 69 to 94 feet	74	94

Casing, 6-inch, set to 25 feet.

۰.

,

. . .

· · ·

Table 2.--Drillers' logs of representative wells.--Continued

Materials	Thickness (feet)	Depth (feet)

--

Well 8/37-35B1

---- Gardner. Altitude about 1,650 feet. Drilled by Moore and Anderson, 1945.

Recent alluvium:		
"Dirt and soil"	15	15
Columbia River Basalt:		
Basalt, black	45	60
Basait, brown; water here gave out after sustained pumping	55	115
Basalt, gray and brown	160	275
Basalt, brown and red, water-bearing	85	360

Well 8/38-32L1

Dale Sorenson. Altitude about 2,350 feet. Drilled by Moore and Anderson, 1942.

Recent alluvium: "Dirt and soil"Columbia River Basalt:	10	10
Basalt, black, hard, very little water	65	75
Basalt, green, hard Basalt, black, water-bearing	85 15	160 175

÷

• `

•

.

TABLE 3

Analyses of water from wells, springs,

and surface waters of the Walla Walla River basin

				An	alyses by (Geologica	al Sur-
				Pa	rts per mil	lion	
Numbe r or location	Source	Date of collection	Dissolved solids	Silica (Si0 ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)
							Ground
5/35-1E1 5/35-2H1	Utah Canning Co. well City of Milton-Freewater, Well 5	<u>1</u> /1945 8-1-58	 131	 56	0.06	16 14	8.5 4.9
5/35-12F1	City of Milton~Freewater, Well 1	8-1-58	127	52	.06	14	4.4
5/35-12F2	City of Milton-Freewater, Well 2 3/	11-18-46	106		.0	17	7.4
6/35-10P1 6/35-12N1 6/36-4F1 6/36-9P1	Frank Berard A. A. Durand O. M. McCubbins Baker and Baker Corp.,	8-1-58 11-19-46 11-19-46 11-29-46	199 238 161	72 66 60	.03 .09	12 24 16	1.7 6.8 9.8
6/36-13C1 6/37-5F1 7/33-34P2	Fix Farm No. 2 Emmett Lynch Baker and Baker Corp.	11-19-46 11-26-46					
7/35-23M1 7/35-33J1 7/35-36F1	H. H. Taylor Bonneville Power Adm. Walla Walla College College Place Water Co.,	10-27-59 11-21-46 10-29-59 4-20-52	554 177 312 195	43 55 58 65	.11 .03 .02 .03	43 11 50 20	17 2.1 23 5.8
-36F3 7/35-36F3 7/36-13F1	water mixed from 2 wells College Place Water Co. City of Walla Walla, Well 1	10-22-59 11-26-46	200 145	65 54	.04	20 17	5.5 8.2
7/36-13F1 7/36-13F1 7/36-19F1 7/36-19R1	4/ Do General Foods Corp. Walta Walla Canning Co.	4-23-53 10-27-59 4462 (6/)	144 140 5⁄ 188	43 50 47	.10 .01 Z⁄4.0	16 16 8.3 .0	7.5 6.5 5.8 4.0
7/36-22N1	City of Walla Walla, Well 4	10-9-53	208	55	.17	17	6.1
7/36-22N1 7/36-28R1	Do City of Walla Walla, Well 5	10-27-59 7-29 - 60	196 200	61 62	9⁄.06 06.	19 16	5.2 5.3
7/36-33A1 7/36-35R1 7/37-5D1 7/37-13J1 7/37-16Q1 7/37-18F1	H. E. Studebaker J. E. Levin Gale Kibler R. E. Meiners Leo Gilkerson City of Walla Walla,	7-29-60 11-21-46 11-15-46 11-18-46 11-26-46 1-28-57	173 221 294 175 234 ¥ 132	46 54 34 56 52 56	.17 .0	19 28 54 22 35 17	5.8 9.4 20 11 13 6.5
7/37-18G1 7/37-31R1	Well 3 David Kibler H. T. McGuire	11-18-46 11-19-46	175	39 	- <u>`</u>	20 	8.7

Table 3. -- Analyses of water from wells, springs,

-

~

j.

....

•

and surface waters of the Walla Walla River basin.

vey, unless otherwise shown.

3

,**m**-

-

•

			Parts	per milli					<u>.</u> 0			
		(603					Hardne as Ca(ion rat	tance 5°C)	
Sodium (Na)	Potassium (K)	Bicarbonate (HCO3)	Sulfate (SO ₄)	Chloride (C1)	Fluoride (F)	Nitrate (NO ₃)	Calcium , magnesium	Noncarbonate	Percent sodium	Sodium-adsorption ratio	Specific conductance (micromhos at 25°C)	Hd
Water												-
1 6.5	.4 3.2	<u>2/90</u> 81	2.3	4.0	 0.1	0.0	74 55	 0	 19	 0.4	 145	 7.6
8,0	2.8	80	1.8	5.0	.1	.0	53	0	23	.5	148	7.6
3	33	104	9.9	5.8	.3	.2	73	0	30		180	
32 7.8	8.6 3.4	126 142 107 108	3.2 31 5.7	6.5 6.5 4.5 3.8	.7 .6 	.0 .2 .4	37 88 88	0 0 0	59 45 17	2.3 .6	226 239 186	8.2
130 31 13 22	8.1 7.8 6.0 5.5	88 72 508 125 238 141	20 3.8 16 5.8	2.8 1.5 17 3.6 23 4.2	.2 .6 .2 .6	5.8 .1 7.0 .1	 176 36 219 74	 0 0 24 0	 60 59 11 13	4.2 2.2 4 1.1	848 214 501 233	 7.7 7.3 8.1
21 7	5.2 7.1	136 96	5.4 9.7	4.2 1.8	.5 .2	.0 .2	72 76	0 0	37 17	1.1	229 150	8.2
6.2 	7.4 2.6 18 29	98 97 138 1648⁄	3.1 1.7 6.0 7.0 6.6	2.8 1.0 6.4 .2 5.6	.2 .2 .7	.2 .5 .0	69 67 45 142 68	 0 	12	 	163 	7.6 7.7
25 29	5.2 5.5	149 148	5.3 5.0	2.5 3.0	.9 1.0	.2 .1	69 62	0 0	42 48	1.3 1.6	257 245	8.1 8.2
	3.2 22 21 7.4 16 2.6	142 142 291 106 168 106	2.8 30 10 19 28 2.5	2.5 3.2 3.8 3.2 3.5 1.0	.7 .6 .6 .4 .2	.1 3.4 7.0 3.9 3.8 .2	71 108 216 100 141 69	0 0 13 4	40 30 17 14 20 25	1.2 5	230 231 459 227 291 169	8.2 8.0
	21	132 79	16 	4.5 3.0	.2 	.2 	86	0 	35 		213	

				Par	ts per mil	lion	
Number or location	Source	Date of collection	Dissolved solids	Silica (Si0 ₂)	tron (Fe)	Calcium (Ca)	Magnesium (Mg)
	• •••	·		-	. <u>. </u>		Surface
4/37-12K1	Spring, South Fork of Walla Walla River	6-4-32			**-**		
4/37-13D1	Spring, South Fork of Walla Walla River	6-4-32 <u>1</u>	g⁄				
4/37-14D1	Spring, South Fork of Walla Walla River	6-4-32 L					
4/37-14F1	Warm Spring, South Fork of Walla Walla River	6-4-32 ¹	¥				
4/37-10	South Fork Walla Walla River 10	6-4-32	31				
7/38-18	Mill Creek	(12/)	69	34	0.11	6.6	2.7
7/38-18	Mill Creek 13/	3-26-57	60	33	.04	4.8	2.1
7/38-18	Mill Creek 13/	12-19-57	61	28	.04	6.0	2.0

Table 3 .-- Analyses of water from wells, springs, and

~

- 2

ī

1/ Data from Oregon State Board of Health.

2/ Includes all "carbonate."

3/ Also contains 0.07 part per million of boron (B).

4/ Analysis by Charlton Laboratory, Portland (Price, 1960, p. 14).

5/ Analysis by Western Research Laboratory, National Canning Assoc., San Francisco.

6/ Analysis by Continental Can Co. laboratory.

			Parts	per milli	ion							
		دهع)					Hardni as CaC			ion ratio	tance 5°C)	
Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (S0 ₄)	Chloride (C1)	Fluorìde (F)	Nitrate (NO ₃)	Calcium, magnesium	Noncarbonate	Percent sodium	Sodium-adsorption ratio	Specific conductance (micromhos at 25°C)	Hq
Water					,							
1	6	35		4						-		
1	6	35		4								
1	6	32		6								
3	1	62		11								
1	3	30		3						•		
2.4	1.8	38 30	2.2	4		0.1	28					
2.4 1.8 1.8	1.8 1.5 1.9	30 33	.7 .1	.4 1.0 1.0	.0 .1	.04	21 23		15 13		54 62	7.3 7.1

1/ Iron and aluminum combined.

8/ Includes 12 ppm carbonate.

9/ Special sample taken June 28, 1960 for iron determination.

10/ "Cold," normal-temperatured spring and surface water, and $\underline{11}$ /"hot" spring water.

12/ Analysis obtained from Walla Walla Water Dept. in 1947. Date of collection unknown.

13/ Hart, 1957, p. 17 and Price, 1960, p. 14.

		and et) evel)	Ð		Yield			e(°F)	
Owner or former	Name	Topography and attitude (feet) above sea level)	Wat er b earing material	Occurrence	Gallons per minute	Date	Use	Temperature (°F) of the water	Remarks
T. <u>4 N., R. 36 E</u> .									
16C1 Don Olinger T. 4 N., R. 37 E.	Earthquake Spring		Basalt	Water percolates from general dank area on side of ravine; spouted strongly after 1936 earth- quake.	60 3,000 1,000 1	7-14-36 7-16-36 8-14-36 8-14-60	lrr		Big flow started by earth- quake, has now declined to weak seep and stream-laid rubble has covered site.
12K1	Unnamed		Do	Flows from perched aquifer		6-4 - 32	N	•	See table 3 for partial chemical analysis of the water.
13D1 14D1 14F1 T. 6 N., R. 32 E.	Do Do Warm Spring		Do Do Do	Seeps from basalt near fault line		6-7-32 6-7-32 6-7-32	N	 70	water. DoDo DoDo
1181 Emmett Lynch	Warm Spring	S, 500	Do	Percolates from al- luvium on basalt slope	50	11-8-47	lrr S	72	Water probably flows out along concealed fault zone

Table 4.--Representative springs in the Walla Walla River basin.

146

.

.

.

ì

4

¥

i.

	T. 6 N., R. 3	<u>4 E.</u>					2		•		· · · · · · · · · · · · · · · · · · ·	
13Q1	M. O. Beauchamp	South Mud Creek	Ap,	640	Gravel	Flows at level of water table	1,000- 4,000	5-31-33	Irr	52	General swampy area of effluence along creek.	
23H1	Emil Mueller	North Prong Schwartz Branch Spring	Ар,	630	Do	Do			Irr		Another spring area 1,000 feet southwest drains to this place.	
23R1	`- -	Do -	Ap,	635	Do	Percolates at level of water table through many seep areas	• *•	5-31-33	lrr	52 1	Flows several cubic feet per second.	÷
25Q1	Keyes	Dry Creek Valley Springs	Ap,	645	Do 	Percolates at level of water table(?) in Dry Creek plain	10-30	11-10-47	D		One of several springs that here rise in valley plain.	9.
	<u>T. 6 N., R. 3</u>	<u>5 E.</u>										GROUND
4N2			Αр,	655	Sand and gravel	Seeps from swampy area at level of water table at base of terrace escarp- ment			irr		Area is an intricate maze of ditches and drains.	ND WATER
7K1		East Mud Creek Spring	Ар,	650	Do	Seeps from swampy area where water table meets surface	400±	5-26-33 ·	lrr	52·	Swampy seeps, drainage and irrigation waste water form spring flow.	•
10H1		Big Spring Branch Springs	Ap,	725	Do	Do	4,000±		lrr		Fluctuating flowage goes into Big Spring Branch.	
10K1	Jassand Livestock Co.	McEvoy Spring	Ар,	730	Do	Bubbles up in channel	4,000 <u>+</u>	5-20-33	D,S	58	Number of spring openings along creek channel.	
16A3			Ар,	732	Gravel	Percolates from side of drain	1,000±	5-26-33	lrr _.	52	Flows from gravel channel.	
16N1	Fred Kralman	East Mud Creek Spring	Ap,	740	Do	Percolates from three waterlogged areas	2,000±	5-24-33	Irr		One of main sources of East Mud Creek.	
22P1	J. Hansen	East Mud Creek, East Prong Spring	Ар	-	Gravel	Flows from drains . over area of several	425±	5-24 -33	lrr			147

ŗ

•

.

Ŗ.

acres

٩,

- '

.....

2

													-
	Owner or former owner of	Name	tphy and	sea level)	earing	Occurrence	Yi	eld		Use	ature (°F) ater	Remarks	-
Location	property	144,112	Topography and altitude (feet above sea level)		Water-bearing material		per Date minute		0.55	Temperature (of the water	r emark s		
<u>T. 6 </u>	N., R. 35 EConti	nued											AEALARL H
23K2	Johnson	Haun Springs	Ар		Gravel	Seeps from swampy area	600 <u>±</u>	6-	-47	irr	55 1	Perrennial orifice is a quarter of a mile south of the orifice used during the period of high discharge.	AND OKOOND
23P1	M. M. Dyer	Lewis Spring	Ар,	834	Do	Seeps from several points along low swale	400 <u>+</u>	6-	-47	lrr		pendo or high discharge.	J WHICK,
23P2	Downing	Downing Spring	Ар		Do	Seeps from swampy orifice and sides of channel	900 -			Irr			N, 11-1-1-
23Q2	0. D. Hittle, et al	Engle Spring	Ар		Do	Percolates from gra- vel along channel sides	900±	5-2	4-33	lr r			5
23R1	Livingston	Ballou Spring	Ар		Do	Percolates from one bowl-shaped orifice	300±	5-2	4-33	Irr			
24P2	W. W. Higgins	East Prong Spring of Big Spring Branch	Ар		Do	Do	600±	5-2	4-33	Irr	•		
24P3	W. W. Higgins	East Prong Spring of Big Spring Branch	Ар		Do	Do	600 <u>+</u>	5-2	4-33	Irr			
	Ben Stanton	Crystal Spring	Ар,	820	Sand, alluvium	Seeps from swampy area	600±	5-2	2-33	frr			
28K2	Walter Von Der Ahe	South Mud Creek Spring	Ap,	813		Rises vertically in sharp swale	600±	5-2	3-33	lrr			

4

ì

.

٠

Table 4.--Representative springs in the Walla Walla River basin--Continued

3

7

148

5

.*

e

.

.

_

×,

29J1	W. S. Edwards	Johnson Spring	Ap, 784	Gravel	Rises upward in main orifice and seeps into channel for 0.1 mile below	900- 1,400±	5-23-33	Irr		
	of Milton	North Spring Dugger Creek	Ар	Do	Percolates upward from a main orifice	600- 1,200 <u>+</u>	5-23-33	irr		
32 A 2	Do	South Spring Dugger Creek	Ар	Do	Do	600- 1,200 <u>+</u>	5-23-33	١n		
32B1	Do	East Fork of South Spring Dugger Creek	Ар	Do	Do	600- 1,200 <u>+</u>	5-23-33	lrr	•	
_	Mary Hodgen	South Spring Dugger Creek	Ар	Sand, alluvium	Rises in one main orifice and several nearby seeps		•	Irr		Maximum yield from March to June; dry from December to March.
	Harry Lasiter	Lasiter Spring	T, 885	Alluvium, gravel(?)	Seeps from low orifice area	12	12 - 6-46	D,S		
13P1	Raymond Reser	Reser Spring	S,1,360±		Seeps from soil along rock surface	5-10	10-29-46	D,S	61	Water has hardness of 55 ppm and chloride content of 4 ppm,
19M1	D. D. Nicholas	Nicholas Spring	Ар	Gravel	Percolates from gra- vel	400±	7-21-33	S		
<u>T.6N</u>	1., R. 37 E.									
4G1	F. Pietrowski	Pietrowski Spring	\$,1,750±	Soil over basalt	Seeps from creek bank	5	10-21-46	S		Water has hardness of 60 ppm and chloride content of 3 ppm.
8M1	Clodius		S,1,660	Do	Seeps from hillside	3	10-23-46	D,S		
10E1	Mantz Brós.		S,2,200	Basalt	Do	5	10-21-46	D,S		Water has hardness of 40 ppm and chloride content of 2 ppm.
		·.								

	_ /		and	set level	ing		· Yi	eld		e (°F) r	
Location	Owner or former owner of property	Name		Topography and altitude (feet above sea level Water-bearing		Water-bearing material accuration material		Date	Use	Temperature (°F) of the water	Remarks
<u>t. 7 n</u>	., R. 35 E.									٠	
27J1	D. M. Periman	Blatock Lake	Ap,	750	Sand and gravel	Seeps from orifices in swale			5		Impounded by small dam.
35Q1	O'Farrel		Αp,	790	Gravel	Percolates from gra- vel in swale from bottom land	50	5-26-33	irr		
<u>t. 7 N</u>	l.; <u>R. 36 E.</u>										
21D1	Walla Walla Gen- eral Hospital	Butcher Creek Spring	Αр,	1,010	Do	Flows from exposure of gravel strata		••••••			
2191		Pioneer Park Springs	An.	1.010	Do	Do	500+	1948	F		
28G2		Stone Creek Springs, North Branch		-,	Do	Do	225	8-13-60	lrr		Flow has declined in summer of recent years.
28H1		Stone Creek Springs, South Branch	Ар		Do	Do	60	8-13-60	lrr		Do
30M1	U.S. Government	Veterans Hospital Spring	Ap,	860	Do	Do	420 ±	6-29-33	irr		
34D1	Shelton Estate	Shelton Springs	Ар		Do	Do	200	.8-13-60	Irr		Flow has declined progres- sively since about 1948.
<u>t.7</u>	I., R. 37 E.	. 1									
101	Marie Ganguet	Ganguet Spring	Uv,	1,750	Alluvium	Percolates through alluvium over basalt	20	10-18-46	D		Water has hardness of 70 ppm and chloride content of 3 ppm.

Table 4.--Representative springs in the Walla Walla River basin.--Continued

150

•

٠

.¥.

4

*

7

12G1 J. R. Wolfe		Uv, 2,070	Basalt	Flows from seep in rock on sidehilf	10	10-18-46	D		Water has hardness of 70 ppm and chloride content of 3 ppm.
14E1 Hayes		Uv, 1,800	Do	Seeps from rock in ravine	5	10-18-46	D		Water has hardness of 55 ppm and chloride content of 2 ppm.
T. 8 N., R. 38 E.	•								
27A1 City of Waitsburg	Guntle Springs	Uv	Do	Flows from crevices of basalt at nine openings	625	1938	PS	60	Conducted by pipeline to reservoir at Waitsburg. Location is approximate.

:

. . .

.

A REAL PROFESSION

.

17

.

÷

-

....

-

· •

۰.

,

••

 ${\bf r}_{i,j}$

.

~

.

...

٠

٩

. ٩ ć

•

.

•