# Appendix D: Geospatial Methods for the Water Resource Assessments

## **Table of Contents**

| Introduction                                         | 7   |
|------------------------------------------------------|-----|
| Database Structure                                   | .7  |
| Scale of Assessment Units                            | 7   |
| Landscape Groups                                     | 9   |
| Types of Analysis                                    | L1  |
| Sound Wide Extent                                    | 13  |
| WRIA Extent                                          | 14  |
| Sub-basin Extent                                     | 16  |
| Model Structure                                      | 18  |
| Overview1                                            | 18  |
| GIS Format                                           | 28  |
| Limitations of Model Results                         | 36  |
| Data Development                                     | . – |
| Data Development                                     | ) / |
| Data Synthesis                                       | 1   |
| Water Flow Analyses 4                                | 12  |
| Important Areas to Water Flow 4                      | 13  |
| Details of analyses for important areas 4            | 46  |
| Degradation to Water Flow4                           | 18  |
| Details of analyses for degradation                  | 52  |
| Water Flow Synthesis and Map Display5                | 54  |
| Water Quality Analyses                               | 57  |
| Export Potential of Water Quality Parameters5        | 57  |
| Sediment5                                            | 58  |
| Phosphorous                                          | 50  |
| Metals                                               | 52  |
| Nitrogen6                                            | 54  |
| Pathogens                                            | 56  |
| Degradation of Water Quality Parameters – (N-SPECT)6 | 58  |
| Pre-Processing6                                      | 58  |
| N-SPECT model run                                    | 70  |
| Post Processing                                      | 70  |
| Water Quality Synthesis and Map Display              | 72  |

| Sources of Regional Data                                     | 74        |
|--------------------------------------------------------------|-----------|
| Definition of Terms and Acronyms                             | 76        |
| GIS Models for Characterization                              | 77        |
| Attachment D-1: Development of Analysis Unit (AU) Boundaries | 78        |
| Attachment D-2: Geology Data                                 | 79        |
| Attachment D-3؛ Wetland Data ۲                               | <b>32</b> |
| Attachment D-4: Land Cover Classes                           | 83        |
| Attachment D-5: Quartile Grouping Methods                    | 34        |
| Attachment D-6: Analysis for Effects of Dams                 | <b>36</b> |
| Attachment D-7. Lists of Field Names                         | 90        |

# List of Figures

| Figure D-1. Nineteen WRIA's of Puget Sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 7                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Figure D-2. Assessment Units across Puget Sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 8                                                |
| Figure D-3. Landscape groups across Puget Sound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 9                                                |
| Figure D-4. Landscape groups with AU boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                 |
| Figure D-5. Sound-wide analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                 |
| Figure D-6. WRIA scale analysis – within one WRIA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                 |
| Figure D-7. WRIA-scale analysis – crossing WRIA boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                 |
| Figure D-8. Subset of AUs from a WRIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                 |
| Figure D-9. Gorst Creek – creating smaller AUs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                 |
| Figure D-10. Relationship between sub-models for Importance and Degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                 |
| Figure D-11. Ranking and grouping of values for Importance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                                 |
| Figure D-12. Ranking and grouping of values for Degradation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19                                                 |
| Figure D-13. Management matrix showing sixteen possible AU conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                 |
| Figure D-14. GIS codes for sixteen matrix combinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                 |
| Figure D-15. Management matrix showing four and eight possible categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                 |
| Figure D-16. Management matrix for water flow with eight categories used in display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| maps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                 |
| Figure D-17. Groups of water quality values for Export Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                 |
| Figure D-18. Groups of water quality values for Degradation – N-SPECT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                 |
| Figure D-19. Water Quality management matrix of 16 possible AU conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                 |
| Figure D-20. Export Potential of water quality processes relative to sources and sinks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                 |
| Figure D-21. Level of Degradation of water quality processes relative to protection and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b                                                  |
| restoration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                 |
| Figure D-22. Management matrix for water quality processes-four and eight categorie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es.                                                |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                 |
| Figure D-23. Management matrix for water quality processes for display maps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                                 |
| Figure D-24. Results geodatabase – WaterFlowQual.gdb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                 |
| Figure D-25. Feature data sets within WaterFlowQual.gdb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                 |
| Figure D-26. Feature classes in the Analysis Units feature data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29                                                 |
| Figure D-27. Feature classes for the water flow analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                 |
| Eta da Di 20. Estatua alegara facche a contracta d'al africa a terra all'il such associationes de la contracta |                                                    |
| Figure D-28. Feature classes for the export potential of the water quality analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                 |
| Figure D-28. Feature classes for the export potential of the water quality analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34<br>37                                           |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34<br>37<br>43                                     |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34<br>37<br>43<br>48                               |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow<br>Figure D-31. Equation for calculating the degradation to water flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34<br>37<br>43<br>48<br>54                         |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow<br>Figure D-31. Equation for calculating the degradation to water flow<br>Figure D-32. Importance and degradation map display<br>Figure D-33. Sixteen combinations of management results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34<br>37<br>43<br>48<br>54<br>56                   |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow<br>Figure D-31. Equation for calculating the degradation to water flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34<br>37<br>43<br>48<br>54<br>56<br>56             |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow<br>Figure D-31. Equation for calculating the degradation to water flow<br>Figure D-32. Importance and degradation map display<br>Figure D-33. Sixteen combinations of management results<br>Figure D-34. Management Matrix using 8 groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34<br>37<br>43<br>48<br>54<br>56<br>56<br>57       |
| Figure D-28. Feature classes for the export potential of the water quality analyses<br>Figure D-29. Feature classes for source layers for water resource assessments<br>Figure D-30. Equation for calculating the importance for water flow<br>Figure D-31. Equation for calculating the degradation to water flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34<br>37<br>43<br>48<br>54<br>56<br>56<br>57<br>58 |

| Figure D-38. Model for the Export Potential for Metals                      | . 63 |
|-----------------------------------------------------------------------------|------|
| Figure D-39. Model for the Export Potential for Nitrogen.                   | . 65 |
| Figure D-40. Model for the Export Potential for Pathogens                   | . 66 |
| Figure D-41. Absolute change calculation from N-SPECT output grids          | . 70 |
| Figure D-42. Map display used for sediment export potential and degradation | . 73 |
| Figure D-43. Map display for the water quality management matrix            | . 73 |
| Figure D-44. Watershed Characterization toolbox of models and scripts       | . 77 |
| Figure D-45. Higher permeable geologic units                                | . 81 |
| Figure D-46. Examples of quartile grouping                                  | . 85 |
| Figure D-47 Landscape groups used for models 1 and 2                        | . 86 |
| Figure D-48. Hydrologic influence of dams in Puget Sound                    | . 88 |
| Figure D-49. Total maximum storage for watershed area                       | . 89 |
| Figure D- 50. Downstream influence.                                         | . 89 |
| Figure D-51. Downstream influence at next confluence                        | . 89 |

## **List of Tables**

| Table D-1. Relationships between scale, extent, and level of information of analysis    |    |
|-----------------------------------------------------------------------------------------|----|
| types                                                                                   | 11 |
| Table D-2. Shaw-Johnson slope stability classes                                         | 40 |
| Table D-3. Summary of Attributes Produced From Model 1 Assessments                      | 41 |
| Table D-4. Summary of Attributes Produced From Model 2 Assessments                      | 42 |
| Table D-5: GIS analyses for variables for important areas for the water flow            | 44 |
| Table D-5 (cont.): GIS analyses for variables for important areas for the water flow    | 45 |
| Table D-6: GIS analyses for variables for degradation to the water process              | 49 |
| Table D-6 (cont.) GIS analyses for variables for degradation to the water process       | 50 |
| Table D-6 (cont.) GIS analyses for variables for degradation to the water process       | 51 |
| Table D-7: Land use category and corresponding % effective impervious area              | 52 |
| Table D-8. GIS analyses for variables for the export potential of sediment              | 59 |
| Table D-9. Slope and K factor combinations as indicators of potential for soil erosion. | 60 |
| Table D-10. GIS analyses for variables for the export potential of phosphorous          | 61 |
| Table D-10 (cont.). GIS analyses for variables for the export potential of phosphorous. | 62 |
| Table D-11: GIS analyses for variables for the export potential of metals               | 63 |
| Table D-12: CEC rank values                                                             | 64 |
| Table D-13: GIS analyses for variables for the export potential of nitrogen             | 65 |
| Table D-14: GIS analyses for variables for important areas for the pathogen process     | 67 |
| Table D-15: CCAP land cover reclassification for pre-development land cover             | 69 |
| Table D-16: Grid names for each N-SPECT parameter                                       | 71 |
| Table D-17: Maximum mean values for each water quality constituent                      | 72 |
| Table D-18: Sources of digital data                                                     | 75 |
| Table D-19. Lower permeable geologic units.                                             | 81 |
| Table D-20. C_CAP land cover classes and groups for analysis                            | 83 |
| Table D-21. Major public lands excluded from land cover alteration analyses             | 84 |
| Table D-22. List of field names in the order they appear in the model:                  | 90 |
| Table D-23. List of field names in alphabetical order:                                  | 93 |
| Table D-24. List of field names for N-SPECT, Puget Sound-wide Analysis                  | 96 |
| Table D-25. List of field names for N-SPECT, WRIA-wide Analysis                         | 97 |

(Intentionally left blank.)

## Introduction

This appendix explains the steps taken to develop the geographic information systems (GIS) geospatial database created for the **water flow and water quality assessments** as part of the Puget Sound Characterization project. It provides detail on the geoprocessing steps used in support of the methods described in Appendix B and C of this document. The purpose of this appendix is to provide an understanding of the data development and analysis steps for those with some understanding of GIS capabilities and applications. The Watershed Technical Advisory Group reviewed and guided many of the decisions concerning data development and spatial scale. Specifics regarding methods to develop the automated modeling scripts were completed by Ecology's GIS group.

#### **Database Structure**

The main requirements for the database structure are to support analysis at multiple spatial scales, and to provide repeatability through an automated modeling program. We use the geodatabase format provided by ESRI<sup>TM</sup> (Environmental Systems Research Institute, Inc.) and have a toolbox of models in ArcGIS 10.2, supported by Python scripts.

## Scale of Assessment Units

The geographic extent of this effort is the area draining into the Puget Sound basin, from the Cascade crest to the Strait of Juan de Fuca, and up to the Canadian border. It includes 19 major watersheds or island groupings called Watershed Resource Inventory Areas (**WRIA**) used by Washington State. Covering over 13,000 square miles, these range in size from hundreds to thousands of square miles.

Figure D-1. Nineteen WRIA's of Puget Sound.



Each of these 19 WRIA were subdivided into smaller units for analysis, called *'assessment units'* (AU). There are 2977 AU's within the Puget Sound basin, ranging in size from approximately one square mile up to 15 square miles. The size variation depends on the topographic location within the watershed. Small coastal drainages are in the minimum size range, lowland plateaus are the mid-size, and upper watershed areas are the largest AUs.



#### Figure D-2. Assessment Units across Puget Sound.

The Data Development section discusses these units in more detail. The important point is that **the AU is the unit of assessment across all spatial extents** of interest, whether it is WRIA 1 or the entire Puget Sound basin.

The central concept of our method is a '*relative*' comparison across a geographic area. The water flow and water quality models provide numerical values for each analysis unit, which are **compared to all other values** in the analysis extent to get an overall **ranking of the AU**. The final results, however, do not provide actual values on the amount of water stored or sediment transported. They are numeric representations of the relative importance and degradation of physical processes within a watershed. Details of methods for ranking and grouping results are explained in 'Attachment D5: Quartile Grouping Methods'.

## Landscape Groups

To address the inherent physical differences across Puget Sound watersheds, we added another nested unit, the '*landscape group*' (LG). This allows for comparison of AUs that have similar, natural landscape conditions (e.g. geology, topography, precipitation type) and therefore similar watershed processes. This avoids comparison of dissimilar landscape types such as snow dominated mountainous units with small coastal drainages. The landscape groups are applied only to the Model 1 analyses (importance for water flow, and export potential for water quality) when analyses are comparing natural, unaltered landscape condition.



Figure D-3. Landscape groups across Puget Sound.

This landscape group unit nests between the WRIA and AU level. There are five types of landscape groups: 1) coastal, 2) lowland, 3) mountainous, 4) lake, and 5) delta. Details on development of these units are in Attachment D1. For any WRIA, many assessment units are coded as one of these landscape types. Therefore, coastal AU's are compared and ranked relative to other coastal AU's, etc.

Not every WRIA has every landscape group. There are only five "lake" groups for lakes Washington, Sammamish, Whatcom, Cushman, and Crescent. Only three delta areas were large enough to code separately, in WRIA's 9, 10, and 11. Four WRIA's, 2, 6, 14, & 15, have only coastal and lowland groups. The "nesting" of these three units of spatial scale is shown in Figure D-4.



Figure D-4. Landscape groups with AU boundaries.

## Types of Analysis

The nature of the planning question being addressed determines the spatial scale, extent of the analysis area, and level of detail. Table D-1 below demonstrates these relationships. Characterization assessments address planning questions outlined in columns two and three of the table. This includes a spatial extent of basins and sub-basins, or tens to hundreds of square miles. The level of detail of input data for both these assessments is coarse, so characterization results should not be applied directly to site scale decisions.

**Spatial Scale** – describes the range in size of assessment units (AU). For the Puget Sound characterization this ranges from an average of 1 to 10 square miles.

**Spatial extent** – the area across a landscape that is included in the analysis. The AUs within this area are organized by WRIA and subbasins. The size depends on the type of planning question being addressed.

| Level of<br>Information<br>and Analysis                                   | Coarse/General                                                                                                                                                                           |                                                                                                                                                                                                                  | Fi                                                                                                                                                                                                                                                                                                                                                     | ne/Detailed                                                                                                                                                                                   |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit of<br>Organization                                                   | Basin (WRIA)/Sub-basin                                                                                                                                                                   | Sub-basin / Valley<br>segment/drift cell                                                                                                                                                                         | Reaches / Waterbodies                                                                                                                                                                                                                                                                                                                                  | Segments / Sites                                                                                                                                                                              |
| Typical spatial<br>extent (area)                                          | > 100 mi <sup>2</sup>                                                                                                                                                                    | 1-100 mi <sup>2</sup>                                                                                                                                                                                            | 1– acres – 1 mi <sup>2</sup>                                                                                                                                                                                                                                                                                                                           | <100 acres                                                                                                                                                                                    |
| Type of Data<br>Acquisition                                               | Existing GIS data layers<br>from Puget Sound<br>Characterization                                                                                                                         | Existing GIS layers from<br>Puget Sound<br>Characterization                                                                                                                                                      | Using existing data or<br>field collection of new<br>data on biological,<br>physical and chemical<br>conditions at these<br>scales.                                                                                                                                                                                                                    | Usually requires field<br>collection of new data<br>on biological, physical<br>and chemical<br>conditions at these<br>scales.                                                                 |
| Type of<br>Application at<br>Each Level                                   | Land-use planning and<br>zoning, such as the<br>location, type, and/or<br>intensity of new<br>development to avoid and<br>to buffer mapped<br>watershed features.                        | Refinements of coarse-<br>level assessment for<br>application to land-use<br>planning and zoning to<br>protect existing, mapped<br>watershed features serving<br>important watershed<br>processes and functions. | Reach- and watershed-<br>scale strategies for land<br>and water protection &<br>restoration. Reach-<br>specific actions &<br>BMP's to protect and<br>restore conditions.                                                                                                                                                                               | Adaptive management;<br>(bio) feedback and site-<br>and reach-scale project<br>designs for the specific<br>SMP's to remediate<br>stressors to restore and<br>protect healthy water<br>bodies. |
| How the Puget<br>Sound<br>Characterization<br>results could be<br>applied | Water-flow and water-<br>quality assessments are<br>most applicable at this<br>scale, integrating sub-basin<br>information on conditions<br>of importance to each of<br>these processes. | Water-flow and water<br>quality assessments<br>provide information at a<br>sub-basin scale                                                                                                                       | The Characterization does not provide results<br>at these scales. However, characterization results<br>should be used to confirm whether actions at<br>these scales are appropriate. For example,<br>installation of wood at the site or reach scale<br>should not be undertaken if upper water delivery<br>and storage processes are highly degraded. |                                                                                                                                                                                               |

Table D-1. Relationships between scale, extent, and level of information of analysis types.

When possible, a complete "multi-scale" analysis should always incorporate finer scale data and assessments which are outlined in the last two columns of Table D-1, reaches and segments.

The assessment units (AUs) for the characterization are "sized" to meet the spatial scales in the first two columns in Table D-1. We always recommend that AUs be grouped by at least sub-basins so that any assessment considers results within a watershed unit. The sub-basins should be aggregated according to the planning question or issue being addressed. A resource management agency or NGO, might look at all sub-basins across Puget Sound for the best restoration or protection opportunities. A county conducting an update of a comprehensive plan may group sub-basins at the WRIA level. A city developing a sub-area plan could consider several sub-basins, which may extend outside of city jurisdictional boundaries.

Therefore, our methods are flexible enough to allow for the selection of various sizes of analysis area depending on the type of planning question or issue, ranging from several watersheds draining into a city to all the watersheds of Puget Sound. Further detail on the steps required to apply assessments and data at multiple scales is presented in the section "Using the Characterization Results" in Volume 1 (publication #11-06-016).

We begin by providing analysis results at the Sound wide, next at the WRIA, and then at sub-basin scales.

#### Sound Wide Extent

The Sound wide results of the characterization would be applicable for any entity involved in sound-wide planning efforts, where comparing areas across the Sound would be helpful. In this case, the water flow and water quality models are run once, with the extent of analysis being all 2977 AU's. They are ranked by their landscape group, so a mountainous AU in the Olympics can be compared to a mountainous AU in the Cascades, and so on with the other landscape groups.



Figure D-5. Sound-wide analysis.

#### WRIA Extent

The widest array of planning issues occurs at the **WRIA extent**. The WRIA 8 boundaries for the Seattle area are shown in the heavy black line in Figure D-6. Each WRIA is modeled separately, ranking the AU's within that WRIA by their landscape group. Thus, in WRIA 8, the Cedar/Sammamish watershed, the green mountainous AU's are ranked relative to each other, the yellow lowland AU's are ranked relative to each other, the purple lake AU's are ranked relative to each other. The WRIA 8 watershed does not have any delta AU's.



Figure D-6. WRIA scale analysis – within one WRIA.

The models for water flow and water quality are run for each WRIA, producing WRIA level results. AU's within a WRIA cannot be directly compared to AU's in any other WRIA. These results are intended to be the starting point for most jurisdictional planning work.

However, our methods can accommodate the planning needs of an organization to allow for comparisons at different extents.

A common type of regional planning issue involves protection of an important aquatic resource that crosses into more than one WRIA. An example of this is the analysis for Hood Canal to inform an effort to prioritize across the area draining to the Canal. All of WRIA 16 and parts of WRIA's 14, 15, & 17 drain into Hood Canal, so the extent of the analysis included all of this area, while maintaining the original AU boundaries. In this case, a lowland AU in WRIA 17 can be compared to a lowland AU in WRIA 15.



Figure D-7. WRIA-scale analysis – crossing WRIA boundaries.

#### Sub-basin Extent

Frequently jurisdictions are in need of results for a part of a WRIA since they may have planning questions regarding individual stream systems or sub-basins. There are two variations of how this can be applied.

The first is to take a **subset of the AU's** from within a WRIA, maintaining the same AU boundaries. An example of this approach was done for the Snoqualmie Valley.



Figure D-8. Subset of AUs from a WRIA.

In this case, though the values for each attribute will be the same as the WRIA-wide analysis, the ranking of the AU's will change since the number and range of values to compare to is different.

The second approach is to **create new AU boundaries** at a smaller scale than originally developed for the characterization. This can be done when a jurisdiction needs to focus on a much smaller geographic area, such as a single sub-basin or stream system and requires results that help identify the best areas for protection, restoration, and development. This typically occurs for small cities that have watersheds encompassed by only a few AUs from the WIRA scale analysis.

The caveat for this scale is that the *AU size should match the scale of the data and the processes being analyzed*. Keep in mind that the models were developed for coarse

scale, sound-wide, available data layers, which limit the scale at which the models can be applied and still provide meaningful results. Using this kind of data, we suggest that the smallest size for an AU should be about half a square mile. This still depends on the topography and location of the AU. Small coastal drainages will be smaller by necessity. Units should be as uniform in size as possible, and not so small that they emphasize one feature on the landscape. The intent is to analyze units where the processes are functioning together and not being fragmented.

An example of this kind of analysis is the Gorst Creek watershed. This 9½ square mile watershed has four AU's in the WRIA scale analysis (WRIA 15-Kitsap). For the analysis of just the Gorst Creek watershed, these four AU's are subdivided into 21 AU's, all nesting within the original Au boundaries. The purpose of this analysis was to support a subarea plan.



Figure D-9. Gorst Creek – creating smaller AUs. The left panel shows the original 4 AUs used at the WRIA scale. The right panel shows the 21 smaller AU's delineated for the sub-basin scale.

## Model Structure

#### Overview

Major Principles;

- Results are relative
- 2 separate sub-models
- Results from each sub-model are ranked, then grouped into 4 categories High, Moderate High, Moderate, Low (H,MH,M,L)
- The categories from the 2 sub-models produce the management matrix
- The matrix suggests the most appropriate land management

The water resource assessment models, including water flow and water quality, each have two fundamental sub-models: **importance and degradation**. The importance sub-model is Model 1 in the GIS scripts, and the degradation sub-model is Model 2.



The importance sub-model includes several assessments that combine to provide a **relative value** of each assessment unit compared to the other units, for the importance that assessment unit provides in supporting the water processes. **The importance sub-model assumes an un-altered condition** to the landscape, and only analyzes features of the landscape that we can measure from <u>existing data</u>, as indicators for the water processes we are assessing.

The degradation sub-model also provides a relative value of an assessment unit compared to other units, for the degradation to the water processes within that unit. The **degradation sub-model accounts for alterations** to the natural landscape from human activity, and analyzes changes from land use to features that can be measured from <u>existing data</u>, as indicators for the processes we are assessing.

Ecological models can only provide an approximate representation of the complex interactions within a natural system. Likewise this model is providing a representation of the inner workings of the freshwater hydrologic cycle. The model is designed to use **existing data that is uniformly available** across Puget Sound. The resolution makes it most useful for planning level decisions and not site scale decisions. Therefore, it is a decision support tool and not a decision making model.



The importance sub-model compares the final assessment values for each AU relative to all other AUs in the analysis extent. The values are ranked from highest value to lowest value, and then normalized from zero to one. These normalized values are then put into four quartiles or categories: High (H), Moderate High (MH), Moderate (M), and Low (L).

Figure D-11. Ranking and grouping of values for Importance.

Methods for developing the quartiles are described in Attachment D5: Quartile Grouping Methods.

The degradation sub-model follows the same procedure for ranking normalized values and then grouping them into quartiles of H, MH, M, and L. The only difference is that the degradation values become the x-axis in the final results matrix discussed below, so



We use a matrix approach to assess an AU's relative condition resulting from the combination of importance **and** degradation quartiles. The importance categories become the vertical y-axis, and the degradation categories become the horizontal x-axis. The relationship between these two models is the **foundation for the management results, their display, and interpretation**. With four quartiles for both model results, the resulting management matrix has 16 possible combinations of AU condition.



Figure D-13. Management matrix showing sixteen possible AU conditions.



The model results retain a unique GIS code for each of the sixteen combinations.

Figure D-14. GIS codes for sixteen matrix combinations.

Depending on the application, the scale, and the questions being asked, these results can provide management guidance at several levels of detail. The most general is four management categories of Protection (P), Restoration (R), Conservation (C), and Development (D). However the results can be displayed as 8 categories or even 16, given the appropriate circumstances (Figure D-13).





For the map displays we currently produce, we use the eight categories and apply the color scheme below. This level of detail still provides sufficient information for local governments making planning level decisions.



Figure D-16. Management matrix for water flow with eight categories used in display maps.

The **water quality model** follows this same framework, but because of the nature of water quality parameters, we use slightly different terminology. The 'importance' submodel for water quality is called *export potential*, or Model 1. It measures features of the landscape that naturally contribute to the delivery and movement of each water quality parameter. These features are substitutes or indicators for the parameter, in **an unaltered condition**, and results are a **relative value** of each assessment unit compared to all the assessment units in the analysis extent. Final values are ranked and grouped into the same four categories, low to high.



Figure D-17. Groups of water quality values for Export Potential

The degradation sub-model for water quality, Model 2, runs calculations on results of the Nonpoint Source Pollution and Erosion Comparison Tool (**N-SPECT**) developed by NOAA Coastal Services Center. N-SPECT characterizes the degree of existing degradation to water quality processes based on existing land use type, details of which are in section 'Degradation of Water Quality Parameters – NSPECT'. The calculation portion of the degradation sub-model summarizes the N-SPECT results by assessment unit, ranks the results, and groups them into the four categories (H, MH, M, L) of **level of degradation**, again resulting in a **relative ranking** of assessment units throughout the analysis extent.



Figure D-18. Groups of water quality values for Degradation – N-SPECT.

We use a matrix analogous to the water flow matrix to assess an AU's relative condition of export potential **and** degradation to water quality processes. The results from both the export potential and degradation sub-models, provide the y-axis and x-axis information to create a management matrix for water quality. The results can produce 16 possible combinations of AU condition.





Because water quality parameters are fundamentally different from the 'importance' for water flow, we describe water quality export potential in terms of '**sources**' and '**sinks**'. A 'source' for a water quality parameter is a natural feature on the landscape, such as erodible soils or stream density that supports the delivery or movement of that parameter. Those areas that rank 'high' in export potential for sediment are more likely to transport sediment downstream if disturbed by large-scale impacts such as forest clearing. A 'sink' is a natural feature that retains or transforms that parameter, such as a wetland by storing sediment. An area that ranks lower in its export potential is more influential as a sink area. In the case of sediment, the AU would likely have a relatively greater area of wetlands.



Figure D-20. Export Potential of water quality processes relative to sources and sinks.

The relative level of degradation of an AU influences whether management practices should focus on protection of the process or restoration of the process. Areas that are less degraded have more potential for protecting the processes already functioning. Areas that are more degraded have more potential for improvement from restoration.



Figure D-21. Level of Degradation of water quality processes relative to protection and restoration.

Taken together, these concepts result in a management matrix for water quality (Figure D-19). Though 16 different AU conditions are possible, we only display up to the eight management groups.



Figure D-22. Management matrix for water quality processes-four and eight categories.

For our map displays, we use the eight category color scheme in Figure D-23. This level of detail still provides sufficient information for local governments making planning level decisions.



Figure D-23. Management matrix for water quality processes for display maps.

## **GIS Format**

The GIS database reflects the model structure described in the previous section. We use the geodatabase (gdb) format provided by ESRI<sup>™</sup> (Environmental Systems Research Institute, Inc.) and a toolbox of models for use in ArcGIS 10.2.



For any analysis, the output is the *'water flow-water quality geodatabase'*, **WaterFlowQual.gdb**, which includes intermediate feature classes, summary tables, as well as the final results for both the water flow and water quality assessments.

Our initial analyses include assessments for each of the 19 WRIA of Puget Sound. These results are posted on the Characterization web page for download:

Figure D-24. Results geodatabase – WaterFlowQual.gdb.

(http://www.ecy.wa.gov/services/gis/data/pugetsound/characterization.htm).

The WaterFlowQual.gdb contains two feature data sets. The Analysis Units feature data



set includes nine feature classes: one for the AU boundaries, five for model results for water flow, and three for water quality.

The Geoprocessing Layers feature data set contains all the intermediate layers. These are useful for reviewing the results of any individual assessment.

Figure D-25. Feature data sets within WaterFlowQual.gdb.

Each of the nine feature classes in the Analysis Units data set contains the spatial boundaries of the assessment units with numerous attribute fields for different parts of the sub-models.



Figure D-26. Feature classes in the Analysis Units feature data set.

Brief descriptions of the contents of the Analysis Units feature data set are here:

- AU (Assessment Unit). This feature class is the polygon boundaries of the assessment units used in analysis. It contains the identification number (AU\_ID) for each unit, which is unique across Puget Sound. A detailed description on development of these units is in Attachment D-1.
- **WF\_DB1** (Water Flow DataBase 1). This feature class contains the raw values from geo-processing of various data layers for model one, importance to water flow, for each assessment unit.
- **WF\_DB2** (Water Flow DataBase 2). This feature class contains the raw values from geo-processing of various data layers for model two, degradation to water flow, for each assessment unit.
- **WF\_M1** (Water Flow Model 1). This feature class contains the calculations used in the importance model (model 1). Inputs are from the WF\_DB1 feature class.

- **WF\_M2** (Water Flow Model 2). This feature class contains the calculations used in the degradation model (model 2). Inputs are from the WF\_DB2 feature class.
- WF\_RP (Water Flow Restoration Protection). This feature class combines the importance and degradation results for water flow and is used to display model results. It contains the normalized assessment values, the quartile ranking (H, MH, M, L) of those values, and the management code that results from the combination of the importance rank and degradation rank. The management matrix displays the 16 combinations of quartile pairs in Figure D-13, and the corresponding management code in Figure D-16.
- **WQ\_DB** (Water Quality DataBase). This feature class contains the raw values from geo-processing of various data layers for the importance/export potential models for all five water quality parameters (sediment, nitrogen, phosphorous, pathogens, and metals).
- **WQ\_M1** (Water Quality Model 1). This feature class contains the calculations for the importance/export potential, (model1) for all five water quality parameters.
- **WQ\_RP** (Water Quality Restoration Protection). This feature class combines the importance/export potential and degradation/NSPECT results for the five water quality parameters, and is used to display model results. It contains the normalized assessment values, the quartile ranking (H, MH, M, L) of those values, and the management code that results from the combination of the importance rank and degradation rank. The management matrix for water quality displays the 16 combinations of quartile pairs in Figure D-19, and the corresponding management code in Figure D-23.

The Geoprocessing Layers feature data set contains the feature classes resulting from combining source layers with the assessment units for both the importance and degradation sub-models for water flow. The degradation feature classes are indicated with a red box.



Figure D-27. Feature classes for the water flow analyses.

ArcGIS displays the feature classes alphabetically as shown in Figure D-27. The brief descriptions below are listed alphabetically, but separated in two groups, the first including analyses for the <u>importance to water flow</u>:

- **DEP\_WET\_AU** (depressional wetlands). This feature class is the area of the AU with depressional wetlands.
- **GEO\_AU** (permeability). This feature class is the area of higher and lower permeable surficial geology in the AU. (See Attachment D-2: Geology Data)
- LK\_AU (lake area). This feature class is the area of lakes within the AU.
- MC\_STR\_AU (moderately confined streams). This feature class is the miles on moderately confined streams in the AU. (SSHIAP streams where valley width is 2-4 times channel width)
- P\_AU (precipitation). This feature class is the average precipitation value for the AU.
- **SLP\_WT\_AU** (slope wetlands). This feature class is the area of slope wetlands in the AU.
- **SRS\_AU** (rain-on-snow). This feature class is the area of the AU that has rainon-snow or snow dominated zones.
- **UC\_HP\_AU** (unconfined streams in higher permeable deposits). This feature class is the stream miles for unconfined streams that intersect the higher permeable deposits in the AU.
- UC\_STR\_AU (unconfined streams). This feature class is the miles of unconfined streams in the AU. (SSHIAP streams where valley width is > 4 times channel width)

This second group includes the analyses for the <u>degradation to water flow</u> (red boxes in Figure D-27):

- BU\_AU (built-up area). This feature class is the area of build-up land use type in the AU. (LU\_CODE = 2, High intensity developed with 80-100% impervious area; LU\_CODE = 3, Medium intensity developed with 50-79% impervious area).
- **DEPWET\_RURAL\_AU** (rural depressional wetlands). This feature class is the area of depressional wetlands that intersect rural land use types.
- **DEPWET\_URBAN\_AU** (urban depressional wetlands). This feature class is the area of depressional wetlands that intersect urban land use types.
- **DNR\_RDS\_AU** (roads from DNR). This feature class is the miles of roads, including forest roads, within the AU.

- **FL\_AU** (forest loss). This feature class is the area of the AU that has been changed from forest to another land cover type. (LU\_CODE = 2-7)
- LI\_AU (low intensity area). This feature class is the area of low intensity land use type in the AU. (LU\_CODE = 4, Low intensity developed with 21-49% impervious area).
- **LULC\_AU** (land cover). This feature class is the area of the AU that includes land cover types that could be altered by land use changes. It excludes areas that are naturally 'bare' including: snow/ice, tundra, bare land, and water.
- **LULC\_IMP\_AU** (impervious surface). This feature class is the area of the AU that contains impervious surfaces from land use, including land cover values of 2-5.
- **LULC\_MC\_AU** (moderately confined streams in urban areas). This feature class is the miles of moderately confined streams that intersect urban land use types.
- **LULC\_UC\_AC** (unconfined streams in urban areas). This feature class is the miles of unconfined streams that intersect urban land use types.
- **ROADS\_AU** (roads). This feature class is the miles of roads within the AU.
- **SLOPE\_WET\_RURAL\_AU** (slope wetlands in rural). This feature class is the area of slope wetlands intersecting rural land use types.
- **SLOPE\_WET\_URBAN\_AU** (slope wetlands in urban). This feature class is the area of slope wetlands intersecting urban land use types.
- **UC\_HPERM\_RURAL\_AU** (unconfined streams, high permeability, rural). This feature class is the miles of unconfined streams that intersect both higher permeable soils and rural land use types.
- **UC\_HPERM\_URBAN\_AU** (unconfined streams, high permeability, urban). This feature class is the miles of unconfined streams that intersect both higher permeable soils and urban land use types.
- URBAN\_AU (urban area). This feature class is the area of urban land use type in the AU. (LU\_CODE = 2, High intensity developed with 80-100% impervious area)
- **WELL\_AU** (wells). This feature class is the wells from Department of Health that are in the AU.

The water quality models add several more feature classes to the geodatabase. They are included in the list below and are highlighted with red arrows. Here is a brief description of each feature class for the water quality analyses for *export potential*:



Figure D-28. Feature classes for the export potential of the water quality analyses (red arrows).

- **CEC\_AU** (cation exchange capacity). This feature class is the areas within an AU where the soil types have different cation exchange capacities that affect retention of metals.
- **ER\_AU** (channel erosion). This feature class is the streams that intersect areas of erodible soils within the AU.
- **FLA\_AU** (flowline/aquatic). This feature class includes streams and centerlines for the entire aquatic network, including wetlands and lakes.
- **FWL\_AU** (flowline/water). This feature class is the streams coded as a stream or river only.
- **Hydric\_MC** (hydric soils & moderately confined streams). This feature class is the moderately confined streams that intersect hydric soils in the riparian denitrification tool in the nitrogen model.
- **Hydric\_UC** (hydric soils & unconfined streams). This feature class is the unconfined streams that intersect hydric soils in the riparian denitrification tool in the nitrogen model.
- K\_AU (soil erodibility). This feature class is the areas within an AU with different K-factors which control a soil type's susceptibility to erosion.
- **RE\_AU** (rainfall erosivity). This feature class is the area within the AU of different *R*-factors which control a soil type's susceptibility to erosion from precipitation.

The water quality models also produce three raster layers for the sediment model:

- AU\_RASTER (raster version of the AU layer). This feature class is a raster interpolation of the AU boundaries. It is used in averaging N-SPECT results to the AU.
- AU\_Slope (slope). This feature class is a raster layer of the slope.
- AU\_SlopeStab (slope stability). This feature class is a raster layer of the results of a slope stability model developed by Shaw & Johnson, giving a landslide hazard rating.
  - 🔲 WaterFlowQual.gdb
  - 🗄 🖶 Analysis\_Units
  - ∃ ☐ Geoprocessing\_Layers
  - 🛨 🎆 AU\_Raster
  - 🛨 🎆 AU\_Slope
  - ⊞ AU\_SlopeStab

## Limitations of Model Results

These methods are the result of significant peer review and ongoing comment from an advisory team. We believe the methods provide a useful, and scientifically credible relative comparison across the landscape. Even so, these methods are the product of subjective judgments and data limitations, both of which display varying levels of uncertainty.

The water resource assessments are part of a coarse scale, decision support tool, intended to support regional, county, and watershed planning. The methods are adaptable to a range of planning questions and issues that require different spatial extents. These spatial extents may involve single or multiple watersheds and may cross between one or more WRIAs. In some cases the AUs may have to be reduced in size to match smaller watersheds and to address planning issues within smaller jurisdictions. We suggest a strong understanding of these methods to ensure appropriate application of the results.

As in any GIS analysis, the scale and accuracy of the source data dictates the confidence level in the output. If finer scale data is available, it can replace the source layers currently referenced. The only requirement is that any data used is geographically complete for the area of interest. In any case, care is necessary to ensure application of the methods is within the bounds of the intended uses and data limitations. Though the results can provide a landscape context for locating protection or restoration actions, they cannot be used to inform specific site locations or project design. In all cases the methods represent a decision support tool and not a decision making tool and should not be used in lieu of finer scale data or other methods designed for assessing processes and functions at finer scales.
# Data Development

A requirement of these methods is to use **existing data that is uniform across Puget Sound**. Our data sources require a minimum of data editing or formatting. All layers are in Washington State Plane South, NAD 83, Zone 4602. All models call up data from the source layers geodatabase called PS\_Layers.gdb.



Figure D-29. Feature classes for source layers for water resource assessments.

Each feature class is described below in the order listed in Figure D-29, which is the ArcCatalog (ESRI) format. All original data is clipped to the boundary of the Puget Sound basin, and we describe any additional geoprocessing steps, editing, formatting, or

coding additions. All layers have metadata attached for viewing in the ArcGIS (ESRI) environment.

- **Gunit** geologic layer with unit name [GUNIT\_TXT, LITHOLOGY1); we added two attributes, "**geo\_hp**" and "**chnl\_ersn**"; "geo\_hp" is coded for those units with higher permeability (Hperm) such as alluvium and recessional outwash, and the rest with lower permeability (Lperm); reviewed by Patricia Olson and Derek Booth; "chnl\_ersn" has a code for those units within the mountainous landscape groups with higher permeability and with higher susceptibility to channel incision, such as alluvium and Fraser-age glacial outwash; for the complete list of both of these values see Attachment D2: Geology Data.
- **DOH\_wells** Department of Health drinking water wells for larger public well systems (group A, for 15 or more connections, and group B, for 3-14 connections).
- **ChannelErosionStreams** selected stream arcs from NHD data that intersect the higher permeable deposits (Gunit, Hperm) with higher susceptibility to erosion (chnl\_ersn).
- **ModeratelyConfinedStreams** moderately confined streams from the SSHIAP (Salmon and Steelhead Habitat Inventory and Assessment Program) data, defined as streams with a valley width two to four times the width of the channel.
- NHDFlowline stream lines from the National Hydrography Data; centerline and single line streams are used for stream density analysis; centerlines of lakes and wetlands are included for aquatic system density analysis.
- **UnconfinedStreams** unconfined streams from the SSHIAP (Salmon and Steelhead Habitat Inventory and Assessment Program) data, defined as streams with a valley width greater than four times the width of the channel.
- WaterBodies water bodies coded as lake or pond from the NHD.
- **LULC\_06\_MPL** 2006 land cover data from NOAA, combined with the Major Public Lands layer from DNR; NOAA land cover had 22 categories, which we combined into several groups for various assessments. The major public lands layer is used to screen out areas where land cover is assumed to not result from alteration by human activities. See Attachment D-4: Land Cover Classes.
- **Precip** average yearly precipitation isohyets, in inches, for Washington State from the Department of Natural Resources.
- **ROS** rain-on-snow and snow dominated areas from the Department of Natural Resources.
- **CEC\_SSURGO** cation exchange capacity average (cecl, cech, cec7\_rnk) value from SSURGO data.

Hydric\_Soils – soil types coded as 'hydricrat' from the SSURGO data.

- K\_Factor\_SSURGO soil erodibility factor (kfact) for the susceptibility of soil particles to be moved by water, from SSURGO data; data gaps filled by NW Hydraulics.
- **R\_Factor** rainfall erosivity factor from Richard Horner/NW Hydraulics.
- **DNR\_Roads\_LP** roads layer from DNR; has more complete coverage of forest roads in mountainous areas.
- **Roads\_LP** roads layer from Department of Transportation (DOT); has more complete roads for the lowland and developed areas.
- DEPWET\_RURAL depressional wetland layer of potential wetlands; from combined layers including hydric soils, NWI (National Wetland Inventory) wetlands, wetlands from NHD hydrography layer, and wetland pixels from 2006 CCAP land cover; selected areas are on slopes of 2% or less and intersect 'urban' pixels from 2006 CCAP land cover.
- DEPWET\_URBAN depressional wetland layer of potential wetlands; from combined layers including hydric soils, NWI (National Wetland Inventory) wetlands, wetlands from NHD hydrography layer, and wetland pixels from 2006 CCAP land cover; selected areas are on slopes of2% or less and intersect 'rural' pixels from 2006 CCAP land cover.
- **Dep\_Wet** depressional wetland layer of potential wetlands; from combined layers including hydric soils, NWI (National Wetland Inventory) wetlands, wetlands from NHD hydrography layer, and wetland pixels from 2006 CCAP land cover; selected areas are on slopes of 2% or less.
- Slope\_Wet slope wetland layer of potential wetlands; from combined layers including hydric soils, NWI (National Wetland Inventory) wetlands, wetlands from NHD hydrography layer, and wetland pixels from 2006 CCAP land cover; selected areas are on slopes >2%.
- PS\_NSPECT N-SPECT water quality results for Puget Sound wide analysis; results are in three forms: 1) average value for AU for load per unit area, 2) rank order of AU across Puget Sound, 3) quartile grouping of the rank order; includes eight analyses: runoff, phosphorous, nitrogen, suspended solids, zinc, copper, pathogens, and MUSLE (Modified Universal Soil Loss Equation). Runoff and suspended solids analyses are not used. Zink and copper are averaged together for a combined 'metals' rank and quartile. See Degradation of Water Quality Parameters – N-SPECT
- W\_NSPECT N-SPECT water quality results for each of the 19 WRIAs; results are in three forms: 1) average value for AU for load per unit area, 2) rank order of all AU's across the WRIA, 3) quartile grouping of the rank order; includes eight analyses for: runoff, phosphorous, nitrogen, suspended solids, zinc, copper,

pathogens, and MUSLE (Modified Universal Soil Loss Equation). Runoff and suspended solids analyses are not used. Zink and copper are averaged together for a combined 'metals' rank and quartile. See Degradation of Water Quality Parameters – N-SPECT.

- **ps\_dem\_10m** 10 meter digital elevation data (DEM) for entire Puget Sound.
- **ps\_slope** slope grid from the 10 meter DEM for Puget Sound.
- **ps\_slope\_pct** percent slope grid from the 10 meter DEM for Puget Sound.
- slopestab predictive layer of shallow-rapid slope stability from the Shaw-Johnson model. Also called the Shaw Johnson Hazard Index, it is calculated using a combination of slope and slope curvature (concave vs. convex), with values range from 1, low potential for mass wasting, 2, moderate potential, and 3, high potential.

#### Table D-2. Shaw-Johnson slope stability classes.

|                                                                                        | Slope Class |          |      |          |          |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-------------|----------|------|----------|----------|--|--|--|--|--|
| Curvature         0 - 15%         15 - 25%         25 - 47%         47 - 70%         > |             |          |      |          |          |  |  |  |  |  |
| Concave                                                                                | Low         | Low      | Low  | Low      | Moderate |  |  |  |  |  |
| Planar                                                                                 | Low         | Low      | Low  | Moderate | High     |  |  |  |  |  |
| Convex                                                                                 | Low         | Moderate | High | High     | High     |  |  |  |  |  |

SMORPH: Shaw, S.C. and Johnson, D.A., 1995, Slope Morphology Model Derived from Digital Elevation Data, in Proceedings, 1995 Northwest Arc/Info Users Conference, Coeur d'Alene, Idaho, Oct. 23-25, 13p.

# **Data Synthesis**

The tables below summarize the suite of analyses used in both the water flow and water quality models. Some of the analyses in model 1 apply to more than one variable. For example, the percentage of depressional wetland area (WLS) is a factor in the water flow and all of the water quality models. The parameters for each analysis are described in the tables that follow.

| MODEL 1                                                 |            |        |                                  | Wa   | ter Res     | sourc | ource Assessments |      |           |      |           |      |
|---------------------------------------------------------|------------|--------|----------------------------------|------|-------------|-------|-------------------|------|-----------|------|-----------|------|
|                                                         | Wate       | r Flow | Water Quality - Export Potential |      |             |       |                   |      |           |      |           |      |
| GIS Analyses for Importance<br>(WF)                     | Importance |        | Sediment                         |      | Phosphorous |       | Metals            |      | Nitrogen  |      | Pathogens |      |
|                                                         | Del        | Mvt    | Source                           | Sink | Source      | Sink  | Source            | Sink | Source    | Sink | Source    | Sink |
| Precipitation patterns                                  | Р          |        |                                  |      |             |       |                   |      |           |      |           |      |
| Rain-on snow and snow<br>dominated zones                | RS         |        |                                  |      |             |       |                   |      |           |      |           |      |
| Depressional wetlands                                   |            | WLS    |                                  | WLS  |             | WLS   |                   | WLS  | ] [       | WLS  | ]         | dpwt |
| Channel confinement (stream storage)                    |            | STS    |                                  | STS  |             | STS   |                   | STS  |           | STS  |           |      |
| Permeability of surficial geology<br>(recharge areas)   |            | IR     |                                  |      |             |       |                   |      |           |      |           |      |
| Channel confinement and<br>permeability (discharge)     |            | SD     |                                  |      |             |       | Inificant         |      | Inificant |      | Inflicant |      |
| Slope wetlands                                          |            | SWD    |                                  |      |             |       | Sic               |      | Sig       |      | Sig       |      |
| GIS Analyses for Export<br>Potential (WQ)               |            |        |                                  |      |             |       | Not               |      | Not       |      | Not       |      |
| Surface erosion                                         |            |        | SE                               |      | SE          |       | 1                 |      | 1 1       |      |           |      |
| Mass wasting areas intersected<br>by aquatic ecosystems |            |        | MW                               |      | MW          |       |                   |      |           |      |           |      |
| Channel erosion                                         |            |        | CE                               |      | CE          |       |                   |      |           |      |           |      |
| Soil Retention of Ph                                    |            |        |                                  |      |             | SRP   |                   |      |           |      |           |      |
| Soil Retention of Metals                                |            |        |                                  |      |             |       |                   | SRM  |           |      |           |      |
| Riparian denitrification                                |            |        |                                  |      |             |       |                   |      |           | RDN  |           |      |

#### Table D-3. Summary of Attributes Produced From Model 1 Assessments.

| Model 2                                                                                                             | 8       |                   |            | Wate                     | r Resource /             | Assessments              |                          |                           |
|---------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| GIS Analysis for Degradation<br>(WF)                                                                                | W<br>De | ater Fl<br>gradat | ow<br>tion |                          | Water (                  | Quality - Degra          | dation                   |                           |
|                                                                                                                     | Del     | Mvt               | Loss       |                          |                          |                          |                          |                           |
| Land use with impervious cover                                                                                      | IMP     |                   | TR         |                          |                          |                          |                          |                           |
| Loss of forests                                                                                                     | FL      |                   |            |                          |                          |                          |                          |                           |
| Loss of depressional wetlands                                                                                       |         |                   |            |                          |                          |                          |                          |                           |
| <ul> <li>Urban land use</li> </ul>                                                                                  |         | UW                |            |                          |                          |                          |                          |                           |
| <ul> <li>Rural/ag land use</li> </ul>                                                                               |         | RW                |            |                          |                          |                          |                          |                           |
| Loss of stream/storage                                                                                              |         |                   |            |                          |                          |                          |                          |                           |
| <ul> <li>Unconfined</li> </ul>                                                                                      |         | UDS               |            |                          |                          |                          |                          |                           |
| <ul> <li>Moderately confined</li> </ul>                                                                             |         | MDS               |            |                          |                          |                          |                          |                           |
| Reduction in recharge from Lan                                                                                      | d use   | DR                |            |                          |                          |                          |                          |                           |
| Road density                                                                                                        |         | D_RD              |            |                          |                          |                          |                          |                           |
| Well density                                                                                                        |         | D_WEL             |            |                          |                          |                          |                          |                           |
| Stream discharge                                                                                                    |         | STD               |            |                          |                          |                          |                          |                           |
| Wetland discharge                                                                                                   |         | WD                |            |                          |                          |                          |                          |                           |
| NSPECT - Degradation                                                                                                |         |                   |            | Sediment                 | Phosphorus               | Metals<br>(Zinc, Copper) | Nitrogen                 | Pathogens                 |
| Relative Degradation<br>1 = maximum level of<br>degradation,<br>0 = no increase in load due to<br>degradation to LU |         |                   |            | WRIA_nmusl<br>PS_nmusle  | WRIA_ntpco<br>PS_ntpconc | W_mecon<br>PS_Mecon      | WRIA_ntnco<br>PS_ntnconc | WRIA_npath<br>PS_npath    |
| <b>Rank</b> - Relative rank among<br>compairson area(PS/WRIA),<br>1 = AU with lowest change                         |         |                   |            | WRIA_MUSLE<br>PS_MUSLE_R | WRIA_TP_Rn<br>PS_TP_Rnk  | W_Me_Rnk<br>PS_Me_Rnk    | WRIA_TN_Rn<br>PS_TN_Rnk  | WRIA_Path_<br>PS_Path_Rn  |
| <b>Qrtl</b> - Ranked values group in quartiles (1= lowest values)                                                   |         |                   |            | WRIA_MUS_1<br>PS_MUSLE_Q | WRIA_TP_Qr<br>PS_TP_Qrtl | W_Me_Q<br>S_Me_Q         | WRIA_TN_Qr<br>PS_TN_Qrtl | WRIA_Path_1<br>PS_Path_Qr |

#### Table D-4. Summary of Attributes Produced From Model 2 Assessments.

#### Water Flow Analyses

Methods for mapping important areas for water flow and export potential for water quality are based upon the relationships described in Appendices B and C. You can map these areas using a suite of GIS analyses with regionally available datasets. We provide details for conducting the analyses in the subsequent discussion.

#### Important Areas to Water Flow

The "Importance" sub-model is based on an assessment of the physical characteristics that control the natural performance of each watershed process in its unaltered state without any consideration of land-use changes or human modifications. Thus, "*important areas*" for water flow have characteristics that maintain one (or more) of the key watershed processes (delivery, surface storage, recharge, discharge). Figure D-30 shows the mathematical relationship between the sub-models of the watershed process and the overall scoring for the model. There is no weighting assigned to any one sub-model, so each has a value of one with a final calculation of three for the entire model.



#### Figure D-30. Equation for calculating the importance for water flow.

The details of the model are explained in Appendix B. This appendix will focus on the GIS methods for this calculation. As described in the section on *'Landscape Groups'*, importance models are comparing natural landscape conditions, so we keep the comparison among AUs within a particular landscape group (LG\_M1).

Table D-5: GIS analyses for variables for important areas for the water flow. These variables are appropriate for use in Western Washington. The column to the right lists the feature class where the field is located. Yellow fields are raw data, blue are summary calculations, and orange are final quantile groups.

| MODEL 1       |                   | Field       | Calculation                                                                | Values | Max                                       | Description                                                               | Model/<br>Feature<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------|-------------------|-------------|----------------------------------------------------------------------------|--------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Imp           | oortant Areas     | AU_ID       | ID number                                                                  |        |                                           | Analysis Unit ID number                                                   | AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| for           | Water Flow by     | LG_M1       | landscape groups for Model 1                                               |        |                                           | Landscape Group (C-Coastal, L-Lowland, M-Mountainous, D- Delta, LK- Lake) | AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| LC            | G (Landscape      | LG_M2       | no groups for Model 2 except Urban                                         |        |                                           | X - All, U - urban AU's (>90% area in urban LC (2-5)                      | AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|               | Group)            | acres       | sum area in AU                                                             | acres  |                                           | acres in AU                                                               | AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|               |                   | sqmi        | acres / 640                                                                | miles  |                                           | sq mi in AU                                                               | AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Provinitation |                   | av_prec     | sum [precip x (p_ac/Au acres)]                                             | inches |                                           | average precipitation in inches for AU (per year)                         | WF_DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|               | Precipitation     | P           | av_prec / max value BY LG_M1                                               | ×      | 1                                         | value for Precipitation                                                   | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2             |                   | SRS_ac      | sum area                                                                   | acres  |                                           | acres of AU in snow dominated (SD, 'highlands' HL) & rain-on-snow (ROS)   | WF_DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| >             | Timin a of Densis | SRS_pct     | SRS_ac / acres                                                             | *      |                                           | % cover for rain-on-snow & snow dominated zone                            | tion Model/<br>Feature<br>Class<br>AU<br>Mountainous, D- Delta, LK- Lake) AU<br>arbas LC (2-5) AU<br>AU<br>AU<br>ar) VF_DB1<br>VF_DB1<br>VF_M1<br>Is' HL) & rain-on-snow (ROS) VF_DB1<br>or VF_DB1<br>or VF_DB1<br>or VF_M1<br>VF_M1<br>VF_M1<br>VF_M1<br>VF_M1<br>VF_M1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>VF_DB1<br>vsterbodies layer) VF_DB1<br>VF_DB1<br>reams VF_M1<br>VF_DB1<br>reams VF_M1<br>vF_DB1<br>reams VF_M1<br>VF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_DB1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M1<br>vF_M |  |  |
| Deliven       | riming or Precip  | RS          | SRS_pct / max value BY LG_M1 % 1 value for PRECIP TIMING from Rain on Snow |        | value for PRECIP TIMING from Rain on Snow | WF_M1                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|               |                   | IDE         | P + RS                                                                     | 0-2    | 0-2                                       | sum of DElivery                                                           | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               | DELIVERY          | <u>I</u> DE | IDE / max value BY LG_M1, AND D = 1                                        | 0-1    | 1                                         | NORMALIZE DELIVERY BY LG_M1 - Delta (LG_M1 ) = 1                          | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 0 10          | DELIVERY          | LDE Q       | quantile ranking AND D = H                                                 |        |                                           | Delta (LG_M1) = High; always overrides actual model results               | WF_RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               |                   | dpwt_ac     | sum area                                                                   | acres  |                                           | all depressional wetlands (hydric, NWI, LC_wet, marsh on 52% slo          | P WF_DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|               |                   | dpwt_pct    | dpwt_ac / acres (in AU)                                                    | *      |                                           | percent of all depressional wetlands                                      | WF_DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|               |                   | lk_ac       | sum area                                                                   | acres  |                                           | lake acres in AU (WB_CART_FT = 421 - ps_waterbodies layer)                | WF_DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|               |                   | lk_pct      | lk_ac / acres                                                              | 2      |                                           | % of lake acres in AU                                                     | WF_DB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| ŧ             |                   | us_#        | dpwt_pct + lk_pct                                                          | 2      |                                           | sum of storage percent from wetlands and lakes                            | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| eme           | -                 | ¥15         | wt_lk / max value BY LG_M1                                                 | z      | 1                                         | value for Wetland/Lake Storage                                            | Class         Unit ID number       AU         e Group (C-Coastal, L-Lowland, M-Mountainous, D- Delta, LK- Lake)       AU         U - wrban AU's (>902 area in wrban LC (2-5)       AU         AU       BU         AU       BU         AU       BU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| love          | Surface           | uc_mi       | sum length                                                                 | miles  |                                           | miles of UN confined floodplain/streams                                   | Class         AU         ainous, D- Delta, LK- Lake)       WF_DB1         wF_DB1       WF_DB1         wF_DB1       WF_DB1         odies layer)       WF_DB1         wF_DB1       WF_DB1         odies layer)       WF_DB1         wF_DB1       WF_DB1         odies layer)       WF_M1         odies layer)       WF_M1         odies layer)       WF_M1         odies layer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2             | Storage           | mc_mi       | sum length                                                                 | miles  | 1                                         | miles of Moderately Confined floodplain/streams                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|               |                   | UNSS        | (uc_mi/sqmi) x 3                                                           | *      | 1                                         | area value for UN confined floodplain/S tream S torage                    | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               |                   | MCSS        | (mc_mi/sqmi) x 2                                                           | *      | 1                                         | area value for M oderately C onfined floodplain/S tream S torage          | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               |                   | UNLINC      | UNSS + MCSS                                                                | 2      |                                           | sum of UN confined & M oderately C onfined stream storage                 | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               |                   | <i>STS</i>  | UN_MC / max value BY LG_M1                                                 | 0-1    | 1                                         | value for ST ream Storage                                                 | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               |                   | 155         | WLS + STS                                                                  | 0-2    | 2                                         | sum of Surface Storage                                                    | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 3             | STOPAGE           | 155         | ISS / max value BY LG_M1, AND D=1                                          | 0-1    | 1                                         | NORMALIZE SURFACE STORAGE BY LG_M1, Delta = 1                             | WF_M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|               | STURAGE           | 155.0       | quantile ranking AND D = H                                                 |        |                                           | Delta (LG_M1) = High                                                      | WF_RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

|      | MODEL 1                      | Field                          | Calculation                                                      | Values  | Max                                                               | Description                                                                                                                                                             | Model/<br>Feature<br>Class |  |  |  |
|------|------------------------------|--------------------------------|------------------------------------------------------------------|---------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
|      |                              | PermH                          | sum area                                                         | acres   |                                                                   | acres of AU in high/moderate permeable deposits (geology - coarse grain:<br>alluvial, outwash) (gunit - geo_hp = 'Hperm')                                               | WF_DB1                     |  |  |  |
|      |                              | PermL                          | acres - PermH                                                    | acres   |                                                                   | acres for low perm - geology- fine grained (bedrock, till, etc)                                                                                                         | WF_DB1                     |  |  |  |
|      |                              | rechH                          | [(aver_prec ×.838) - 9.77] × PermH                               | inladyr |                                                                   | estimated recharge value in high perm deposits (inches/acre/yr)                                                                                                         | WF_M1                      |  |  |  |
| ment | necharge                     | rechL                          | [(aver_prec × .497) - 5.03) × PermL                              | inlac   |                                                                   | recharge value in low perm deposits                                                                                                                                     | WF_M1                      |  |  |  |
|      |                              | IR                             | (rechH + rechL) / acres                                          | inches  |                                                                   | value for total <b>recharge in inches</b> (per year)                                                                                                                    | WF_M1                      |  |  |  |
| ove  |                              | <u>L</u> R                     | IR / max value BY LG _M1, AND D = 1                              | 0-1     | 1                                                                 | NORMALIZE RECHARGE BY LG_M1, Delta = 1                                                                                                                                  | WF_M1                      |  |  |  |
| W    |                              | LRQ                            | quantile ranking AND D = H                                       |         |                                                                   | Delta (LG_M1) = High                                                                                                                                                    | WF_RP                      |  |  |  |
|      |                              | ucHp_mi                        | sum length                                                       | miles   |                                                                   | miles of Unconfined streams in High perm deposits                                                                                                                       | WF_DB1                     |  |  |  |
|      |                              | ucHp_area                      | ucHp_mi / sqmi                                                   | %       | area value within AU for Unconfined streams in High perm deposits |                                                                                                                                                                         | WF_DB1                     |  |  |  |
|      |                              | 5D                             | ucHp_area / max value BY LG_M1                                   | 0-1     | 1                                                                 | value for UNconfined floodplain/Stream Discharge                                                                                                                        | WF_M1                      |  |  |  |
|      | Discharge                    | slpwt_ac                       | sum area                                                         | acres   |                                                                   | acres of slope wetlands >2% (compliment to depressinal wetlands ≤2% slope)                                                                                              | WF_DB1                     |  |  |  |
|      |                              | slpwt_pct                      | slpwt_ac/acres                                                   | %       |                                                                   | % of AU with slope (.2%) wetland                                                                                                                                        | WF_DB1                     |  |  |  |
|      |                              | SWD                            | slpwt_pct / max value BY LG_M1                                   | 0-1     | 1                                                                 | value for slope wetland discharge areas                                                                                                                                 | WF_M1                      |  |  |  |
|      |                              | IDI                            | SD + SWD                                                         | 0-2     | 2                                                                 | sum of <b>DI</b> scharge                                                                                                                                                | WF_M1                      |  |  |  |
|      |                              | I_DI                           | IDI /max value BY LG_M1                                          | 0-1     | 1                                                                 | NORMALIZE DISCHARGE BY LG_M1, Delta = 1                                                                                                                                 | WF_M1                      |  |  |  |
|      |                              | LDLQ                           | quantile ranking                                                 |         |                                                                   | Delta (LG_M1) = High                                                                                                                                                    | WF_RP                      |  |  |  |
|      |                              | IGW                            | I_R + I_DI                                                       | 0-2     | 2                                                                 | sum of <b>G</b> round <b>W</b> ater model 1                                                                                                                             | WF_M1                      |  |  |  |
|      | GROUNDWATER                  | <u>L</u> GW                    | IGW / max value BY LG_M1                                         | 0-1     | 1                                                                 | NORMALIZE GROUNDWATER BY LG_M1                                                                                                                                          | WF_M1                      |  |  |  |
|      |                              | LGW_Q                          | quantile ranking                                                 |         |                                                                   | Delta (LG_M1) = High                                                                                                                                                    | WF_RP                      |  |  |  |
|      | Model 1                      | WF_MI                          | I_DE + I_SS + I_GW                                               | 0-3     | 3                                                                 | SUM OF NORMALIZED SCORES FOR MODEL 1 ACROSS ALL AU's                                                                                                                    | WF_M1                      |  |  |  |
| 1    | Model 1 by LG                | WF_Mi_LG                       | WF_M1 / max value BY LG_M1                                       | 0-1     | 1                                                                 | NORMALIZE SCORES FOR MODEL 1 BY EACH LG_M1                                                                                                                              | WF_M1                      |  |  |  |
|      |                              | WF_MI_CAL                      | WF_M1_LG shifting all values to zero to<br>one scale             | 0-1     | 1                                                                 | CALIBRATE DATA RANGE TO ZERO TO ONE (1) FOR<br>MANAGEMENT UNITS - for each LG, subtract lowest value from<br>highest, then divide all values by highest remaining value | WF_M1                      |  |  |  |
| Ov   | erall Importance<br>Quantile | WF_M1_Q                        | Model 1 - Importance for Water Flow BY<br>LG_M1 <i>AND D = H</i> |         | H, MH<br>M,L                                                      | WF_MI_CAL - BY QUANTILES                                                                                                                                                | WF_RP                      |  |  |  |
|      |                              | Model 1 = ( P + F              | RS                                                               | N> C    | ALIBR                                                             | ATE VALUES FROM ZERO TO ONE                                                                                                                                             |                            |  |  |  |
|      |                              | WF_M1 = I_DE + I_SS + I_GW = 3 |                                                                  |         |                                                                   |                                                                                                                                                                         |                            |  |  |  |

### Table D-5 (cont.): GIS analyses for variables for important areas for the water flow.

# Details of analyses for important areas

This section describes the GIS methods for the main indicator included in Table D-5 in the order listed. The transformation steps of the model to return all values to a standard scale for ranking and grouping are self-explanatory and not additionally described here.

- <u>Average precipitation (av prec)</u>: Precipitation isohyets are overlain with the AU boundaries to determine the average precipitation value for the AU measured in inches per year.
- <u>Rain-on-snow and snow dominated zones (SRS pct):</u>

This layer represents the areas where the timing to the delivery of precipitation is most prominent – those prone to rain-on-snow events, and areas important for providing base flow in late summer to streams in lower elevations. Areas of rain-on-snow and snow dominated zones are overlain with the AU boundaries to determine the percent cover of the AU.

• <u>Depressional Wetlands (dpwt\_pct):</u>

This layer is an estimate for potential wetland areas, including both existing and potential historic wetland extent, by using hydric soils from NRCS soil surveys. There is good correlation between areas with 2% slope or less that have hydric soils, according to the NRCS soil survey, and known potential depressional wetlands. Overlay of area results in the percent wetland coverage for the AU.

- <u>Lakes (lk pct):</u> The National Hydro Data was used to estimate the percent of lake area within an AU.
- <u>Unconfined channels (UNSS):</u>

In most watersheds of the Puget Sound region, the SSHIAP (Salmon and Steelhead Habitat Inventory and Assessment Program) has developed data layers describing the confinement of stream segments. Stream segments classified as 'unconfined' are summed by length, divided by the square miles of the AU, and multiplied by three to represent a greater storage effect than the moderately confined streams. This indicator identifies AUs likely to have floodplains that provide more surface water storage.

• Moderately confined channels (MCSS):

Stream segments classified as 'moderately unconfined' (SSHIAP) are summed by length, divided by the square miles of the AU, and multiplied by two to represent a smaller storage effect than the unconfined streams.

- <u>Permeability and recharge (rechH, rechL):</u>
  - Permeability is used as an indicator of relative recharge capability. We assign low or high permeability classes to each of the deposits in the surficial geology layer (Table D-19) to get acres of each within the AU. We use the relationships from Vaccaro et al. 1998 to estimate the recharge value for the high and low permeability areas in inches per acre per year.

[(aver\_prec x .838) – 9.77] x PermH ....and... [(aver\_prec x .497) – 5.03] x PermL

Some general guidance on interpreting geologic maps is outlined in Table B-2, but there are inconsistencies and nuances of these maps that are clarified below. Furthermore, the relationships between a geologic type and its permeability should be reviewed by a geologist with local knowledge.

Typically the geologic types need to be grouped into a more simplified classification scheme. Below are some assumptions or points of clarification that may be useful for initially classifying the type and then the permeability of surficial geologic deposits:

- Alluvium and recessional outwash are generally of high permeability.
- Till, moraines, organic deposits, lacustrine, glacial marine drift, mudflows, fine alluvium, and bedrock are generally of low permeability.
- Advanced outwash can be of moderate permeability, but it may be locally overridden with glacial till (advanced outwash was deposited in front of the glacier and was often subsequently covered with glacial ice). In this instance, permeability should be low since the till layer intercepts percolating water first.
- Areas of glacial marine drift are sometimes included within areas mapped as glacial outwash. Given its extremely low permeability, you should map glacial marine drift areas separately and assign them to the low permeability class.
- Sometimes the geologic mapping is quite coarse. Because soils are derived from the underlying surficial deposit, soil data can be used to subdivide geologic classes that are quite broad. However, a geologist should review this information since the accuracy of soil data can vary greatly across the Puget lowlands.
- <u>Stream discharge (ucHp\_area):</u> A combination of unconfined streams in areas of higher permeability are used as an indicator of stream discharge potential.
- <u>Slope wetland discharge (slpwt\_pct):</u> The relative amount of slope wetlands, measured as the percent of an AU with wetlands on greater than 2% slope, is another indicator of discharge potential.

### Degradation to Water Flow

The "degradation" sub-model is based on an assessment of the indicators of human activity that alter the natural performance of each watershed process. Figure D-31 shows the mathematical relationship between the sub-models of the watershed process and the overall scoring for the model. There is no weighting assigned to any one sub-model, so each has a value of one with a final calculation of four for the entire model.

Methods for mapping degradation to the important areas for each watershed process are based upon the relationships described in Appendices B and C. You can map the indicators of these impairments using a suite of regionally available datasets. We provide details for conducting the analysis in the subsequent discussion and describe each analysis in the order seen in Table D-6.



Figure D-31. Equation for calculating the degradation to water flow.

The details of the model are explained in Appendix B. This appendix will focus on the GIS methods for this calculation. Because degradation is a comparison of the amount of change from human activity, and is not determined by the natural character of the landscape, we do not use landscape groups in these analyses (LG\_M2).

Table D-6: GIS analyses for variables for degradation to the water process. These variables are appropriate for use in Western Washington. The far right column lists the Feature Class where the field is located. Yellow fields are raw data, green are summary calculations, and orange are final quantile groups.

|                                                              |                                       | LG_M2 - all A<br>developed, an | U's are 'X', except those with >90% a<br>ad (5) developed open space], (imp_po | rea in 'u<br>:t >.90), | rban'<br>then L | landcover [LC = ( 2-4) high, medium, & low intensity<br>.G_M2 = "U"; they all get calc'd to 1 or High for degradation                                                                                                                                                     |                            |
|--------------------------------------------------------------|---------------------------------------|--------------------------------|--------------------------------------------------------------------------------|------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| De                                                           | MODEL 2<br>gradation to<br>Water Flow | Field                          | Calculation                                                                    | Values                 | Max             | Description                                                                                                                                                                                                                                                               | Model/<br>Feature<br>Class |
| (Not by LG, but by<br>LG_M2, which is<br>Urban or Not Urban) |                                       | LC_ac                          | sumarea                                                                        | acres                  |                 | acres in AU for Forest Loss calculation [minus areas in<br>snow/ice(25) & water(21); AND minus bare land(20), grassland(8),<br>and scrub shrub(12) that are WITHIN EXCLUDED federal lands (02-<br>National Park, 03-FS Wilderness, 07-FS Recreation)<br>("EXCLUDE" = 'X') | -WF_DB2                    |
|                                                              |                                       | LC_sqmi                        | sq miles                                                                       | miles                  |                 | from 'sqmi' in WF_DB1                                                                                                                                                                                                                                                     | WF_DB2                     |
|                                                              |                                       | imp_ac                         | sumarea                                                                        | acres                  |                 | acres of urban area in AU (>20% impervious per pixel: LC value = $2-5$ )                                                                                                                                                                                                  | WF_DB2                     |
|                                                              |                                       | imp_pot                        | imp_ac/LC_ac                                                                   | %                      |                 | % of urban (indicator of impervious) area in AU                                                                                                                                                                                                                           | WF_DB2                     |
|                                                              |                                       | IMP                            | imp_pct/max value BY LG_M2                                                     | 0-1                    | 1               | normalize value for urban (indicator of impervious) surface                                                                                                                                                                                                               | WF_M2                      |
|                                                              | DELIVERY                              | for_ac                         | sum area                                                                       | acres                  |                 | current forest land (LU_CD = <mark>9</mark> -deciduous, <mark>10</mark> - evergreen, 11 - mixed, 13 -<br>forested wetland)                                                                                                                                                | WF_DB2                     |
|                                                              |                                       | fLpct                          | 1 - (for_ac / LC_ac)                                                           | %                      |                 | percent of loss of forest within AU                                                                                                                                                                                                                                       | WF_DB2                     |
|                                                              |                                       | FL                             | fLpct / max value by LG_M2                                                     | 0-1                    | 1               | normalize value for forest loss                                                                                                                                                                                                                                           | WF_M2                      |
|                                                              |                                       | DDE                            | IMP + FL                                                                       | 0-2                    | 2               | sum of DElivery                                                                                                                                                                                                                                                           | WF_M2                      |
|                                                              |                                       | D_DE                           | DDE / max value by LG_M2, AND L/= 1                                            | 0-1                    | 1               | NORMALIZE DELIVERY BY LG_M2 (Urban = High)                                                                                                                                                                                                                                | WF_M2                      |
|                                                              |                                       | D_DE_Q                         | quantile ranking AND LI = H                                                    |                        |                 | Urban (LG_M2) = High; always overrides actual model results                                                                                                                                                                                                               | WF_RP                      |
|                                                              |                                       | DE_RP                          | LDE_Q&D_DE_Q                                                                   |                        |                 | Restoration_Protection for Delivery                                                                                                                                                                                                                                       | WF_RP                      |
|                                                              |                                       | w_ur_ac                        | sum area                                                                       | acres                  |                 | acres of depressional Wetlands degraded by URban (value = $2-5$ ) land cover                                                                                                                                                                                              | WF_DB2                     |
|                                                              |                                       | UW                             | (w_ur_ac/acres)x3                                                              | 0-3                    |                 | value for depressional Wetlands degraded by Urban land cover                                                                                                                                                                                                              | WF_M2                      |
|                                                              |                                       | w_ru_ac                        | sum area                                                                       | acres                  |                 | acres of depressional Wetlands degraded by RUral /ag (value = 6,7,8) land<br>cover (outside of protected areas)                                                                                                                                                           | WF_DB2                     |
|                                                              |                                       | R₩                             | (w_ru_ac/acres)x2                                                              | 0-2                    |                 | value for depressional WETIands degraded by RUral /ag                                                                                                                                                                                                                     | WF_M2                      |
|                                                              |                                       | DW                             | UW + RW                                                                        |                        |                 | sum for Degraded Wetlands (urban & rural)                                                                                                                                                                                                                                 | WF_M2                      |
|                                                              |                                       | D_WS                           | DW / max value BY LG_M2                                                        | 0-1                    | 1               | normalize value for DEGRADATION TO WETLAND STORAGE                                                                                                                                                                                                                        | WF_M2                      |
| t                                                            | Surface Storage                       | uc_alt_mi                      | sum length                                                                     | miles                  |                 | miles of degraded (altered LU value = 2-5 [urban]; AND LU value = 6-8<br>[rural] outside of protected areas) UNconfined streams                                                                                                                                           | WF_DB2                     |
| emen                                                         |                                       | mc_alt_mi                      | sum length                                                                     | miles                  |                 | miles of degraded (altered LU value = <mark>2–8</mark> ) Moderately Confined streams,<br>(outside of protected areas)                                                                                                                                                     | WF_DB2                     |
| Nov                                                          |                                       | UDS                            | (uc_alt_mi/sqmi)x3                                                             | 0-3                    |                 | value for Unconfined Degraded Streams                                                                                                                                                                                                                                     | WF_M2                      |
| -                                                            |                                       | MDS                            | (mc_alt_mi / <mark>sqmi) x 2</mark>                                            | 0-2                    |                 | value for Moderately confined Degraded Streams                                                                                                                                                                                                                            | WF_M2                      |
|                                                              |                                       | DST                            | UDS + MDS                                                                      |                        |                 | sum for Degraded Streams                                                                                                                                                                                                                                                  | WF_M2                      |
|                                                              |                                       | D_STS                          | DST / max value BY LG_M2                                                       | 0-1                    | 1               | value FOR DEGRADATION TO STREAM STORAGE                                                                                                                                                                                                                                   | WF_M2                      |

|        |                     | Field          | Calculation                                | Values  | Max | Description                                                                                            | Modelł<br>Feature<br>Class |
|--------|---------------------|----------------|--------------------------------------------|---------|-----|--------------------------------------------------------------------------------------------------------|----------------------------|
|        |                     | DSS            | D_WS+D_STS                                 | 0-2     | 2   | sum of Degradation to Surface Storage                                                                  | WF_M2                      |
| nent   |                     | D_55           | DSS1 max value BY LG_M2, AMD L1= 1         | 0-1     | 1   | NORMALIZE DEGRADATION TO SURFACE STORAGE                                                               | WF_M2                      |
| ven    | STORAGE             | <u>D_55_</u> Q | quantile ranking AND LI = H                |         |     | Urban (LG_M2) = High; always overrides actual model results                                            | WF_RP                      |
| Ň      |                     | SS_RP          | LSW_Q&D_SW_Q                               |         |     | Restoration_Protection for Surface Water                                                               | WF_RP                      |
|        |                     | u_ac           | sum acres x.9                              | ac      |     | urban acres (LC value = <mark>2</mark> )                                                               | WF_DB2                     |
|        |                     | bu_ac          | sum acres x.7                              | ac      |     | built up acres (LC value = <mark>3</mark> )                                                            | WF_DB2                     |
|        |                     | li_ac          | sum acres x.35                             | ac      |     | low intensity acres (LC value = 4)                                                                     | WF_DB2                     |
|        | 1000                | RRC            | (u_ac+bu_ac+LL_ac)/acres                   | %       |     | reduction recharge coefficient                                                                         | WF_M2                      |
|        | Recharge            | DR             | RRC x IR (% x inches)                      | inches  |     | score for Degraded Recharge – amount of precip reduced in inches across the unit                       | WF_M2                      |
|        |                     | D_R            | DR / max value by LG_M2, AND L/= 1         | 0-1     | 1   | value for DEGRADATION TO RECHARGE                                                                      | WF_M2                      |
|        |                     | DRQ            | quantile ranking AND LI = H                |         |     | Urban (LG_M2) = High; always overrides actual model results                                            | WF_RP                      |
|        |                     | R_RP           | LRQ&DRQ                                    |         |     | Restoration_Protection for Recharge                                                                    | WF_RP                      |
| a - 14 |                     | rd_mi          | sum road length                            | miles   |     | total road miles per AU                                                                                | WF_DB2                     |
|        |                     | rd_den         | rd_mi/sqmi                                 | 2       |     | density of road miles per AU                                                                           | WF_DB2                     |
|        |                     | D_RD           | rd_den / max value BY LG_M2                | 0-1     | 1   | value for Degradation from RoaDs                                                                       | WF_M2                      |
|        |                     | well_ont       | sum number of well connections             | number  |     | number of A $\&B$ type well connections (Dept. of Health well data base)                               | WF_DB2                     |
|        |                     | well_den       | well_ont/ <mark>sqmi</mark>                | density |     | number of well connections per unit area                                                               | WF_DB2                     |
|        |                     | D_ WEL         | well_den / max value BY LG_M2              | 0-1     | 1   | value for DEGRADATION from WELL density in AU                                                          | WF_M2                      |
|        |                     | ucHp_u         | sum stream length                          | miles   |     | Unconfined stream miles in High perm areas in Urban land cover (LC value = 2–5)                        | WF_DB2                     |
|        |                     | UUS            | (ueHp_u/sqmi)x3                            | 0-3     |     | value for degradation to Unconfined Urban Streams                                                      | WF_M2                      |
|        |                     | ucHp_r         | sum stream length                          | miles   |     | Unconfined stream miles in High perm in Rural land cover (LC value = 6–8) (outside of protected areas) | WF_DB2                     |
|        |                     | URS            | (ucHp_r/sqmi) <mark>x2</mark>              | 0-2     |     | value for degradation to Unconfined Rural Streams                                                      | WF_M2                      |
|        |                     | STD            | UUS + URS                                  |         |     | sum of STream Discharge                                                                                | WF_M2                      |
| Ŧ      | Discharge &         | D_STD          | STD / max value BY LG_M2                   | 0-1     | 1   | value for Degradation to STream Discharge by land cover                                                | WF_M2                      |
| Iamer  | Lateral Sub-surface | slpw_u         | sum area of slpwet_ac intersect with urban | acres   |     | urban LC on slope wetlands (>2%) (LC value = <mark>2-5</mark> )                                        | WF_DB2                     |
| OVE    | Flow                | SWU            | (slpw_u/acres)×3                           | %       | 0-3 | value for Slope Wetlands in Urban LC                                                                   | WF_M2                      |
| ≥      |                     | slpw_r         | sum area of slpwet_ac intersect with rural | acres   |     | rural LC on slope wetlands (>2%) (LC value = <mark>6-8</mark> ) (outside of protected areas)           | WF_DB2                     |
|        |                     | SWR            | (slpw_r/acres)x2                           | 1       | 0-2 | value for Slope Wetlands in Rural LC                                                                   | WF_M2                      |
|        |                     | WD             | SWU + SWR                                  | _       |     | sum for ¥etland Discharge                                                                              | WF_M2                      |
|        |                     | D WD           | WD / max value BY LG_M2                    | 0-1     | 1   | value for Degradation to Wetland Discharge (hydric slopes)                                             | WF M2                      |

#### Table D-6 (cont.) GIS analyses for variables for degradation to the water process.

|                      |                              | Field                                                                                      | Calculation                                          | Values | Max               | Description                                                                                                                                                             | Model/<br>Feature<br>Class |
|----------------------|------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                      |                              | DDI                                                                                        | D_RD + D_WEL + D_STD + D_WD                          | 0-4    | 4                 | sum for <b>Di</b> scharge                                                                                                                                               | WF_M2                      |
|                      |                              | D_DI                                                                                       | DDI/maxvalue BY LG_M2, <i>AND LI = 1</i>             | 0-1    | 1                 | ${f D}$ egradation to ${f D}{f I}$ scharge from loss of wetland, streams, and wells to LC                                                                               | WF_M2                      |
|                      |                              | <u>D_DLQ</u>                                                                               | quantile ranking AND LI = H                          |        |                   |                                                                                                                                                                         | WF_RP                      |
|                      |                              | DI_RP                                                                                      | <u>101_0&amp;0_01_0</u>                              |        |                   | Restoration_Protection for Discharge                                                                                                                                    | WF_RP                      |
|                      |                              | DG₩                                                                                        | D_R+D_DI                                             | 0-2    | 2                 | sum of GroundWater model 2                                                                                                                                              | WF_M2                      |
|                      |                              | D_G₩                                                                                       | DGW /max value BY LG_M2, AND U = 1                   | 0-3    | 1                 | NORMALIZE DEGRADATION TO GROUNDWATER                                                                                                                                    | WF_M2                      |
|                      | GROUNDWATER                  | <u>D</u> GW_Q                                                                              | quantile ranking AND LI = H                          |        |                   |                                                                                                                                                                         | WF_RP                      |
|                      |                              | GW_RP                                                                                      | LGW_Q&D_GW_Q                                         |        |                   | Restoration_Protection for Groundwater                                                                                                                                  | WF_RP                      |
|                      |                              | TR:                                                                                        | imp_pont                                             | %      |                   | loss of transpiration from loss of forest                                                                                                                               | WF_M2                      |
| Loss                 | Transpiration                | D_1                                                                                        | imp_pont / max value BY LG_M2, AND L/=<br>7          | 0-1    | 1                 | NORMALIZE LOSS OF ET                                                                                                                                                    | WF_M2                      |
|                      | Model 2                      | WF_M2                                                                                      | D_DE + D_SS + D_GW + D_L                             | 0-4    | 4                 | SUM OF NORMALIZED SCORES FOR MODEL 2 ACROSS ALL AUs                                                                                                                     | WF_M2                      |
| N                    | lodel 2 by LG                | WF_M2_LG                                                                                   | WF_M2/ max value BY LG_M2                            | 0-1    | 1                 | SCORES FOR MODEL 2                                                                                                                                                      | WF_M2                      |
|                      |                              | WF_M2_CAL                                                                                  | WF_M2_LG shifting all values to zero<br>to one scale | 0-1    | 1                 | CALIBRATE DATA RANGE TO ZERO TO ONE (1) FOR MANAGEMENT<br>UNITS - for each LG, subtract lovest value from highest, then divide<br>all values by highest remaining value | WF_M2                      |
| Ove                  | rall Degradation<br>Quantile | WF_M2_Q                                                                                    | Model 2 - DEGRADATION to Water<br>AND U = H          |        | H,<br>MH,<br>M, L | D_CAL - BY QUANTILES                                                                                                                                                    | WF_RP                      |
|                      |                              | Model 2 (WF_M2) = ( IMP + FL ) N + [ ( D_WS + D_STS ) N ] + [ ( D_R + D_DI ) N ] + ( D_L ) |                                                      |        |                   |                                                                                                                                                                         |                            |
|                      |                              |                                                                                            | WF_M2 = D_DE +                                       | D_SS   |                   | + D_GW + D_L = 4                                                                                                                                                        |                            |
| Management<br>Matrix |                              | WF_RP                                                                                      | Synthesis - Protection/Restoration<br>Matrix         |        |                   | COMBINATION OF WF_M1_Q (by LG's) & WF_M2_Q (no LG's) Using<br>Management Matrix                                                                                         | WF_RP                      |

#### Table D-6 (cont.) GIS analyses for variables for degradation to the water process.

# Details of analyses for degradation

The transformation steps of the model to return all values to a standard scale for ranking and grouping are self-explanatory and not additionally described here.

• Land use with impervious cover (imp pct):

Table D-7 shows the common land use categories and associated estimates of percent effective imperviousness. CCAP categories of 2-5 were used to indicate the relative area of urban land within the AU with at least an imperviousness of 20% per pixel. These categories are high, medium, and low intensity developed, and developed open space respectively.

| Land use Category                                | % Effective Impervious<br>Area (EIA) |
|--------------------------------------------------|--------------------------------------|
| Low density residential<br>(1 unit / 2-5 acres)  | 4                                    |
| Medium density residential<br>(1 unit / acre)    | 10                                   |
| Suburban density<br>(4 units / acre)             | 24                                   |
| High density<br>(multi-family or 8 units / acre) | 48                                   |
| Commercial and industrial                        | 86                                   |

Table D-7: Land use category and corresponding % effective impervious area (from Booth and Jackson 1997)

• Non-forest vegetation or land cover (fl pct):

Current forest loss is represented by the inverse of current forest land cover relative to the area of the AU. Forest types used include CCAP categories 9-13, representing deciduous, evergreen, mixed, and forested wetlands.

• Loss of area in depressional wetland (UW, RW):

To obtain a relative estimate of the amount of wetland area lost, we use a current/potential wetland layer overlaid with urban (CCAP categories 2-5) and rural (CCAP categories 6-8) land cover. An estimate of the potential wetland area can be achieved by using a combination of hydric soils on slopes of less than 2%, along with any current wetland identified through the NWI or land cover data. Then intersect with current urban and rural land cover pixels. Depressional wetlands have likely been lost anywhere these two layers intersect. Multipliers of 3 and 2 are used to represent the higher level of degradation assumed to occur between the urban and rural wetlands respectively.

• Degraded stream storage (UDS, MDS):

Streams with unconfined and moderately confined floodplains and adjacent to urban or rural/agricultural land will have a greater relative degree of degradation than streams with natural land cover. Unconfined and moderately confined streams from the SSHIAP data layer are intersected with CCAP urban and rural land cover. Multipliers of 3 and 2 are used to represent the higher level of degradation assumed to occur between the urban and rural streams respectively.

### • <u>Degradation to recharge (DR)</u>:

Various levels of development intensity reduce the quantity of recharge. In Western Washington these reductions were found to be the following: high intensity urban, 90%, built up areas, 75%, low intensity urban, 50% (Vaccaro et al. 1998). We use CCAP land cover classes 2, 3, & 4 respectively to develop a 'reduction recharge coefficient' that is then applied to the recharge value (IR) developed in the importance model. The results is an estimate of the reduction in precipitation in inches available for recharge across the unit.

- <u>Road density degradation to discharge (rd\_den)</u>: Road density is an indicator of greater degradation to discharge through alteration of surface and sub-surface flow.
- Well density (wel den):

The density of wells can decrease the quantity of water available for discharge through groundwater pumping. The density of wells was determined using Group A and B (greater than and less than 15 connections respectively) wells from the Department of Health well data.

# • Degradation to discharge of streams (UUS, URS):

Unconfined streams in deposits of higher permeability provide a discharge function. Urban and rural land cover near these streams reduces this function. Multipliers of 3 and 2 are used to represent the higher level of degradation assumed to occur between the urban and rural streams respectively.

• Loss of area of slope wetlands (SWU, SWR):

Relative degradation to slope wetlands is an indicator for degradation to discharge. Potential wetland area on >2% slope is intersected with both urban and rural land cover. CCAP land cover codes are 2-5 for urban and 6-8 for rural. Degradation factors of 3 and 2 are applied to differentiate between the severity of land cover change between urban and rural respectively.

• Loss from transpiration (imp pct):

The loss of forest is an indicator of loss of transpiration capability. The relative amount of impervious area represented by urban land cover is an indicator for this change.

• <u>Dams:</u>

The storage capacity of a dam can greatly influence the severity of degradation to timing of surface flow. A separate model was used to determine the relative degradation from a dam to the downstream segments. The degradation is represented by the storage volume of the dam relative to the drainage area of the dam. As the analysis moves downstream the area of additional unregulated runoff downstream of the dam is added to the analysis, which results in a decrease in effect with distance from the dam. See Attachment D-6 for details of this analysis.

# Water Flow Synthesis and Map Display

Results from each analysis are displayed in three maps, one for the relative importance to water flow, one for relative degradation to water flow, and the third is a combination of the two showing the management matrix. The blue importance maps and pink degradation maps both show the four buckets of low to high AUs, lighter to darker respectively.

| WRIA 7                              | Importance<br>(WF_M1_Q)                                                                 |                      | Degradation<br>(WF_M2_Q)                                                                    |
|-------------------------------------|-----------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|
| Legend                              | Highest Importance<br>Moderate High Importance<br>Moderate Importance<br>Low Importance |                      | Highest Degradation<br>Moderate High Degradation<br>Moderate Degradation<br>Low Degradation |
| Overall<br>Water<br>Flow<br>Results |                                                                                         | Level of Degradation |                                                                                             |

Figure D-32. Importance and degradation map display.

As described earlier, the results of both model 1 and model 2, importance and degradation respectively, produce a management matrix with sixteen possible combinations (Figure D-33) that can be used to prioritize management actions. Generally we group these sixteen possibilities into eight management groups for effective display and meaningful understandable appropriate interpretation.



Figure D-33. Sixteen combinations of management results.



Figure D-34. Management Matrix using 8 groups.

# Water Quality Analyses

The water quality analyses follow the same structure as the water flow, with two components that result in a management matrix. For water quality, the export potential model is analogous to the importance model for water flow. The degradation model is the N-SPECT analysis discussed in Appendix C. Five constituents are modeled: sediment, phosphorous, nitrogen, pathogens, and metals (copper & zinc).



Figure D-35. Water Quality models.

# Export Potential of Water Quality Parameters

The export potential models comprise both a 'source' and 'sink' component. The source component represents the delivery and movement of the water quality parameter to the system. The sink component represents the interruption of the pollutant transport, so the difference between the 'source' and 'sink' components is the export potential. These are still a comparison of natural characteristics of the landscape, so the landscape groups are used to compare like areas to each other (LG\_M1).

#### Sediment

The sediment model includes indicators for the three major mechanisms for delivery of sediment to aquatic systems: surface erosion, mass wasting, and channel erosion. Areas that rank higher in indicators of these processes can be expected to have higher export of sediment than others. A sink is an area that temporarily or permanently stores sediment due to low transport capacity.



Figure D-36. Export potential for sediment.

|              |                              | Field       | Calculation                                        | Values       | Max             | Description                                                                                                                                                                                                      | Model |
|--------------|------------------------------|-------------|----------------------------------------------------|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|              |                              | AU_ID       | ID number                                          |              |                 | Analysis Unit ID number                                                                                                                                                                                          | AU    |
| Ana          | lysis of                     | LG_M1       | landscape groups for Model 1                       |              |                 | Landscape Group (C-Coastal, L-Lowland, M-<br>Mountainous, D- Delta, LK- Lake)                                                                                                                                    | AU    |
| Se           | diment                       | LG_M2       | no groups for Model 2                              |              |                 | X - All, U- urban AU's (>90% urban )                                                                                                                                                                             | AU    |
| E            | xport                        | acres       | acres in AU                                        | acres        |                 | acres in AU                                                                                                                                                                                                      | AU    |
| Pote         | ential by                    | sqmi        | acres/640                                          | sqmiles      | 3               | sq mi in AU                                                                                                                                                                                                      | AU    |
| LG (I        | Landscape                    | strm_mi     | miles                                              | miles        |                 | ONLY                                                                                                                                                                                                             | WQ_DB |
| C            | Group)                       | SDN         | strm_mi / sqmi                                     | ratio        | 1               | stream density                                                                                                                                                                                                   | WQ_M1 |
|              |                              | AS_mi       | miles                                              | miles        |                 | 'Centerline_TYP' = StreamRiver, Artificial Path,<br>Ditch, LakePond)                                                                                                                                             | WQ_DB |
|              |                              | ASDN        | AS_miłsqmi                                         | ratio        | 1               | Aquatic System Density for AU                                                                                                                                                                                    | WQ_M1 |
|              |                              | RE          | Σ (R x acres) / AU acres                           | ratio        | 1               | rainfall erosivity ('R' from SSURGO); average of AU                                                                                                                                                              | WQ_DB |
|              | rosion                       | к           | Σ (K x acres) ł AU acres                           | ratio        | 1               | soil erodibility (average of AU)                                                                                                                                                                                 | WQ_DB |
|              | Ge                           | SLP         | average slope of AU from 10M DEM                   | 0-1          | 1               | topography - mean hillslope gradient of AU                                                                                                                                                                       | WQ_DB |
|              | Surfa                        | SE          | RE x K x SLP                                       | 0-3          | 3               | rainfall erosion value                                                                                                                                                                                           | WQ_M1 |
| 3            | 0                            | S_SE        | SE / max value by LG_M1                            | ratio        | 1               | Surface Erosion                                                                                                                                                                                                  | WQ_M1 |
| s            | Mass                         | LH          | landslide hazard rating; average LH<br>for AU      | 1,2,3        | 3               | aver slope stability value from Shaw Johnson model 1-<br>3, low to high                                                                                                                                          | WQ_DB |
| rce          | wasting                      | MW          | LH × ASDN                                          | ratio        |                 | landslide hazard rating                                                                                                                                                                                          | WQ_M1 |
| Sou          |                              | <u>S_MW</u> | MW7 max value BY LG_M1                             | ratio        |                 | value for Mass Wasting                                                                                                                                                                                           | WQ_M1 |
|              |                              | ERST_mi     | geology value = 1 for analysis                     | miles        |                 | miles of stream intersecting erodible geology type                                                                                                                                                               | WQ_DB |
|              | sion                         | ERST        | ERST_miłstrm_mi                                    | ratio        |                 | miles of stream intersecting erodible geology type                                                                                                                                                               | WQ_M1 |
|              | Chai<br>Eros                 | CE          | SLP × ERST                                         |              |                 | Channel Erosion                                                                                                                                                                                                  | WQ_M1 |
|              |                              | <u>S_CE</u> | CE / max value by LG_M1                            | ratio        | 1               | normalized Channel Erosion                                                                                                                                                                                       | WQ_M1 |
|              |                              | 550         | S_SE + S_MW + S_CE                                 | ratio        | 3               | sum of Sediment SOurce                                                                                                                                                                                           | WQ_M1 |
|              | Source                       | 5_50        | SSO 7 max value BY LG_M1                           | 0-2          | 0-1             | NORMALIZE SOURCE BY L6_M1                                                                                                                                                                                        | WQ_M1 |
|              |                              | 5_50_Q      | quantile ranking                                   |              |                 |                                                                                                                                                                                                                  | WQ_RP |
| ık           |                              | 5_51        | I_SS from Water Flow                               |              | 0-1             | Normalized value for Sediment Sink                                                                                                                                                                               | AU_M1 |
| Sir          |                              | S_SI_Q      | quantile ranking (from Water Flow)                 |              |                 |                                                                                                                                                                                                                  | WQ_RP |
| M<br>E<br>Pa | lodel 1<br>xport<br>otential | 5_M1        | s_so <b>-</b> s_si                                 |              | (-1) - 1        | EXPORT POTENTIAL = SOURCE minus<br>SINK                                                                                                                                                                          | WQ_M1 |
| Mo           | del 1 by<br>LG               | 5_M1_16     | S_M17 max value BY LG_M1                           |              | 0-1             | NORMALIZE SCORES FOR MODEL 1 BY<br>EACH LG_M1                                                                                                                                                                    | WQ_M1 |
|              |                              | 5_MI_CAL    | (S_M1 ++ lowest value) ł max<br>value BY LG_M1     |              | 0-1             | CALIBRATE DATA RANGE TO ZERO TO<br>ONE (1) FOR MANAGEMENT UNITS - for<br>each LG, subtract lowest value from highest<br>(+/- accounts for negative values), then<br>divide all values by highest remaining value | WQ_M1 |
| Mar          | nagement<br>Units            | S_M1_Q      | Model 1 - Sediment Sources<br>Minus Sinks BY LG_M1 | Delta<br>= M | H,M<br>H<br>M,L | S_M1_CAL - BY QUANTILES                                                                                                                                                                                          | WQ_RP |
|              |                              | Model 1 =   | ( S_SE + S_MW + S_CE ) 🗧                           | ( I_SS )     | >               | CALIBRATE VALUES FROM ZERO TO ONE                                                                                                                                                                                |       |
|              |                              | S_M1 =      | s_so 📑                                             | S_SI         |                 |                                                                                                                                                                                                                  | 1     |

#### Table D-8. GIS analyses for variables for the export potential of sediment.

Details of analyses for sediment:

• <u>Potential for surface erosion and delivery to aquatic ecosystems (SE):</u> To locate areas that are prone to surface erosion, we used the SSURGO soils data, slope (calculated from a DEM), and 'rainfall erosivity' factor (R) to map areas with the combination of slope and K factor shown in Table D-9.

| Slope  | K Factor |          |      |  |  |  |  |  |
|--------|----------|----------|------|--|--|--|--|--|
| Slope  | <0.25    | 0.26-0.4 | >0.4 |  |  |  |  |  |
| <30%   |          |          |      |  |  |  |  |  |
| 30-65% |          |          |      |  |  |  |  |  |
| >65%   |          |          |      |  |  |  |  |  |

Table D-9. Slope and K factor combinations as indicators of potential for soil erosion. (WFPB, 1997a)

# • Mass wasting risk areas (MW):

The output of the Shaw Johnson model for the Puget Sound region shows areas with low, moderate, or high risk of mass wasting events. This model was developed from a combination of slope gradient and form (convex, concave, or planar). This slope stability value and the aquatic system density together predict AUs with a relatively higher probability for mass wasting events and increased soil erosion.

• Channel erosion (CE):

Slope and erosivity of underlying lithology directly influence the erosive capacity of a channel. The surficial geology layer was coded either a 1 for those units more susceptible to erosion, or a zero for those units more resistant to erosion. The stream layer was overlaid with the surficial geology to calculate the stream miles of these 'erodible streams'. This is converted to a proportion by dividing by the total stream miles, and then multiplied by slope.

• Sediment sink (S SI):

Sediment transport is impeded or stopped in lakes, depressional wetlands, and floodplains outside stream channels. Thus, the sink component for sediment is taken as the surface storage component of the water flow process (I\_SS).

# Phosphorous

Since phosphorus is present in some amount in soil and geological material, it enters water along with sediments through the same sources, surface erosion, mass wasting and in-channel erosion. Therefore, these mechanisms are identical in the Sediment and Phosphorus Processes. A phosphorus enrichment indicator, PE, could be added to the model to distinguish sediments with higher phosphorous content if local data or knowledge is available.

The model indicator for the sink component, is a combination of surface storage from the water flow component (I\_SS), and phosphorus retention by soils, SRP, or soil clay content.



Figure D-37. Model for the Export Potential for Phosphorous.

| An         | alysis of         | Field   | Calculation                    | values | Max | Description                                                                   | Data                           | Model |
|------------|-------------------|---------|--------------------------------|--------|-----|-------------------------------------------------------------------------------|--------------------------------|-------|
| E          | xport             | AU_ID   | ID number                      |        |     | Analysis Unit ID number                                                       |                                | AU    |
| Pot<br>Pho | ential of         | LG_M1   | landscape groups for Model 1   |        |     | Landscape Group (C-Coastal, L-Lowland, M-<br>Mountainous, D- Delta, LK- Lake) |                                | AU    |
| hul C      |                   | LG_M2   | no groups for Model 2          |        |     | X - All, U - urban AU's (>90% urban )                                         |                                | AU    |
| í a        | andscane          | acres   | acres in AU                    | acres  |     | acres in AU                                                                   |                                | AU    |
|            | Group)            | sqmi    | acres/640                      | miles  |     | sqmiin AU                                                                     |                                | AU    |
|            | 5                 | RE      |                                |        |     | rainfall erosivity (from WF Model?); average<br>precip of AU                  | Rfactor.shp from NW Hydraulics | WQ_DB |
|            | ace Erosi         | К       |                                |        |     | soil erodibility                                                              | from NW Hydraulics             | WQ_DB |
|            |                   | SLP     | average slope from 10M dem     |        |     | topography - mean hillslope gradient                                          | 10M DEM                        | WQ_DB |
|            | urta              | SE      | RE x K x SLP                   |        |     | rainfall erosion value                                                        | from NW Hydraulics             | WQ_M1 |
|            | 0<br>N            | 5_5E    | SE I max value by LG_MI        |        |     | Rainfall Erosion                                                              |                                | WQ_M1 |
|            | Mass              | LH      | landslide hazard rating        |        |     | aver slope stability value from Shaw Johnson<br>model 1-3, low to high        |                                | WQ_DB |
|            | wasting           | MW      | LH × ASDN                      |        |     | landslide hazard rating                                                       |                                | WQ_M1 |
|            |                   | 5_MW    | MW / max value BY LG_M1        |        |     | value for Mass Wasting                                                        |                                | WQ_M1 |
| Θ          | 5                 | ERST_mi | geology value = 1 for analysis |        |     | miles of stream intersecting erodible geology type                            |                                | WQ_DB |
| Sourc      | Erosic            | ERST    | ERST_mi <i>ł</i> strm_mi       |        |     | miles of stream intersecting erodible geology type                            |                                | WQ_M1 |
|            | une               | CE      | SLP × ERST                     |        |     | Channel Erosion                                                               |                                | WQ_M1 |
|            | Cha               | SCE     | CE / max value by LG_M1        |        |     |                                                                               | WQ_M1                          |       |
|            | J t               | CC      | clay content                   |        |     | if local data                                                                 | local knowledge                | WQ_DB |
|            | phor<br>s<br>thme | PC      | CC × ASDN                      |        |     | Phosphorus content                                                            |                                | WQ_DB |
|            | Phos              | PE      | PC / max value by LG_M1        |        |     | phosphorous enrichment normalized                                             |                                | WQ_M1 |
|            | Source            | P50     | SSO + PE                       |        |     | Sediment Source (+ Phosphorpous<br>Enrichment)                                |                                | WQ_M1 |
|            | alp               | P_50    | PSO / max value BY LG_M1       | 0-2    | 0-1 | NORMALIZE SOURCES BY LG_M1                                                    |                                | WQ_M1 |
|            | Tot               | P_SO_Q  | quantile ranking               |        |     |                                                                               |                                | WQ_RP |

Table D-10. GIS analyses for variables for the export potential of phosphorous.

|                |                             | 1_55            | SS / max value BY LG_M1 (from<br>Water Flow)          | 0-2          | 0-1             | NORMALIZE SURFACE<br>STORAGE/WATER BY LG_M1                                                                                                                                                                      |                                                                                                                                                                                     | WF_M1 |
|----------------|-----------------------------|-----------------|-------------------------------------------------------|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Sink           |                             | SRP             | Σ(clay_mk x area) ł AU area                           |              |                 | Soil Retention-Phosphorus<br>CLAY_SSURGD - 'clay_rnk' (claytotal_R,<br>SSURGD) clay content >28% = 3 (include<br>peat,muck), 10-28% = 2, <10% = 1                                                                | claytotal_r from SSURGD; for<br>data gaps - use soil texture as<br>surrogate (rock outcrop=0,<br>sandy=0-10(1), silt Ioam or gravel<br>Ioam =10-28(2), organic soils =<br>>28 or 3) | WQ_DB |
|                |                             | P_SR            | SRP / max value by LG_M1                              |              |                 |                                                                                                                                                                                                                  |                                                                                                                                                                                     | WQ_M1 |
|                | T-UD                        | PSI             | I_SS + P_SR                                           |              |                 | Phosphorous Sink                                                                                                                                                                                                 |                                                                                                                                                                                     | WQ_M1 |
|                | Circle                      | P_SI            | PSI / max value for LG_M1                             |              | 0-1             | Normalized Importance of Phosphprous Sink                                                                                                                                                                        |                                                                                                                                                                                     | WQ_M1 |
|                | ЭІЛК                        | P_SLQ           | quantile ranking                                      |              |                 |                                                                                                                                                                                                                  |                                                                                                                                                                                     | WQ_RP |
| M<br>EX<br>POT | lodel 1<br>KPORT<br>TENTIAL | P_Mi            | P_SO - P_SI                                           |              | 0-1             | EXPORT POTENTIAL = SOURCE minus SINK                                                                                                                                                                             |                                                                                                                                                                                     | WQ_M1 |
| Мо             | del 1 by<br>LG              | P_M <u>i</u> lG | P_M17 max value BY LG_M1                              |              | 0-1             | NORMALIZE SCORES FOR MODEL 1 BY EACH<br>LG_M1                                                                                                                                                                    |                                                                                                                                                                                     | WQ_M1 |
|                |                             | P_MI_CAL        | (P_M1 ++ lowest value) / max<br>value BY LG_M1        |              | 0-1             | CALIBRATE DATA RANGE TO ZERO TO ONE (1)<br>FOR MANAGEMENT UNITS - for each LG,<br>subtract lovest value from highest (+/-<br>accounts for negative values), then divide all<br>values by highest remaining value |                                                                                                                                                                                     | WQ_M1 |
| Mar            | nagement<br>Units           | P_M1_Q          | Model 1 - Importance for<br>Sediment Process BY L6_M1 | Delta<br>= M | H,M<br>H<br>M,L | P_M1_CAL - BY QUANTILES                                                                                                                                                                                          |                                                                                                                                                                                     | WQ_RP |
|                |                             | Mod             | el 1 = (SSO + PE) = ( I_SS +                          | P_SR         | )>              | CALIBRATE VALUES FROM ZERO TO ONE                                                                                                                                                                                | ·                                                                                                                                                                                   |       |
|                |                             |                 | P_M1 = P_SO - P_                                      | SI           |                 |                                                                                                                                                                                                                  |                                                                                                                                                                                     |       |

Table D-10 (cont.). GIS analyses for variables for the export potential of phosphorous.

Details of analyses for phosphorous:

 <u>Soil Retention of Phosphorous (SRP)</u>: From the SSURGO soil data layer, the 'clay\_rnk' value indicates the clay content. For clay content > 28%, clay\_rnk = 3, for 10-25, clay\_rnk = 2, and for <10% clay content, clay\_rnk = 1. Peat and muck soils are included in clay\_rnk = 3. For areas without data, soil texture is used as a surrogate: rock outcrop = 0, sandy soil of 0-10 = clay\_rnk of 1, silt loam or gravel loam of 10-28 = clay\_rnk of 2, and organic soils where clay content is > 28% are clay\_rnk of 3.

# Metals

Overall, natural processes are not considered to be a significant mechanism, relative to human inputs, for delivery of toxic metals to western Washington aquatic ecosystems. Accordingly, metal sources are considered in the degradation model but not the export potential model. However, natural processes do mediate the transport and fate of metals introduced by other sources, thus sink processes are addressed.

The model indicators used to represent the metals sink mechanisms are surface storage and soil retention of metals. Surface storage is the same indicator as for the water flow component, represented by I\_SS. For the metals retention by soils (M\_SRM), the indicator is the cation exchange capacity of the soil. The attribute field used is 'CEC-7' from the SSURGO database.



Figure D-38. Model for the Export Potential for Metals.

| Analysis of                                           |                              | Field     | Calculation                                    | values  | Max         | Description                                                                                                                                                                                                   | Model |
|-------------------------------------------------------|------------------------------|-----------|------------------------------------------------|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| E                                                     | xport                        | AU_ID     | ID number                                      |         |             | Analysis Unit ID number                                                                                                                                                                                       |       |
| Potential for<br>Metals by LG<br>(Landscape<br>Group) |                              | LG_M1     | landscape groups for Model 1                   |         |             | Landscape Group (C-Coastal, L-Lowland, M-Mountainous, D-<br>Delta, LK-Lake)                                                                                                                                   |       |
|                                                       |                              | acres     | acres in AU                                    | acres   |             | acres in AU                                                                                                                                                                                                   |       |
|                                                       |                              | sqmi      | acres/640                                      | miles   |             | sq mi in AU                                                                                                                                                                                                   |       |
|                                                       | Channel                      | CT        | SD                                             | 1       |             | stream density                                                                                                                                                                                                |       |
|                                                       | transport                    | LCT       | SD / max value by LG_M1                        |         | 0-1         | normalized value for terrestrial erosivity                                                                                                                                                                    |       |
|                                                       | Stream<br>storage            | STS       | from WF model                                  |         | 1-5         |                                                                                                                                                                                                               |       |
| Sink                                                  | Lake <sup>r</sup><br>Wetland | ₩1.5      | from WF model                                  |         |             | from WF_Model; sum of Surface Storage (wetlands,<br>lakes, streams)                                                                                                                                           |       |
|                                                       | storage                      | 1_55      | SS/max value BY LG_M1                          | 0-2     | 0-1         | NORMALIZE SURFACE STORAGE/WATER BY LG_M1                                                                                                                                                                      | WF_M1 |
|                                                       | Soil                         | SRM       | ∑ (CEC7_rnk x area) / AU area                  |         |             | Soil Retention-Metals ; CEC7_SSURGO; 'cec_rnk' ;<br>cation exchange capacity                                                                                                                                  | WQ_DB |
|                                                       | Storage                      | M_SRM     | SRM/ max value by LG_M1                        |         |             | NORMALIZE Soil Retention of Metlas                                                                                                                                                                            | WQ_M1 |
| Cin                                                   | k Malua                      | MSI       | M_SRM + LSS                                    |         | 0-2         | SUM OF NORMALIZED SCORES FOR MODEL 1<br>ACROSS ALL AU's                                                                                                                                                       | WQ_M1 |
| Siri                                                  | k value                      | M_51      | MSI / max value BY LG_M1                       |         | 0-1         | NORMALIZE SCORES FOR SINK VALUE BY EACH<br>LG_M1                                                                                                                                                              | WQ_M1 |
| M<br>E<br>Po                                          | odel 1<br>xport<br>tential   | M_MI      | 1- M_SI                                        |         | 0-1         | EXPORT POTENTIAL> REVERSE ORDER - High Sink<br>value = Lo <del>v</del> Export Potential                                                                                                                       | WQ_M1 |
|                                                       |                              | M_MI_CAL  | (M_M1 ++ lowest value) / max<br>value by LG_M1 |         | 0-1         | CALIBRATE DATA RANGE TO ZERO TO ONE (1) FOR<br>MANAGEMENT UNITS - for each LG, subtract lovest<br>value from highest (+/- accounts for negative values),<br>then divide all values by highest remaining value | WQ_M1 |
| Man                                                   | agement<br>Units             | M_M1_Q    | Model 1 - Metals Process BY<br>LG_M1           |         | H,MH<br>M,L | M_M1_CAL - BY QUANTILES                                                                                                                                                                                       | WQ_RP |
|                                                       |                              | Model 1 = | (M_SRM + I_SS)> CALIBRAT                       | E VALUE | S FROM      | I ZERO TO ONE                                                                                                                                                                                                 |       |
|                                                       |                              |           | M M1 = 1-M SI                                  |         |             |                                                                                                                                                                                                               |       |

Table D-11: GIS analyses for variables for the export potential of metals.

Details of analyses for metals:

• Soil Retention of Metals (SRM):

The attribute field 'CEC-7' from the SSURGO database provides the cation exchange capacity by soil type at a pH of 7. These values are then grouped into ranks 1-3 according to the table below. The acres for each type within an AU are summed to determine the average value for the AU. This is then normalized by dividing by the maximum value for all the AU's within the landscape group.

Table D-12: CEC rank values.

| CEC-7* Values                                              | CEC_rnk |
|------------------------------------------------------------|---------|
| Urban land, beach/dune, rock<br>outcrop, river wash, water | 0       |
| > 0 - 10                                                   | 1       |
| >10 - 28                                                   | 2       |
| >28 - 175                                                  | 3       |
| * Cation exchange capacity at pl                           | l of 7. |

### Nitrogen

Overall, natural processes are not considered to be a significant mechanism, relative to human inputs, for production of nitrogen in western Washington aquatic ecosystems. Accordingly, N sources are not considered in the export potential model, but are addressed in the degradation model (N-SPECT). However, natural processes do mediate the transport and fate of nitrogen introduced by other sources, thus sink processes are addressed here.

The principal nitrogen sinks are wetlands, lakes, and riparian areas. Therefore, the modeling is based on the complete complement of wetlands and lakes in an AU, as represented by the Wetland/Lake Storage (WLS) indicator from the Water Flow Process. Riparian area denitrification (N\_RDN) is characterized by intersecting the GIS layers for unconfined floodplains and hydric soils. This formulation identifies riparian areas with the highest potential to offer all essential denitrification conditions.



Figure D-39. Model for the Export Potential for Nitrogen.

| Ana          | lusis of                    | Field         | Calculation                                     | Values       | Max         | Description                                                                                                                                                                                                      | Model |
|--------------|-----------------------------|---------------|-------------------------------------------------|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Cir          | ake for                     | AU_ID         | ID number                                       |              |             | Analysis Unit ID number                                                                                                                                                                                          | AU    |
| Nitrogen by  |                             | LG_M1         | landscape groups for Model 1                    |              |             | Landscape Group (C-Coastal, L-Lowland, M-Mountainous,<br>D- Delta, LK- Lake)                                                                                                                                     | AU    |
| LG (L        | andscape                    | acres         | acres in AU                                     | acres        |             | acres in AU                                                                                                                                                                                                      | AU    |
| G            | Group)                      | sqmi          | acres/640                                       |              |             | sq mi in AU                                                                                                                                                                                                      | AU    |
|              | Lake/<br>Wetland<br>storage | W15           | from WF model                                   |              |             | from WF_Model; sum of Surface Storage<br>(wetlands, lakes, streams)                                                                                                                                              | WF_M1 |
|              | Riparian                    | RDN_mi        | un_mi & mc_mi in hydric soil_miles              |              |             | Hiparian DeNitrification - floodplains in hydric<br>soils                                                                                                                                                        | WQ_DB |
|              | DeNitrific                  | RDN           | RDN_mił AU sąmi                                 |              |             | NORMALIZE Riparian DeNitirification                                                                                                                                                                              | WQ_M1 |
|              | ation                       | N_RDN         | RDN / Max value by LG_M1                        |              |             | NORMALIZE Riparian DeNitirification                                                                                                                                                                              | WQ_M1 |
|              |                             | NSI           | N_RDN + WLS                                     |              | 0-2         | SUM OF NORMALIZED SCORES FOR MODEL 1<br>ACROSS ALL AU's                                                                                                                                                          | WQ_M1 |
| Sinl<br>b    | k Value<br>y LG             | №.5/          | NSI / max value BY LG_M1                        |              | 0-1         | NORMALIZE SCORES FOR SINK VALUE BY EACH<br>LG_M1                                                                                                                                                                 | WQ_M1 |
| M<br>E<br>Po | odel 1<br>xport<br>tential  | N_MI          | 1 - N_SI                                        |              | (-1)-1      | EXPORT POTENTIAL> REVERSE ORDER -<br>High Sink value = Low Export Potential                                                                                                                                      | ₩Q_M1 |
|              |                             | N_MI_CAL      | (N_M1 ++ lowest value) / max<br>value BY LG_M1  |              | 0-1         | CALIBRATE DATA RANGE TO ZERO TO ONE (1)<br>FOR MANAGEMENT UNITS - for each LG,<br>subtract lowest value from highest (+/- accounts<br>for negative values), then divide all values by<br>highest remaining value | wq_м1 |
| Man<br>I     | agement<br>Units            | N_M1_Q        | Model 1 - Sink for Nitrogen<br>Process BY LG_M1 | Delta<br>= M | H,MH<br>M,L | N_M1_CAL - BY QUANTILES                                                                                                                                                                                          | WQ_RP |
|              |                             | Model 1 =     | (N_RDN + WLS)> CALIBRAT                         | E VAL        | UES FI      | ROM ZERO TO ONE                                                                                                                                                                                                  |       |
|              |                             |               | (NSI)                                           |              |             |                                                                                                                                                                                                                  |       |
|              | Expo                        | ort Potential | N_M1 = 1 - N_SI                                 |              |             |                                                                                                                                                                                                                  |       |

Table D-13: GIS analyses for variables for the export potential of nitrogen.

Details of analysis for nitrogen:

• <u>Riparian denitrification (RDN):</u>

Total stream miles categorized as unconfined or moderately confined from the SSHIAP stream layer were intersected with the hydric soils layer from SSURGO. The result is converted to an area based value by dividing by the square miles of the AU. Then the value is normalized by dividing by the maximum value of all AUs.

# Pathogens

Overall, natural processes are not considered to be a significant mechanism, relative to human inputs, for production of pathogens in western Washington aquatic ecosystems. Accordingly, pathogen sources are not considered in the export potential model, but are addressed in the degradation (N-SPECT) model. However, natural processes do mediate the transport and fate of pathogens introduced by other sources, thus sink processes are addressed here.



Figure D-40. Model for the Export Potential for Pathogens.

Aquatic ecosystems that allow predation of pathogens to occur over a longer period of time play an important role in eliminating pathogens. Due to their ability to hold water back, depressional wetlands provide longer residence time for surface waters than streams and rivers. Thus, they are unique in furnishing all of the essential conditions and control an AU's role in pathogen mortality to a much greater degree than any other feature.

|                                      |                                                          | Field                              | Calculation                                                 | values                               | Max         | Description                                                                                                                                                                                                   | Model  |
|--------------------------------------|----------------------------------------------------------|------------------------------------|-------------------------------------------------------------|--------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Analysis of Sinks<br>for Pathogen by |                                                          | AU_ID                              | ID number                                                   |                                      |             | Analysis Unit ID number                                                                                                                                                                                       | AU     |
|                                      |                                                          | LG_M1 landscape groups for Model 1 |                                                             |                                      |             | Landscape Group (C-Coastal, L-Lowland, M-Mountainous, D- Delta,<br>LK- Lake)                                                                                                                                  | AU     |
| Lu                                   | (Eanascape<br>Group)                                     | acres                              | acres in AU                                                 | acres                                |             | acres in AU                                                                                                                                                                                                   | AU     |
|                                      |                                                          | sqmi                               | acres / 640                                                 | miles                                |             | sq mi in AU                                                                                                                                                                                                   | AU     |
| ink                                  | Depressional                                             | dpwt_ac                            | acres (from WF Model)                                       | acres                                |             | all depressional wetlands (hydric, NWI, LC_wet, marsh on $\leq\!\!2\%$ slope)                                                                                                                                 | WF_DB1 |
| S                                    | Wetlands dpwt_pct dpwt_ac <i>t</i> acres (from WF_Model) | %                                  |                                                             | percent of all depressional wetlands | WF_DB1      |                                                                                                                                                                                                               |        |
|                                      | Sink                                                     | PA_51                              | dpwt_pct / max value by LG_M1                               |                                      | 0-1         | NORMALIZE SCORES FOR MODEL 1 BY EACH LG_M1                                                                                                                                                                    | WQ_M1  |
| Mod<br>I                             | el 1 Export<br><sup>p</sup> otential                     | PA_MI                              | 1-PA_SI                                                     |                                      | (-1) - 1    | EXPORT POTENTIAL> REVERSE ORDER - High Sink value =<br>Low Export Potential                                                                                                                                   | WQ_M1  |
|                                      |                                                          | PA_MI_CAL                          | (PA_SI ++ lowest value) / max value<br>BY LG_M1             |                                      | 0-1         | CALIBRATE DATA RANGE TO ZERD TO DNE (1) FOR<br>MANAGEMENT UNITS - for each LG, subtract lowest value from<br>highest (+/- accounts for negative values), then divide all values by<br>highest remaining value | WQ_M1  |
| Ma                                   | inagement<br>Units                                       | PA_M1_Q                            | Model 1 - Export Potential for<br>Pathogen Process BY LG_M1 | Delta =<br>M                         | H,MH<br>M,L | PA_M1_CAL - BY QUANTILES                                                                                                                                                                                      | WQ_RP  |
|                                      |                                                          | Model 1 = [                        | DPWT )> CALIBRATE VALUES FRO                                | M ZERO                               | TO ONE      |                                                                                                                                                                                                               | 3      |
|                                      |                                                          | Export F                           | Potential> PA_M1 = 1-PA_SI                                  |                                      |             |                                                                                                                                                                                                               |        |

#### Table D-14: GIS analyses for variables for important areas for the pathogen process.

Details for analysis for pathogens:

 <u>Depressional wetlands (DPWT\_PCT):</u> The model indicator is the relative presence of depressional wetlands as quantified in the Water Flow model 1 as dpwt\_pct. Acres of depressional wetlands are represented as a percent of the area of the AU. The Nonpoint Source Pollution and Erosion Comparison Tool (N-SPECT) examines the relationship between land cover, nonpoint source pollution, and erosion. It uses spatial elevation data to calculate flow direction and flow accumulation throughout a watershed (Puget Sound). Coefficients representing the contribution of each land cover class to the expected pollutant load are also applied to the land cover data sets to approximate total pollutant loads. The output layers display estimations of runoff, pollutant loads, pollutant concentration, and total sediment loads. N-SPECT provided the functionality to compare current land cover conditions with pre-development conditions.

Since degradation is a function of the degree of human alteration to the landscape, these models do not use landscape groups in the calculations (LG\_M2). All AUs within the analysis extent can be compared to each other.

# Pre-Processing

In order to run N-SPECT, it was necessary to collect input datasets and do some preprocessing of the data.

The first step was to create a new mountain classification within the land cover layer (CCAP- Coastal Change Analysis Program) to allow mountainous bare earth to have different runoff and pollutant export coefficients than lowland bare earth. A conditional statement was used to convert ONLY bare earth ABOVE 2000 feet to the new Mountain Class (26).

Conditional Statement:

Con(CCAP == 20, Con(dem < 2000, 20, 26), CCAP)

The statement reads, "Pixel values that equal 20 at an elevation of less than 2000 feet stay at pixel value 20, above 2000 feet they change to pixel value 26, all other values stay the same".

The second step was to create a pre-development landuse layer that will represent Puget Sound prior to human influences. A conditional statement was used to convert some of CCAP's values to Evergreen Forest (10).

Conditional Statement:

```
Con([CCAP] > 12, Con([CCAP] <> 20, [CCAP], 10), 10)
```

The statement reads, "Pixel values that are greater than 12 stay the same except pixel value 20 which changes to 10. All other values (less than or equal to 12) change to 10".

| ССАР                           | CCAP<br>Pixel<br>value | Pre-Development                | Predev<br>pixel<br>value |
|--------------------------------|------------------------|--------------------------------|--------------------------|
| High Intensity Developed       | 2                      | Evergreen Forest               | 10                       |
| Medium Intensity Developed     | 3                      | Evergreen Forest               | 10                       |
| Low Intensity Developed        | 4                      | Evergreen Forest               | 10                       |
| Developed Open Space           | 5                      | Evergreen Forest               | 10                       |
| Cultivated                     | 6                      | Evergreen Forest               | 10                       |
| Pasture/Hay                    | 7                      | Evergreen Forest               | 10                       |
| Grassland                      | 8                      | Evergreen Forest               | 10                       |
| Deciduous Forest               | 9                      | Evergreen Forest               | 10                       |
| Evergreen Forest               | 10                     | Evergreen Forest               | 10                       |
| Mixed Forest                   | 11                     | Evergreen Forest               | 10                       |
| Scrub/Shrub                    | 12                     | Evergreen Forest               | 10                       |
| Palustrine Forested Wetland    | 13                     | Palustrine Forested Wetland    | 13                       |
| Palustrine Scrub/Shrub Wetland | 14                     | Palustrine Scrub/Shrub Wetland | 14                       |
| Palustrine Emergent Wetland    | 15                     | Palustrine Emergent Wetland    | 15                       |
| Estuarine Emergent Wetland     | 18                     | Estuarine Emergent Wetland     | 18                       |
| Unconsolidated Shore           | 19                     | Unconsolidated Shore           | 19                       |
| Non-Mountainous Bare Land      | 20                     | Evergreen Forest               | 10                       |
| Water                          | 21                     | Water                          | 21                       |
| Palustrine Aquatic Bed         | 22                     | Palustrine Aquatic Bed         | 22                       |
| Estuarine Aquatic Bed          | 23                     | Estuarine Aquatic Bed          | 23                       |
| Snow/Ice                       | 25                     | Snow/Ice                       | 25                       |
| Mountainous Bare Land          | 26                     | Mountainous Bare Land          | 26                       |

Table D-15: CCAP land cover reclassification for pre-development land cover.

The third step was to modify the precipitation data to address runoff reduction and pollutant export reduction associated with snowfall or snow cover. A conditional statement was used to reduce runoff (by reducing rainfall) in snow zones by 80%, 60%, and 40% in the rain-on-snow (1), snow-dominated (3), and highland (2) zones.

Conditional Statement: Where ROS is the Rain on Snow dataset and prism24hr2yr is the precipitation dataset for a 24 hour 2 year event.

$$Con([ROS] == 1, 0.8 * [prism24hr2yr], Con([ROS] = = 3, 0.6 * [prism24hr2yr], Con([ROS] = = 2, 0.4 * [prism24hr2yr], [prism24hr2yr])))$$

The statement reads, "Where pixel values in the Rain on Snow dataset equal 1, multiply Precipitation dataset by 0.8. Where pixel values in the Rain on Snow dataset equal 3, multiply Precipitation dataset by 0.6. Where pixel values in the Rain on Snow dataset equal 2, multiply Precipitation dataset by 0.4. All other values stay the same."

# N-SPECT model run

The N-SPECT model characterizes the degree of degradation to water quality processes based on existing land use type. The following eight water quality processes were examined using N-SPECT:

- 1. Total Phosphorous
- 2. Total Nitrogen
- 3. Total Suspended Solids
- 4. Zinc
- 5. Copper
- 6. Pathogens
- 7. Sediment
- 8. Runoff

The N\_SEPCT model was run twice to produce two sets of data, one set for current land use conditions (CCAP) and one set for pre-development conditions.

# Post Processing

To find the differences between pre-development landuse conditions and current conditions, the Pre-development values were subtracted from the current land use conditions to get an Absolute Change Calculation raster grid.

CCAP - PreDevelopment = Absolute Change





| Pollutant         | CCAP Current<br>Land Cover | Pre-Development<br>Land Cover | Change<br>Grid | Normalized<br>Grid | AU Average<br>to WF_RP |
|-------------------|----------------------------|-------------------------------|----------------|--------------------|------------------------|
| Sediment          | clocmusle1                 | plocmucle1                    | ca1mpa1        | nmusle             | nmusl                  |
| Total Phosphorous | clocconc1                  | plocconc1                     | c1mp1          | ntp                | ntPco                  |
| Total Nitrogen    | clocconc2                  | plocconc2                     | c2mp2          | ntn                | ntPco                  |
| Zinc              | clocconc4                  | plocconc4                     | c4mp4          | nzn                | nznco                  |
| Copper            | clocconc5                  | plocconc5                     | c5mp5          | ncu                | ncuco                  |
| Pathogens         | clocconc6                  | plocconc6                     | c6mp6          | npath              | npath                  |

#### Table D-16: Grid names for each N-SPECT parameter.

To calculate the relative degradation of pollutants within a certain area, it is necessary to normalize the outputs so that all values range from zero to one within the study area (WRIA). The maximum pixel value for each pollutant within each WRIA was found and saved as a raster grid with one value (maximum value) for each WRIA.

A special correction for the sediment output is used to recalculate the maximum pixel value to exclude dam faces with erroneous values.

- The Alder Lake pixel value in Pierce County (WRIA 11) was ignored. Used value of 200088.453125 instead.
- The Lake Cushman pixel value in Mason County (WRIA 16) was ignored. Used value of 490556.718750 instead.
- The Spada Lake pixel value in Snohomish County (WRIA 7) was ignored. Used value of 741985.25 instead
- The Ross Lake pixel value in Whatcom County (WRIA 3) was ignored. Used value of 1519670.5 instead.

Then each pollutants Absolute Change values are divided by the maximum pixel value for each WRIA. Now all Absolute change values range from zero to one within the WRIA.

Absolute Change ÷ Max value per WRIA = Normalized Absolute Change by WRIA

Another special correction for the sediment N\_SEPCT output is used to force dam faces to equal 1.0 and change null values to zeroes. Two conditional statements were used to modify the sediment output (nmuslewria).

First Conditional Statement: used to force values higher than 1 (i.e. dam spillways) to 1

Con([nmuslewria] > 1, 1, [nmuslewria])

The statement reads, "If a pixel value in nmuslewria is greater than 1, replace it with the value 1. All other values stay the same."

Second Conditional Statement: used to change null values to be zero rather than null...

Con(IsNull([nmuslewria]), Con(IsNull([clocaccum1]), [nmuslewria], 0), [nmuslewria])

The statement reads, "If a pixel value in nmuslewria is NULL, look at clocaccum1. If clocaccum1 is NULL keep nmuslewria value, otherwise change it to 0. All other values stay the same."

The Absolute Change Calculations, for each water quality process, were then averaged within each Analysis Unit (AU) by using the "Zonal Statistics As Table" tool to output DBF tables for each process. Again, we wanted values to range from zero to one within Puget Sound, so it was necessary to re-normalize the values. The maximum mean value for each process was found, and all values were divided by this maximum value causing there to be one AU within the Puget Sound to have a value of 1.

The following numbers are the maximum values for all of Puget Sound. Therefore, one AU within Puget Sound will have a value of 1.0.

| Pollutant         | Max Value | WRIA # |
|-------------------|-----------|--------|
| Sediment          | 0.003     | 17     |
| Total Phosphorous | 0.317     | 1      |
| Total Nitrogen    | 0.452     | 9      |
| Zinc              | 0.495     | 13     |
| Copper            | 0.499     | 13     |
| Pathogens         | 0.576     | 13     |

#### Table D-17: Maximum mean values for each water quality constituent.

# Water Quality Synthesis and Map Display

Again, the synthesis of water quality results and the map displays mirror those for water flow. Results from analyses for each of the five components are displayed in three maps, one for the relative export potential of the component, one for the relative degradation to the components natural process through N-SPECT, and the third is a combination of the two showing the management matrix. The export potential maps each have a unique color scheme to distinguish that component, and N-SPECT degradation maps all use the same four color scheme as shown below.
| Soos<br>Creek | Export Potential<br>(8_M1_Q)                                                                                       |                                                                     | Degradation –<br>NSPECT (MUSLE_Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legend        | Highest Export Potential<br>Moderate High Export Potential<br>Moderate Export Potential<br>Lowest Export Potential |                                                                     | Highest Degradation<br>Moderately High Degradation<br>Moderate Degradation<br>Lowest Degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sediment      |                                                                                                                    | Here Topor Potential Quartile, Ref - Degradation (M_SPECT) Quartile | A second |

Figure D-42. Map display used for sediment export potential and degradation.



Figure D-43. Map display for the water quality management matrix.

#### **Sources of Regional Data**

Geographic information systems (GIS) have increased in use in the last decade primarily because they provide an efficient method of managing complex data and information. GIS also provides the framework for making this information usable for planners and decision makers with powerful analysis and display capabilities. With new technologies continually developing, this role will expand rapidly in the years to come.

One result of this increasing use of GIS is that digital data is becoming more readily accessible. Cooperative agreements between neighboring jurisdictions also make acquiring new data more affordable. Additionally, many agencies provide access to the data they maintain through web sites at minimal or no cost.

You can complete the methods described in this guidance using available digital data. It is efficient, provides more flexibility, and allows for clearer display of the results. Smaller jurisdictions should seek out cooperation with their associated county and consider including GIS as a requirement when hiring a consultant.

The use of any data requires an understanding of the accuracy and appropriate application for the scale of the data. This information should be clearly described in the analysis. Since the results of any of the analyses described here are for planning purposes over larger land areas, statements on its usefulness are all that is necessary. As with any analysis, greater confidence in the accuracy of the data results in a higher degree of certainty in the conclusions. Whenever more accurate data is available, it should be used. The following table lists major sources for the digital data layers that are used in this guidance.

| Data                                                      | Scale                       | Agency                                                                               | Web Site                                                                |
|-----------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Precipitation                                             | 1:2,000,000                 | WA Department of<br>Natural Resources,<br>Forest Practices<br>Division               | http://www.dnr.wa.gov/forestp<br>ractices/data/                         |
| Rain-on-Snow &<br>Snow dominated<br>zones                 | 1:250,000                   | WA Department of<br>Natural Resources                                                | http://www3.wadnr.gov/dnrap<br>p6/dataweb/dmmatrix.html#Cl<br>imatology |
| Surficial<br>Geology                                      | 1:100,000                   | WA Department of<br>Natural Resources                                                | http://www.dnr.wa.gov/geolog<br>y/dig100k.htm                           |
| Soils<br>(SSURGO)                                         | 1:12,000 –<br>1:63,000      | Natural Resources<br>Conservation<br>Service                                         | http://soildatamart.nrcs.usda.g<br>ov/County.aspx?State=WA              |
| Soils<br>(STATSGO)                                        | 1:250,000                   | Natural Resources<br>Conservation<br>Service                                         | http://www.ncgc.nrcs.usda.gov<br>/products/datasets/statsgo/            |
| Topography<br>(Digital Model<br>Elevation)                | 10 Meter                    | University of<br>Washington                                                          | http://duff.geology.washington<br>.edu/data/raster/index.html           |
| Hydrography<br>(streams &<br>lakes)                       | 1:24,000                    | WA Department of<br>Natural Resources                                                | http://www3.wadnr.gov/dnrap<br>p6/dataweb/dmmatrix.html#H<br>ydrography |
| Wetlands (NWI)<br>(also SSURGO –<br>see above)            | 1:24,000                    | US Fish & Wildlife<br>Service                                                        | http://www.fws.gov/nwi/down<br>loads.htm                                |
| Channel<br>confinement &<br>gradient<br>(SSHIAP)          | 1:24,000                    | WA Department of<br>Fish & Wildlife;<br>North West Indian<br>Fisheries<br>Commission | http://www.wdfw.wa.gov/hab/<br>sshiap/index.htm                         |
| Mass wasting<br>(Shaw Johnson<br>landslide risk<br>model) | 10 Meter<br>(Western<br>WA) | WA Department of<br>Natural Resources,<br>Forest Practices<br>Division               | http://www.dnr.wa.gov/forestp<br>ractices/data/                         |
| Land cover                                                | 30 Meter<br>Grid            | US Geological<br>Survey                                                              | http://www.csc.noaa.gov/crs/lc<br>a/pacificcoast.html                   |

#### Table D-18: Sources of digital data.

### **Definition of Terms and Acronyms**

- AU Assessment Unit
- C-CAP Coastal Change Analysis Program; a regional land cover and change data layer produced by NOAA.
- DEM Digital Elevation Model
- ESRI Environmental Systems Research Institute
- GIS Geographic Information Systems
- GDB Geodatabase
- LG Landscape Group
- N-SPECT Nonpoint Source Pollution and Erosion Comparison Tool; developed by NOAA Coastal Services Center it is a GIS tool using ESRI's ArcMap software package and requiring the Spatial Analyst extension. It uses topography, land cover, soils, and precipitation data to assess spatial patterns of surface water runoff, nonpoint source pollution, and erosion. See Section XXXX for a more detailed discussion. Also see: <u>http://www.csc.noaa.gov/digitalcoast/\_/pdf/Tutorial.pdf</u>
- NWIFC Northwest Indian Fisheries Commission; supplied SSHIAP data
- NOAA National Oceanic and Atmospheric Administration
- SCALE The relationship between the size of the geographic area covered and the level of detail. A large scale means more detail for a smaller area. A small scale means less detail for a large area.
- SPATIAL EXTENT Size of the land area covered by the analysis.
- SSHIAP Salmon and Steelhead Habitat Inventory and Assessment Program. This is a spatial data system that characterizes salmonid habitat conditions and distribution of salmonid stocks in Washington at the scale of 1:24,000. It is co-managed by the Washington Department of Fish and Wildlife (WDFW) and the Northwest Indian Fisheries Commission (NWIFC). http://wdfw.wa.gov/mapping/salmonscape/sshiap/

http://nwifc.org/about-us/habitat/sshiap/

- WDFW Washington Department of Fish and Wildlife
- WDNR Washington Department of Natural Resources
- WDOE Washington Department of Ecology
- WRIA Watershed Resource Inventory Area. Administrative and planning boundaries that underpin Department of Ecology business. Formalized under the Water Resources Act of 1971, they were agreed upon by Washington's natural resource agencies (Ecology, Natural Resources, Fish and Wildlife) in 1970.

### **GIS Models for Characterization**

All analyses were developed within the Model Builder application of ArcGIS 10, a commercial GIS software product of Environmental Systems Research Institute, Inc. (ESRI<sup>TM</sup>). The purpose of creating the models was to provide an efficient way to provide:

- Repeatability of the analyses,
- Saleable applications,
- Standardized methods, and
- Transparent documentation

The result of this is a collection of models and scripts organized as a 'toolbox'. The guidance document detailing description of these tools is available at: <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1106016.html</u>



Figure D-44. Watershed Characterization toolbox of models and scripts.

# Attachment D-1: Development of Analysis Unit (AU) Boundaries

Significant effort was spent determining the most appropriate size for the analysis units. They are the foundation unit for summarizing and displaying all the analyses, so choosing a scale that provided meaningful and useful results was critical. Equally important well as to develop a unit size that would be suitable for the source data available for analysis. Additionally, we did not want to reinvent units that already existed across the Sound if they could be adapted to our scale requirements. The *AquaScape* catchments provided the most robust and comprehensive data coverage, as well as the possibility of linking to other data sources. For these reasons they became the foundation of our analysis units, with minor adjustments described below.

The source data for creating the analysis units (AU) came from two existing data sets.

- SSHIAP AquaScape Segment Catchments these were the basis for all AUs except those in WRIA 2 & 6 where this data did not exist. The AquaScape catchments were developed by the Northwest Indian Fisheries Commission and represent drainage areas based on Habitat Segments and DNR Shorezone segments. The habitat segments were defined by gradient and confinement, and then habitat type.
- PSNERP Drainage Units (DUs) these were the basis for AUs within WRIA 2 and 6, the island WRIAs. They were developed by the Puget Sound Nearshore Restoration Project and represent drainage units based on drift cells.

The catchments in both these layers were not consistently appropriate in scale to be used directly as analysis units for our assessments across Puget Sound. To create more consistency, we used the following criteria in making adjustments to the source layers for development of our analysis units.

- SSHIAP catchments were not further divided, but were aggregated where needed to achieve a more consistent size. This aggregation follows hydrologic principles as much as possible. (See Federal Guidelines, Requirements, and Procedures for the National Watershed Boundary Dataset: U.S. Geological Survey Techniques and Methods 11-A3; <u>http://pubs.usgs.gov/tm/tm11a3/</u>
- PSNERP catchments (for WRIAs 2 and 6) will be grouped or divided to more consistently mirror SSHIAP catchments.

All analysis units are coded into one of five landscape groups, defined by the geomorphic criteria below:

 Mountainous unit (M) – generally above 500 feet elevation (with more than half of the catchment above); this commonly captures areas dominated by bedrock, rain-on-snow or snow dominated areas, high precipitation, and high slope. Generally they have less diverse land cover, lower development pressure, and often include federal land. They average ~10-15 square miles in size.

- Lowland unit (L) generally below 500 feet elevation (with more than half of the catchment below); this generally captures geology dominated by glacial deposits, rain dominated precipitation, land forms of terraces and large river valleys with predominately floodplain hydrology (overbank flooding and groundwater discharge). These areas have more diverse land cover and higher development pressure. They average ~3-5 square miles in size.
- Coastal unit (C) generally captures small drainages to the marine shoreline of 1<sup>st</sup> or 2<sup>nd</sup> order streams, and groups of remnant, wedge-shaped areas creating a contiguous *composite* unit. It does not include larger, complex river systems. They average ~ 1 square mile in size.
- Delta unit (D) this captures three of the large delta systems that have important water flow or habitat value (Nisqually, Puyallup, and Duwamish).
- Lake unit (LK) this captures the small drainages of 1<sup>st</sup> or 2<sup>nd</sup> order streams, and remnant areas between them, that drain to one of the four largest lakes: Washington (LKW), Sammamish (LKS), Whatcom (LKWH), and Lake Crescent (LKC).

See Figure D-5 for a map showing the AUs for Puget Sound, and Figure D-4 for the relationship between the AUs, the landscape groups, and the WRIAs.

Several issues in developing the AU layer were resolved as follows:

- Very small islands were eliminated from the analysis since they are smaller than the appropriate size for the data and combining them didn't make sense.
- There were some small pockets of 'mountainous' AUs surrounded by lowland area that were recoded to 'lowland'.
- We did not treat the large reservoirs the same as the large lakes by making the AUs draining to them a separate landscape group. They are left as mountainous units.

## Attachment D-2: Geology Data

The source data for our geology layer is the 1:100,000 statewide geology layer produced by the Department of Natural Resources. We use the polygon shape file (gunit.shp) of geologic units primarily for recharge, discharge, and erosion analyses.

For recharge and discharge analyses, we added the field 'geo\_hp' to group all lithology categories into either a higher permeable ('Hperm') type or a lower permeable type ('Lperm'). The scale of the data requires a somewhat simplified classification scheme. These assumptions framed our initial grouping of surficial geologic deposits:

- Alluvium and recessional outwash are generally of higher permeability.
- Till, moraines, organic deposits, lacustrine, glacial marine drift, mudflows, fine alluvium, and bedrock are generally of lower permeability.

- Advanced outwash can be of moderate permeability, but it may be locally overridden with glacial till (advanced outwash was deposited in front of the glacier and was often subsequently covered with glacial ice). In this instance, permeability should be low since the till layer intercepts percolating water first.
- Areas of glacial marine drift are sometimes included within areas mapped as glacial outwash. Given its extremely low permeability, you should map glacial marine drift areas separately and assign them to the low permeability class.
- Sometimes the geologic mapping is quite coarse. Because soils are derived from the underlying surficial deposit, soil data can be used to subdivide geologic classes that are quite broad. However, a geologist should review this information since the accuracy of soil data can vary greatly across the Puget lowlands.

Our initial coding was subsequently reviewed by Patricia Olson and again by Derek Booth, producing the following list of deposits coded as higher permeable deposits:



Figure D-45. Higher permeable geologic units.

The following list includes the remaining geologic units, within Puget Sound, coded as lower permeability.

| acidic intrusive rocks                                         | intrusive andesite and dacite                |
|----------------------------------------------------------------|----------------------------------------------|
| acidic intrusive rocks                                         | intrusive breccia                            |
| alpine glacial drift, pre-Fraser                               | intrusive dacite                             |
| alpine glacial till, Fraser-age                                | intrusive rhyolite                           |
| alpine glacial till, pre-Fraser                                | intrusive rocks, undivided                   |
| amphibolite                                                    | intrusive-volcanic complex                   |
| andesite flows                                                 | lahars                                       |
| argillite                                                      | marble                                       |
| artificial fill, including modified land                       | marine metasedimentary rocks                 |
| banded gneiss                                                  | marine sedimentary rocks                     |
| basalt flows                                                   | mass-wasting deposits                        |
| basalt flows and flow breccia, Crescent Formation              | mass-wasting deposits, mostly landslides     |
| basaltic andesite flows                                        | mass-wasting deposits, other than landslides |
| basic intrusive rocks                                          | metasedimentary and metavolcanic rocks       |
| chert-rich marine sedimentary rocks                            | metasedimentary rocks                        |
| continental glacial drift, pre-Fraser                          | metasedimentary rocks, cherty                |
| continental glacial drift, pre-Fraser, and nonglacial deposits | metavolcanic rocks                           |
| continental glacial outwash, silt and clay, Fraser-age         | monzonite                                    |
| continental glacial till, Fraser-age                           | nearshore sedimentary rocks                  |
| continental sedimentary deposits or rocks                      | orthogneiss                                  |
| continental sedimentary deposits or rocks, conglomerate        | paragneiss                                   |
| dacite and andesite flows, breccia                             | peat deposits                                |
| dacite flows                                                   | phyllite, low grade                          |
| diorite                                                        | pyroclastic flows                            |
| gabbro                                                         | quartz diorite                               |
| gabbro and diorite                                             | quartz monzonite                             |
| glacial and non-glacial deposits, undivided                    | rhyolite flows                               |
| glacial drift, undivided                                       | schist, high grade                           |
| glaciolacustrine deposits, Fraser-age                          | schist, low grade                            |
| glaciomarine drift, Fraser-age                                 | sedimentary deposits or rocks                |
| gneiss                                                         | tectonic breccia                             |
| granite                                                        | tectonic zone                                |
| granodiorite                                                   | tonalite                                     |
| heterogeneous metamorphic rocks                                | tuffs and tuff breccia                       |
| heterogeneous metamorphic rocks, chert bearing                 | ultrabasic rocks                             |
| heterogeneous metamorphic rocks, chert-bearing                 | volcanic and sedimentary rocks               |
| ice                                                            | volcanic breccia                             |
| intermediate intrusive rocks                                   | volcanic rocks                               |
| intrusive andesite                                             | volcaniclastic deposits or rocks             |

There is an additional field for severity of channel erosion by different lithology types. The types coded with a higher degree of erosive geology are the following:

- Advance continental glacial outwash, Fraser-age
- Advance continental glacial outwash, sand, Fraser-age
- Alluvium
- Alluvium, older
- Beach deposits
- Continental glacial outwash, Fraser-age
- Continental glacial outwash, sand, Fraser-age
- Continental glacial outwash, marine, sand, Fraser-age
- Dune sand
- Terraced deposits

### Attachment D-3: Wetland Data

Our wetland layer was developed from four sources of wetland data: the National Wetland Inventory (NWI), SSURGO hydric soils, hydrography water bodies, and C-CAP land cover. Wetland classifications from NWI where 'cover\_type' was any wetland category were included. From the SSURGO soils layer, any polygon where 'hydricrati' = 'Yes' was included. From the hydrography water bodies layer, we included any polygon identified as 'marsh/wetland' within the 'wb\_cart\_ftr\_cd' field. From the C-CAP land cover layer, any grid code that had a wetland description for 'Class\_name' (lulc\_cd = 13, 14, 15, 18, 22, & 23) was included as wetland.

The NWI, C-CAP, and water body layers indicate current presence of a wetland. However, the hydric soils layer may not represent a current wetland area, but likely an area that would naturally be wetland without human alteration. We included this layer to provide the maximum extent of probable wetland coverage. For the degradation analyses, the overlay of current land cover on this composite wetland layer would better indicate areas that likely were wetlands but are not wetlands now. For example, this could be represented by a hydric soil polygon that intersects a 'cultivated' land cover polygon.

To create the depressional and slope wetland categories, we intersected the composite wetland layer with a slope grid developed from a 30-meter DEM. Any wetland on a slope that was 'equal to or less than 2%' was a depressional wetland. Any wetland on a slope 'greater than 2%' was coded a slope wetland.

# Attachment D-4: Land Cover Classes

Land cover data was developed from NOAA's Coastal Change Analysis Program (<u>C-CAP</u>) from the 2006 30-meter land cover raster. This data had 22 categories for the Puget Sound region which we combined into several groups for various assessments. Table D-20 shows the land cover groups.

| Grid<br>Value | Description                                           | LU_Code         | Impervious<br>% | Forest/Non-<br>Forest | Urban/<br>Rural |
|---------------|-------------------------------------------------------|-----------------|-----------------|-----------------------|-----------------|
| 2             | High intensity developed                              | High            | 80-100%         |                       |                 |
| 3             | Medium intensity developed                            | Medium          | 50-79%          | Altered               | Urban           |
| 4             | Low intensity developed                               | Low             | 21-49%          | Forest                |                 |
| 5             | Developed open space                                  | Open space      | <20%            |                       |                 |
| 6             | Cultivated                                            | Cultivated      |                 |                       | 1100 10         |
| 7             | Pasture/hay                                           | Pasture         |                 |                       | Rural           |
| 8             | Grassland                                             | Grassland       |                 | Excluded              |                 |
| 9             | Deciduous forest                                      |                 |                 |                       | 12              |
| 10            | Evergreen forest                                      | Forest          |                 | Forest                |                 |
| 11            | Mixed forest                                          |                 |                 |                       |                 |
| 12            | Scrub/shrub                                           | Shrub           |                 | Excluded              |                 |
| 13            | Palustrine Forested Wetland<br>Palustrine Scrub/Shrub |                 |                 | Forest                |                 |
| 14            | Wetland                                               | Wetland         |                 |                       | LC              |
| 15            | Palustrine Emergent Wetland                           |                 |                 |                       | wetlands        |
| 18            | Estuarine Emergent Wetland                            |                 |                 |                       | _               |
| 19            | Unconsolidated Shore                                  | Rero Land       |                 | NA                    | 1               |
| 20            | Bare Land                                             | Dare Lanu       |                 | Excluded              |                 |
| 21            | Water                                                 | Water           |                 | NA                    |                 |
| 22            | Palustrine Aquatic Bed                                | Motland         |                 | NA - open water       | LC              |
| 23            | Estuarine Aquatic Bed                                 | vienanu         |                 | NA - open water       | wetlands        |
| 24            | Tundra                                                | Tundra/Snow/loo |                 | NA                    |                 |
| 25            | Snow/Ice                                              |                 |                 | NA                    |                 |

Table D-20. C\_CAP land cover classes and groups for analysis.

Additionally, we used the major public lands layer to screen out areas where land cover is assumed to be natural and not the result of alteration by human activities. For example, bare land in a wilderness area is assumed to be natural land cover and not the result of forest clearing. Table D-21 shows the list of public land areas where grassland, scrub/shrub, and bare land cover types are excluded from the analysis for forest loss.

| NAME                                 | MANAGER               | MANAGEMENT          | MPL_TYP |
|--------------------------------------|-----------------------|---------------------|---------|
| Mount Rainier National Park          | National Park Service | Park/Non Wilderness | 02      |
| North Cascades National Park         | National Park Service | Park/Non Wilderness | 02      |
| Olympic National Park                | National Park Service | Park/Non Wilderness | 02      |
| Ross Lake National Recreation Area   | National Park Service | Park/Non Wilderness | 02      |
| Alpine Lakes Wilderness              | US Forest Service     | Wilderness          | 03      |
| Boulder River Wilderness             | US Forest Service     | Wilderness          | 03      |
| Buckhorn Wilderness                  | US Forest Service     | Wilderness          | 03      |
| Clearwater Wilderness                | US Forest Service     | Wilderness          | 03      |
| Glacier Peak Wilderness              | US Forest Service     | Wilderness          | 03      |
| Glacier View Wilderness              | US Forest Service     | Wilderness          | 03      |
| Henry M Jackson Wilderness           | US Forest Service     | Wilderness          | 03      |
| Mount Baker Wilderness               | US Forest Service     | Wilderness          | 03      |
| Mount Skokomish Wilderness           | US Forest Service     | Wilderness          | 03      |
| Noisy-Diobsud Wilderness             | US Forest Service     | Wilderness          | 03      |
| Norse Peak Wilderness                | US Forest Service     | Wilderness          | 03      |
| Pasayten Wilderness                  | US Forest Service     | Wilderness          | 03      |
| Tatoosh Wilderness                   | US Forest Service     | Wilderness          | 03      |
| The Brothers Wilderness              | US Forest Service     | Wilderness          | 03      |
| Wild Sky Wilderness                  | US Forest Service     | Wilderness          | 03      |
| Wonder Mountain Wilderness           | US Forest Service     | Wilderness          | 03      |
| Mount Baker National Recreation Area | US Forest Service     | Recreation          | 07      |

Table D-21. Major public lands excluded from land cover alteration analyses.

## Attachment D-5: Quartile Grouping Methods

The results of these models produce relative comparisons between an AU and other AUs. Instead of representing the numerical results of the models, we chose to use a method of classifying the data. The rationale for this approach is that the coarse level of source data and lower confidence level in numerical values does not support direct comparison of model results. A more appropriate representation of results is to group them for a relative comparison.

To achieve a standard, repeatable, transparent method, we developed a 'Quartile Finder' tool using Python scripting. In this way, quartile breaks are done consistently throughout the model.

The basics of this approach are to order all results for each analysis from highest to lowest value, then divide the total number of records into four roughly equal quartiles: low, moderate, moderate high, and high [qtrBreaks = totRows/numBreaks]. Repeat values are kept in the same quartile, even if the number of records per quartile is exceeded. The following groups are then adjusted. Grouping begins with the low bucket, which receives the lower number of records if they are not even, then counts records for each subsequent bucket, finishing with the high group. An uneven number of records will give the last one or more buckets an additional record.

|             |      |    | 1           | Н    |     |           |        |     |
|-------------|------|----|-------------|------|-----|-----------|--------|-----|
|             |      |    | 0.9         | Н    |     |           |        |     |
| 1           | Н    | 7  | 0.8         | H    | 6   | 1         | H      | 1   |
| 0.9         | Н    |    | 0.75        | Н    |     | 0.9       | Н      | - 3 |
| 0.8         | H    | -5 | 0.7         | H    |     | 0.8       | Н      |     |
| 0.75        | H    |    | 0.65        | H    | 1   | 0.75      | MH     |     |
| 0.7         | H    |    | 0.63        | MH   | 1   | 0.7       | MH     | - 3 |
| 0.65        | MH   | ٦  | 0.61        | MH   |     | 0.65      | MH     |     |
| 0.6         | MH   |    | 0.6         | MH   | _6  | 0.4       | М      |     |
| 0.5         | MH   | -5 | 0.5         | MH   |     | 0.4       | M      |     |
| 0.4         | MH   |    | 0.4         | MH   |     | 0.4       | М      | 6   |
| 0.37        | MH   |    | 0.37        | MH   |     | 0.3       | М      |     |
| 0.32        | М    | 7  | 0.32        | M    |     | 0.2       | M      |     |
| 0.32        | М    |    | 0.32        | M    |     | 0.1       | М      |     |
| 0.3         | М    | -5 | 0.3         | М    | - 5 | 0         | L      | 1   |
| 0.28        | М    |    | 0.28        | M    |     | 0         | L      |     |
| 0.25        | М    |    | 0.25        | М    |     | 0         | L      |     |
| 0.2         | Ľ    | ٦  | 0.2         | L    |     | 0         | L      | 8   |
| 0.15        | L    |    | 0.15        | L    |     | 0         | L      |     |
| 0.1         | L    | -5 | 0.1         | L    | - 5 | 0         | L      |     |
| 0.05        | L    |    | 0.05        | L    |     | 0         | L      |     |
| 0           | L    |    | 0           | L    |     | 0         | L      |     |
| A. totNum = | = 20 |    | B. totNum = | = 22 |     | C. Repeat | /alues |     |

For example, if the number of AUs is 20, four buckets would place 5 records per bucket. However, adjustments are made in several scenarios shown in Figure D-46.

#### Figure D-46. Examples of quartile grouping.

Quartile buckets in the left panel show 20 records resulting in four evenly divided quartiles with 5 records each. Quartile buckets in the middle panel show adjustments from an uneven record number. Quartile buckets in the right panel show adjustments to accommodate 8 zero values, and repeat values requiring adjustment to all quartiles.

This process is applied to the records for each landscape group for the analyses where they are used. The water flow importance models and the water quality export potential models (Model 1) use the landscape groups. The water flow degradation models and the water quality N-SPECT models (Model 2) don't use landscape groups, but may adjust for highly urban areas.

| LG_M1 for WF & WQ |                    |  |
|-------------------|--------------------|--|
| Importanc         | e/Export Potential |  |
| Includes:         |                    |  |
| L                 | Lowland            |  |
| M                 | Mountainous        |  |
| С                 | Coastal            |  |
| D                 | Delta              |  |
| LKW               | Lake Washington    |  |
| LKS               | Lake Sammamish     |  |
| LKWH              | Lake Whatcom       |  |
| LKC               | Lake Cushman       |  |

| LG | _M2                           | for WF Degra | dation Includes:                    |  |
|----|-------------------------------|--------------|-------------------------------------|--|
|    | Х                             | No topogra   | phic landscape group                |  |
|    | U                             | AU with >.9  | area in 'urban' land use            |  |
|    |                               | (LC = 2-5)   |                                     |  |
|    |                               | 2            | High intensity developed            |  |
|    | 3 Medium Inensity developed   |              |                                     |  |
|    |                               | 4            | Low Intensity developed             |  |
|    |                               | 5            | Developed Open Space                |  |
| LG | LG_M2 for WQ/NSPECT Includes: |              |                                     |  |
|    | Х                             | No topogra   | phic landscape groups <b>or U's</b> |  |

Figure D-47 Landscape groups used for models 1 and 2.

There are pros and cons to this method. Pros, mentioned above, are that it is: consistent, repeatable, and transparent. The cons are several. First, this method does not evaluate the variance within classes or between classes. Thus, the difference in value from one bucket to the next is sometimes negligible given that the difference in value is not considered, only the number of values put into any one quartile. Second, all four quartiles are forced to exist, again creating differences where they may be slight. Third, zero's and repeat values are included in one bucket, even if they represent more than the number of records that would normally be included.

It is important to remember that the tool forces all four groups to be represented, even when the difference in values is small. This is a particular issue when looking at a smaller geographic area. An example of this is the Delivery analysis where the precipitation can be fairly uniform across a landscape, like the island WRIAs. Thus, it is always advisable for the values to be reviewed by the user to make sure they represent the geography in a meaningful way. Depending on the analysis area and the purpose for the analyses, these groupings can be adjusted if users determine it is warranted.

## Attachment D-6: Analysis for Effects of Dams

A dam that captures greater than 4 feet of runoff, which is roughly equivalent to 100% of annual precipitation for most parts of the Puget Sound region, has the potential to significantly change downstream hydrologic regimes (Booth, personal communication). A dam that captures between 1 to 4 feet of runoff (equivalent to about 20-100% of annual precipitation in most parts of the Puget Sound) is represented to have a moderate potential impact. Less than 1 foot of runoff represents a low potential impact.

The severity of degradation to water flow processes by dams is modeled as 1) the storage capacity of the dam relative to annual runoff generated by the watershed above

the dam; and 2) the amount of unregulated runoff contributed to the stream system downstream of the dam.

$$AU \ Dam \ Score_n = SD \ \div \left(A_{\text{dam}} + \sum_n A_{\text{AU}}\right)$$

SD = the storage volume of the dam in acre feet.

A<sub>dam</sub> = the watershed area impounded above the dam in acres.

 $A_{AU}$  = the unregulated watershed area in acres for an AU(s) below the dam that drains to the regulated stream. Depending on point downstream that the dam score is calculated, all upstream AUs would be included in this term, except the AUs above the dam.

The dam data layer was downloaded from Ecology's Dam Safety Office database. It included 614 dams in the Puget Sound region. Two attribute fields from this data were used in the analysis: MAX\_STOR\_Q in feet per acre, and DRN\_AREA in square miles. We added the field 'drng\_ac' and converted the square miles to acres. A dam with a drainage area of less than 1 square mile was deemed not significant for the purpose of our analysis. That left 148 dams with a drainage area of greater than or equal to 1 square mile.

The 'hydrologic influence' score (hydr\_infl) was calculated as:

Hydr\_infl = MAX\_STOR\_Q / drng\_ac

MAX\_STOR\_Q = maximum storage of the dam in acre feet Drng\_ac = drainage area of the dam in acres Hydr\_infl = hydrologic influence score in feet



A dam with the potential to capture less than .5 foot was deemed not significant for our analysis (96 dams). The remaining 52 dams had a 'hydrologic influence' score from .5 – 10.7 feet.

A score of .5 – 1 foot was categorized as low impact. Moderate impact was 1-4 feet, and potential for high impact was > 4 feet.

Figure D-48. Hydrologic influence of dams in Puget Sound. (With <1 sqmi of drainage area).

Note that *actual* downstream consequences depend largely on the applied operation schedule of the dam, which is not considered in this analysis.

The effects of the dams were also displayed relative to propagation of the downstream changes. This analysis converted the point data from the dam to the downstream arc, while accounting for the additional drainage area as we move downstream. Since the display was for the stream segment, we used the 100K waters layer, and split the mainstem arcs at the intersection of assessment unit boundaries. We recalculated a 'dam\_scor' by summing the MAX\_STOR\_Q for any dam in the upper watershed, and dividing by the area of all assessment units above that confluence. The result was applied to the downstream segment until the next confluence.

The following figures display how this was done in WRIA 8. The upper watershed has two dams associated with Chester Morse Lake with a total maximum storage of 250,000 ac/ft. The total watershed area, highlighted in yellow, is 50,198 acres.

Figure D-49. Total maximum storage for watershed area.

The total 'dam\_scor' at the lowest point in the watershed at Dam A is 4.98 ft. That value is attached to the downstream segment until the next assessment unit boundary.

Figure D- 50. Downstream influence.

At the next downstream confluence, an additional 19,702 acres are added by the area in pink. Thus the downstream value drops to 3.58 ft.

Figure D-51. Downstream influence at next confluence.



D-89



# **Attachment D-7. Lists of Field Names**

| Current<br>Name | Description                             | Model<br>Order |
|-----------------|-----------------------------------------|----------------|
|                 | Water Flow Importance                   |                |
| Р               | precipitation                           | 1              |
| RS              | rai-on-snow                             | 2              |
| IDE             | importance of delivery                  | 3              |
| I_DE            | importance to delivery                  | 4              |
| I_DE_Q          | importance to delivery quantile         | 5              |
| WT_LK           | wetlands & lake area                    | 6              |
| WLS             | wetland lake storage                    | 7              |
| UNSS            | unconfined stream storage               | 8              |
| MCSS            | moderately confined stream storage      | 9              |
| UN_MC           | stream storage total                    | 10             |
| STS             | stream storage                          | 11             |
| ISS             | surface storage                         | 12             |
| I_SS            | importance to surface storage           | 13             |
| I_SS_Q          | importance to storage quantile          | 14             |
| IR              | recharge                                | 15             |
| I_R             | importance to recharge                  | 16             |
| I_R_Q           | importance to recharge quantile         | 17             |
| SD              | stream discharge importance             | 18             |
| SWD             | slope wetland discharge                 | 19             |
| IDI             | importance discharge total              | 20             |
| I_DI            | importance of discharge                 | 21             |
| I_DI_Q          | importance of discharge quantile        | 22             |
| IGW             | groundwater                             | 23             |
| I_GW            | importance of groundwater               | 24             |
| I_GW_Q          | importance of groundwater quantile      | 25             |
| WF_M1           | sum of normalized scores for model 1    | 26             |
| WF_M1_LG        | normalized scores for model 1 by LG     | 27             |
| WF_M1_CAL       | calibrated score for model 1 importance | 28             |
| WF_M1_Q         | quantiles for model 1                   | 29             |
|                 | Water Flow Degradation                  |                |
| IMP             | impervious surface indicator (urban)    | 30             |
| FL              | forest loss                             | 31             |
| DDE             | degradation of delivery                 | 32             |
| D_DE            | degradation to delivery                 | 33             |
| D_DE_Q          | degradation to delivery quantile        | 34             |
| DE_RP           | Delivery Restoration Protection         | 35             |
| UW              | urban wetlands                          | 36             |
| RW              | rural wetlands                          | 37             |
| DW              | degraded wetlands                       | 38             |
| D_WS            | degradation to wetland storage          | 39             |
| UDS             | unconfined degraded streams             | 40             |
| MDS             | moderately confined degraded streams    | 41             |

Table D-22. List of field names in the order they appear in the model:

| DST       | degraded streams                        | 42 |
|-----------|-----------------------------------------|----|
| D_STS     | degradation to stream storage           | 43 |
| DSS       | degradation to surface storage          | 44 |
| D_SS      | degradation to surface storage          | 45 |
| D_SS_Q    | degradation to surface storage quantile | 46 |
| SS_RP     | Surface Storage Restoration Protection  | 47 |
| RRC       | reduction recharge coefficient          | 48 |
| DR        | degraded recharge                       | 49 |
| D_R       | degradation to recharge                 | 50 |
| D_R_Q     | degradation to recharge quantile        | 51 |
| R_RP      | Recharge Restoration Protection         | 52 |
| D_RD      | degradation by roads                    | 53 |
| D_WEL     | degradation by wells                    | 54 |
| UUS       | unconfined urban streams                | 55 |
| URS       | unconfined rural streams                | 56 |
| STD       | stream discharge degradation            | 57 |
| D_STD     | degradation to stream discharge         | 58 |
| SWU       | slope wetlands urban                    | 59 |
| SWR       | slope wetlands rural                    | 60 |
| WD        | wetland discharge                       | 61 |
| D_WD      | degradation wetland discharge           | 62 |
| DDI       | degradation discharge total             | 63 |
| D_DI      | degradation to discharge                | 64 |
| D_DI_Q    | degradation to discharge quantile       | 65 |
| DI_RP     | Discharge Restoration Protection        | 66 |
| DGW       | degradation to groundwater              | 67 |
| D_GW      | degradation to groundwater              | 68 |
| D_GW_Q    | quantiles for groundwater               | 69 |
| GW_RP     | Groundwater Restoration Protection      | 70 |
| D_L       | degradation to loss                     | 71 |
| WF_M2     | normalized scores for model 2           | 72 |
|           | normalized scores for model 2 (with     |    |
| WF_M2_LG  | adjustments,U/D)                        | 73 |
| WF_M2_CAL | calibrated scores for model 2           | 74 |
| WF_M2_Q   | quantiles for model 2                   | 75 |
| WF_RP     | Water Flow Restoration Protection       | 76 |
|           | Water Quality - Sediment                |    |
| SDN       | stream density                          | 77 |
| ASDN      | aquatic system density                  | 78 |
| RE        | rainfall erosivity                      | 79 |
| K         | soil erodibility                        | 80 |
| SLP       | slope                                   | 81 |
| SE        | soil erosion                            | 82 |
| S_SE      | sediment_ soil erosion                  | 83 |
| LH        | landslide hazard                        | 84 |
| MW        | mass wasting                            | 85 |
| S_MW      | sediment_mass wasting                   | 86 |
| ERST      | erodible stream                         | 87 |
| CE        | channel erosion                         | 88 |

| S_CE     | sediment_channel erosion                     | 89  |
|----------|----------------------------------------------|-----|
| SSO      | sediment source                              | 90  |
| S_SO     | sediment source normalized                   | 91  |
| S_SO_Q   | sediment source quantile                     | 92  |
| S_SI     | sediment sink normalized                     | 93  |
| S_SI_Q   | sediment sink quantile                       | 94  |
| S_M1     | export potential for sediment                | 95  |
| S_M1_LG  | export potential for sediment normalized     | 96  |
| S_M1_CAL | export potential for sediment calibrated     | 97  |
| S_M1_Q   | sediment model 1 quantiles                   | 98  |
| MUSL_Q   | N-SPECT Sediment Degradation                 | 99  |
| SED_RP   | Sediment Restoration Protection              | 100 |
|          | Water Quality - Phosphorous                  |     |
| CC       | clay content                                 | 101 |
| PC       | phoshporous content                          | 102 |
| PE       | phosphorous enrichment value                 | 103 |
| PSO      | phosphorous sources                          | 104 |
| P_SO     | phosphorous sources normalized               | 105 |
| P_SO_Q   | phosphorous sources quantiles                | 106 |
| SRP      | soil retention for phosphorous               | 107 |
| P_SR     | phosphorous soil retention                   | 108 |
| PSI      | phosphorous sink                             | 109 |
| P_SI     | phosphprous sink normalized                  | 110 |
| P_SI_Q   | phosphorous sink quantile                    | 111 |
| P_M1     | export potential for phosphorous             | 112 |
| P_M1_LG  | export potential for phosphorous by LG       | 113 |
| P_M1_CAL | export potential for phosphorous calibrated  | 114 |
| P_M1_Q   | phosphorous model 1 quantiles                | 115 |
| P_Q      | N-SPECT Phosphorus Degradation               | 116 |
| P_RP     | Phosphorus Restoration Protection            | 117 |
|          | Water Quality - Metals                       |     |
| SRM      | soil retention for metals                    | 118 |
| M_SRM    | soil retention for metals normalized         | 119 |
| MSI      | metals sink model                            | 120 |
| M_SI     | metals sink model normalized                 | 121 |
| M_M1     | export potential for metals                  | 122 |
| M_M1_CAL | export potential for metals calibrated       | 123 |
| M_M1_Q   | metals model 1 quantiles                     | 124 |
| ME_Q     | N-SPECT Metals Degradation                   | 125 |
| ME_RP    | Metals Restoration Protection                | 126 |
|          | Water Quality - Nitrogen                     |     |
| RDN      | nitrogen riparian denitrification            | 127 |
| N_RDN    | nitrogen riparian denitrification normalized | 128 |
| NSI      | nitrogen sink                                | 129 |
| N_M1     | export potential for nitrogen normalized     | 130 |
| N_M1_CAL | export potential for nitrogen calibrated     | 131 |
| N_M1_Q   | nitrogen model 1 quantiles                   | 132 |
| NQ       | N-SPECT Nitrogen Degradation                 | 133 |

| N_RP      | Nitrogen Restoration Protection           |     |
|-----------|-------------------------------------------|-----|
|           | Water Quality - Pathogens                 |     |
| PA_SI     | pathogen sink                             | 135 |
| PA_M1     | export potential for pathogens            | 136 |
| PA_M1_CAL | export potential for pathogens calibrated | 137 |
| PA_M1_Q   | pathogen model 1 quantile                 | 138 |
| PA_Q      | N-SPECT Pathogen Degradation              | 139 |
| PA_RP     | Pathogen Restoration Protection           | 140 |

#### Table D-23. List of field names in alphabetical order:

| Field<br>Name        | Field Description                         |     |  |
|----------------------|-------------------------------------------|-----|--|
| ASDN                 | aquatic system density                    | 78  |  |
| CC                   | clay content                              | 101 |  |
| CE                   | channel erosion                           | 88  |  |
| D_DE                 | degradation to delivery normalized        | 33  |  |
| D_DE_Q               | degradation to delivery quantile          | 34  |  |
| D_DI                 | degradation to discharge normalized       | 64  |  |
| D_DI_Q               | degradation to discharge quantile         | 65  |  |
| D_GW                 | degradation to groundwater normalized     | 68  |  |
| D_GW_Q               | quantiles for groundwater                 | 69  |  |
| D_L                  | degradation to loss                       | 71  |  |
| D_R                  | degradation to recharge normalized        | 50  |  |
| D_R_Q                | degradation to recharge quantile          | 51  |  |
| D_RD                 | degradation by roads                      | 53  |  |
| D_SS                 | degradation to surface storage normalized | 45  |  |
| D_SS_Q               | degradation to surface storage quantile   | 46  |  |
| D_STD                | degradation to stream discharge           | 58  |  |
| D_STS                | degradation to stream storage             | 43  |  |
| D_WD                 | degradation to wetland discharge          | 62  |  |
| D_WEL                | degradation by wells                      | 54  |  |
| D_WS                 | degradation to wetland storage            | 39  |  |
| DDE                  | degradation to delivery                   | 32  |  |
| DDI                  | degradation discharge total               | 63  |  |
| DE_RP                | Delivery Restoration Protection           | 35  |  |
| DGW                  | degradation to groundwater                | 67  |  |
| DI_RP                | Discharge Restoration Protection          | 66  |  |
| DR                   | degradation to recharge                   | 49  |  |
| DSS                  | degradation to surface storage            | 44  |  |
| DST degraded streams |                                           | 42  |  |
| DW degraded wetlands |                                           | 38  |  |
| ERST erodible stream |                                           | 87  |  |
| FL                   | L forest loss                             |     |  |
| GW_RP                | Groundwater Restoration Protection        | 70  |  |
| I_DE                 | importance to delivery normalized         | 4   |  |
| I_DE_Q               | importance to delivery quantile           | 5   |  |

| I_DI                                   | importance of discharge normalized           | 21  |
|----------------------------------------|----------------------------------------------|-----|
| I_DI_Q                                 | importance of discharge quantile             | 22  |
| I_GW                                   | importance to groundwater normalized         | 24  |
| I_GW_Q                                 | importance to groundwater quantile           | 25  |
| I_R                                    | importance to recharge normalized            | 16  |
| I_R_Q                                  | importance to recharge quantile              | 17  |
| I_SS                                   | importance to surface storage normalized     | 13  |
| I_SS_Q                                 | importance to storage quantile               | 14  |
| IDE                                    | importance to delivery                       | 3   |
| IDI                                    | importance discharge total                   | 20  |
| IGW                                    | importance to groundwater                    | 23  |
| IMP                                    | impervious surface indicator (urban)         | 30  |
| IR                                     | importance to recharge                       | 15  |
| ISS                                    | importance to surface storage                | 12  |
| К                                      | soil erodibility                             | 80  |
| LH                                     | landslide hazard                             | 84  |
| M_M1                                   | export potential for metals                  | 122 |
| M_M1_CAL                               | export potential for metals calibrated       | 123 |
| M_M1_Q                                 | metals model 1 quantiles                     | 124 |
| M SI                                   | metals sink model normalized                 | 121 |
| M SRM                                  | soil retention for metals normalized         | 119 |
| MCSS                                   | moderately confined stream storage           | 9   |
| MDS                                    | moderately confined degraded streams         | 41  |
| ME Q                                   | N-SPECT Metals Degradation                   | 125 |
| ME RP                                  | Metals Restoration Protection                | 126 |
| MSI                                    | metals sink model                            | 120 |
| MUSL Q                                 | N-SPECT Sediment Degradation                 | 99  |
| MW                                     | mass wasting                                 | 85  |
| N M1                                   | export potential for nitrogen normalized     | 130 |
| N M1 CAL                               | export potential for nitrogen calibrated     | 131 |
| N M1 Q                                 | nitrogen model 1 quantiles                   | 132 |
| NQ                                     | N-SPECT Nitrogen Degradation                 | 133 |
| N RDN                                  | nitrogen riparian denitrification normalized | 128 |
| N RP                                   | Nitrogen Restoration Protection              | 134 |
| NSI                                    | nitrogen sink                                | 129 |
| Р                                      | precipitation                                | 1   |
| P M1                                   | export potential for phosphorous             | 112 |
| P M1 CAL                               | export potential for phosphorous calibrated  | 114 |
| P M1 LG                                | export potential for phosphorous by LG       | 113 |
| PM1Q                                   | phosphorous model 1 quantiles                | 115 |
| PQ                                     | N-SPECT Phosphorus Degradation               | 116 |
| P_RP Phosphorus Restoration Protection |                                              | 117 |
| P_SI phosphorous sink normalized       |                                              | 110 |
| P_SI_Q phosphorous sink quantile       |                                              | 111 |
| P SO                                   | P_SO phosphorous sources normalized          |     |
| P_SO_Q                                 | SO_Q phosphorous sources quantiles           |     |
| P_SR phosphorous soil retention        |                                              | 108 |
|                                        |                                              |     |
| PA_M1                                  | export potential for pathogens               | 136 |

| PA_M1_Q                                           | pathogen model 1 quantile                 |     |  |
|---------------------------------------------------|-------------------------------------------|-----|--|
| PA_Q                                              | _Q N-SPECT Pathogen Degradation           |     |  |
| PA_RP                                             | Pathogen Restoration Protection           | 140 |  |
| PA_SI                                             | pathogen sink                             | 135 |  |
| PC                                                | phosphorous content                       | 102 |  |
| PE                                                | phosphorous enrichment value              | 103 |  |
| PSI                                               | phosphorous sink                          | 109 |  |
| PSO                                               | phosphorous sources                       | 104 |  |
| R_RP                                              | Recharge Restoration Protection           | 52  |  |
| RDN                                               | nitrogen riparian denitrification         | 127 |  |
| RE                                                | rainfall erosivity                        | 79  |  |
| RRC                                               | reduction recharge coefficient            | 48  |  |
| RS                                                | rain-on-snow                              | 2   |  |
| RW                                                | rural wetlands                            | 37  |  |
| S_CE                                              | sediment channel erosion                  | 89  |  |
| S_M1                                              | export potential for sediment             | 95  |  |
| S_M1_CAL                                          | export potential for sediment calibrated  | 97  |  |
| S_M1_LG                                           | export potential for sediment normalized  | 96  |  |
| S_M1_Q                                            | sediment model 1 quantiles                | 98  |  |
| S_MW                                              | sediment mass wasting                     | 86  |  |
| S_SE                                              | sediment_ soil erosion                    | 83  |  |
| S_SI                                              | sediment sink normalized                  | 93  |  |
| S SI Q                                            | sediment sink quantile                    | 94  |  |
| S_SO                                              | sediment source normalized                | 91  |  |
| S_SO_Q                                            | sediment source quantile                  | 92  |  |
| SD                                                | stream discharge importance               | 18  |  |
| SDN                                               | stream density                            | 77  |  |
| SE                                                | soil erosion                              | 82  |  |
| SED_RP                                            | ED RP Sediment Restoration Protection     |     |  |
| SLP                                               | slope                                     | 81  |  |
| SRM                                               | RM soil retention for metals              |     |  |
| SRP                                               | soil retention for phosphorous            | 107 |  |
| SS_RP                                             | Surface Storage Restoration Protection    | 47  |  |
| SSO                                               | sediment source                           | 90  |  |
| STD                                               | stream discharge degradation              | 57  |  |
| STS                                               | stream storage                            | 11  |  |
| SWD                                               | slope wetland discharge                   | 19  |  |
| SWR                                               | slope wetlands rural                      | 60  |  |
| SWU                                               | slope wetlands urban                      | 59  |  |
| UDS                                               | unconfined degraded streams               | 40  |  |
| UN_MC stream storage total                        |                                           | 10  |  |
| UNSS                                              | NSS unconfined stream storage             |     |  |
| URS                                               | JRS unconfined rural streams              |     |  |
| UUS                                               | JS unconfined urban streams               |     |  |
| UW                                                | V urban wetlands                          |     |  |
| WD                                                | ) wetland discharge                       |     |  |
| WF_M1                                             | F_M1 sum of normalized scores for model 1 |     |  |
| WF_M1_CAL calibrated score for model 1 importance |                                           | 28  |  |
| WF_M1_LG                                          | normalized scores for model 1 by LG       | 27  |  |

| WF_M1_Q                                 | quantiles for model 1                   | 29 |
|-----------------------------------------|-----------------------------------------|----|
| WF_M2                                   | normalized scores for model 2           |    |
| WF_M2_CAL                               | WF_M2_CAL calibrated scores for model 2 |    |
|                                         | normalized scores for model 2 (with     |    |
| WF_M2_LG                                | adjustments,U/D)                        | 73 |
| WF_M2_Q                                 | quantiles for model 2                   |    |
| WF_RP Water Flow Restoration Protection |                                         | 76 |
| WLS                                     | wetland lake storage                    | 7  |
| WT_LK                                   | wetlands & lake                         | 6  |

#### Table D-24. List of field names for N-SPECT, Puget Sound-wide Analysis

| Field Name |                | Description                                        |
|------------|----------------|----------------------------------------------------|
|            | PS_nrunoff     | Puget Sound - runoff load per area                 |
|            | PS_ntpconc     | Puget Sound - total phosphprous load per area      |
|            | PS_ntnconc     | Puget Sound - total nitrogen load per area         |
|            | PS_ntsscon     | Puget Sound - total suspended solids load per area |
|            | PS_nznconc     | Puget Sound - zink load per area                   |
|            | PS_nncuconc    | Puget Sound - copper load per area                 |
| s          | PS_npath       | Puget Sound - pathogen load per area               |
| ysi        | PS_nmusle      | Puget Sound - sediment load per area               |
| Jal        | PS_TP_Rnk      | Puget Sound - total phosphorous rank               |
| A          | PS_TN_Rnk      | Puget Sound - total nitrogen rank                  |
| de         | PS_TSS_Rnk     | Pugst Sound - total suspended solids rank          |
| N          | PS_Zn_Rnk      | Puget Sound - zink rank                            |
| Pu         | PS_Cu_Rnk      | Puget Sound - copper rank                          |
| No         | PS_Metals_Rnk  | Puget Sound - metals rank (Ecology added)          |
| ts         | PS_Path_Rn     | Puget Sound - pathogen rank                        |
| ge         | PS_MUSLE_R     | Puget Sound - sediment rank                        |
| Pu         | PS_TP_Qrtl     | Puget Sound - total phosphorous quartile           |
|            | PS_TN_Qrtl     | Puget Sound - total nitrogen quartile              |
|            | PS_TSS_Qrtl    | Pugst Sound - total suspended solids quartile      |
|            | PS_Zn_Qrtl     | Puget Sound - zink quartile                        |
|            | PS_Cu_Qrtl     | Puget Sound - copper quartile                      |
|            | PS_Metals_Qrtl | Puget Sound - metals quartile (Ecology added)      |
|            | PS_Path_Qrtl   | Puget Sound - pathogen quartile                    |
|            | PS_MUSLE_Q     | Puget Sound - sediment quartile                    |

|  | Field Name |                  | Description                                 |  |
|--|------------|------------------|---------------------------------------------|--|
|  |            | WRIA_nrunoff     | WRIA - runoff load per area                 |  |
|  |            | WRIA_ntpconc     | WRIA - total phosphprous load per area      |  |
|  |            | WRIA_ntnconc     | WRIA - total nitrogen load per area         |  |
|  |            | WRIA_ntsscon     | WRIA - total suspended solids load per area |  |
|  |            | WRIA_nznconc     | WRIA - zink load per area                   |  |
|  |            | WRIA_nncuconc    | WRIA - copper load per area                 |  |
|  |            | WRIA_npath       | WRIA - pathogen load per area               |  |
|  |            | WRIA_nmusle      | WRIA - sediment load per area               |  |
|  | sis        | WRIA_TP_Rnk      | WRIA - total phosphorous rank               |  |
|  | aly        | WRIA_TN_Rnk      | WRIA - total nitrogen rank                  |  |
|  | Ana        | WRIA_TSS_Rnk     | WRIA - total suspended solids rank          |  |
|  | le         | WRIA_Zn_Rnk      | WRIA - zink rank                            |  |
|  | Vic        | WRIA_Cu_Rnk      | WRIA - copper rank                          |  |
|  | A          | WRIA_Metals_Rnk  | WRIA - metals rank (Ecology added)          |  |
|  | R          | WRIA_Path_Rn     | WRIA - pathogen rank                        |  |
|  | 3          | WRIA_MUSLE_R     | WRIA - sediment rank                        |  |
|  |            | WRIA_TP_QrtI     | WRIA - total phosphorous quartile           |  |
|  |            | WRIA_TN_Qrtl     | WRIA - total nitrogen quartile              |  |
|  |            | WRIA_TSS_Qrtl    | WRIA - total suspended solids quartile      |  |
|  |            | WRIA_Zn_Qrtl     | WRIA - zink quartile                        |  |
|  |            | WRIA_Cu_Qrtl     | WRIA - copper quartile                      |  |
|  |            | WRIA_Metals_Qrtl | WRIA - metals quartile (Ecology added)      |  |
|  |            | WRIA_Path_Qrtl   | WRIA - pathogen quartile                    |  |
|  |            | WRIA MUSLE Q     | WRIA - sediment guartile                    |  |

#### Table D-25. List of field names for N-SPECT, WRIA-wide Analysis