Appendix A

Case narratives, data packages, and quality review reports for all PPCP and PFAS chemical analyses conducted by AXYS/SGS-AXYS and MEL

PERFLUORINATED ORGANIC ANALYSIS

SOLID SAMPLES

AXYS METHOD: MLA-041

PROJECT NAME: URBAN WATERS 2010 and PSAMP LTT 2010

Contract: 4499
Data Package Identification: DPWG33067
Analysis WG32575, WG32584

Prepared for: Washington State Dept of Ecology

Prepared by:
AXYS Analytical Services Ltd.
2045 Mills Rd
Sidney, British Columbia V8L 5X2
CANADA

Contact: Devin Mitchell Project Manager

24 June 2010

WASHINGTON STATE DEPT OF ECOLOGY SOLID SAMPLES

PEFLUORINATED ORGANIC ANALYSIS
AXYS METHOD: MLA-041

4499: L14603-1 to -21 L14603-23 and -24

Project Name: URBAN WATERS 2010 and PSAMP LTT 2010

25 June 2010

NARRATIVE

This narrative describes the analysis of twenty-three solid samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 27th and 29th of April 2010. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at -20 °C prior to extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The sample and QC samples (a procedural blank, an Ongoing Precision and Recovery (OPR), and a sample duplicate) were analyzed in two analysis batches named WG32575 and WG32584. The composition of the analysis batch is shown on the Cover Page and Correlation Table included in this data package. The procedural blank was prepared using Canadian Springs water and the OPR was prepared using cleaned sand.

A sample duplicate using sample 1004042-30 (AXYS ID: L14603-4), matrix spike sample (MS), and matrix spike duplicate (MSD) were included in analysis batch WG32575. The sample duplicate, MS, and MSD were assigned AXYS ID WG32575-103, -104, and -105, respectively.

The sample 1004042-05 (AXYS ID: L14603-6) was prepared in duplicate in analysis batch WG32584 and was assigned AXYS ID WG32584-103.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-041: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS.* A method summary (MSU-041) of AXYS Method MLA-041 is included in the data package.

An accurately weighed sample (approximately 5.0 g dry weight) was spiked with ¹³C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. The formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of the data package.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the sample specific detection limit, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier of the form L14603-XX, where XX = numeral. All data reports reference these unique AXYS IDs plus the client's sample identifier. To assist with locating data, a table correlating AXYS ID with the client sample number is included in this data package.

The following AXYS lab sample ID suffix was used in this data package:

(A) = the parent sample for a duplicate pair

The following laboratory qualifier flag was used in this data package:

U = identifies a compound that was not detected.

V = surrogate recovery is not within method control limits

Results are reported in concentration units of nanograms per gram (ng/g), dry weight basis. Concentration and detection limits are provided to three significant figures. Analysis results for each sample are provided on Analysis Report form 1A and form 2.

QA/QC NOTE

Samples and QC samples analyzed in one analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR, MS/MSD, sample duplicate and labeled compound recovery specifications were met except for the following:

WG32575

The lowest level calibration standard CS0 for PFNA was excluded from the initial calibration (data filename: FC0K_104 S: 25 to S: 32). As a result, the CS1 level calibration was used as detection qualifier for this analytes in samples. Given that PFNA was not detected in all client samples, sample data are not impacted by the variance.

The recovery of ¹³C₂-PFDoA in the sample 1004042-16 (AXYS ID: L14603-3) was observed to be slightly below the method lower limit and has been flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

WG32584

The recovery of ¹³C₂-PFDoA in the OPR, sample 1004042-23 and sample 1004041-01 (AXYS IDs: WG32584-102, 1004042-20 and L14603-21, respectively) did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

ANALYTICAL DISCUSSION

WG32575

The analyst noted on the laboratory worksheet for the samples 1004042-18, 1004042-20, 1004042-19 and 1004042-22 (AXYS ID: L14603-12, -13, -16 and -17, respectively) that some sample did not pass through the SPE cartridge prior to extraction. As a result, a factor has been applied to the surrogate recovery and the detection limit.

The analyst noted on the laboratory worksheet that the samples 1004042-30, 1004042-29, 1004042-19, 1004042-05 duplicate, matrix spike and matrix spike duplicate (AXYS IDs: L14603-4, -14, -16, WG32575-103, -104 and -105, respectively) produced precipitate prior to loading on the SPE cartridge. Given that the samples met method criteria the data are not considered affected by this variance.

WG32584

No analytical difficulty was encountered with this batch.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG33067, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory Extraction Worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Bryan Alonzo, B. Sc, QA/QC Chemist

Date Signed

Summary of AXYS Method MLA-041:

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS

This method, MLA-041, describes the analysis of perfluorinated organic compounds (PFC) in solid samples (sediment, soil). Typical detection limits are in the range of 0.1 - 0.2 ng/g for a 5 g sample.

EXTRACTION AND CLEANUP

Sample size may be up to 5 g (dry weight). After addition of surrogate standards the sample is extracted by shaking one time with dilute acetic acid solution and then two times with methanolic ammonium hydroxide solution, each time collecting the supernatants. The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through the same SPE cleanup procedure.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches. The composition of a batch is detailed on a batch sheet. Each batch has the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks 5% of the samples within a batch are procedural blanks.
- Duplicates 5% of the samples within a batch are analyzed in duplicate.
- Reference Samples 5% of the samples within a batch are spiked reference samples.
- Spiked Samples 5% of the samples within a batch are spiked with an aliquot of native standard.

QC Specification Table for PFC in Solids by LC-MS/MS:

Analyte	Procedural Blank Level ng/sample	Acceptable Matrix Spike % Recovery
Perfluorobutanoate (PFBA)	<0.25	70-130
Perfluoropentanoate (PFPeA)	<0.25	60-130
Perfluorohexanoate (PFHxA)	<0.25	70-130
Perfluoroheptanoate (PFHpA)	<0.25	70-130
Perfluorooctanoate (PFOA)	<0.25	70-130
Perfluorononanoate (PFNA)	<0.25	70-130
Perfluorodecanoate (PFDA)	<0.25	70-130
Perfluoroundecanoate (PFUnA)	<0.25	40-130
Perfluorododecanoate (PFDoA)	<0.25	70-130

Perfluorobutanesulfonate (PFBS)	<0.25	60-130
Perfluorohexanesulfonate (PFHxS)	<0.25	60-130
Perfluorooctanesulfonate (PFOS)	<0.25	70-130
Perfluorooctane sulfonamide (PFOSA)	<0.25	60-130

SURROGATE STANDARD RECOVERIES:	% RECOVERY RANGES ¹
¹³ C ₄ - Perfluorobutyric acid (¹³ C ₄ -PFBA)	20% - 150%
¹³ C ₂ - Perfluorocaproic acid (¹³ C ₂ -PFHxA)	40% - 150%
¹³ C ₂ - Perfluorooctanoic acid (¹³ C ₂ -PFOA)	40% - 150%
¹³ C ₅ - Perfluorononanoic acid (¹³ C ₅ -PFNA)	40% - 150%
¹³ C ₂ - Perfluorodecanoic acid (¹³ C ₂ -PFDA)	40% - 150%
¹³ C ₂ - Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	40% - 150%
¹³ C ₄ - Perfluorooctane sulfonate (¹³ C ₄ -PFOS)	40% - 150%

¹ Lower surrogate recoveries may be reported for individual samples where dilution analysis or spiked sample results demonstrate acceptable accuracy.

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard
Initial Calibration	Daily, (1/x²) weighed linear regression.
	Calculated concentrations must be within 30% of actual concentration.
Continuing Calibration Verification	Every 20 samples, determined concentrations must be within 30% of actual concentrations
Instrumental Carryover And Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: <0.3 % carryover and area response of analytes in instrument blank <800 judged following two previous methanol blank injections

ANALYSIS BY LC-MS/MS

Analysis of sample extracts for perfluorinated organics by HPLC-MS/MS is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The MS is run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Instrument specifications:

Instrument	Waters 2690 or Waters 2795 HPLC, Micromass Quattro Ultima MS/MS
LC Column	Waters Xtera C18MS Reverse Phase C18, 10.0 cm, 2.1 mm i.d., 3.5 µm particle size (or equivalent)
Ionization	Negative Ion Electrospray
Acquisition	MRM mode, unit resolution
Injection Volume	15 μL

LC-MS/MS Operating Conditions:

LC Grad	lient Program	LC Flow Rate Program	Gradient Curve	General LC Conditions	
Time (min)	Flow mixture ¹	(mL/min)		Column Temp (°C)	40
0.0	15% solvent A 85% solvent B	0.15	1	Max Pressure (bar)	300
1.0	15% solvent A 85% solvent B	0.15	1	MS Condition	ons
5.0	70% solvent A 30% solvent B	0.20	4	Source Temp (°C)	120
8.5	100% solvent A	0.20	4	Desolvation Temp (°C)	300
11	100% solvent A	0.20	4	Capillary Voltage (kV)	2.75
11.3-14.5	15% solvent A 85% solvent B	0.20	2	Gases (L/hr)	~70 cone ~300 desolvation

¹ Eluent A = 90% CH₃CN (aqueous), Eluent B = 12.1 mM NH₄OAc in 0.1% AcOH (aqueous)

Initial calibration of the LC-MS/MS instrument is performed by the analysis of six or more calibration solutions. A mid-level calibration standard is analyzed to verify the initial calibration after every 20th sample (including QC samples) injected at a minimum. All calibration solutions go through the same SPE extraction/cleanup procedure as the samples.

A typical instrument analysis sequence is as follows:

1-2 Instrument Blanks

6 Initial Calibration Standards

1-2 Instrument Blanks

Samples are run in the following order:

Spiked Reference Sample

Instrument Blank

Procedural Blank

Samples

Calibration Verification Standard (after 20 samples)

Samples

Calibration Verification Standard (after 20 samples)

...continued cycle

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 S:N for parent ion to daughter ion transition.
- Compound retention time falls within 0.4 minutes of the predicted retention times from the mean determined from the Initial Calibration. Natives with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION AND DATA REPORTING PROCEDURES

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X2 weighting fit and expressed as below:

$$Y = slope \times X + intercept$$

Where: Y = response ratio =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng)}\right)$$
, and X = weight of target (ng)

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size (g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

The lower reporting limit is defined as the concentration equivalent to the lowest calibration standard analyzed.

Analytes, Ions, and Quantification References:

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 / 219	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutane sulfonate (PFBS)	6.3	299	80 / 99 ¹	¹³ C ₄ -PFOS
Perfluorohexane sulphonate (PFHxS)	7.2	399	80 / 99 ¹	¹³ C₄-PFOS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 / 99 ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₄ -PFOS
Surrogate Standard				
¹³ C ₄ -Perfluorobutanoic acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorohexanoic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C ₄ -PFOA
¹³ C ₅ -Perfluorononanoic acid (¹³ C ₅ -PFNA)	7.4	470	423	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -FOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 / 99 ¹	¹³ C ₂ -FOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -FOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Quantification is based on the m/z 80 daughter, m/z 99 may be used as alternate if necessary to avoid interference.

Washington State Dept of Ecology

COVER PAGE AND CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS

PERFLUORINATED ORGANIC ANALYSIS			
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Devin Mitchell		
Project Name: URBAN WATERS 2010 and	Contract No: 4499		
PSAMP LTT 2010	AXYS Method: MLA-041		
Data Package Identification: DPWG33067	Program: Solid Samples		
Client Sample No.	Lab Sample ID		
LAB BLANK	WG32575-101		
OPR	WG32575-102		
MATRIX SPIKE	WG32575-104		
MATRIX SPIKE DUPLICATE	WG32575-105		
1004042-03	L14603-1		
1004042-06	L14603-2		
1004042-16	L14603-3		
1004042-30	L14603-4 WG32575-103 DUPLICATE		
1004042-18	L14603-12		
1004042-20	L14603-13		
1004042-29	L14603-14		
1004042-17	L14603-15		
1004042-19	L14603-16		
1004042-22	L14603-17		
LAB BLANK	WG32584-101		
OPR	WG32584-102		
1004042-04	L14603-5		
1004042-05	L14603-6 WG32584-103 DUPLICATE		
1004042-07	L14603-7		
1004042-08	L14603-8		
1004042-10	L14603-9		
1004042-11	L14603-10		
1004042-12	L14603-11		
1004042-09	L14603-18		
1004042-28	L14603-19		
1004042-23	L14603-20		
1004041-01	L14603-21		
1004041-07	L14603-23		
1004041-10	L14603-24		

PERFLUORINATED ORGANIC ANALYSIS

SOLID SAMPLES

AXYS METHOD: MLA-041

PROJECT NAME: URBAN WATERS 2010 and PSAMP LTT 2010

Contract: 4499
Data Package Identification: DPWG33085
Analysis WG32548

Prepared for: Washington State Dept of Ecology

Prepared by:
AXYS Analytical Services Ltd.
2045 Mills Rd
Sidney, British Columbia V8L 5X2
CANADA

Contact: Devin Mitchell Project Manager

21 June 2010

WASHINGTON STATE DEPT OF ECOLOGY SOLID SAMPLES

PEFLUORINATED ORGANIC ANALYSIS AXYS METHOD: MLA-041

4499: L14591-1 to -12

Project Name: URBAN WATERS 2010 and PSAMP LTT 2010

21 June 2010

NARRATIVE

This narrative describes the analysis of twelve solid samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS)

SAMPLE RECEIPT AND STORAGE

The samples were received on the 23rd of April 2010. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at -20 °C prior to extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The sample and QC samples (a procedural blank, an Ongoing Precision and Recovery (OPR) sample, a Sample Duplicate (DUP)) were analyzed in one batch named WG32548. The composition of the analysis batch is shown on the Cover Page and Correlation Table included in this data package. The procedural blank was prepared using Canadian Springs water and the OPR was prepared using cleaned sand. Sample 1004042-21 (AXYS ID: L14592-6) was used as the matrix for the duplicate sample, assigned AXYS ID WG32548-103.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-041: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS.* A method summary (MSU-041) of AXYS Method MLA-041 is included in the data package.

An accurately weighed sample (approximately 5.0 g dry weight) was spiked with ¹³C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.0 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in Analysis Chromatography section of the data package.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the sample specific detection limit, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier of the form L14591-X, where X = numeral. All data reports reference these unique AXYS IDs plus the client's sample identifier. To assist with locating data, a table correlating AXYS ID with the client sample number is included in this data package.

The following AXYS lab sample ID suffix was used in this data package:

(A) = the parent sample for a duplicate pair

The following laboratory qualifier flag was used in this data package:

U = identifies a compound that was not detected.

V = surrogate recovery is not within method control limits

Results are reported in concentration units of nanograms per gram (ng/g). Concentration and detection limits are provided to three significant figures. Analysis results for each sample are provided on Analysis Report form 1A and form 2.

QA/QC NOTE

Samples and QC samples analyzed in one analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR and labeled compound recovery specifications were met except the following:

At least 7 calibration points were used in quantification of the initial calibration (FC0K_104 S: 25 to S: 32) for all the analytes. The lowest level calibration standard CS0 for PFNA was excluded from the initial calibration. As a result, the CS1 level calibration was used as detection qualifier for this analyte in samples. Given that PFNA was not detected in all client samples, sample data are not impacted by the variance.

The recovery of ¹³C2-PFDoA in the OPR (AXYS ID: WG32548-102) did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only. Recovery of native PFDoA in the OPR was observed well within the acceptable method limits.

ANALYTICAL DISCUSSION

No analytical difficulty was encountered.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG33085, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory extraction worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

QA/QC Chemist Signed: Kristina Coleman,

Date Signed

Summary of AXYS Method MLA-041:

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS

This method, MLA-041, describes the analysis of perfluorinated organic compounds (PFC) in solid samples (sediment, soil). Typical detection limits are in the range of 0.1 – 0.2 ng/g for a 5 g sample.

EXTRACTION AND CLEANUP

Sample size may be up to 5 g (dry weight). After addition of surrogate standards the sample is extracted by shaking one time with dilute acetic acid solution and then two times with methanolic ammonium hydroxide solution, each time collecting the supernatants. The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through the same SPE cleanup procedure.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches. The composition of a batch is detailed on a batch sheet. Each batch has the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks 5% of the samples within a batch are procedural blanks.
- Duplicates 5% of the samples within a batch are analyzed in duplicate.
- Reference Samples 5% of the samples within a batch are spiked reference samples.
- Spiked Samples 5% of the samples within a batch are spiked with an aliquot of native standard.

QC Specification Table for PFC in Solids by LC-MS/MS:

Analyte	Procedural Blank Level ng/sample	Acceptable Matrix Spike % Recovery
Perfluorobutanoate (PFBA)	<0.25	70-130
Perfluoropentanoate (PFPeA)	<0.25	60-130
Perfluorohexanoate (PFHxA)	<0.25	70-130
Perfluoroheptanoate (PFHpA)	<0.25	70-130
Perfluorooctanoate (PFOA)	<0.25	70-130
Perfluorononanoate (PFNA)	<0.25	70-130
Perfluorodecanoate (PFDA)	<0.25	70-130
Perfluoroundecanoate (PFUnA)	<0.25	40-130
Perfluorododecanoate (PFDoA)	<0.25	70-130

Perfluorobutanesulfonate (PFBS)	<0.25	60-130
Perfluorohexanesulfonate (PFHxS)	<0.25	60-130
Perfluorooctanesulfonate (PFOS)	<0.25	70-130
Perfluorooctane sulfonamide (PFOSA)	<0.25	60-130

SURROGATE STANDARD RECOVERIES:	% RECOVERY RANGES ¹
¹³ C ₄ - Perfluorobutyric acid (¹³ C ₄ -PFBA)	20% - 150%
¹³ C ₂ - Perfluorocaproic acid (¹³ C ₂ -PFHxA)	40% - 150%
¹³ C ₂ - Perfluorooctanoic acid (¹³ C ₂ -PFOA)	40% - 150%
¹³ C ₅ - Perfluorononanoic acid (¹³ C ₅ -PFNA)	40% - 150%
¹³ C ₂ - Perfluorodecanoic acid (¹³ C ₂ -PFDA)	40% - 150%
¹³ C ₂ - Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	40% - 150%
¹³ C ₄ - Perfluorooctane sulfonate (¹³ C ₄ -PFOS)	40% - 150%

¹ Lower surrogate recoveries may be reported for individual samples where dilution analysis or spiked sample results demonstrate acceptable accuracy.

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard
Initial Calibration	Daily, (1/x²) weighed linear regression.
	Calculated concentrations must be within 30% of actual concentration.
Continuing Calibration Verification	Every 20 samples, determined concentrations must be within 30% of actual concentrations
Instrumental Carryover And Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: <0.3 % carryover and area response of analytes in instrument blank <800 judged following two previous methanol blank injections

ANALYSIS BY LC-MS/MS

Analysis of sample extracts for perfluorinated organics by HPLC-MS/MS is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The MS is run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Instrument specifications:

Instrument	Waters 2690 or Waters 2795 HPLC, Micromass Quattro Ultima MS/MS
LC Column	Waters Xtera C18MS Reverse Phase C18, 10.0 cm, 2.1 mm i.d., 3.5 µm particle size (or equivalent)
Ionization	Negative Ion Electrospray
Acquisition	MRM mode, unit resolution
Injection Volume	15 μL

LC-MS/MS Operating Conditions:

LC Gradient Program		LC Flow Rate Program	Gradient Curve	General LC Conditions	
Time (min)	Flow mixture ¹	(mL/min)		Column Temp (°C)	40
0.0	15% solvent A 85% solvent B	0.15	1	Max Pressure (bar)	300
1.0	15% solvent A 85% solvent B	0.15	1	MS Conditions	
5.0	70% solvent A 30% solvent B	0.20	4	Source Temp (°C)	120
8.5	100% solvent A	0.20	4	Desolvation Temp (°C)	300
11	100% solvent A	0.20	4	Capillary Voltage (kV)	2.75
11.3-14.5	15% solvent A 85% solvent B	0.20	2	Gases (L/hr)	~70 cone ~300 desolvation

¹ Eluent A = 90% CH₃CN (aqueous), Eluent B = 12.1 mM NH₄OAc in 0.1% AcOH (aqueous)

Initial calibration of the LC-MS/MS instrument is performed by the analysis of six or more calibration solutions. A mid-level calibration standard is analyzed to verify the initial calibration after every 20th sample (including QC samples) injected at a minimum. All calibration solutions go through the same SPE extraction/cleanup procedure as the samples.

A typical instrument analysis sequence is as follows:

1-2 Instrument Blanks

6 Initial Calibration Standards

1-2 Instrument Blanks

Samples are run in the following order:

Spiked Reference Sample

Instrument Blank

Procedural Blank

Samples

Calibration Verification Standard (after 20 samples)

Samples

Calibration Verification Standard (after 20 samples)

...continued cycle

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 S:N for parent ion to daughter ion transition.
- Compound retention time falls within 0.4 minutes of the predicted retention times from the mean determined from the Initial Calibration. Natives with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION AND DATA REPORTING PROCEDURES

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X2 weighting fit and expressed as below:

$$Y = slope \times X + intercept$$

Where: Y = response ratio =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng)}\right)$$
, and X = weight of target (ng)

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size (g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

The lower reporting limit is defined as the concentration equivalent to the lowest calibration standard analyzed.

Analytes, Ions, and Quantification References:

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 / 219	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutane sulfonate (PFBS)	6.3	299	80 / 99 ¹	¹³ C ₄ -PFOS
Perfluorohexane sulphonate (PFHxS)	7.2	399	80 / 99 ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 / 99 ¹	¹³ C₄-PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₄ -PFOS
Surrogate Standard				
¹³ C ₄ -Perfluorobutanoic acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorohexanoic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C ₄ -PFOA
¹³ C ₅ -Perfluorononanoic acid (¹³ C ₅ -PFNA)	7.4	470	423	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -FOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 / 99 ¹	¹³ C ₂ -FOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -FOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Quantification is based on the m/z 80 daughter, m/z 99 may be used as alternate if necessary to avoid interference.

Washington State Dept of Ecology

COVER PAGE AND CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS				
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Devin Mitchell			
Project Name: URBAN WATERS 2010 and	Contract No: 4499			
PSAMP LTT 2010	AXYS Method: MLA-041			
Data Package Identification: DPWG33085	Program: Solid Samples			
Client Sample No.	Lab Sample ID			
LAB BLANK	WG32548-101			
OPR	WG32548-102			
1004042-01	L14591-1			
1004042-02	L14591-2			
1004042-13	L14591-3			
1004042-14	L14591-4			
1004042-15	L14591-5			
1004042-21	L14591-6 WG32548-103 DUPLICATE			
1004042-24	L14591-7			
1004042-25	L14591-8			
1004042-26	L14591-9			
1004042-27	L14591-10			
1004042-31	L14591-11			
1004041-04	L14591-12			

PERFLUORINATED ORGANIC ANALYSIS

SOLID SAMPLES

AXYS METHOD: MLA-041

PROJECT NAME: PSAMP LTT 2010

Contract: 4499
Data Package Identification: DPWG33177
Analysis WG32638

Prepared for: Washington State Dept of Ecology

Prepared by:
AXYS Analytical Services Ltd.
2045 Mills Rd
Sidney, British Columbia V8L 5X2
CANADA

Contact: Devin Mitchell Project Manager

25 June 2010

WASHINGTON STATE DEPT OF ECOLOGY SOLID SAMPLES

PEFLUORINATED ORGANIC ANALYSIS
AXYS METHOD: MLA-041

4499: L14565-1 to -6

Project Name: PSAMP LTT 2010

25 June 2010

NARRATIVE

This narrative describes the analysis of six solid samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 20th of April 2010. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at -20 °C prior to extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The sample and QC samples (a procedural blank, an Ongoing Precision and Recovery (OPR), and a sample duplicate) were analyzed in analysis batch WG32638. The composition of the analysis batch is shown on the Cover Page and Correlation Table included in this data package. The procedural blank was prepared using Canadian Springs water and the OPR was prepared using cleaned sand.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-041: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS*. A method summary (MSU-041) of AXYS Method MLA-041 is included in the data package.

An accurately weighed sample (approximately 5.0 g dry weight) was spiked with 13 C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. The formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of the data package.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the sample specific detection limit, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier of the form L14565-XX, where XX = numeral. All data reports reference these unique AXYS IDs plus the client's sample identifier. To assist with locating data, a table correlating AXYS ID with the client sample number is included in this data package.

The following AXYS lab sample ID suffix was used in this data package:

R = repeat analysis using a fresh aliquot of sample

The following laboratory qualifier flag was used in this data package:

U = identifies a compound that was not detected.

Results are reported in concentration units of nanograms per gram (ng/g), dry weight basis. Concentration and detection limits are provided to three significant figures. Analysis results for each sample are provided on Analysis Report form 1A and form 2.

QA/QC NOTE

Samples and QC samples were analyzed in one analysis batch and were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR, MS/MSD, sample duplicate and labeled compound recovery specifications were met except for the following:

ANALYTICAL DISCUSSION

The initial analysis of the samples in this batch was conducted in batch WG32484; however, analysis results did not meet all method specifications. A repeat PFC analysis of these samples was conducted in analysis batch WG32638 using a fresh aliquot of sample. The repeat analysis data met method specifications and are reported, indicated by the test suffix 'R' on the AXYS ID.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG33177, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory Extraction Worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)

- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Candice Navaroli, B. Sc., Project Manager

25 - Jun - 10 Date Signed

Summary of AXYS Method MLA-041:

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS

This method, MLA-041, describes the analysis of perfluorinated organic compounds (PFC) in solid samples (sediment, soil). Typical detection limits are in the range of 0.1 – 0.2 ng/g for a 5 g sample.

EXTRACTION AND CLEANUP

Sample size may be up to 5 g (dry weight). After addition of surrogate standards the sample is extracted by shaking one time with dilute acetic acid solution and then two times with methanolic ammonium hydroxide solution, each time collecting the supernatants. The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through the same SPE cleanup procedure.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches. The composition of a batch is detailed on a batch sheet. Each batch has the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks 5% of the samples within a batch are procedural blanks.
- Duplicates 5% of the samples within a batch are analyzed in duplicate.
- Reference Samples 5% of the samples within a batch are spiked reference samples.
- Spiked Samples 5% of the samples within a batch are spiked with an aliquot of native standard.

QC Specification Table for PFC in Solids by LC-MS/MS:

Analyte	Procedural Blank Level ng/sample	Acceptable Matrix Spike % Recovery
Perfluorobutanoate (PFBA)	<0.25	70-130
Perfluoropentanoate (PFPeA)	<0.25	60-130
Perfluorohexanoate (PFHxA)	<0.25	70-130
Perfluoroheptanoate (PFHpA)	<0.25	70-130
Perfluorooctanoate (PFOA)	<0.25	70-130
Perfluorononanoate (PFNA)	<0.25	70-130
Perfluorodecanoate (PFDA)	<0.25	70-130
Perfluoroundecanoate (PFUnA)	<0.25	40-130
Perfluorododecanoate (PFDoA)	<0.25	70-130

Perfluorobutanesulfonate (PFBS)	<0.25	60-130
Perfluorohexanesulfonate (PFHxS)	<0.25	60-130
Perfluorooctanesulfonate (PFOS)	<0.25	70-130
Perfluorooctane sulfonamide (PFOSA)	<0.25	60-130

SURROGATE STANDARD RECOVERIES:	% RECOVERY RANGES ¹
¹³ C ₄ - Perfluorobutyric acid (¹³ C ₄ -PFBA)	20% - 150%
¹³ C ₂ - Perfluorocaproic acid (¹³ C ₂ -PFHxA)	40% - 150%
¹³ C ₂ - Perfluorooctanoic acid (¹³ C ₂ -PFOA)	40% - 150%
¹³ C ₅ - Perfluorononanoic acid (¹³ C ₅ -PFNA)	40% - 150%
¹³ C ₂ - Perfluorodecanoic acid (¹³ C ₂ -PFDA)	40% - 150%
¹³ C ₂ - Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	40% - 150%
¹³ C ₄ - Perfluorooctane sulfonate (¹³ C ₄ -PFOS)	40% - 150%

¹ Lower surrogate recoveries may be reported for individual samples where dilution analysis or spiked sample results demonstrate acceptable accuracy.

QC Parameter	Specification			
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard			
Initial Calibration	Daily, (1/x²) weighed linear regression.			
	Calculated concentrations must be within 30% of actual concentration.			
Continuing Calibration Verification	Every 20 samples, determined concentrations must be within 30% of actual concentrations			
Instrumental Carryover And Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: <0.3 % carryover and area response of analytes in instrument blank <800 judged following two previous methanol blank injections			

ANALYSIS BY LC-MS/MS

Analysis of sample extracts for perfluorinated organics by HPLC-MS/MS is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The MS is run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Instrument specifications:

Instrument	Waters 2690 or Waters 2795 HPLC, Micromass Quattro Ultima MS/MS
LC Column	Waters Xtera C18MS Reverse Phase C18, 10.0 cm, 2.1 mm i.d., 3.5 µm particle size (or equivalent)
Ionization	Negative Ion Electrospray
Acquisition	MRM mode, unit resolution
Injection Volume	15 μL

LC-MS/MS Operating Conditions:

LC Gradient Program		LC Flow Rate Program	Gradient Curve	General LC Conditions	
Time (min)	Flow mixture ¹	(mL/min)		Column Temp (°C)	40
0.0	15% solvent A 85% solvent B	0.15	1	Max Pressure (bar)	300
1.0	15% solvent A 85% solvent B	0.15	1	MS Conditions	
5.0	70% solvent A 30% solvent B	0.20	4	Source Temp (°C)	120
8.5	100% solvent A	0.20	4	Desolvation Temp (°C)	300
11	100% solvent A	0.20	4	Capillary Voltage (kV)	2.75
11.3-14.5	15% solvent A 85% solvent B	0.20	2	Gases (L/hr)	~70 cone ~300 desolvation

¹ Eluent A = 90% CH₃CN (aqueous), Eluent B = 12.1 mM NH₄OAc in 0.1% AcOH (aqueous)

Initial calibration of the LC-MS/MS instrument is performed by the analysis of six or more calibration solutions. A mid-level calibration standard is analyzed to verify the initial calibration after every 20th sample (including QC samples) injected at a minimum. All calibration solutions go through the same SPE extraction/cleanup procedure as the samples.

A typical instrument analysis sequence is as follows:

1-2 Instrument Blanks

6 Initial Calibration Standards

1-2 Instrument Blanks

Samples are run in the following order:

Spiked Reference Sample

Instrument Blank

Procedural Blank

Samples

Calibration Verification Standard (after 20 samples)

Samples

Calibration Verification Standard (after 20 samples)

...continued cycle

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 S:N for parent ion to daughter ion transition.
- Compound retention time falls within 0.4 minutes of the predicted retention times from the mean determined from the Initial Calibration. Natives with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION AND DATA REPORTING PROCEDURES

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X2 weighting fit and expressed as below:

$$Y = slope \times X + intercept$$

Where:
$$Y = response ratio = \left(\frac{area \ of \ Target}{area \ of \ Surr} \times weight \ of \ Surr \ (ng)\right)$$
, and $X = weight \ of \ target \ (ng)$

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size (g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

The lower reporting limit is defined as the concentration equivalent to the lowest calibration standard analyzed.

Analytes, Ions, and Quantification References:

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 / 219	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutane sulfonate (PFBS)	6.3	299	80 / 99 ¹	¹³ C ₄ -PFOS
Perfluorohexane sulphonate (PFHxS)	7.2	399	80 / 99 ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 / 99 ¹	¹³ C₄-PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₄ -PFOS
Surrogate Standard				
¹³ C ₄ -Perfluorobutanoic acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorohexanoic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C ₄ -PFOA
¹³ C ₅ -Perfluorononanoic acid (¹³ C ₅ -PFNA)	7.4	470	423	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -FOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -FOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 / 99 ¹	¹³ C ₂ -FOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -FOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Quantification is based on the m/z 80 daughter, m/z 99 may be used as alternate if necessary to avoid interference.

Washington State Dept of Ecology

COVER PAGE AND CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS			
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Devin Mitchell		
Project Name: PSAMP LTT 2010	Contract No: 4499		
Project Number: N/A	AXYS Method: MLA-041		
Data Package Identification: DPWG33177	Program: Solid Samples		
Client Sample No.	Lab Sample ID		
LAB BLANK	WG32638-101		
OPR	WG32638-102		
1004041-14	L14565-1		
1004041-17	L14565-2		
1004041-21	L14565-3		
1004041-24	L14565-4		
1004041-27	L14565-5		
1004041-30	L14565-6		
	•		

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

August 31, 2010

Subject: PSAMP-Urban Waters 2010

Samples: 1004041-01, 1004041-07, 1004041-10, 1004042-03 through 1004042-12,

1004042-03, 1004042-06, 1004042-16 through 1004042-20, 1004042-22,

1004042-23, 1004042-28 through 1004042-30

Contract Lab

Project ID: DPWG33067

Laboratory: AXYS Analytical Services Ltd.

Project Officer: Maggie Dutch

By: Karin Feddersen

Data Review for Perfluorinated Organic Compounds Analysis

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and accuracy.

Samples were prepared and analyzed according to AXYS method MLA-041.

Results have been reported in nanograms per gram (ng/g), parts per billion, dry weight.

There appeared to be poor chromatography for PFBA in sample 1004042-11, raising a question as to the accuracy of the concentration. The result for this analyte has been qualified as an estimate in this sample.

A measurable volume of sample extract was lost (not processed through the SPE cartridge) for 1004042-18, 1004042-19, 1004042-20, and 1004042-22. Surrogate recoveries and reporting limits were adjusted for the amount of extract recovered. The effect of processing less than the entire sample through the cartridge has no effect on analyte concentration results which are automatically corrected by the internal standard amounts.

The instrument's "Estimated Detection Limits" (EDL) could not be calculated in many instances, and are therefore not reported in the EDD. The EDL values reflect levels that are approximately 2.5 times the signal-to-noise ratio. This is the same criterion as is used for the Method Detection Limit (MDL), described by 40CFR.

Several results had reporting limits below the EDL. The reporting limits have been amended to the level of the EDL in these cases.

Holding Times and Preservation

The AXYS method allows storage of sediment samples for 30 days from the date of collection. Extraction and analysis took place within this time frame.

According to AYXS¹, samples are to be transported in the dark at <4°C; then stored in the dark at <-10°C upon receipt at the laboratory.

The sample coolers were verified to be at <4 °C upon receipt at the contract lab. The samples were subsequently stored at -20 °C.

Blanks

The blanks are labeled: WG32584-101 and WG32575-101.

No target compounds were detected in the laboratory blanks.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

An MS/MSD pair was performed on sample 1004042-06. All recoveries were within quality control limits described in the accompanying report.

Calibration

Calculated concentrations for individual initial calibration standards, and all calibration verification standard recoveries, were within QC limits of 70% to 130% for target analytes and 50% to 150% for the labeled reference compounds, with several exceptions.

The lowest calibration point was outside limits for PFNA. It was excluded from the curve and the reporting limit was raised to the level of the next valid standard.

The highest calibration point was outside limits (high) for PFOSA. PFOSA was not detected in any of the samples and results are unaffected.

The highest calibration point was outside limits (high) for 13C2-PFDoA. AXYS took no corrective action. This point could have been removed from the curve. AXYS states that there would have been no effect on the results, other than to lower for this surrogate in the samples by about 10%. They further state that those surrogates currently within QC limits would still have been within control limits.

Standard solutions used to prepare calibration and spiking standards are validated for accuracy against independent standards prior to release for use in analysis and the validation data are retained on file at AXYS².

Labeled Internal Standard Recoveries

AXYS calls the ¹³Carbon-Labeled compounds "surrogates". They are extraction internal standards that serve as surrogates.

Recoveries for labeled standards in these samples were all within laboratory QC limits with the exception of 13C2-PFDoA in samples 1004041-01 and 1004042-23.

13C2-PFDoA had a recovery similar to these samples in one of the OPRs. Since the corresponding native PFDoA recovery was unaffected in this OPR, no qualification of the results was deemed necessary.

13C2-PFOUEA is the internal standard used to evaluate the surrogate recoveries. Recoveries for the internal standard were within AXYS limits of 50-200%.

-

¹ Dale Hoover, Quality Assurance Manager, AXYS Analytical Services; email

² Ibid.

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPRs are labeled: WG32584-102 and WG32575-102.

Target analyte recoveries were within quality control limits of $\pm 30\%$.

Labeled standard recoveries were within quality control limits described in the accompanying report with the exception of 13C2-PFDoA in WG32584-102. Since the corresponding native PFDoA recovery was unaffected in this OPR, no qualification of the results was deemed necessary.

Duplicate

A duplicate sample was extracted and analyzed for sample 1004042-05 and for sample 1004042-30.

Data Qualifier Codes

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

August 31, 2010

Subject: PSAMP-Urban Waters 2010

Samples: 1004041-04, 1004042-01, 1004042-02, 1004042-13 through 1004042-15,

1004042-21, 1004042-24 through 1004042-27, 1004042-31

Contract Lab

Project ID: DPWG33085

Laboratory: AXYS Analytical Services Ltd.

Project Officer: Maggie Dutch

By: Karin Feddersen

Data Review for Perfluorinated Organic Compounds Analysis

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and accuracy.

Samples were prepared and analyzed according to AXYS method MLA-041.

Results have been reported in nanograms per gram (ng/g), parts per billion, dry weight.

The instrument's "Estimated Detection Limits" (EDL) could not be calculated in all instances, and are therefore not reported in the EDL. The EDL values reflect levels that are approximately 2.5 times the signal-to-noise ratio. This is the same criterion as is used for the Method Detection Limit (MDL), described by 40CFR.

Several results had reporting limits below the EDL. The reporting limits have been amended to the level of the EDL in these cases.

Holding Times and Preservation

The AXYS method allows storage of sediment samples for 30 days from the date of collection. Extraction and analysis took place within this time frame.

According to AYXS¹, samples are to be transported in the dark at <4°C; then stored in the dark at <-10°C upon receipt at the laboratory.

The sample coolers were verified to be at <4 °C upon receipt at the contract lab. The samples were subsequently stored at -20 °C.

Blanks

The blank is labeled: WG32548-101.

¹ Dale Hoover, Quality Assurance Manager, AXYS Analytical Services; email

No target compounds were detected in the laboratory blanks.

Calibration

Calculated concentrations for individual initial calibration standards, and all calibration verification standard recoveries, were within QC limits of 70% to 130% for target analytes and 50% to 150% for the labeled reference compounds.

The lowest calibration point was outside limits for PFNA. It was excluded from the curve and the reporting limit was raised to the level of the next valid standard.

The highest calibration point was outside limits (high) for PFOSA. PFOSA was not detected in any of the samples and results are unaffected.

The highest calibration point was outside limits (high) for 13C2-PFDoA. AXYS took no corrective action. This point could have been removed from the curve. AXYS states that there would have been no effect on the results, other than to lower recoveries for this surrogate in the samples by about 10%. Since this surrogate was low, yet the corresponding native PFDoA recovery was unaffected in the OPR, there would have likely been no effect on the results.

Standard solutions used to prepare calibration and spiking standards are validated for accuracy against independent standards prior to release for use in analysis and the validation data are retained on file at AXYS².

Labeled Internal Standard Recoveries

AXYS calls the ¹³Carbon-Labeled compounds "surrogates". They are extraction internal standards that serve as surrogates.

Recoveries for labeled standards in these samples were all within laboratory QC limits.

13C2-PFOUEA is the internal standard used to evaluate the surrogate recoveries. Recoveries for the internal standard were within AXYS limits of 50-200%.

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPRs are labeled: WG32548-102.

Target analyte recoveries were within quality control limits of ± 30 %.

Labeled standard recoveries were within quality control limits described in the accompanying report with the exception of 13C2-PFDoA. Since the corresponding native PFDoA recovery was unaffected in this OPR, no qualification of the results was deemed necessary.

Duplicate

A duplicate sample was extracted and analyzed for sample 1004042-21.

Data Qualifier Codes

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

² Ibid.

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

August 31, 2010

Subject: PSAMP-Urban Waters 2010

Samples: 1004041-14, 1004041-17, 1004041-21, 1004041-24, 1004041-27, 1004041-30

Contract Lab

Project ID: DPWG33177

Laboratory: AXYS Analytical Services Ltd.

Project Officer: Maggie Dutch

By: Karin Feddersen

Data Review for Perfluorinated Organic Compounds Analysis

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and accuracy.

Samples were prepared and analyzed according to AXYS method MLA-041.

AXYS states that the first analysis of these samples "did not meet all specifications". All samples were reanalyzed, indicated by a "Y" in the "Re-analysis Flag" column of the EDD.

Results have been reported in nanograms per gram (ng/g), parts per billion, dry weight.

The instrument's "Estimated Detection Limits" (EDL) could not be calculated in all instances, and are therefore not reported in the EDD. The EDL values reflect levels that are approximately 2.5 times the signal-to-noise ratio. This is the same criterion as is used for the Method Detection Limit (MDL), described by 40CFR.

Several results had reporting limits below the EDL. The reporting limits have been amended to the level of the EDL in these cases.

Holding Times and Preservation

The AXYS method allows storage of sediment samples for 30 days from the date of collection. Extraction and analysis took place within this time frame.

According to AYXS¹, samples are to be transported in the dark at <4°C; then stored in the dark at <-10°C upon receipt at the laboratory.

The sample coolers were verified to be at <4 $^{\circ}$ C upon receipt at the contract lab. The samples were subsequently stored at -20 $^{\circ}$ C.

¹ Dale Hoover, Quality Assurance Manager, AXYS Analytical Services; email

Blanks

The blank is labeled: WG32638-101.

No target compounds were detected in the laboratory blanks.

Calibration

Calculated concentrations for individual initial calibration standards, and all calibration verification standard recoveries, were within QC limits of 70% to 130% for target analytes and 50% to 150% for the labeled reference compounds.

The lowest calibration point was outside limits for PFNA. It was excluded from the curve and the reporting limit was raised to the level of the next valid standard.

The highest calibration point was outside limits (high) for PFOSA. PFOSA was not detected in any of the samples and results are unaffected.

The highest calibration point was outside limits (high) for 13C2-PFDoA. AXYS took no corrective action. This point could have been removed from the curve. AXYS states that there would have been no effect on the results, other than to lower for this surrogate in the samples by about 10%. They further state that those surrogates currently within QC limits would still have been within control limits.

Standard solutions used to prepare calibration and spiking standards are validated for accuracy against independent standards prior to release for use in analysis and the validation data are retained on file at AXYS².

Labeled Internal Standard Recoveries

AXYS calls the ¹³Carbon-Labeled compounds "surrogates". They are extraction internal standards that serve as surrogates.

Recoveries for labeled standards in these samples were all within laboratory QC limits.

13C2-PFOUEA is the internal standard used to evaluate the surrogate recoveries. Recoveries for the internal standard were within AXYS limits of 50-200%.

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPRs are labeled: WG32638-102.

Target analyte recoveries were within quality control limits of ± 30 %.

Labeled standard recoveries were within quality control limits described in the accompanying report.

Data Qualifier Codes

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

² Ibid.

WASHINGTON STATE DEPT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS ANALYSIS
AXYS METHOD: MLA-075

4499: L14603-1 to -21 L14603-23 and -24

Project Name: URBAN WATERS 2010 & PSAMP LTT 2010

25 June 2010

NARRATIVE

This narrative describes the analysis of twenty-three solid samples for the determination of pharmaceutical products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (LC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 27^{th} and 29^{th} of April 2010. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at -20 °C prior to extraction and analysis.

SAMPLE PREPARATION AND ANALYSIS

The samples were homogenized prior to analysis, as documented on the Sample Homogenization Record forms included in this data package.

Samples and QC samples (a procedural blank and a lab-generated reference sample known as the Ongoing Precision and Recovery (OPR)) were analyzed in two analysis batches named WG32579 and WG32580 for acid- and base-extracted pharmaceutical compounds, respectively. Sample 1004042-23 (AXYS ID: L14603-20) was analyzed in duplicated in both batches. The duplicate samples were given an AXYS ID of WG32579-103 and WG32580-103, respectively. Composition of each analysis batch is shown on the Cover Page and Correlation Table, and on the Batch List that accompanies the extraction workup sheets.

Extraction and analysis procedures were in accordance with AXYS Method MLA-075: **Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS**. A method summary of AXYS Method MLA-075 is included in the data package.

Two aliquots of accurately weighed sub-sample for each sample (approximately 1.0 gram dry weight) were spiked with labeled quantification standards and extracted with acetonitrile using sonication at pH 2 and pH 10, respectively in to two separate analysis batches WG32579 and WG32580. The resulting extracts were reduced in volume, reconstituted in water and cleaned up on Waters Oasis HLB SPE cartridges. The final extract was reduced in volume and spiked with labeled recovery (internal) standards prior to instrumental analysis.

Analysis was performed on Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS using four instrument and LC conditions as shown in table below.

Target	LC Column	lonization	Acquisition	LC Conditions
Group List 1	Waters Xtera C18MS	Positive Ion	MRM mode, unit	1
LIST	(10,0 cm, 2.1 mm i.d., 3,5 μm particle size)	Electrospray	resolution	
List 2	Waters Xtera C18MS (10,0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 μm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5 .

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4.1 software.

Sample specific detection limits (SDLs) were calculated for each target analyte and used as the detection qualifier. If the MassLynx 4.1 software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed, prorated for the extract volume and sample size, or the SDL, whichever is greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier L14603-XX, where XX is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of the sample's extract is given an extra "test suffix" code. The single letter code per extra work performed is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

= instrumental re-analysis was performed on the sample extract

The following laboratory qualifier flags were used in this data package:

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limit.
 N = authentic recovery is not within method/contract control limits

B = analyte found in the sample and associated blank

NQ = data not quantifiable

Results are reported in concentration units of nanograms per gram (ng/g), dry weight basis. Concentration and reporting limits are provided to three significant figures.

QA/QC NOTES

Samples and QC samples analyzed in an analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, calibration verification, OPR, duplicate RPD and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds .

The analytes Enrofloxacin and Ofloxacin were detected in the Lab Blank (AXYS ID: WG32580-101) at levels slightly above the method control limit. Data are not blank corrected and blank levels should be considered during sample data review.

Several lower calibration standard points for the analytes Azithromycin, Cefotaxime, Digoxigenin, Sulfadiazine, Sulfadimethoxine, Sulfamerazine, Sulfamethoxazole and Virginiamycin were excluded from the initial calibration. As a result, the CS1, CS2 or CS3 level calibration was used as the detection qualifier for these analytes in the samples.

Percent recovery of the analyte Cefotaxime in the continuing calibration (data filename: QA0J_085 S: 13 and QA0J_085 S: 33) and the analyte Virginiamycin in the continuing calibration (data filename: QA0J_085 S: 13) were observed to be outside the method limits. Given that the analytes were not detected in any of the samples and since the OPR (AXYS ID: WG32580-102) met method criteria for these compounds, data are not considered significantly affected by this variance.

The percent recoveries of several authentic spiked compounds in the OPR (AXYS ID: WG32580-102 and -105) were observed to be above the method upper control limits and have been flagged with an 'N' on the report form. Considering these compounds were overestimated in the SPM, and native concentrations in the client samples for these compounds were at levels below the detection limit, the data are considered to be unaffected.

The percent surrogate recovery of ¹³C₃-¹⁵N-Ciprofloxacin in the samples 1004042-10, 1004042-28 and 1004042-23 Duplicate (AXYS ID: L14603-9, -19, and WG32580-103, respectively) was observed to be below the range required for accurate quantification. Subsequently, all Ciprofloxacin, Clinafloxacin, Enrofloxacin, Lomefloxacin, Norfloxacin, Ofloxacin and Sarafloxacin data has been deemed not quantifiable and flagged with an 'NQ' on the report forms.

The percent surrogate recovery of ¹³C₃-¹⁵N-Ciprofloxacin in the samples 1004042-03, 1004042-07 1004042-08, 1004042-12, 1004042-20, 1004041-01 (AXYS ID) £14603-1, -7, -8, -11, -13, and -21, respectively) was observed to be below the method lower limit and has been flagged with a 'V' on the report forms. The data for the analyte Ciprofloxacin are reported with the exception of Clinafloxacin, Enrofloxacin, Lomefloxacin, Norfloxacin, Ofloxacin and Sarafloxacin data which are deemed not quantifiable and flagged with an 'NQ' on the report forms.

The percent surrogate recovery of ¹³C₃. ¹⁵N-Giprofloxacin in the samples 1004042-06, 1004042-30, 1004042-04, 1004042-18, 1004042-19, 1004042-22, 1004042-09, 1004042-23, 1004041-07, (AXYS ID: L14603-2, -4, -5, -12, -16, -17, -18, -20, and -23, respectively) was observed to be below the method lower control limit and has been flagged with a 'V' on the report forms. Since the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of native analytes. Percent surrogate recoveries are used as general method performance indicators only.

List 2 Compounds

The lowest level calibration standard CS0 for ACTC and ATC was excluded from the initial calibration. As a result, the CS1 level calibration was used as detection qualifier for these analytes in samples.

List 3 Compounds

In sample 1004042-12 (AXYS ID $_8$ L14603-11) 13 C $_6$ -Triclocarban recovered at a low level. As a result native analyte Triclocarban is deemed not quantifiable and is flagged 'NQ' on the reports.

List 4 Compounds

Due to the analytical cross-interference between Hydrocodone and Codeine, a correction has been applied to these compounds on the report forms. Details of the Hydrocodone/Codeine correction are provided in this data package.

The percent recoveries of several carbon labeled surrogates in several client samples were observed to be outside the method control limits and have been flagged according to the table below. In the case where the percent surrogate recovery was observed to be below half the lower method control limit, that compound as been determined to be 'not quantifiable' and flagged with an 'NQ'. As for the remainder of the observed percent surrogate recoveries, the isotope dilution method of quantification produces data that are recovery corrected. The slight variances from the method acceptance criteria are deemed not to affect the quantification of native analytes. Percent surrogate recoveries are used as general method performance indicators only.

Compound	Sample (AXYS ID)	Flag
d ₃ -Cotinine	L14603-3, -7, -11, -14, -17, -18, -20, and -23	v
d _e -Metformin	WG32579-104 (Blank)	V
d ₃ -Cimetidine	L14603-1, -2, -5, -6, -8, -10, -12, -13, -15, -16, -18, and -19	V
ag-Cimename	L14603-7, -9, -17, -21 and WG32579-103 (Duplicate)	NQ
d₅-Enalapril	L14603-18, -20, -24, and WG32579-105 (OPR)	V
d ₄ -Clonidine	L14603-8, -17, -18, -19, -20, WG32579-101 (Blank), -102 (OPR), and -105 (OPR)	·V
d ₆ -Codeine	L14603-7, -8, -10, -15, -16, -24, WG32579-101 (Blank), -102 (OPR), and -103 (Duplicate)	V
d₃-Hydrocodone	L14603-2, -7, -8, -10, -13, -14, -15, -16, -24, WG32579-101 (Blank), -102 (OPR), -103 (Duplicate)	V
•	L14603-7, -8, -11, -15, -16, -17, -24, and WG32579-103 (Duplicate)	V

List 5 Compounds

The analyte Methylprednisolone in the Lab Blank (AXYS ID: WG3250-101) was detected at a concentration slightly above the method control limit. Sample analyte concentrations are not blank corrected and blank levels should be considered during sample data review.

The lowest level calibration standard CS0 for several compounds was excluded from the initial calibration. As a result, the CS1 level calibration was used as detection qualifier for these analytes in samples.

Percent recovery of the analytes 10-Hyrdoxy-amitriptyline in the sample OPRs (AXYS ID: WG32580-102 and -105, respectively) and Prednisone in the sample OPR (AXYS ID: WG32580-102) were observed to be above the method upper limit and have been flagged with an 'N' on the report forms. Since the analytes were not detected in any of the client samples, data are not considered significantly affected by this variance. Percent recovery of the surrogate D₃-Benztropine in the OPRs were observed to be below the method lower limit and have been flagged with a 'V' on the report forms. Given that the authentic analyte Benztropine met method criteria, data are not considered affected by this variance.

Percent recovery of several surrogates in the client samples were observed to be outside the method limits and have been flagged with a 'V' on the report form. Since the isotope dilution method of quantification produces data that are recovery corrected, the slight variance from the method acceptance

criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as a general method performance indicator only.

ANALYTICAL DISCUSSION

List 1, 2, 3, & 5 Compounds

No analytical difficulty was encountered.

List 4 Compounds

Due to not all method control limits being met in initial analysis, extracts for all client samples and QC samples were re-analyzed on instrument for List 4 compounds. Data obtained from the re-analysis are reported as indicated by the suffix 'i' or 'i2' on the AXYS ID.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG33168, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory extraction worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

AXYS Analytical Services has agreed to investigate QC issues relating to List 1 and List 5. Should any changes occur, this Data Package may be revised.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Bryan Alonzo, B. Sc., QA/QC Chemist

Date Signed

WASHINGTON STATE DEPT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS ANALYSIS AXYS METHOD: MLA-075 4499: L14591-1 to -12

Project Name: URBAN WATERS 2010 & PSAMP LTT 2010

18 June 2010

NARRATIVE

This narrative describes the analysis of twelve solid samples for the determination of pharmaceutical products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (LC-MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 23rd of April 2010. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at -20 °C prior to extraction and analysis.

SAMPLE PREPARATION AND ANALYSIS

The samples were pre-treated prior to analysis, as documented on the Solid Preparation Record forms included in this data package.

Samples and QC samples (a procedural blank and a lab-generated reference sample known as the Ongoing Precision and Recovery (OPR)) were analyzed in two analysis batches named WG32546 and WG32547 for acid- and base-extracted pharmaceutical compounds, respectively. Sample 1004042-02 (AXYS ID: L14591-2) was analyzed in duplicated in both batches. The duplicate samples were given an AXYS ID of WG32546-103 and WG32547-103, respectively. Composition of each analysis batch is shown on the Cover Page and Correlation Table, and on the Batch List that accompanies the extraction workup sheets.

Extraction and analysis procedures were in accordance with AXYS Method MLA-075: Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS. A method summary of AXYS Method MLA-075 is included in the data package.

Two aliquots of accurately weighed sub-sample for each sample (approximately 1.0 gram dry weight) were spiked with labeled quantification standards and extracted with acctonitrile using sonication at pH 2 and pH 10, respectively in to two separate analysis batches WG32546 and WG32547. The resulting extracts were reduced in volume, reconstituted in water and cleaned up on Waters Oasis HLB SPE cartridges. The final extract was reduced in volume and spiked with labeled recovery (internal) standards prior to instrumental analysis.

Analysis was performed on Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS using four instrument and LC conditions as shown in table below.

Target Group	LC Column	lonization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS	Positive Ion	MRM mode, unit	1
	(10.0 cm, 2.1 mm i.d., 3.5 μm particle size)	Electrospray	resolution MRM mode, unit	2
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 μm particle size)	Positive Ion Electrospray	resolution	
List 3	Waters Xtera C18MS	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	(10.0 cm, 2.1 mm i.d., 3.5 μm particle size) Waters Atlantis HILIC	Positive Ion	MRM mode, unit	4
LISET	(10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Electrospray	resolution	<u> </u>
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	<u> </u>

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4.1 software.

Sample specific detection limits (SDLs) were calculated for each target analyte and used as the detection qualifier. If the MassLynx 4.1 software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed, prorated for the extract volume and sample size, or the SDL, whichever is greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier L14591-XX, where XX is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of the sample's extract is given an extra "test suffix" code. The single letter code per extra work performed is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

= instrumental re-analysis was performed on the sample extract

The following laboratory qualifier flags were used in this data package:

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limit.

authentic recovery is not within method/contract control limits

B = analyte found in the sample and associated blank

NQ = data not quantifiable

Results are reported in concentration units of nanograms per gram (ng/g), dry weight basis. Concentration and reporting limits are provided to three significant figures.

QA/QC NOTES

Samples and QC samples analyzed in an analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, calibration verification, OPR, duplicate RPD and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds

The analytes Erythromycin-H₂O and Norfloxacin were detected in the Lab Blank (AXYS ID: WG32546-101) at levels slightly above the method control limit. Data are not blank corrected and blank levels should be considered during sample data review.

At least 5 calibration points were used in quantification of the initial calibration (QA0J_080 S: 3 to S: 9) for all the analytes except for Digoxin, Penicillin G, and Virginiamycin which was quantified using 4 calibration points. Since all client samples were not detected for Digoxin, Penicillin G and Virginiamycin, data are not considered affected by this variance. Several lower calibration standard points for the analytes Sulfamerazine, Sulfamethazine, and Virginiamycin were excluded from the initial calibration. As a result, the CS1 and/or CS2 level calibration was used as the detection qualifier for these analytes in the samples.

The percent recoveries of several authentic spiked compounds in the OPR (AXYS ID: WG32546-102) were observed to be above the method upper control limits and have been flagged with an 'N' on the report form. Considering these compounds were overestimated in the SPM, and native concentrations in the client samples for these compounds were at levels below the detection limit, the data are considered to be unaffected.

The percent surrogate recovery of ¹³C₃-¹⁵N-Ciprofloxacin in the samples 1004042-01, 1004042-02, and 1004042-15 (AXYS ID: L14591-1, -2 and -5, respectively) was observed to be below the range required for accurate quantification. Subsequently, all: Ciprofloxacin, Clinafloxacin, Enrofloxacin, Lomefloxacin, Norfloxacin, Ofloxacin and Sarafloxacin data has been deemed not quantifiable and flagged with an 'NQ' on the report forms.

The percent surrogate recovery of $^{13}\text{C}_3$ - ^{15}N -Ciprofloxacin in the samples 1004042-13 and 100402-14 (AXYS ID: L14591-3 and -4, respectively) was observed to be below the method lower limit and has been flagged with a 'V' on the report forms. The data for the analyte Ciprofloxacin are reported with the exception of Clinafloxacin, Enrofloxacin, Lomefloxacin, Norfloxacin, Ofloxacin and Sarafloxacin data which are deemed not quantifiable and flagged with an 'NQ' on the report forms.

The percent surrogate recovery of ¹³C₃-Caffeine in samples 1004042-24 (AXYS ID: L14591-7) was observed to be above the method upper control limit and has been flagged with a 'V' on the report forms. Since the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of native analytes. Percent surrogate recoveries are used as general method performance indicators only.

List 2 Compounds

At least 5 calibration points were used in quantification of the initial calibration (QB0K_091 S: 5 to S: 11) for all analytes. As multi-point calibrations were used, sample data are deemed not to be significantly affected.

List 3 Compounds

At least 5 calibration points were used in quantification of the initial calibration (QF0K_091 S: 8 to S: 14) for all analytes. As multi-point calibrations were used, sample data are deemed not to be significantly affected.

Percent recovery of surrogate ¹³C₃-Ibuprofen in the sample 1004042-14 (AXYS ID: L14591-4) and D₆-Bisphenol A in the Lab Blank, 1004042-14, 1004042-25, 1004042-26, 1004042-27, and 1004042-31 (AXYS ID: WG32546-101, L14591-4, -8, -9, -10 and -1.1) was observed to be below the method lower limit. The surrogates have been flagged with a 'V' on the report form. Since the isotope dilution method of quantification produces data that are recovery corrected, the slight variance from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as a general method performance indicator only.

List 4 Compounds

Due to the analytical cross-interference between Hydrocodone and Codeine, a correction has been applied to these compounds on the report forms. Details of the Hydrocodone/Codeine correction are provided in the appendix of the data package.

At least 5 calibration points were used in quantification of the initial calibration (QG0K_091 S: 6 to S: 12) for all analytes. As multi-point calibrations were used, sample data are deemed not to be significantly affected. The lowest level calibration standard CS0 for Atorvastatin and Clonidine was excluded from the initial calibration. As a result, the CS1 level calibration was used as detection qualifier for these analytes in samples.

Percent recovery of the analyte Hydrocodone in the Continuing calibration (QG0K_092 S: 15) was observed to be slightly above the method upper limit. Given that the analyte was not detected in any of the client samples, data are not considered significantly affected by this variance.

Percent recovery of the analyte Codeine in the OPR (AXYS ID: WG32547-102) was observed to be slightly above the method upper limit and has been flagged with an 'N' on the report form. Since the analyte was not detected in any of the samples, data are not considered affected by this variance.

Percent recovery of several surrogates in the Lab Blank and client samples were observed to be outside the method limits and have been flagged with a 'V' on the report forms. Since the isotope dilution method of quantification produces data that are recovery corrected, the slight variance from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as a general method performance indicator only.

List 5 Compounds

The analyte Methylprednisolone in the Lab Blank (AXYS ID: WG32546-101) was detected at a concentration slightly above the method control limit. Sample analyte concentrations are not blank corrected and blank levels should be considered during sample data review.

At least 5 calibration points were used in quantification of the initial calibration (QE0J_079 S: 35 to S: 41) for all analytes. As multi-point calibrations were used, sample data are deemed not to be significantly affected. The lowest level calibration standard CS0 and/or CS1 for several compounds were excluded from the initial calibration. As a result, the CS1 and/or CS2 level calibration was used as detection qualifier for these analytes in samples.

Percent recovery of several surrogates in the sample 1004042-01 (AXYS ID: L14591-1) were observed to be outside the method limits and have been flagged with a 'V' on the report form. Since the isotope dilution method of quantification produces data that are recovery corrected, the slight variance from the method—acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as a general method performance indicator only.

ANALYTICAL DISCUSSION

List 1, 2, 3, & 4 Compounds

No analytical difficulty was encountered.

List 5 Compounds

Due to not all method control limits being met in initial analysis, extracts for all client samples and QC samples were re-analyzed on instrument for List 5 compounds. Data obtained from the re-analysis are reported as indicated by the suffix 'i' on the AXYS ID.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG33072, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory extraction worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

AXYS Analytical Services has agreed to investigate QC issues relating to List 1 and List 5. Should any changes occur this Data Package may be revised.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Bryan Alonzo, B. Sc., QAQC Chemist

Date Signed

WASHINGTON STATE DEPT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS ANALYSIS AXYS METHOD: MLA-075

4499: L14565-1 to -6

Project Name: PSAMP LTT 2010

24 June 2010

NARRATIVE

This narrative describes the analysis of six solid samples for the determination of pharmaceutical products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (LC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 20th of April 2010. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at -20 °C prior to extraction and analysis.

SAMPLE PREPARATION AND ANALYSIS

The samples were pre-treated prior to analysis, as documented on the Solid Preparation Record forms included in this data package.

Samples and QC samples (a procedural blank and a lab-generated reference sample known as the Ongoing Precision and Recovery (OPR)) were analyzed in two analysis batches named WG32485 and WG32486 for acid- and base-extracted pharmaceutical compounds, respectively. Composition of each analysis batch is shown on the Cover Page and Correlation Table, and on the Batch List that accompanies the extraction workup sheets.

Extraction and analysis procedures were in accordance with AXYS Method MLA-075: **Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS**. A method summary of AXYS Method MLA-075 is included in the data package.

Two portions of accurately weighed sub-sample for each sample (approximately 1.0 gram dry weight) were spiked with labeled quantification standards and extracted with acetonitrile using sonication at pH 2 and pH 10, respectively in to two separate analysis batches WG32485 and WG32486. The resulting extracts were reduced in volume, reconstituted in water and cleaned up on Waters Oasis HLB SPE cartridges. The final extract was reduced in volume and spiked with labeled recovery (internal) standards prior to instrumental analysis.

Analysis was performed on Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS using four instrument and LC conditions as shown in table below.

Target Group	LC Column	lonization	Acquisition	LC Condition s
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	. 5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4.1 software.

Sample specific detection limits (SDLs) were calculated for each target analyte and used as the detection qualifier. If the MassLynx 4.1 software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed, prorated for the extract volume and sample size, or the SDL, whichever is greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier L14565-X, where X is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

The following laboratory qualifier flags were used in this data package:

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limit.

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

Results are reported in concentration units of nanograms per gram (ng/g), on a dry weight basis. Concentration and reporting limits are provided to three significant figures.

QA/QC NOTES

Samples and QC samples analyzed in an analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, calibration verification, OPR, duplicate RPD and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds (APOS)

The percent recovery of authentic Cefotaxime in the Calibration Verification samples (Filename: QA0J_078-Q1 S:12) was observed to be outside the method control limit. Consequently, all native cefotaxime data has been deemed not quantifiable, and flagged with an 'NQ' on the report forms.

The percent recovery of authentic Lincomycin in the SPM (Axys ID: WG32485-102) was observed to be outside the method control limits. Consequently, all native lincomycin data has been deemed not quantifiable, and flagged with an 'NQ' on the report forms.

The percent recoveries of several authentic spiked compounds in the OPR (Axys ID: WG32485-102) were observed to be outside the method control limits and have been flagged with an 'N' on the report form. Considering these compounds were overestimated in the SPM, and native concentrations in the client samples for these compounds were below the detection limit, the data are considered to be unaffected.

The percent recovery of authentic spiked Lincomycin in the OPR (Axys ID: WG32485-102) was observed. to be below the stated method acceptance limit and has been flagged with an 'N' on the report form to alert data users to this variance. Method acceptance limits for Lincomycin are relatively wide and represent approximate limits and Lincomycin was not detected in the samples. AXYS, therefore, judged data acceptable for purpose.

The percent surrogate recovery of $^{13}\text{C}_3\text{-}^{15}\text{N-Ciprofloxacin}$ in all client samples (Axys ID: L14565-1 to -6) was observed to be outside the method control limits. Subsequently, all Ciprofloxacin, Clinafloxacin, Enrofloxacin, Lomefloxacin, Norfloxacin, Ofloxacin and Sarafloxacin data has been deemed not quantifiable and flagged with an 'NQ' on the report forms.

The percent surrogate recovery of $^{13}C_3$ -Trimethoprim in samples 1004041-14 and 1004041-17 (Axys ID: L14565-1 and -2 respectively) and $^{13}C_2$ -Erythromicyn-H₂O in samples 1004041-14, 1004041-17, 1004041-21, 1004041-24, the Lab Blank, and the SPM (Axys ID: L14565-1, -2, -3, -4, WG32485-101, and WG32485-102 respectively) was observed to be outside the method control limits and data has been flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of native analytes. Percent surrogate recoveries are used as general method performance indicators only.

The concentration of Norfloxacin in the Lab Blank (Axys ID: WG32485-101) was observed to be greater than the detection limit however Norfloxacin has been deemed not quantifiable in client samples and therefore data are not considered affected by this variance.

List 3 Compounds (ANEG)

Hydrochlorothiazide in the initial calibration (Filename: QF0K_089 S:03 to S:09) was observed to be linear only within a reduced concentration span than is outlined in the method. As the affected compounds achieved adequate recoveries in the lab quality control samples and were not detected in the client samples, data are considered unaffected.

The percent recovery of ¹³C₆-Triclocarban in the Lab Blank (Axys ID: WG32485-101) was observed to be outside the method control limit and has been flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of native analytes. Percent surrogate recoveries are used as general method performance indicators only.

List 4 Compounds (BPOS)

The recovery of surrogates in samples detailed below did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

AXYS ID	CLIENT ID	SURROGATE	RECOVERY %
L14565-1	1004041-14	D6-Codeine	60.3
		D3-Hydrocdone	58.7
L14565-2	1004041-17	D6-Codeine	60.4
		D3-Hydrocdone	65.4
L14565-3	1004041-21	D3-Albuterol	154
		D5-Enalapril	136
-		D4-Clonidine	159
		D6-Codeine	133
		D3-Hydrocodone	155
		D7-Atenolol	168
L14565-4	1004041-24	D3-Cimetidine	9.52
L14565-5	1004041-27	D3-Cimetidine	4.53
		D5-Enalapril	144
,		D4-Clonidine	150
L14565-6	1004041-30	D4-Clonidine	136

At least 5 calibration points were used in quantification of the initial calibration (QG0K_088 S: 7 to S: 18) for all the analytes. The lowest level calibration standard CS0 was excluded from the initial calibration for Atorvastain and Clonidine. As a result, the CS1 level calibration was used as detection qualifier for these analytes in samples.

Due to the analytical cross-interference between Hydrocodone and Codeine, a correction has been applied to these compounds on the report forms. Details of the Hydrocodone/Codeine correction are provided in the Narrative of the data package.

In samples 1004041-14, 1004041-17, 1004041-21 and 1004041-30 (AXYS IDs: L14565-1, L14565-2, L14565-3 and L14565-6, respectively) D3-Cimetidine recovered at a level too low for adequate quantification of the native compound. Cimetidine has been flagged 'NQ' on the reports.

List 5 Compounds (APOSX)

Data are not blank corrected. DEET and Propoxyphene were detected in the Lab Blank (WG32485-101). As neither of these analytes were detected in the client samples, data are not considered affected.

At least 5 calibration points were used in quantification of the initial calibration (QE0J_077 S: 3 to S: 9) for all the analytes. The lowest level calibration standard CS0 was excluded from the initial calibration for Norfluoxetine and Simvastatin. As a result, the CS1 level calibration was used as detection qualifier for these analytes in samples. Given that Norfluoxetine and Simvastatin were not detected in all client samples, sample data are not impacted by the variance. The CS0 and CS1 levels were excluded from the initial calibration for Amlodipine, Betamethasone, Desmethyldiltiazem. Promethazine and d4-Promethazine. The CS2 level was used as the detection qualifier for Amlodipine, Betamethasone, Desmethyldiltiazem and Promethazine.

In the OPR (WG32485-102), Trenbolone acetate was observed at a level slightly above the upper control limit. This analyte was not detected in samples and data are not considered affected.

The recovery of surrogates in samples detailed below did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

AXYS ID	CLIENT ID	SURROGATE	RECOVERY %
L14565-1	1004041-14	D6-Amitriptyline	6.63
		D3-Benztropine	1.25
·		D3-Cocaine	3.32
		D7-Metoprolol	23.1
		D5-Norfluoxetine	8,86
	,	D5-Propoxyphene	5.74
	•	D7-Propranolol	14,6
L14565-2	1004041-17	D3-Benztropine	2.22
		D3-Cocaine	6.3
		D5-Norfluoxetine	18.9
		D5-Propoxyphene	11,4.
L14565-3	1004041-21	D3-Benztropine	8.11
L14565-4	1004041-24	D3-Benztropine	5.71
		D3-Cocaine	9,68
		D5-Norfluoxetine	14.2
	•	D5-Propoxyphene	13.2
L14565-5	1004041-27	D3-Benztropine	7.1
		D3-Cocaine	17
		D5-Propoxyphene	19,4
L14565-6	1004041-30	D3-Benztropine	9.77

Where surrogates (detailed above) quantify target analytes which are not an exact match these analytes were deemed not quantifiable in samples. These compounds have been flagged 'NQ' on the reports.

ANALYTICAL DISCUSSION

List 1, 2, 3, 4 & 5 Compounds

No analytical difficulties were encountered.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG33140, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory extraction worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports

- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

AXYS Analytical Services has agreed to investigate QC issues relating to List 1 and List 5. Should any changes occur this Data Package may be revised.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Mark Springford, B. Sc., QA/QC Chemist

June 2010

Date Signed

Analysis of Pharmaceuticals and Personal Care Products (PPCP) by AYXS Method MLA075 – Influence of Matrix Type on Select Analytes and Surrogates

Summary

AXYS MLA-075 (revisions 1 and 2) is designed as a multi-matrix method for the determination of 119 PPCP compounds by LC MS/MS. The method is the basis for EPA 1694 and is composed of 5 "lists" which represent individual LC MS/MS instrument runs. Each instrument run is proceeded by specific extraction, concentration and cleanup by SPE cartridge, and reduction to final extract prior to instrumentation. MLA 075 vs. EPA 1694 represents the addition of 45 compounds and relevant surrogates for use in recovery correction. The analyte additions are in MLA 075 are found in expanded lists 3 and 4 and a new list – list 5.

In developing and validating the method, the objective was to provide a positive identification / positive quantification method for the target analytes in their native form (matching available analytical standards). As regulatory criteria does not exist and promulgation of the method has not occurred, the analysis should be viewed as a "reconnaissance" or "screen" method for use in determining occurrence, levels, fate, and transport of the targeted PPCPs. The key matrices in development and validation were water and those matrices associated with POTW or STP systems (influent, effluent, biosolids). It is expected that the performance of the 119 targets and associated surrogates may vary by matrix and sample due to the complexity and variability of the matrices involved. As AXYS encounters situations where specific analytes do not meet method performance data, AXYS is committed to investigate the cause. The investigations may result in method modifications or guidance governing expectations of analyte behaviour in specific situations.

In the first 6 months of 2010, AXYS performed analysis in 3 projects where soil and sediment matrices were a part of the study. Prior to this point in time method performance and sample results from soil and sediment matrices was very limited. The 3 projects were as follows:

- 1) San Francisco Estuary Institute (SFEI) AXYS Collaboration Multiple samples analyzed from 3 matrices Marine Waters, Marine Sediments, Mussel Tissue
- 2) Agriculture Canada Analysis of Biosolids, Agricultural Soils with Biosolids applied to them, run-off from these soils, vegetation grown on these soils.
- 3) Washington State Department of Ecology Assortment of Marine Sediments

During this work, conducted March 2010 to June 2010 consistent or systemic low recovery of the ¹³C-¹⁵N-ciprofloxacin surrogate standard has been observed in all soil/sediment sample analysis, resulting in data quality implications for the fluoroquinolone target analytes quantified against this surrogate. In addition, other intermittent failures against specifications have been observed. AXYS has recently analysed all data acquired using MLA075¹ for the list of analytes that comprise the fluoroquinolones and other PPCP. All of these targets are contained in MLA 075 List 1 and EPA 1694 List 1, which features

targets best analyzed by acidic extraction and ESI positive ionization. This document summarises work carried out thus far to study List 1 performance and outlines troubleshooting, both completed and ongoing being carried out. Similar analysis for List5 compounds, which showed intermittent losses of certain surrogate compounds, is ongoing. List 5 is also composed of target analytes processed with acidic extraction with subsequent analysis by ESI positive ionization. Lists 2, 3, and 4 exhibit strong performance in all matrices studied.

Examination of all List 1 data acquired using MLA075 protocols indicates that fluoroquinolones, and other analytes and surrogate compounds perform satisfactorily, and according to specifications in most other matrix types, including water, and sewage sludge (biosolids). All soils/sediments, and to a lesser extent, peat moss reference matrix exhibit consistent low recovery of carbon labelled ciprofloxacin surrogates. As this surrogate is used to recovery correct and quantify all fluoroquinolones (7 compounds) the loss of this surrogate indicates that the 7 fluoroquinolones are either deemed NQ (Not quantifiable) or may be quantified against instrument standards with appropriate flagging and narration. This latter approach adequately quantifies what is in the final extract but may not be indicative of the targets present in the sample. The following is a summary of the subsequent investigations and conclusions from our work to date on this issue;

- 1) Is the issue repeatable? Select samples from all 3 projects were re-run. The results indicate that labelled ciprofloxacin surrogate recovery rates were consistent between first runs and subsequent runs. In all cases batch QC was consistent and within specifications. Re-runs also included dilution of sample extracts to investigate suppression as a cause. We concluded from this that analytical error in processing the samples was not the root cause. We also concluded that suppression was not a likely cause of the issue.
- 2) Is salinity responsible for the Ciprofloxacin surrogate recovery issues? The failures noted with the ciprofloxacin surrogate were noted in marine and lacustrine sediments as well as agricultural soils. Ciprofloxacin surrogate behaviour was acceptable and comparable in both fresh and marine waters. From this we conclude that salinity is not responsible for the ciprofloxacin surrogate failures.
- 3) Is excess matrix responsible for Ciprofloxacin surrogate recovery failures? The amount of matrix available to interact with SPE cartridge may present situations where the extraction is not complete (with labelled ciprofloxacin lost to the matrix) or the SPE cartridge is beyond it's ability to adsorb or release labelled ciprofloxacin.

Additional studies in both sample and blank spiked matrix (peat moss) indicate that the recovery is insensitive to 10 fold reductions in sample size, 6-fold increases in cartridge capacity, and a 60-fold change in sample/cartridge capacity ratio. From this we concluded that excess matrix was not the cause of the ciprofloxacin failures. The acceptable performance in peat moss and POTW biosolids, with far higher amounts of TOC than the soils and sediments that were analyzed indicated that the amount of TOC in the matrices

was not the cause of the failures. Please note that we did not eliminate specific types of organic material, such as humic acid, as a root cause. It is possible that organic compounds such as humic acid may be present in higher amounts or different forms than in peat moss or biosolids. We do not currently have a comparative measurement of humic acids between the different matrices.

- 4) Is the Ciprofloxacin surrogate present after interaction with the silicate based matrices? AXYS sought to determine if the silicate matrices were either a) capturing the labelled ciprofloxacin (and other floxacins) and the extraction process was not effective in removal from the matrices or b) the nature of silicate matrices was altering the form of the labelled ciprofloxacin. In this experiment, clean Ottawa sand reference material was spiked with surrogates and extracted in one set of samples while another set of samples was spiked immediately after extraction without contact with the sand. All samples were then processed through the full method. The results show that ciprofloxacin surrogates were not recovered when added to the sand but were recovered acceptably when added immediately after the extraction of the sand. From this we confirmed that the silicate based material is either retaining or transforming the labelled ciprofloxacin.
- 5) Are the blank spiked matrices (SPM) QA samples in each batch representative of the method performance? – The need for representative SPM matrices to use in the method QA has been challenging in the PPCP field. The results are recovery corrected through the addition of labelled surrogates at the commencement of the analytical extraction process. This allows for quantification of the target analyte, corrected for losses in processing, when the labelled surrogate behaves appropriately. If recovery correction is not employed and quantification is performed vs. instrument standards the measurement will only reflect what is in the extract but will not indicate what is actually in the samples. This is very important in analysis of complex matrices such as POTW biosolids and sediments. AXYS has employed both peat moss and reference sand based SPMs for solid matrices. With respect to ciprofloxacin surrogates, the peat moss shows to be harsher matrices than biosolids. Peat moss SPMs in biosolids exhibit more frequent ciprofloxacin failures than actual samples, as measured by surrogate recovery. Reference sand SPMs and soil or sediment samples exhibit similar performance with labelled ciprofloxacin surrogates consistently not recovered in this matrix.

The most likely cause for this isolated issue is the nature of the analyte-matrix interaction. Fluoroquinolone analytes are known to form stable complexes with humic acid constituents in soil, and this behaviour is affected very strongly by the presence of divalent metal cations, and is pH dependent. Historical data from sand extractions also indicates that this strong interaction can be observed even in the absence of organic matrix. This behaviour may lead to the chemical transformation of the analytes to a form that is either not available for extraction, or not captured by the cartridge.

Analysis of Sample Data by Matrix Type

Table 1: List1: Acid Extraction, Electrospray Positive Analysis

	Criteria for %Recovery
	(Spiked Matrix
Analyte	Samples)
Acetaminophen	70-140
Azithromycin	10-130
Caffeine	25-160
Carbadox	25-180
Carbamazepine	25-200
Cefotaxime	10-300
Ciprofloxacin	25-180
Clarithromycin	50-160
Clinafloxacin	25-300
Cloxacillin	35-160
Dehydronifedipine	35-160
Diphenhydramine	30-200
Diltiazem	20-160
Digoxin	10-300
Digoxigenin	50-150
Enrofloxacin	30-220
Erythromycin-H2O	70-130
Flumequine	40-160
Fluoxetine	60-150
Lincomycin	10-300
Lomefloxacin	50-250
Miconazole	35-130
Norfloxacin	10-250
Norgestimate	35-130
Ofloxacin	60-250
Ormetoprim	70-150
Oxacillin	20-130
Oxolinic Acid	60-150
Penicillin G	10-130
Penicillin V	40-140
Roxithromycin	50-140
Sarafloxacin	50-200
Sulfachloropyridazine	60-160
Sulfadiazine	70-130
Sulfadimethoxine	35-160
Sulfamerazine	60-140
Sulfamethazine	70-130
Sulfamethizole	30-140
Sulfamethoxazole	70-130
Sulfanilamide	2-160
Sulfathiazole	30-180
Thiabendazole	60-150
Trimethoprim	50-150
Tylosin	10-180

	Criteria for %Recovery (Spiked Matrix
Analyte	Samples)
Virginiamycin	15-300
1,7 Dimethylxanthine	30-300
	Criteria for %Recovery
Surrogate Standard	(All samples)
13C2-15N-Acetaminophen	30-160
13C3-Caffeine	40-140
13C3-N15-Ciprofloxacin	7-150
13C2-Erythromycin-H2O	35-130
d5-Fluoxetine	10-160
13C6-Sulfamethazine	30-160
13C6-Sulfamethoxazole	30-140
d6-Thiabendazole	25-180
13C3-Trimethoprim	30-140

The list of analytes (List1) is shown in Table 1. All samples in this data set were analysed using procedures outlined in MLA-075¹. The data set comprises of samples extracted and analysed in the time period of July 2009 – May 2010. For the analyte list (List1) summarised, solid samples were extracted by sonication with buffered aqueous acetonitrile (pH = 2), concentrated by rotary evaporation and diluted with ultra pure water to 200 mL. After addition of sodium EDTA and pH adjustment to 4-4.5, the extracts were cleaned up using solid phase extraction (Oasis HLB, 1g) and analysed by LC/ESI+-MS/MS. Aqueous samples were filtered and aqueous portions were cleaned up and analysed using procedures identical to the solid samples (starting from EDTA addition step).

For the data analysis part, all data available in the laboratory information system (LIMS) was retrieved to calculate aggregate statistics including means, standard deviations, and failure rates against existing specifications. The data was segregated by matrix type (and sub-matrix type) where information is available. While AXYS typically classifies solids by origin, waste treatment (biosolid) or non-waste treatment (soil/sediment/solid), additional information was available for a vast majority of the solid samples analysed, enabling a fine grained analysis by sub-matrix type for the solids.

Results

Aggregate data for the nine surrogates routinely monitored in List1 showed clear performance difference by sub-matrix type for some of the surrogate compounds. However, only a subset of the analytes showed matrix specific performance differences. The number of samples analysed in each sub-sample type is shown in Table 2.

Table 2: Number of Samples included in this analysis grouped by matrix sub-type

Sub Matrix Type	Number of Samples
Biosolid	67
Soil/Sediment	75
Vegetation	11
Peat moss	31
Aqueous samples	370
Aqueous SPM	66

Figure 1 shows the mean recovery and failure rate against low recovery specifications by matrix type for 6 of the 9 surrogates. The sub-matrix type peat moss is a controlled reference material used in the spiked matrix and blank control samples for solids analysis. Note that low recovery is the specification of most importance here because it points to a possible issue in extracting the analyte from the sample, or of losses occurring during subsequent sample work up, for example, on the SPE cartridge. High recovery of a surrogate is usually caused by matrix related suppression in the mass spectrometer and can be remedied by diluting the extract. Of the surrogates not shown, sulfamethoxazole behaviour was similar to sulfamethoxyzine, thiabendazole showed very low failure rates across all matrices and fluoxetine behaviour was similar to trimethoprim with only soil/sediment samples showing a measurable (>5%) low recovery failure rate.

Most surrogates showed acceptably low failure rates across all matrices indicating acceptable method performance. In general, performance in aqueous matrices was better than in solid matrices, mostly due to the additional step of extraction. The behaviour of sulfamethazine and sulfamethoxyzole did not show this same pattern, the reasons for which are not explored in this document. Trimethoprim and fluoxetine showed higher losses in soil/sediment samples compared with other sub-sample types as well. However, surrogate performance was adequate for quantification of the referenced analytes, so the issue does not impact data quality significantly.

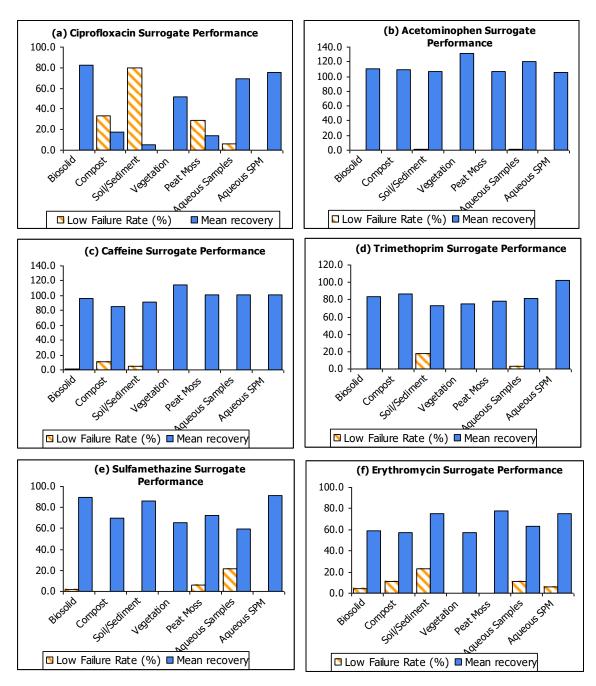


Figure 1: Mean recovery and low recovery failure rates for a set of List1 surrogate compounds

Ciprofloxacin Performance

The surrogate most severely affected in the soil/sediment analysis is 13C-15N-ciprofloxacin, Figure 1(a), with approximately 80% of all soil/sediment samples showing surrogate recoveries <7%. Note that biosolids, which are solid samples from wastewater treatment plants, do not show this behaviour, indicating that a specific and unique mechanism applying only to soil/sediment types is responsible for the recovery issues. No failures against the low recovery specification were reported for biosolids. Mean recovery in soil/sediment samples was 5%, as opposed to biosolids at 82%. This finding indicates that the typical extraction

and workup protocol works as designed for a large majority of the sample sub-types. Also note that peat moss samples, which share characteristics with sediment samples, show higher failure rates than aqueous samples, but perform better than soil/sediment samples. This once again indicates that only soils/sediments samples that fit a certain profile show this loss pattern of ciprofloxacin and other fluoroquinolones. Hence, troubleshooting and remedial action can be efficiently focussed on the specific matrix sub-type. The use of peat moss as the reference matrix for soils/sediments is appropriate as it accurately reflects trends seen in the samples. The use of peat moss as the reference matrix for biosolids and vegetation samples may serve to overstate any method control issues in the samples, as recoveries in peat moss were lower and more variable than in biosolids samples.

An examination of samples extracted between October 2007 and June 2009 for aqueous and peat moss spiked matrix samples also shows a clear difference in the recovery of fluoroquinolone analytes by matrix. The primary difference between these two data sets is the addition of EDTA, a complexing and pH adjusting agent in the set of samples analysed July 2009 onwards. Examination of the data indicates that the EDTA did not contribute to either an decrease or increase in recovery of the fluoroquinolone analytes.

In addition, accuracy for the other fluoroquinolones was evaluated by quantitating the analytes against the recovery standard in all peat moss samples. If a compound shows good recoveries against the recovery standard, it is an indication that the surrogate standard does not adequately track the analyte in question. Therefore, the analyte can be accurately measured when the corresponding surrogate is either very low or not recovered. Results indicate that all other fluoroquinolones are lost to varying extents as well, and data quality would not be significantly improved. Clinafloxacin recovery was better than all other fluoroquinolones. Recovery correction using the fluoroquinolone surrogate is necessary.

Troubleshooting and Investigatory Experiments

Due to the complex behaviour of the fluoroquinolones, experiments were carried out to pinpoint the losses under repeatable and controlled conditions and isolate the issue.

Surrogate Loss Isolation and Repeatability

A subset of three samples showing different patterns of surrogate recovery were analysed in triplicate. In one set, the surrogate standards were added to the samples prior to the solid extraction. In a matched set of samples, the surrogate standard was added immediately prior to loading on the SPE cartridge. In addition, all parameters including pH adjustment and equilibration time were controlled carefully to avoid any deviances from method. The results from these experiments can be summarised as follows.

- 1. Low recovery of ciprofloxacin surrogate was reproducible and repeatable in all samples.
- 2. In each case, it did not matter when the surrogate standard was added. This is an important finding as it pinpoints the loss as occurring on the cartridge. Cartridge performance has been tested and found to be satisfactory for other samples, indicating that this effect is confined to the matrix sub-type. A complete mass balance of the remaining extract could not be carried out due to the amount of

matrix present in the non-retained aqueous portion running through the cartridge. This leads to the conclusion that the compounds are either not being retained on the cartridge due to the presence of other matrix components (over loading), or they are being retained more tightly.

3. Other surrogate compounds from List1 and List5 analysis showed mixed performance, with some surrogates showing much better recoveries in the replicate analysis and some surrogates showing lower recoveries. This indicates that unique matrix effects restricted to soil/sediment samples can have subtle, but significant impacts on surrogate recovery.

Sample Loading

These experiments were performed to test the hypothesis that the matrix present in soil/sediment samples was exceeding the HLB cartridge's capacity to retain analytes. In addition to the default combination of 1g (dry weight)) sample, 1g sorbent Waters Oasis HLB cartridge, the following combinations were extracted and analysed with two different sediment samples and a peat moss sample: 0.1g sample/1g sorbent, 0.1g sample/6g sorbent and 1.0g sample/6g sorbent. The second case tested here represents a 60 fold increase in sorbent/sample ratio. The elution volumes for the 6g sorbent were scaled appropriately. A test extraction was also performed at pH = 10 to test pH sensitivity.

Results show that there was no difference in recovery of the fluoroquinolones in all cases, indicating that cartridge loading is not a significant factor. The pH=10 extraction also showed low recovery for the fluoroquinolones. However, this result is preliminary and needs to be investigated further.

Conclusions and Discussion

- 1. Performance of fluoroquinolones including ciprofloxacin is strongly matrix dependent, with matrices excepting soil/sediment matrices showing satisfactory recovery and low failure rates.
- 2. Loss of ciprofloxacin surrogate occurs on the SPE cartridge due to a combination of matrix and analyte specific variables
- 3. Loss of ciprofloxacin and other fluoroquinolones is independent of cartridge loading.

Due to the isolation of the fluoroquinolones recovery issue to certain subtypes of soil and sediment samples, it becomes necessary to focus on the specifics of the fluoroquinolone-soil interaction to understand the recovery issues better.

Ciprofloxacin Structure and Properties

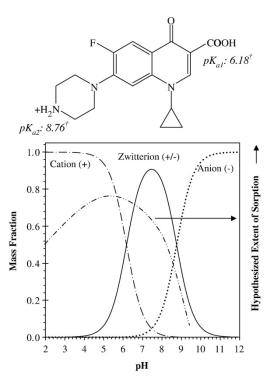


Figure 2: Ciprofloxacin structure and charge state as a function of pH²

Ciprofloxacin, and structurally similar analytes ofloxacin, clinafloxacin, enrofloxacin, lomeofloxacin, norfloxacin, and sarafloxacin are all Zwitterionic in nature, having both a positive and negative ionic molecule centre. At acid extraction conditions, pH = 2, the molecule is cationic. In addition, binding of fluoroquinolones to soil is very pH sensitive. Fluoroquinolones are known to strongly adsorb on soil and form stable ternary complexes with divalent metal ions and humic acids²⁻⁵. Aristilde and Spocito³ noted the formation of strong and stable complexes at acidic pH and neutral pH. Vasudevan et al, 2009² proposed and modeled the existence and pH dependent behaviour of cation exchange and cation bridging mechanisms.

Earlier work at AXYS also shows strong interactions of fluoroquinolones with sand, resulting in low, and variable recoveries. This observation indicates that fluoroquinolones can be tightly bound/chemically altered in the absence of an organic matrix, possibly interacting with metal ions/active surfaces in sand.

It is therefore possible that due to the formation of a complexed fluoroquinolone molecule, either its extraction, or retention on the HLB material is compromised. These unique challenges with fluoroquinolones are hence related to the combination of matrix type and analyte type. The next steps in this work will focus on the understanding of this complex formation and focusing on ways to mitigate the effect of analyte-matrix interactions on the recovery of fluoroquinolones from soil/sediment.

Next Steps

- 1. Confirmation of cartridge effects by differential spiking experiments performed to measure the recovery of fluoroquinolones spiked after the extract has passed through the cartridge, and recovery in the absence of cartridge cleanup. Experiments will be carried out using sand to eliminate effects of organic matrix. Peat moss and a typical soil sample will be used as well.
- 2. Understanding fluoroquinolone performance in solids and the variables, including ionic strength, presence of divalent and trivalent metal ions, humic acid.
- 3. Exploring extraction techniques that prioritise the fluoroquinolones extraction.
- 4. Studying complex formation, including possible identification of complexes and means to destabilise them. Ciprofloxacin will be extracted from sand, and time of flight mass spectrometry (TOF) will be used to look for any changes in the ciprofloxacin molecule.

References

- 1. MLA-075 Rev 1. Axys Method MLA-075: Analytical Procedure for the Analysis of Pharmaceuticals and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS. 2009.
- 2. Vasudevan D, Bruland GL, Torrance BS, Upchurch VG, MacKay AA. pH-dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors influencing sorption. *Geoderma*. 2009;151(3-4):68-76.
- 3. Aristilde L, Sposito G. Binding of ciprofloxacin by humic substances: A molecular dynamics study. *Environmental Toxicology and Chemistry*. 2010;29(1):90-98.
- 4. Turiel E, Martín-Esteban A, Tadeo JL. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. *Analytica Chimica Acta*. 2006;562(1):30-35.
- 5. Lizondo M, Pons M, Gallardo M, Estelrich J. Physicochemical properties of enrofloxacin. *Journal of Pharmaceutical and Biomedical Analysis.* 1997;15(12):1845-1849.

Manchester Environmental Laboratory

7411 Beach Dr E, Port Orchard, Washington 98366

Case Narrative September 23, 2010

Subject: PSAMP LTT 2010/Urban Water Initiative 2010

Sample(s): 1004041-01, 04, 07, 10, 14, 17, 21, 24, 27, 30

Project ID 1004041

Officer(s): Maggie Dutch

By: John Weakland

Pharmaceutical and Personal Care Products

LCMS/MS by Axys Analytical

Analytical Method(s)

A review of the three batches of Pharmaceutical and Personal Care Products analytical results from Axys Analytical was performed.

The analysis requires extraction at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5). Prior to extraction and/or clean-up samples are adjusted to the required pH and spiked with surrogates. Solid samples are repeatedly extracted by sonication with aqueous buffered acetonitrile and pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to analyze the complete list of analytes.

Holding Times

All samples were prepared and analyzed within the method holding times.

Calibration

The initial calibrations, calibration verifications and continuing calibrations were within QC limits with the following exceptions. Some of the analytes had responses that exceeded QC limits indicating a high bias. If the analyte was not detected in any of the associated samples, no further qualification of the data is necessary.

Several analytes did not meet initial or continuing calibration criteria and were qualified by MEL according to Table 1 below.

Table 1

Compound	Sample IDs	Qual	
Digoxin	MB (WG32546-101), 1004041-04,	UJ	
Penicillin G			
Virginiamycin	MB (WG32580-101), MB (WG32580-104), MB (WG32546-101),	UJ	
	1004041-04	OJ	
Hydrochlorothiazide	MB (WG32485-101) 1004041-14, 17, 21, 24, 27 and 30	UJ	
Cefotaxime	MB (WG32485-101) 1004041-14,17,21,24,27,30	REJ	

Blanks

The method blanks were reasonable, acceptable, and within QC limits with the following exceptions. If the amount detected in the sample was above the reporting limit but less than 5 times the blank amount or area, it was qualified UJ at the amount detected. Samples were qualified by MEL according to Table 2 below.

Table 2

Compound	Sample IDs	Qual
Erythromycin-H2O	1004041-21,24,30	UJ
Methylprednisolone	1004041-01,04,07,10,14,17,21,30	UJ
Triclocarban	1004041-30	UJ
Miconazole	1004041-28	UJ
Cocaine	1004041-21	UJ
Triamterene	1004041-14,17,24	UJ

Surrogates

The surrogate recoveries were reasonable, acceptable, and within QC limits with the following exceptions.

Several surrogates had percent recoveries above method control limits, indicating a high bias. If the associated analytes were not detected in the sample no qualification was necessary. If an analyte was detected, the result was qualified J, estimated value.

If the recovery was below the QC limit but above the minimum recovery level, defined as the *lesser* of 10% or the lower QC limit, the analog and associated analytes were qualified UJ. If the recovery was below the minimum recovery level, the analog and associated analytes were qualified REJ.

The samples were qualified according to Table 3 below.

Table 3

Compound	Sample IDs	Qual
Ciprofloxacin	1004041-01,07,14,17,21,24,27,30	REJ
Clinafloxacin		
Enrofloxacin		
Lomefloxacin	1004041-01,07,14,17,21,24,27,30	REJ
Norfloxacin		
Ofloxacin		
Sarafloxacin		
Bisphenol-A	MB (WG32546-01)	UJ
Cotinine	1004041-04	UJ
Cimetidine	1004041-01,04,14,17,21,24,27,30	REJ
Clonidine	MB (WG32547-101), MB (WG32579-101)	UJ
Triamterene	MB (WG32547-101), MB (WG32579-101)	UJ
	1004041-21,30	J
Codeine	MB (WG32547-101) MB (WG32579-101), 1004041-10,14,17	UJ
Hydrocodone	MB (WG32579-101), 1004041-10,14,17	UJ
Atenolol	1004041-10	UJ
Benztropine	MB (WG32580-101), MB (WG32580-104)	REJ
	1004041-01,07,10,14,17,21,24,27,30	
Cocaine	1004041-27	UJ
	1004041-14,17,24	REJ
Norfluoxetine	1004041-01,07,17,24	UJ
	1004041-14	REJ
Amlodipine	1004041-01,07	UJ
	1004041-14,17,24	REJ
Propoxyphene	1004041-17,24,27	UJ
	1004041-14	REJ
Valsartan	1004041-14,17,24,27	REJ
Simvastatin		
Triclocarban	MB (WG32485-101)	UJ
Paroxetine	MB (WG32580-101), MB (WG32580-104), 1004041-01	REJ

Table 3 (Continued)

Compound	Sample IDs	Qual
10-hydroxy-	-	111
amitriptyline	1004041-07	UJ
Norverapamil		1
Prednisolone		
Prednisone	1004041-14,17	REJ
Sertraline		
Propranolol	1004041-07,14,17	UJ
Azithromycin		
Carbadox		
Carbamazepine		ı
Cloxacillin		
Dehydronifedipine		
Diphenhydramine		
Diltiazem		
Digoxin		
Digoxigenin		
Flumequine	1004041-14,17	UJ
Lincomycin		1
Miconazole		
Norgestimate		
Ormetoprim		
Oxacillin		
Oxolinic Acid		
Penicillin G		
Penicillin V		
Virginiamycin		
Trimethoprim	1004041-14,17	UJ
Erthromycyn-H2O	1004041-17	UJ
	1004041-14	REJ
Amitriptyline	1004041-14	UJ
Betamethasone	1004041-14	REJ
Verapamil		
Meprobamate		
Fluticasone propionate	1004041-14	UJ
Metoprolol		

Matrix Spike

The spike recoveries were within QC limits with the following exceptions. Several compounds had percent recoveries above method control limits, indicating a high bias. If the associated

analytes were not detected in the sample no qualification was necessary. If an analyte was detected, the result was qualified J, estimated value.

The percent recovery of Lincomycin was well below established QC limits preventing accurate quantitation, and the associated samples were qualified according to Table 4.

Table 4

Compound	Sample IDs	Qual
Lincomycin	MB (WG32485-101), LCS (WG32485-102),	REJ
	1004041-14,17,21,24,27,30	

Comments

Axys changed how they flagged low surrogate recoveries after the first batch of samples. Prior to the change, Axys flagged results outside of QC limits at the analyst's discretion resulting in more REJ qualified data. In the cases where Axys flagged the data as not quantifiable, the EDD has a blank MEL Result and qualified REJ. The other two batches were flagged by Axys if the recovery was below the lesser of 10% or 1/2 the method lower surrogate recovery acceptance limit.

In order to maintain consistency, MEL qualified target analytes REJ if the associated surrogate recovery was the lesser of 10% or less than the lower Axys QC limit. However, in using MEL's criteria there are instances where Axys flagged samples as estimates but were qualified REJ by MEL. In those instances, the EDD has values in the results column combining the original Axys result and Axys flag into a single value in the MEL Result column and qualified REJ.

Data Qualifier Codes

- U The analyte was analyzed for, but was not detected above the reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary and precisely measure the analyte sample.
- REJ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- NC Not Calculated
- NAF Not analyzed for.
- E This qualifier is used when the concentration of the associated value exceeds the known calibration range. Use the dilution value for this analysis when available.

Manchester Environmental Laboratory

7411 Beach Dr E, Port Orchard, Washington 98366

Case Narrative September 20, 2010

Subject: Urban Water Initiative 2010

Sample(s): 1004042-01 - 31

Project ID 1004042

Officer(s): Maggie Dutch

By: John Weakland

Pharmaceutical and Personal Care Products

LCMS/MS by Axys Analytical

Analytical Method(s)

A review of the three batches of Pharmaceutical and Personal Care Products analytical results from Axys Analytical was performed.

The analysis requires extraction at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5). Prior to extraction and/or clean-up samples are adjusted to the required pH and spiked with surrogates. Solid samples are repeatedly extracted by sonication with aqueous buffered acetonitrile and pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to analyze the complete list of analytes.

Holding Times

All samples were prepared and analyzed within the method holding times.

Calibration

The initial calibrations, calibration verifications and continuing calibrations were within QC limits with the following exceptions. Some the analytes had responses that exceeded QC limits indicating a high bias. If the analyte was not detected in any of the associated samples, no further qualification of the data is necessary.

Several analytes did not meet initial or continuing calibration criteria and were qualified by MEL according to Table 1 below.

Table 1

Compound	Sample IDs	Qual
Digoxin	MB (WG32546-101)	
Penicillin G	1004042-01,02,02DUP,13,14,15,21,24,25,26,27,31	UJ
Virginiamycin	MB (WG32546-101), MB (WG32580-101), MB (WG32580-104)	
	1004042-01,02,02DUP,03,04,05,06,07,08,10,13,14,15,16,21,24,	UJ
	1004042-25,26,27,31	

Blanks

The method blanks were reasonable, acceptable, and within QC limits with the following exceptions. If the amount detected in the sample was above the reporting limit but less than 5 times the blank amount or area, it was qualified UJ at the amount detected. Samples were qualified by MEL according to Table 2 below.

Table 2

Compound	Sample IDs	Qual
Erythromycin-H2O	1004042-02,02Dup,04,05,06,07,08,11,13,14,15,16,18,19,20,21,	UJ
	1004042-23Dup,24,25,26,27,29	
Methylprednisolone	1004042-01,02,02Dup,04,07,08,09,11,13,14,16,17,18,19	UJ
	1004042-21,22,23,24,25,26,27,28,29,31	
Triclocarban	1004042-03,10,19,20,22	UJ
DEET	1004042-03,14	UJ

Surrogates

The surrogate recoveries were reasonable, acceptable, and within QC limits with the following exceptions.

Several surrogates had percent recoveries above method control limits, indicating a high bias. If the associated analytes were not detected in the sample no qualification was necessary. If an analyte was detected, the result was qualified J, estimated value.

If the recovery was below the QC limit but above the minimum recovery level, defined as the *lesser* of 10% or the lower QC limit, the analog and associated analytes were qualified UJ. If the recovery was below the minimum recovery level, the analog and associated analytes were qualified REJ.

The samples were qualified according to Table 3 below.

Table 3

Compound	Sample IDs	Qual
Ciprofloxacin	•	
Clinafloxacin		
Enrofloxacin		
Lomefloxacin	1004042-01,02,02Dup,03,04,06,07,08,09,10,12,13,14,15,18,19,	
Norfloxacin	1004042-20,22,23,23Dup,28,30	REJ
Ofloxacin	•	
Sarafloxacin		
Ibuprofen	1004042-14	UJ
2-Hydroxy-ibuprofen		
Bisphenol-A	MB (WG32546-01), 1004042-14,25,26,27,31	UJ
Cotinine	1004042-07,22,26,27	UJ
Cimetidine	1004042-02Dup,03,04,05,08,09,11,15,18,19,20,25,26,28	UJ
	1004042-06,07,10,17,22,23Dup,24,27,31	REJ
Clonidine	MB (WG32579-101),MB (WG32547-101), 1004042-08	UJ
Triamterene	MB (WG32579-101), MB (WG32547-101) 1004042-08	UJ
	1004042-09,22,23,28	J
Enaplapril	1004042-15,26	UJ
Atorvastatin		
Codeine	MB (WG32547-101), MB (WG32579-101)	UJ
	1004042-07,08,17,19,23Dup	
Hydrocodone	MB (WG32579-101), 1004042-06,07,08,11,17,19,20,23Dup,29	UJ
Atenolol	1004042-07,08,17,19,22,23Dup	UJ
Benztropine	1004042-01,03,04,09,16,18,19,20	UJ
•	MB(WG32580-101), MB(WG32580-104), 1004042-05,06,07	REJ
	1004042-08,10,11,12,17,22,23,23Dup,28,29,30	
Cocaine	1004042-01,16	UJ
Norfluoxetine	1004042-01,07,09,10,12,19,22,23Dup,28,30	UJ
Amlodipine	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
Propoxyphene		
Simvastatin	1004042-01	UJ
Valsartan		
Triclocarban	1004042-12	REJ

Table 3 (Continued)

Compound	Sample IDs	Qual
Paroxetine	MB (WG32580-101), MB (WG32580-104), 1004042-03,04	REJ
	1004042-05,06,07,08,10,11,12,16,20,23,23Dup,28,29,30	
10-hydroxy- amitriptyline		
Norverapamil		
Prednisolone	1004042-16,30	UJ
Prednisone		
Sertraline		
Propranolol	1004042-16,30	UJ

Matrix Spike

The spike recoveries were reasonable, acceptable, and within QC limits with the following exceptions. Several analytes had percent recoveries above method control limits, indicating a high bias. Since none of the associated analytes were detected in the samples, no qualification was necessary.

Comments

Axys changed how they flagged low surrogate recoveries after the first batch of samples. Prior to the change, Axys flagged results outside of QC limits at the analyst's discretion resulting in more REJ qualified data. In the cases where Axys flagged the data as not quantifiable, the EDD has a blank MEL Result and qualified REJ. The other two batches were flagged by Axys if the recovery was below the lesser of 10% or 1/2 the method lower surrogate recovery acceptance limit.

In order to maintain consistency, MEL qualified target analytes REJ if the associated surrogate recovery was the lesser of 10% or less than the lower Axys QC limit. However, in using MEL's criteria there are instances where Axys flagged samples as estimates but were qualified REJ by MEL. In those instances, the EDD has values in the results column combining the original Axys result and Axys flag into a single value in the MEL Result column and qualified REJ.

Data Qualifier Codes

- U The analyte was analyzed for, but was not detected above the reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary and precisely measure the analyte sample.
- REJ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- NC Not Calculated
- NAF Not analyzed for.
- E This qualifier is used when the concentration of the associated value exceeds the known calibration range. Use the dilution value for this analysis when available.
- **bold** The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

Project Name: URBAN WATER – ELLIOTT BAY

PERFLUORINATED ORGANIC ANALYSIS AXYS METHOD: MLA-041

4499: L19741-1 to -19

Revised Date 10 July 2013 26 June 2013

REVISED NARRATIVE

This data package has been revised to include the appropriate Request for Qualifications and Quote (RFQQ). Revisions were also made to the Analytical Discussion section of this narrative report for clarification.

NARRATIVE

This narrative describes the analysis of nineteen solid (marine sediment) samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 7th of June 2013. Details of sample conditions upon receipt are provided on the Sample Receiving forms included in the Sample Documentation section of this data package. The samples were stored at 20°C prior to sample preparation, extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The samples and QC samples (a laboratory procedural blank, a laboratory generated reference sample referred to as an "Ongoing Precision and Recovery" (OPR) sample and a duplicate sample of the parent sample 1306020-08 (AXYS ID: L19741-5) were analyzed in one analysis batch named WG43862. The composition of the batch is shown on the Correlation Table and the Workup Sheets included with this data package.

The sample preparation, extraction, instrumental analysis and analyte quantification procedures followed were in accordance with AXYS Method MLA-041: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS.* A method summary of this AXYS Method MSU-041 is included with this data package.

An accurately weighed dried sub-sample of each marine sediment sample (approximately 5 grams) was spiked with surrogate compounds used for target analyte quantification, extracted with dilute acetic acid and cleaned up using SPE cartridges. The target analytes were eluted from the SPE cartridges using methanolic ammonium hydroxide. The resulting extract was instrumentally analyzed using HPLC/MS-MS.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.0 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors. Linear regression equations with $1/X^2$ weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formula used to calculate the analyte concentrations are provided in the method summary (MSU-041) included with this data package. Quantification equations for each

target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier of the form L19741-X, where X = numeral. All data reports reference these unique AXYS IDs plus the client's sample identifier. To assist with locating data, a table correlating AXYS ID with the client sample number is included with this data package.

The following laboratory qualifier flags were used for this data package:

U = identifies a compound that was not detected.

V = surrogate recovery not within method control limits

The results were reported with concentration units of nanograms per gram (ng/g) on a dry mass basis with concentrations and detection limits provided to three significant figures. The analysis results for each sample are provided on Analysis Report forms 1A and 2.

QA/QC NOTE

The client samples and QC samples were analyzed in one batch and carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the laboratory procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- All linearity, CAL/VER, OPR, laboratory blank, duplicate sample and surrogate compound recovery specifications were met with the following exception:

The percent recovery for the surrogate compound 13 C₂-PFDoA for samples 1306020-02 and 1306020-15 (AXYS IDs: L19741-2 and -8 respectively) did not meet method criteria and was flagged with a 'V' on the report forms. The target analyte PFDoA quantified using this surrogate compound was not detected in either sample. As the isotope dilution method of quantification produces data that are recovery corrected, the variance was deemed to not affect the quantification of PFDoA. Percent surrogate recoveries are used as general method performance indicators only.

ANALYTICAL DISCUSSION

For samples 1306020-03, 1306020-16 and 1306020-19 (AXYS IDs: L19741-3, -9 and -11), a portion of the sample extract was not added to the SPE column for cleanup and collection due to clogging of the cartridge. Given that the loss occurred after the addition of labeled surrogate compounds, the isotope

dilution quantification procedure adjusts for these losses and data are not considered to be significantly affected.

DATA PACKAGE

This data package was assigned a unique identifier, DPWG44003, shown on the cover page of the data package. Included with this data package following this narrative are the following sections and information:

- Method summary
- Method Detection Limit (MDL) Study
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Request for Laboratory Services (RLS)
- Request for Qualifications and Quote (RFQQ)
- Preparation Logs for Standard Solutions
- Sample Homogenization Records
- Extraction Workup Sheets
- Sample Data Reports (in order of AXYS Sample ID)
- Laboratory QC Data Reports
- Instrumental QC Data Reports (organized by analysis date)
- Sample Raw Data (in order of AXYS Sample ID)
- Laboratory QC Raw Data
- Instrumental QC Raw Data (organized by analysis date)

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

10-201-13

Date Signed

Summary of AXYS Method MLA-041 Rev. 09 Ver. 02:

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS

AXYS Method MLA-041 describes the analysis of perfluorinated organic compounds (PFC) in solid samples (sediment, soil). Typical detection limits are in the range of 0.1 – 0.2 ng/g for a 5 g sample.

Target Analytes

Perfluorobutanoate (PFBA)	Perfluorobutanesulfonate (PFBS)
Perfluoropentanoate (PFPeA)	Perfluorohexanesulfonate (PFHxS)
Perfluorohexanoate (PFHxA)	Perfluorooctanesulfonate (PFOS)
Perfluoroheptanoate (PFHpA)	Perfluorooctane sulfonamide (PFOSA) ¹
Perfluorooctanoate (PFOA)	
Perfluorononanoate (PFNA)	
Perfluorodecanoate (PFDA)	
Perfluoroundecanoate (PFUnA)	
Perfluorododecanoate (PFDoA)	

EXTRACTION

Sample size may be up to 5 g (dry weight). After addition of isotopically labelled surrogate standards the sample is extracted by shaking one time with dilute acetic acid solution and then two times with methanolic ammonium hydroxide solution, each time collecting the supernatants.

COLUMN CHROMATOGRAPHY CLEANUP

The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through the same SPE cleanup procedure.

The final extract volume is 4 mL.

INSTRUMENTAL ANALYSIS

Analysis of the sample extract is performed on a high performance liquid chromatography reversed phase C18 column using a solvent gradient. The column is coupled to a triple quadrupole mass spectrometer run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Analytes, Ions and Quantification References

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 (169) ¹	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutane sulfonate (PFBS)	6.3	299	80 (99) ¹	¹⁸ O ₂ -PFHxS
Perfluorohexane sulphonate (PFHxS)	7.2	399	80 (99/119) ¹	¹⁸ O ₂ -PFHxS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 (99) ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₄ -PFOS
Surrogate Standard				
¹³ C ₄ -Perfluorobutanoic acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorohexanoic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C₄-PFOA
¹³ C ₅ -Perfluorononanoic acid (¹³ C ₅ -PFNA)	7.4	468	423	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -PFOUEA
¹⁸ O ₂ –Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	7.2	403	84 (103) ¹	¹³ C ₂ -PFOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 (99) ¹	¹³ C ₂ -PFOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -PFOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Alternate transition within brackets, may be used if necessary to avoid interference.

CALIBRATION

A series of at least five calibration solutions prepared in an aqueous matrix similar in composition to the sample extract is used to establish initial multi-level calibration. The calibration solutions contain the analytes of interest covering the working range of the instrument together with labelled surrogate and recovery standards. A mid-level calibration solution is analyzed at least after every 20th sample to demonstrate calibration stability. All calibration solutions are processed through SPE cleanup.

Nominal Concentrations of Calibration Solutions

			C	oncentrat	ion (ng/ml	L)			Authentic Standard
	CAL A	CAL B	CAL C	CAL D	CAL E	CAL F	CAL G	CAL H	Amount Added to sample (ng)
Native Compound									
PFBA	0.125	0.312	1.25	5	25	50	125	312	20
PFPeA	0.125	0.312	1.25	5	25	50	125	312	20
PFHxA	0.125	0.312	1.25	5	25	50	125	312	20
PFHpA	0.125	0.312	1.25	5	25	50	125	312	20
PFOA	0.125	0.312	1.25	5	25	50	125	312	20
PFNA	0.125	0.312	1.25	5	25	50	125	312	20
PFDA	0.125	0.312	1.25	5	25	50	125	312	20
PFUnA	0.125	0.312	1.25	5	25	50	125	312	20
PFDoA	0.125	0.312	1.25	5	25	50	125	312	20
PFBS	0.25	0.625	2.5	10	50	100	250	625	40
PFHxS	0.25	0.625	2.5	10	50	100	250	625	40
PFOS	0.25	0.625	2.5	10	50	100	250	625	40
PFOSA	0.125	0.312	1.25	5	25	50	125	312	20
Surrogate Standards									Surrogate Standard Amount Added to sample (ng)
¹³ C ₄ -PFBA	3	3	3	3	3	3	3	3	12
¹³ C ₂ -PFHxA	3	3	3	3	3	3	3	3	12
¹³ C ₂ -PFOA	9	9	9	9	9	9	9	9	36
¹³ C₅-PFNA	3	3	3	3	3	3	3	3	12
¹³ C ₂ -PFDA	3	3	3	3	3	3	3	3	12
¹³ C ₂ -PFDoA	3	3	3	3	3	3	3	3	12
¹⁸ O ₂ -PFHxS	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	18
¹³ C ₄ -PFOS	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	18
Recovery Standards									
¹³ C ₂ -PFOUEA	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	10
¹³ C ₄ -PFOA	3	3	3	3	3	3	3	3	12

Page 3 of 6

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 signal:noise for parent ion to daughter ion transition.
- Compound retention time must fall within 0.4 minutes of the predicted retention times from the daily Calibration Verification. Native compounds with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X² weighting fit and expressed as below:

$$Y = slope \times X + intercept$$
 Where:
$$Y = response \ ratio = \left(\frac{area \ of \ Target}{area \ of \ Surr} \times weight \ of \ Surr \ (ng)\right) \ , \ and$$

$$X = weight \ of \ target \ (ng)$$

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size (g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

REPORTING LIMITS

Concentrations and detection limits for the target analytes are reported. Typical reporting units for all data are ng/g on a dry weight basis.

The following are commonly requested reporting limits:

Method Detection Limit (MDL) - determined as specified by EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option). The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used: LMCL = ((lowest level cal conc.) x (extract volume))/sample size. Typical extract volume for PFCs in solids is 4 mL.

For the analysis of PFCs it is AXYS standard to report sample concentrations using the LMCL as the lower reporting limit. In cases where the SDL is higher than the LMCL, the SDL will be used as the lower reporting limit.

The SDL is defined as follows: Sample Specific Detection Limit or Sample Detection Limit (SDL) – determined individually for every sample analysis run by converting the area equivalent of 3.0 times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches of the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks Blanks are analyzed with a minimum frequency of 5% of client samples (i.e. each batch of up to 20 client samples contains a procedural blank.) 20 mL of reagent water is used as the blank sample matrix.
- Duplicates Where sufficient sample is available a duplicate sample is normally analyzed with each analysis batch containing greater than six (6) test samples, or as required by contract.
- OPR (Spiked Reference Sample) OPRs are analyzed with a minimum frequency of 5% of client samples (i.e. each batch of up to 20 client samples contains an OPR.) An aliquot of native standard (typically 20 µL equivalent to 10 ng per analyte) is added to 5 g of an approved clean solid matrix to prepare the spiked reference sample.
- Matrix Spike/Matrix Spike Duplicate may be analyzed upon client request.

QC Specification Table: Procedural Blank Levels and OPR Recoveries

Analyte		Procedural Blank Level ng/sample ¹	Acceptable Matrix Spike in OPR (% Recovery)
Perfluorobutanoate	(PFBA)	< 0.25	70 – 130
Perfluoropentanoate	(PFPeA)	< 0.25	60 – 130
Perfluorohexanoate	(PFHxA)	< 0.25	70 – 130
Perfluoroheptanoate	(PFHpA)	< 0.25	70 – 130
Perfluorooctanoate	(PFOA)	< 0.25	70 – 130
Perfluorononanoate	(PFNA)	< 0.25	70 – 130
Perfluorodecanoate	(PFDA)	< 0.25	70 – 130
Perfluoroundecanoate	(PFUnA)	< 0.25	40 – 130

Page 5 of 6

Analyte		Procedural Blank Level ng/sample ¹	Acceptable Matrix Spike in OPR (% Recovery)
Perfluorododecanoate	(PFDoA)	< 0.25	70 – 130
Perfluorobutanesulfonate	(PFBS)	< 0.25	60 – 130
Perfluorohexanesulfonate	(PFHxS)	< 0.25	60 – 130
Perfluorooctanesulfonate	(PFOS)	< 0.25	70 – 130
Perfluorooctane sulfonamide	(PFOSA)	< 0.25	60 – 130

¹ Reporting limits (based on the lowest calibration standard - CAL A in Table 3 - and routine final extract volume of 4 mL) may exceed the stated blank criteria.

QC Specification Table: Surrogate Standard Recoveries, Calibration and Samples

Surrogate Standard		Recovery Range ¹
¹³ C₄-Perfluorobutyric acid	(¹³ C ₄ -PFBA)	20 - 150%
¹³ C ₂ -Perfluorocaproic acid	(¹³ C ₂ -PFHxA)	40 - 150%
¹³ C ₂ -Perfluorooctanoic acid	(¹³ C ₂ -PFOA)	40 - 150%
¹³ C ₅ -Perfluorononanoic acid	(¹³ C ₅ -PFNA)	40 - 150%
¹³ C ₂ -Perfluorodecanoic acid	(¹³ C ₂ -PFDA)	40 - 150%
¹³ C ₂ -Perfluorododecanoic acid	(¹³ C ₂ -PFDoA)	40 - 150%
¹⁸ O ₂ -Perfluorohexanesulfonate	(¹⁸ O ₂ -PFHxS)	40 - 150%
¹³ C ₄ -Perfluorooctanesulfonate	(¹³ C ₄ -PFOS)	40 - 150%

Lower surrogate recoveries may be reported for individual samples where dilution analysis or spiked sample results demonstrate acceptable accuracy.

QC Specification Table: Other Parameters

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard.
Initial Calibration (native compounds)	Daily, (1/x²) weighed linear regression. Calculated concentrations must be within 30% of actual concentration. Surrogate recoveries must fall within the same limits as for the samples in the table above.
Continuing Calibration Verification (native compounds)	Every 20 samples, determined concentrations must be within 30% of actual concentrations. Surrogate recoveries must fall within the same limits as for the samples in the table above.
Instrumental Carryover and Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: \leq 0.3% carryover and area response of analytes in instrument blank \leq 800.
Duplicate Samples or MS/MSD	If conc. > 5 times R.L., RPD < 40% If conc. < 5 times R.L., difference between pairs < R.L.

PFCs by LC-MS/MS Method Detection Limit for PFCs in Solid samples June 2011

MDL Results

Axys Method: MLA-041 Rev 09

Analysis Type: Perfluorinated Organic Compounds (PFC)

Instrument Type: LC-MS/MS Matrix Spiked: SOLID Axys Workgroup: WG36738 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, April 29, 2002, no iteration

Instr. Analysis Date: 4-Jun-2011 **Sample ID:** WG36738-103 MDL 1 Data Filename: FC1G_213 S: 29 **Sample ID:** WG36738-104 Instr. Analysis Date: 4-Jun-2011 MDL 2 Data Filename: FC1G_213 S: 30 Instr. Analysis Date: 4-Jun-2011 MDL 3 Data Filename: FC1G_213 S: 31 **Sample ID:** WG36738-105 Instr. Analysis Date: 4-Jun-2011 MDL 4 Data Filename: FC1G_213 S: 32 **Sample ID:** WG36738-106 Instr. Analysis Date: 4-Jun-2011 MDL 5 Data Filename: FC1G 213 S: 33 Sample ID: WG36738-107 Sample ID: WG36738-108 Instr. Analysis Date: 4-Jun-2011 MDL 6 Data Filename: FC1G_213 S: 34 **Sample ID:** WG36738-109 Instr. Analysis Date: 4-Jun-2011 MDL 7 Data Filename: FC1G_213 S: 35 MDL 8 Data Filename: FC1G_213 S: 36 Sample ID: WG36738-110 Instr. Analysis Date: 4-Jun-2011

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 5 g of solid sample

	Method				Standard		
	Detection	Spiking Level	Number of	Mean	Devation	Student's	Mean
Native Analyte	Limit, ng/g	ng/g	Observations	ng/g	ng/g	t-Value	% rec.
PFBA	0.027	0.10	8	0.102	0.009	2.998	102
PFPEA	0.025	0.10	8	0.120	0.008	2.998	120
PFHXA	0.011	0.10	8	0.122	0.004	2.998	122
PFHPA	0.027	0.10	8	0.109	0.009	2.998	109
PFOA	0.036	0.10	8	0.120	0.012	2.998	120
PFNA	0.016	0.10	8	0.121	0.005	2.998	121
PFDA	0.071	0.10	8	0.102	0.024	2.998	102
PFUNA	0.071	0.10	8	0.110	0.024	2.998	110
PFDOA	0.057	0.10	8	0.097	0.019	2.998	97
PFBS	0.040	0.20	8	0.242	0.013	2.998	121
PFHXS	0.058	0.20	8	0.227	0.019	2.998	113
PFOS	0.097	0.20	8	0.275	0.032	2.998	137
PFOSA	0.080	0.10	8	0.141	0.027	2.998	141

Washington State Department of Ecology

CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS

PERFLUORINATED ORGANIC ANALYSIS			
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks		
Project: N/A	Contract No: 4499		
Project Name:Urban Waters - Elliott Bay	AXYS Method: MLA-041		
Data Package Identification: DPWG44003	Program: Solid Samples		
Client Sample No.	Lab Sample ID		
LAB BLANK	WG43862-101		
OPR	WG43862-102		
1306020-01	L19741-1		
1306020-02	L19741-2		
1306020-03	L19741-3		
1306020-07	L19741-4		
1306020-08	L19741-5 WG43862-103 DUPLICATE		
1306020-09	L19741-6		
1306020-11	L19741-7		
1306020-15	L19741-8		
1306020-16	L19741-9		
1306020-17	L19741-10		
1306020-19	L19741-11		
1306020-20	L19741-12		
1306020-21	L19741-13		
1306020-30	L19741-14		
1306020-34	L19741-15		
1306020-35	L19741-16		
1306020-36	L19741-17		
1306020-37	L19741-18		
1306020-28	L19741-19		

Chain of Custody

onam or odotody		
MU, Marine Sediment Monitoring Team	1306020-28-19	

					Juliani of Guotouy		
615/2013	hrbayw.	2013	EAP,	MMU, Ma	rine Sediment Monitoring Team	1306020.	-58 -
Date	Project	Year	Month			MEL Sample ID	
6/5/2013	Urban Waters	2013	Jun	114 ະ	PPCP & PFC	1306020-01	7741-1
6/4/2013	Urban Waters	2013	Jun	115 🖟	PPCP & PFC	1306020-02	-2
6/3/2013	Urban Waters	2013	Jun	172 🧖	PPCP & PFC	1306020-03	-3
6/4/2013	Urban Waters	2013	Jun	176 🏿	PPCP & PFC	1306020-07	-4
6/4/2013	Urban Waters	2013	Jun	177 🤌	PPCP & PFC	1306020-08	-5
6/4/2013	Urban Waters	2013	Jun	178 🥜		1306020-09	-6
6/4/2013	Urban Waters	2013	lun	178	PPCP & PFC	1306020-09	ر ع
6/4/2013	Urban Waters	2013	Jun	180 👻	PPCP & PFC	1306020-11	-7
6/5/2013	Urban Waters	2013	Jun	184 ~	PPCP & PFC	1306020-15	-8
6/4/2013	Urban Waters	2013	Jun	185 ℯ	PPCP & PFC	1306020-16	-9
6/5/2013	Urban Waters	2013	Jun	186 ⊜	PPCP & PFC	1306020-17	-10
6/5/2013	Urban Waters	2013	Jun	188 🛷	PPCP & PFC	1306020-19	-11
	Urban Waters	2013	Jun	189 🔛	PPCP & PFC	1306020-20	-12
	Urban Waters	2013	Jun	190 🤛	PPCP & PFC	1306020-21	-13
	Urban Waters	2013	Jun	199 🛷	PPCP & PFC	1306020-30	-14
	Urban Waters	2013	Jun	203 🎸	PPCP & PFC	1306020-34	-15
6/5/2013	Urban Waters	2013	Jun	204 🌼	PPCP & PFC	1306020-35	-16
6/5/2013	Urban Waters	2013	Jun	205 🎤	PPCP & PFC	1306020-36	-17
6/5/2013	Urban Waters	2013	Jun	U1 6	PPCP & PFC	1306020-37	-18
	Date 6/5/2013 6/4/2013 6/3/2013 6/4/2013 6/4/2013 6/4/2013 6/4/2013 6/4/2013 6/5/2013 6/5/2013 6/3/2013 6/3/2013 6/3/2013 6/5/2013 6/5/2013 6/5/2013 6/5/2013 6/5/2013	Date Project 6/5/2013 Urban Waters 6/4/2013 Urban Waters 6/3/2013 Urban Waters 6/4/2013 Urban Waters 6/4/2013 Urban Waters 6/4/2013 Urban Waters 6/4/2013 Urban Waters 6/5/2013 Urban Waters 6/5/2013 Urban Waters 6/5/2013 Urban Waters 6/3/2013 Urban Waters 6/3/2013 Urban Waters 6/5/2013 Urban Waters	Date Project Year 6/5/2013 Urban Waters 2013 6/4/2013 Urban Waters 2013 6/3/2013 Urban Waters 2013 6/4/2013 Urban Waters 2013 6/4/2013 Urban Waters 2013 6/4/2013 Urban Waters 2013 6/4/2013 Urban Waters 2013 6/5/2013 Urban Waters 2013 6/5/2013 Urban Waters 2013 6/5/2013 Urban Waters 2013 6/3/2013 Urban Waters 2013 6/3/2013 Urban Waters 2013 6/5/2013 Urban Waters 2013	Date Project Year Month 6/5/2013 Urban Waters 2013 Jun 6/4/2013 Urban Waters 2013 Jun 6/3/2013 Urban Waters 2013 Jun 6/4/2013 Urban Waters 2013 Jun 6/5/2013 Urban Waters 2013 Jun 6/3/2013 Urban Waters 2013 Jun 6/3/2013 Urban Waters 2013 Jun 6/5/2013 Urban Waters 2013 Jun 6/5/2013 Urban Waters 2013 Jun 6/5/2013 Urban Waters 2013 Jun 6/5/2013 <t< td=""><td>Date Project Year Month Station 6/5/2013 Urban Waters 2013 Jun 114 □ 6/4/2013 Urban Waters 2013 Jun 115 □ 6/3/2013 Urban Waters 2013 Jun 176 □ 6/4/2013 Urban Waters 2013 Jun 176 □ 6/4/2013 Urban Waters 2013 Jun 178 □ 6/4/2013 Urban Waters 2013 Jun 178 □ 6/4/2013 Urban Waters 2013 Jun 180 □ 6/5/2013 Urban Waters 2013 Jun 184 □ 6/5/2013 Urban Waters 2013 Jun 185 □ 6/5/2013 Urban Waters 2013 Jun 186 □ 6/5/2013 Urban Waters 2013 Jun 189 □ 6/3/2013 Urban Waters 2013 Jun 190 □</td><td> Color</td><td> Date Project Year Month Station ParameterText MEL Sample ID </td></t<>	Date Project Year Month Station 6/5/2013 Urban Waters 2013 Jun 114 □ 6/4/2013 Urban Waters 2013 Jun 115 □ 6/3/2013 Urban Waters 2013 Jun 176 □ 6/4/2013 Urban Waters 2013 Jun 176 □ 6/4/2013 Urban Waters 2013 Jun 178 □ 6/4/2013 Urban Waters 2013 Jun 178 □ 6/4/2013 Urban Waters 2013 Jun 180 □ 6/5/2013 Urban Waters 2013 Jun 184 □ 6/5/2013 Urban Waters 2013 Jun 185 □ 6/5/2013 Urban Waters 2013 Jun 186 □ 6/5/2013 Urban Waters 2013 Jun 189 □ 6/3/2013 Urban Waters 2013 Jun 190 □	Color	Date Project Year Month Station ParameterText MEL Sample ID

Relinquished By	Date/Time	Received By	Date/Time	Comments
Margaret Duth	6/5/2013	Offeete	6/5/2013	
OC Groozer	6/6/2013	Margaret autil	6/6/2013	
Margaest Stith	46/6/2013	AND IN LOND	6/6/2013	
them	8/7/2013	M. Wilman	81-UVL-10	11:15

Page 1 of 1

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

		SAWIFLE	RECEIVING RECU	טאט			
Waybill : Date Shipped:	Yes (No) 06-JUN-13		Waybill #: Date /Time R	eceived:		LIVERED 07 JUN 13 3 11:15	
AXYS Client & Contract #	4499-Washii	ngton State	Dept of Ecology				
Project Number:			Receipt No:		WB14889	1	/
Login Number:					٠.	- dill	Y
Received By: MGIERDEN	,		Log in by:	May	urden	_ Signature:	
Axys Sample ID's: L1974	1-1to19					Y	<u> </u>
Matrix Type: 19 Marine seds	١.,						
Condition of Shipping Container:	<i>stact</i>						
Temperature upon Receipt: -3.6 Ce	elcius ice p	acks frozen, n	o temp blank present			Thermometer ID: Corrected Temperature:	3290 -3.6 Celcius
Custody Seals: Shipping Contain	ners Yes No	Intact Yes /No	Seal Number	ers Yes	/No		
Sam	ples Yes (No	Intact Yes /No	Seal Number	ers Yes	/No		
Chain of Custody or Documents: Sample ID's Collection Location Date & Time Collection Collector's Name	Yes/No Yes/No Yes/No Yes/No Yes/No		Tracking Report /Packi Sample Tag Numbers Sample Type Preservative Added Preservation Requeste		Yes (No Yes (No Yes (No Yes (No Yes (No		
Sample Tags		Yes No					
Sample Labels		Yes /No					
Sample Labels Cross Referenced to C	COC	(Yes)/No	Inf	ormation	Agrees	(Yes)No	
Sample Tags Cross Referenced to Sa	mple Labels	Yes /No	Inf	ormation	Agrees	Yes /No	
Sample Tags Cross Referenced to CC	DC	Yes /No	, Inf	ormation	Agrees	Yes /No	
Comments:							
419741	-19 4	his so	ample wa	n h	and-	mitten	
on to	the COC	0	OBSALA.	10		-2013	Å
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sh. A	e client			•	
		By Fr	ce cacepy				
			,				
			· · · · · · · · · · · · · · · · · · ·	***************************************			
:							
						1	
							-
Action Taken:	* .						
						-	***************************************
		- 				-	
					,		
						·	

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499

Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

For Scanning Brooks 14-June-2014

Page: 1 of 19

Axys ID versus			_	, , , , , , , , , , , , , , , , , , ,
Client Sample	Identification	Receive	ed Due	PR
L19741-1		07-JUN	-13	
	Storage: WIF-4, 6C			
1306020-01				
05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 114			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		•	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		;	USD
EDataDeliv	PFC EDD		*	USD.
EDataDeliv	PPCP EDD		•	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 2 of 19

Axys ID versus		Receive	ed Due	PR
L19741-2		07-JUN		
	Storage: WIF-4, 6C	0.00.		
1306020-02				
04-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 115		•	
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		: .	USĎ
Solid	PP075.5AP		•	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		•	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USĎ
ÁNÝ	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 3 of 19

			r age.	0 01 10
Axys ID versus		Receive	ed Due	PR
L19741-3		07-JUN		
	Storage: WIF-4, 6C	\$1 551.		
1306020-03				
03-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 172			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		;	USD
Solid	PP075.1AP		:	USD
Solid	PP075,2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		;	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		;	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		;	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	; 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 4 of 19

	1 Tojooti ONEMIN WATERO EENT		+ 01 19	
Axys ID versus				pp.
Client Sample	identification	Received	Due	PR
L19741-4	0	07-JUN-13	i	
	Storage: WIF-4, 6C			
1306020-07	D # UDDAN WATERS FRAV			
04-JUN-13 00:00	Project #: URBAN WATERS - EBAY Description: Station: 176			
	Bosonphisi. Station. 170			
Solid	2:MOISTURE	:		USD
Solid	5:FC MOISTURE	. :		USD
Solid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	:		USD
Solid	FC041	:		USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075,2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Sölid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD			USD
D.Package	PFOS DATA PKG	:		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LISŢ 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 :	250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 5 of 19

	·			
Axys ID versus Client Sample		Receive	d Due	PR
L19741-5		07-JUN-	13	
	Storage: WIF-4, 6C			
1306020-08				
04-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 177			
Solid	2:MOISTURE		;	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		;	USD
Solid	HOMOGENIZATION			USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		;	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		;	USD
D.Package	PPC DATA PKG LIST 2		;	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 6 of 19

		1 agc. • 01		
Axys ID versus Client Sample		Received	Due	PR
L19741-6		07-JUN-13		
	Storage: WIF-4, 6C			
1306020-09				
04-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 178			
Solid	2:MOISTURE	:		USD
Solid	5:FC MOISTURE	:		USD
Solid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	:		USD
Solid	FC041	:		USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	:		USD
D.Package	PFOS DATA PKG	:		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	;		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 : 25	50 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 7 of 19

Axys ID versus Client Sample		Received	Due	PR
L19741-7		07-JUN-13	3	
	Storage: WIF-4, 6C			
1306020-11 04-JUN-13 00:00	Project#: URBAN WATERS - EBAY			
	Description: Station: 180			
Solid	2:MOISTURE	. :		USD
Solid	5:FC MOISTURE	:		USD
Solid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	;		USD
Solid	FC041	;		USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD			USD
D.Package	PFOS DATA PKG	. :		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 :	250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 8 of 19

Axys ID versus Client Sample		Receive	ed Due	PR
L19741-8		07-JUN		
	Storage: WIF-4, 6C			
1306020-15				
05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 184			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		;	USD
Sölid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		•	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		•	USD
D.Package	PPC DATA PKG LIST 3		;	USD
D.Package	PPC DATA PKG LIST 4		1	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	; 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 9 of 19

				. ago.	•
Axys ID versus		Res	ceived [Due	PR
L19741-9			JUN-13	- Juo	
L 19/41-5	Storage: WIF-4, 6C	07-	3011-13		
1306020-16	, , , , , , , , , , , , , , , , , , ,				
04-JUN-13 00:00	Project #: URBAN WATERS - EBAY				
	Description: S	Station: 185			
Solid	2:MOISTURE				USD
Solid	5:FC MOISTURE				USD
Solid	5:MOISTURE				USD
Solid	5:MOISTURE 2		:		USD
Solid	FC041		:		USD
Solid	HOMOGENIZATION		:		USD
Solid	PP075.1AP		:		USD
Solid →	PP075.2AC		:		USD
Solid	PP075.3AN		:		USD
Solid	PP075.4BP		:		USD
Solid	PP075.5AP		:		USD
EDataDeliv	PFC EDD		:		USD
EDataDeliv	PPCP EDD		:		USD
D.Package	PFOS DATA PKG		:		USD
D.Package	PPC DATA PKG LIST 1		:		USD
D.Package	PPC DATA PKG LIST 2		:		USD
D.Package	PPC DATA PKG LIST 3		:		USD
D.Package	PPC DATA PKG LIST 4		:		USD
D.Package	PPC DATA PKG LIST 5		:		USD
ANY	SAMPLE RECEIPT	1	; 250 ml	L plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 10 of 19

		rage. To or To		
Axys ID versus Client Sample		Received	l Due	PR
L19741-10		07-JUN-1	3	
	Storage: WIF-4, 6C			
1306020-17 05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 186			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE			USD
Solid	5:MOISTURE			USD
Solid	5:MOISTURE 2			USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP			USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		•	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD			USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD '
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	; 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 11 of 19

				44.4.4
Axys ID versus Client Sample		Received	l Due	PR
L19741-11		07-JUN-		
	Storage: WIF-4, 6C			
1306020-19 05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 188			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041			USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		;	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		;	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		;	USD
EDataDeliv	PPCP EDD		;	USD
D.Package	PFOS DATA PKG		;	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		;	USD
D.Package	PPC DATA PKG LIST 4		;	USD
D.Package	PPC DATA PKG LIST 5		;	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 12 of 19

		1 ugo. 1- 01 10		
Axys ID versus Client Sample		Receiv	ed Due	PR
L19741-12		07-JUN	I-13	
	Storage: WIF-4, 6C			
1306020-20				
03-JUN-13 00:00	Project#: URBAN WATERS - EBAY			
	Description: Station: 189			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041			USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		*	USD
D.Package	PFOS DATA PKG	•	:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 13 of 19

	taran da karangan da karan	rage. 10 or 10		
Axys ID versus Client Sample		Recei	ved Due	PR
L19741-13		07-JU		
210741-10	Storage: WIF-4, 6C			
1306020-21				
03-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 190			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		;	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD			USD
EDataDeliv	PPCP EDD .		:	USD
D.Package	PFOS DATA PKG		:	USD
D Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 14 of 19

				. 01
Axys ID versus Client Sample		Receiv	ed Due	PR
L19741-14		07-JUN	I-13	
	Storage: WIF-4, 6C			
1306020-30				
03-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 199			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		•	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		;	USD
D.Package	PPC DATA PKG LIST 1		;	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		•	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 15 of 19

Axys ID versus Client Sample		Received	Dúe	PR
L19741-15		07-JUN-1	3	
	Storage: WIF-4, 6C			
1306020-34				
05-JUN-13 00:00	Project#: URBAN WATERS - EBAY			
	Description: Station: 203			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE.2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		•	USD
Sölid	PP075.2AC		;	USD
Solid	PP075.3AN		;	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		;	USD
D Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		•	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 16 of 19

		i ago. • o.		
Axys ID versus Client Sample		Received	Due	PR
L19741-16		07-JUN-1:	3	
	Storage: WIF-4, 6C			
1306020-35				
05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 204			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE			USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		•	USD
Solid	HOMOGENIZATION			USD
Solid	PP075.1AP			USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		•	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG			USD
D.Package	PPC DATA PKG LIST 1	:	:	USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 '	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 17 of 19

Axys ID versus				
Client Sample	Identification	Received	l Due	PR
L19741-17		07-JUN-1	3	
	Storage: WIF-4, 6C			
1306020-36				
05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 205			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		•	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 18 of 19

				. ago.	
Axys ID versus Client Sample		Receiv	ved I	Due	PR
L19741-18		07 - JUI			
	Storage: WIF-4, 6C				
1306020-37					
05-JUN-13 00:00	Project #: URBAN WATERS - EBAY				
	Description: Station: U1				
Solid	2:MOISTURÉ		:		USD
Solid	5:FC MOISTURE		:		USD
Solid	5:MOISTURÉ		:		USD
Solid	5:MOISTURE 2		:		USD
Solid	FC041		:		USD
Solid	HOMOGENIZATION		:		USD
Solid	PP075.1AP		:		USD
Solid	PP075.2AC		:		USD
Solid	PP075.3AN		:		USD
Solid	PP075.4BP		:		USD
Solid	PP075.5AP		:		USD
EDataDeliv	PFC EDD		:		USD
EDataDeliv	PPCP EDD		:		USD
D.Package	PFOS DATA PKG		:		USD
D.Package	PPC DATA PKG LIST 1		:		USD
D.Package	PPC DATA PKG LIST 2		:		USD
D.Package	PPC DATA PKG LIST 3		:		USD
D.Package	PPC DATA PKG LIST 4		:		USD
D.Package	PPC DATA PKG LIST 5		:		USD
ANY	SAMPLE RECEIPT	1	: 250 m	L plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:30 AM

Login Number: L19741

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 19 of 19

			3	
Axys ID versus		Recei	ved Due	PR
L19741-19		07-JU	N-13	
	Storage: WIF-4, 6C			
1306020-28				
05-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: Station: 197			
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		•	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EĎataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG			USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DÁŤA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Washington State Department of Ecology Request for Qualifications and Quote (RFQQ)

2013 MEL Cx 17 PSEMP Elliot Bay PPCP & PFC 2013

Laboratory Services

This Request for Quote and Qualifications will support an agreement with the Department of Ecology for the Contract laboratory to provide analytical services to the Department of Ecology.

		Date Issued:	5/14/2013
Responses due by 4:00 PM Port Orchard WA time:		May 20, 2013 Late submissions will not be considered.	
Please respond via email to:		Karin.Feddersen@	ecy.wa.gov

Expected Work Commitment

Title: PSEMP Elliot Bay PPCP & PFC 2013

Scope of Qualifications:

- A. Provide analytical services to the Washington State Department of Ecology (Ecology). Details and specifications are provided in the attached Scope of Work (SOW). The apparent successful vendor must:
 - 1. Be currently accredited by the Ecology's Laboratory Accreditation Unit for all analyses described in this SOW for which accreditation is available.
 - 2. Have a minimum of 5 years experience in the method.
 - 3. Submit proof that they can provide the analysis as requested, including but not limited to a Method Detection Limit (MDL) supporting the requested reporting limits. Provide documentation of a standard analyzed at the reporting limit requested for this SOW.
 - 4. Submit blank data proving that they can meet the required blank contamination limits described in the SOW.
 - 5. Provide documentation of the quantitation limits (based on the lowest calibration standard) that the instrument can achieve.
 - 6. Provide quality control limits for laboratory control samples, matrix spikes, etc., for all analyses in this SOW.
 - 7. Provide results from the most recent International Intercalibration Study.
 - 8. Provide contact name, company name, address, and phone number for 3 client references who have had the requested analyses performed on the matrices specified in the SOW, and who have reviewed the raw data for these analyses.
 - 9. Provide the analysis as requested in the attached SOW.
- B. Ecology will pay vendor when all of the following have been satisfied:
 - 1. Sample analyses and documentation performed according to this SOW.
 - 2. Deliverables sent to Ecology within 30 calendar days of vendor receiving samples.
 - 3. Sufficient documentation for assessing the bias, usability and quality of the data.
 - 4. Receipt of properly completed invoices.

Deliverables:

- C. Deliverables will include:
 - 1. Paper hardcopies or CD (fully bookmarked and searchable PDF) of all raw data and reports;
 - 2. Results in Ecology-specified EDD format described in the SOW;

Other Factors for this Work Request:

- D. Laboratories who want to perform this work must:
 - 1. Provide a 3-page maximum length description of their qualifications specific to the SOW and their intended approach to performing the analysis, electronically or in hardcopy.

Include details of preparation method to be used on these samples.

2. Submit an example work product in the form of one fully bookmarked and searchable PDF file or one bound hardcopy with a table of contents. This product must include all raw data that would be needed to perform an independent review of the results: calibration reports, chromatograms, spectra, benchsheets, etc..

EXCEPTION: If the vendor has performed these same requested analyses for Ecology within the last 3 years, and a raw data package was submitted that uses the same instrument software that is proposed to be used for this SOW, no example work product is required.

- 3. Include in the quote, electronically or in hardcopy:
 - RFQQ customer reference number or title.
 - The names of two Laboratory representatives who will be responsible for the execution of these services and communications with the Ecology project manager.
 - The name and address of the bidder's firm.
 - Minority or Women's Business Enterprise status including Certification Number, if applicable.
 - The 20 most recent method blanks for the matrix/matrices of interest in this RFQQ.
 - The 20 most recent OPRs (LCS) for the matrix/matrices of interest in this RFQQ.

Ecology does not assume responsibility for any problems with e-mail or the method of delivery chosen.

Bid Selection Process:

- E. Ecology will review each bid to determine if the bid:
 - 1. Was received by the date and time requested.
 - 2. Is complete.
 - 3. Shows a good understanding of project goals and needs.
 - 4. Relevant experience with similar environmental samples.
 - 5. Meets all technical specifications. QC limits will be evaluated from each bidder.
 - 6. Meets the specified schedule for sample analysis and reporting.
 - 7. Provides complete and clear cost information.

Ecology may request written clarifications pertaining to technical or cost elements of the bid.

The selection process will be based on cost, relevant experience, and ability to provide the specified deliverables according to schedule.

The Department of Ecology reserves the right to reject any or all bids if they do not meet the above award criteria. Furthermore, the release of this RFQQ does not compel the state to purchase anything and Ecology reserves the right to refrain from contracting with all bidders. Any costs or liabilities associated with the preparation of your response to this RFQQ are not the responsibility of Ecology, or any of its representatives.

In the event it becomes necessary to revise any part of this RFQQ, addenda will be provided to all persons/firms who receive the RFQQ.

It is important that all potential costs are included in your bid; **Ecology cannot reimburse for costs not included in the successful bid**.

Ecology's Right to Cancel:

F. Ecology reserves the right to cancel this Work Request at any time, reject any and all responses received, award more than one Work Order, and/or not execute a Work Order from this Work Request without penalty to the agency. The release of this solicitation document does not obligate Ecology to contract for the services specified in this Work Request. The agency shall not be liable for any costs incurred by a Vendor in preparation of a proposal submitted in response to this Work Request, conducting interviews, acquiring accreditation, or any other activity related to responding to this Work Request.

Waive Minor Administrative Irregularities:

G. Ecology reserves the right to waive minor administrative irregularities contained in any Response. Additionally, Ecology reserves the right, at its sole option, to make corrections to Vendors' Responses when an obvious arithmetical error has been made in the price quotation. Vendors will not be allowed to make changes to their quoted price after the Response submission deadline.

Errors in Response:

H. Vendors are liable for all errors or omissions contained in their Responses. Vendors will not be allowed to alter Response documents after the deadline for Response submission. Ecology is not liable for any errors in Responses. Ecology reserves the right to contact Vendor for clarification of Response contents.

In those cases where it is unclear to what extent a requirement or price has been addressed, the evaluation team(s) may, at their discretion and acting through the Agency Project Manager, contact a Vendor to clarify specific points in the submitted Response. However, under no circumstances will the responding Vendor be allowed to make changes to the proposed items after the deadline stated for receipt of Responses.

Vendor Questions:

Specific questions concerning this Work Request must be submitted, in writing to the Work Request Coordinator by the date and time set forth in the Estimated Schedule of Events. Questions must be transmitted by electronic mail. Only written questions will receive official written responses. Copies of all written questions and Ecology responses will be posted on the WEBS. It will be the Vendor's responsibility to monitor this website during preparation of their response. Only posted answers to questions will be considered official.

Proprietary or Confidential Information:

J. Any information contained in the Response that is proprietary or confidential must be clearly designated. Marking of the entire Response or entire sections of the Response as proprietary or confidential will not be accepted nor honored. Ecology will not accept Responses where pricing is marked proprietary or confidential, and the Response will be rejected.

To the extent consistent with Chapter 42.56 RCW, the Public Records Act, Ecology shall maintain the confidentiality of Vendors' information marked confidential or proprietary. If a request is made to view Vendor's proprietary information, Ecology will notify Vendor of the request and of the date that the records will be released to the requester unless Vendor obtains a court order enjoining that disclosure. If a Vendor fails to obtain the court order enjoining disclosure, Ecology will release the requested information on the date specified.

The state's sole responsibility shall be limited to maintaining the above data in a secure area and to notify a Vendor of any request(s) for disclosure for so long as Ecology retains the Vendor's information in Ecology's records. Failure to so label such materials or failure to timely respond after notice of request for public disclosure has been given shall be deemed a waiver by a Vendor of any claim that such materials are exempt from disclosure.

Agency (Project Manager): Department of Ecology (Karin Feddersen)

Phone: 360-871-8829 Email: Karin.Feddersen@ecy.wa.gov Fax: 360-871-8850

Submit completed bid packages to Karin.Feddersen@ecy.wa.gov or fax to (360) 871-8850.

SCOPE OF WORK

This Scope of Work (SOW) does not include the collection of any samples.

The Department of Ecology (Ecology) will send up to 33 samples of sediment, and request up to two sets of matrix spike/matrix spike duplicates and up to three duplicates; for Pharmaceuticals and Personal Care Products (PPCP) and Perfluorinated Compounds (PFCs). In addition, up to two water rinseate blanks will be collected for possible analysis.

See Appendix for lists of analytes. Samples must be maintained as per the methods from the time of receipt at the laboratory until preparation.

Laboratories must bid on all of the analyses, with the exception of the list in Table A3. Please provide a separate quote for these analytes.

Laboratories must provide a copy of the extraction methods as performed.

Laboratories must analyze and provide data for an independent source standard (different vendor than the calibration standards).

Bidding Laboratories must provide a list of the QC limits they adhere to for each method in this SOW.

The successful vendor will be responsible for:

A) Providing sufficient sample containers, ice chests, and blue ice for each sampling event;

OR

B) Returning any Ecology-owned ice chests and blue ice to Ecology. The estimated cost of ground shipping these items should be included in the price quote responding to this RFQQ.

The final data package is to include raw data (aka EPA Tier IV or Level 4 deliverables) and results in an electronic data deliverable (EDD) format that meets the requirements in Table 4. The EDD format is needed for loading results to Ecology's Information Management (EIM) database. Other items may be included as needed to help understand the data package.

This Agreement does not make either the Contractor or any of its employees or agents an employee or agent of Ecology.

Items for analytical services:

1. Perform all result calculations using the initial calibration as per the method. In other words, do not use a single point calibration standard.

Reporting of Results

- 1. Report all results in ng/g, dry weight.
- 2. Include a copy of the "Request for Laboratory Services" with signed and dated Chain of Custody section: this form will be provided by Ecology.
- 3. Include Case Narratives and corrective action reports.

- 4. Provide description of: analytical method used; any modifications to the method, Quality Assurance/Quality Control (QA/QC) performed and results; definitions of all data qualifiers used; and any other information that helps client understand the data package.
- 5. Provide fully validatable deliverables package: Deliverables shall include copies of all raw data necessary to perform an independent evaluation of the results, including, but not limited to initial calibration and verification standards, sample and QC chromatograms and spectra, analytical sequence (run) logs, benchsheets, standard logs and Certificates of Analysis for standards, etc.
 - A. Include a fully paginated and bookmarked Adobe Acrobat (PDF) file on compact disk (CD) and/or paginated hardcopies of all raw data with a table of contents.
 - B. Bookmark each sample and each standard chromatogram for ease of review.
 - C. Rotate landscape pages as needed so that all information is viewable left to right in the electronic file.
 - D. Clearly identify all field and QC samples with the sample number or QC name in the raw data and report.
 - E. All initial calibration (ICAL) standards and CCVs, shall be clearly identified in the raw data.
 - F. An Independent Calibration Verification (ICV) standard must be analyzed from a separate source in order to verify the initial calibration standards. The ICV must be analyzed each time a new standard curve is prepared. Provide the results of the most recent ICV with the data.
 - G. Provide before and after printouts of any and all manual integrations.
 - H. Provide analytical sequence logs that include the date, time, and filename for the initial and continuing calibrations, all field and QC samples, check standards, etc., associated with the project.
- 6. Reporting Limits (RL), Estimated Quantitation Limit (EQL equivalent to "ML" in 1668), Method Detection Limit (MDL), Estimated Detection Limit (EDL).
 - A. Maximum RLs are defined in the table below.

Table 1.	Table 1. Analytical Methods and Reporting Limits for PPCPs and PFCs						
Analysis	Method Reference	Reporting Limit; sediment (dry weight basis					
PPCPs	EPA 1694 or equivalent	0.2 to 500 ppb (depending on analyte)					
PFCs	HPLC/MS/MS http://water.epa.gov/scitech/meth ods/cwa/upload/Draft- Procedure-for-Analysis-of- Perfluorinated-Carboxylic-	0.10 to 0.20 ppb (depending on analyte)					

Acids-and-Sulfonic-Acids-in-
Sewage-Sludge-and-Biosolids-
by-HPLC-MS-MS.pdf
or equivalent

- B. If any of these limits cannot be met for individual samples due to interference or other issues, contact the client to discuss action to take.
- C. Provide the Estimated Quantitation Limit for each result (EQL: based on the lowest validated standard in calibration curve). Report the EQL in the electronic results file.
- D. Provide the most recent Method Detection Limit (MDL) study results for each analyte. Include the date of the most recent MDL study in the Case Narrative.
- E. Report down to the Estimated Detection Limits (EDL) aka Instrument Detection Limits (IDL) or Sample Detection Limits (SDL) based on 2.5 times the signal-to-noise ratio for HRMS analyses. Provide this value for each analyte by HRMS and LCMS in the electronic results file.

F. Dilutions

- a. Any results above the range of the calibration curve must be diluted to be within the range of the calibration curve.
- b. All results reported from dilution analyses must be within the range of the calibration curve.
- G. For non-detect values, record the EDL in the "Result Reported Value" column and a "UJ" the "Result Data Qualifier" column.
- H. Qualify detected values that are below the EQL as estimates ("J").
- I. Do not report below the EDL. Where the EDL is above the EQL due to interference, raise any values below the EDL to the value of the EDL and qualify "UJ".
- J. Calculate and report the Estimated Maximum Possible Concentration (EMPC) value for results that do not meet ion abundance ratio criteria. Qualify these results with "NJ".
- 7. The qualifiers used above are defined as:
 - A. "J" The analyte was positively identified. The associated numerical result is an estimate.
 - B. "U" The analyte was not detected at or above the reporting limit. (This qualifier will likely not be used if reporting all analytes down to the level of the EDL.)
 - C. "UJ" The analyte was not detected at or above the estimated reporting limit.
 - D. "NJ" The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. (See 6. J., above.)
- 8. Perform all QC samples as specified in the method.
 - A. Report results of Laboratory Control Samples (On-going Precision and Recovery standards), Matrix Spikes (if applicable), labeled compounds, internal standards, and surrogates as % recoveries in the EDD.

B. Report results of Standard or Certified Reference Materials, (e.g.: SRM 1944; CRM CARP-2), in the same units as the samples.

9. Method Blanks.

- A. Clearly identify samples associated with each laboratory method blank.
- B. The value of individual analytes found in the associated method blank must not exceed 1/10th of the sample level. If these limits are exceeded, contact the client to discuss actions to take. Most likely, the blank should be re-extracted along with any associated samples.
- C. If sample results are less than 10 times the concentration in the associated method blank, flag sample results with "B" even if the sample result has already been qualified "NJ"; but not when the blank result is qualified "NJ".

10. Sample identification.

- A. Provide the client sample ID (MEL lab ID) associated with all sample results.
- B. Provide the lab's internal sample ID associated with all results OR a table that cross-references MEL lab ID with the lab's internal sample ID.
- D. Clearly identify QA/QC samples and results: blanks, matrix spikes, Standard Reference Materials (SRM), lab duplicates. If samples are reanalyzed, these results need be clearly identified as such.
- E. Label all analyte peaks on chromatograms with either the congener name or the retention time and scale chromatograms such that peaks are visible above the baseline.

11. Analyte identification.

A. Provide the Chemistry Abstract Service Registry Number (CAS RN) for individual congeners.

12. Electronic results must be in Excel-compatible format as in Table 2:

Required Fields for Electronic Data Deliverables submitted to WA State Department of Ecology.						
Preferred						
Order	Field Name	Example				
1	MEL (Client) Sample ID	1311021-03				
2	Field ID (sample name on tag)	COLRIV034				
3	Result IUPAC Name	2,3'-DiCB				
4	Result Parameter Name	PCB-006				
5	Result Parameter CAS Number	25569-80-6				
6	Sample Extraction Date	11/14/2013(format as numerical date)				
7	Sample Analysis Date	11/15/2013 (format as numerical date)				
8	Lab Duplicate Flag	"Y" if lab duplicate, leave blank or "N" if not				
9	Re-analysis Flag	"Y" if a re-analysis, leave blank or "N" if not				
10	Result Reported Value	7.9 (format as number)				
11	Result Data Qualifier	J				
12	Result Value Units of Measure	pg/L				
13	Result Value EQL *	10 (format as number)				
14	Result Value EDL**	3.42 (format as number)				
15	Result Method Code	EPA 1668C				
16	Result Lab Name	Laboratory Name				
17	Contract Lab Sample ID	PR137954				
18	Others as needed by contract lab or MEL. If used, clearly identify field and content					
	,	the lowest validated standard in the calibration				
	curve and adjusted for weight, volume, %					
** = Estimated Sample Detection Limit; calculated from signal for each sample)						

Appendix A - Analyte Lists

Table A1 - Personal Care Products and Pharmaceuticals

1,7-Dimethylxanthine	Demeclocycline	Oxolinic acid
10-hydroxy-amitriptyline	Desmethyldiltiazem	Oxycodone
2-hydroxy-ibuprofen	Diazepam	Oxytetracycline
4-Epianhydrochlortetracycline	Digoxigenin	Paroxetine
4-Epianhydrotetracycline	Digoxin	Penicillin G
4-Epichlortetracycline	Diltiazem	Penicillin V
4-Epioxytetracycline	Diphenhydramine	Prednisolone
4-Epitetracycline	Doxycycline	Prednisone
Acetaminophen	Enalapril	Promethazine
Albuterol	Enrofloxacin	Propoxyphene
Alprazolam	Erythromycin-H20	Propranolol
Amitriptyline	Flumequine	Ranitidine
Amlodipine	Fluocinonide	Roxithromycin
Amphetamine	Fluoxetine	Sarafloxacin
Ampicillin	Fluticasone propionate	Sertraline
Anhydrochlortetracycline	Furosemide	Simvastatin
Anhydrotetracycline	Gemfibrozil	Sulfachloropyridazine
Atenolol	Glipizide	Sulfadiazine
Atorvastatin	Glyburide	Sulfadimethoxine
Azithromycin	Hydroclorothiazide	Sulfamerazine
Benzoylecgonine	Hydrocodone	Sulfamethazine
Benztropine	Hydrocortisone	Sulfamethizole
Betamethasone	Ibuprofen	Sulfamethoxazole
Bisphenol A	Isochlortetracycline	Sulfanilamide
Caffeine	Lincomycin	Sulfathiazole
Carbadox	Lomefloxacin	Tetracycline
Carbamazapine	Meprobamate	Theophylline
Cefotaxime	Metformin	Thiabendazole
Chlortetracycline	Methylprednisolone	Trenbolone
Cimetidine	Metoprolol	Trenbolone acetate
Ciprofloxacin	Miconazole	Triamterene
Clarithromycin	Minocycline	Triclocarban
Clinafloxacin	Naproxen	Triclosan
Clonidine	Norfloxacin	Trimethoprim
Cloxacillin	Norfluoxetine	Tylosin
Cocaine	Norgestimate	Valsartan
Codeine	Norverapamil	Verapamil
Cotinine	Ofloxacin	Virginiamycin
DEET	Ormetoprim	Warfarin
Dehydronifedipine	Oxacillin	

Table A2 - Perfluorinated Chemicals

Carboxylic Acids
Perfluorobutanoate (PFBA)
Perfluoropentanoate (PFPeA)
Perfluorohexanoate (PFHxA)
Perfluoroheptanoate (PFHpA)
Perfluorooctanoate (PFOA)
Perfluorononanoate (PFNA)
Perfluorodecanoate (PFDA)
Perfluoroundecanoate (PFUnA)
Perfluorododecanoate (PFDoA)
Sulphonic Acids
Perfluorobutanesulfonate (PFBS)
Perfluorohexanesulfonate
(PFHxS)
Perfluorooctanesulfonate (PFOS)
Perfluorooctane sulfonamide
(PFOSA)

Table A3 - Personal Care Products and Pharmaceuticals (Supplemental and optional)

Amsacrine	Lomustine
Azathioprine	Medroxyprogesterone acetate
Busulfan	Melphalan
Carmustine	Metronidazole
Chloramphenicol	Medroxyprogesterone acetate
Citalopram	Melphalan
Clotrimazole	Metronidazole
Colchicine	Moxifloxacin
Cyclophosphamide	Norethindrone
Daunorubicin	Oxazepam
Diatrizoic acid	Rosuvastatin
Doxorubicin	Tamoxifen
Drospirenone	Teniposide
Etoposide	Venlafaxine
Iopamidol	Zidovudine

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

Project Name: URBAN WATER – ELLIOTT BAY

PERFLUORINATED ORGANIC ANALYSIS
AXYS METHOD: MLA-041

4499: L19746-1 to -14

28 June 2013

Revised: 09 July 2013

REVISION

This data package has been revised to edit the Reporting Limits for targets in samples 1306020-04 and 1306020-18 (AXYS IDs: L19746-1 and -11, respectively). No other changes have been made.

NARRATIVE

This narrative describes the analysis of fourteen solid samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 11th of June 2013. Details of sample conditions upon receipt are provided on the Sample Receiving forms included in the Sample Documentation section of this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The solid samples were homogenized. Details of the sample preparation are provided in Sample Preparation Record forms included in this data package.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-041: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS*. A method summary (MSU-041) of AXYS Method MLA-041 is included in the data package.

The samples and QC samples (a procedural blank, an Ongoing Precision and Recovery (OPR), and a sample duplicate) were analyzed in a batch named WG43880, the composition of which is shown on the Correlation Table and on the Batch List accompanying the extraction workup sheets. The procedural blank was prepared using Canadian Springs water and the OPR was prepared using cleaned sand.

Sample 1306020-14 (AXYS ID: L19746-4) was analyzed in duplicate and the duplicate assigned AXYS ID WG43880-103.

An accurately weighed sample (approximately 5.0 g dry weight) was spiked with ¹³C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. The formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of the data package.

Alternate transitions are acquired for several analytes including PFOA, PFBS, PFHxS and PFOS. These transitions are listed in the method summary and may be used if necessary to avoid interference. Both transitions are acquired and are present in the raw data (ie PFOA-1, PFOA-2) but only one transition is reported in the final reports.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data validation chemists made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard (CS0) or the sample specific detection limit, whichever was greater.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown, data is not reported beyond the measured calibration range.

REPORTING CONVENTIONS

For internal tracking, Axys assigned the Washington State Dept of Ecology a contract number 4499. Samples were logged under unique laboratory identifiers L19746-X, where X is a numeral. All data reports reference both the Axys ID and the client sample identifier. To assist in locating data, a table correlating AXYS ID with the client sample number is also included in this Data Package. The report forms were generated using Laboratory Information Management Software (LIMS).

Suffixes are added to the Axys IDs such that each GC-MS acquisition is uniquely identified. The suffixes appearing in this data package are:

i = instrumental re-analysis performed on the sample extract

The following laboratory qualifier flags were used for this data package:

U = identifies a compound that was not detected.

V = surrogate recovery not within method control limits

The results were reported with concentration units of nanograms per gram (ng/g) on a dry weight basis with concentrations and detection limits provided to three significant figures. The analysis results for each sample are provided on Analysis Report forms 1A and 2.

QA/QC NOTES

Samples and QC samples were analyzed in one analysis batch and were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR, sample duplicate and labeled compound recovery specifications were met with the following exceptions:

The recovery of ¹³C₂-PFDA, ¹³C₄-PFOS and/or ¹³C₂-PFDoA in the samples 1306020-32, 1306020-33 and the procedural blank (AXYS IDs: L19746-7, -8 and WG43880-101, respectively) did not meet the method criteria; these compounds are flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

ANALYTICAL DISCUSSION

Samples 1306020-04 and 1306020-18 (AXYS IDs: L19746-1 and -11, respectively) had a portion of its extract not go through the SPE column due to clogging of the cartridge. Given that the loss occurred after the addition of labeled surrogate compounds, the isotope dilution quantification procedure adjusts for theses losses and data are considered to not be significantly affected.

The initial instrumental analysis results for all samples did not meet all method specifications. These sample extracts were instrumentally re-analyzed and method specifications were met. Sample concentrations are reported from these re-injections (indicated by suffix 'i' on AXYS IDs).

DATA PACKAGE

This data package is assigned a unique identifier, DPWG44056, shown on the title page of this data package. Includes the following documentation after this narrative:

- Method Summary
- Method Detection Limit Study
- Sample Correlation Table
- Sample Receiving Documentation
- RFQQ Request for Qualifications and Quote
- Standard Solution Preparation Records
- Sample Preparation & Extraction work sheets
- Sample Data Reports (in order of AXYS Sample ID)
- Laboratory QC Data Reports
- Instrumental QC Data Reports (organized by analysis date)
- Sample Raw Data (in order of AXYS ID)
- Laboratory QC Sample Raw Data
- Instrument Run (injection) Log

- Instrument QC Raw Data
- Supplemental Unvalidated data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Jason MacKenzie, B.Sc., Product Development Chemist

Summary of AXYS Method MLA-041 Rev. 09 Ver. 02:

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS

AXYS Method MLA-041 describes the analysis of perfluorinated organic compounds (PFC) in solid samples (sediment, soil). Typical detection limits are in the range of 0.1 – 0.2 ng/g for a 5 g sample.

Target Analytes

Perfluorobutanoate (PFBA)	Perfluorobutanesulfonate (PFBS)
Perfluoropentanoate (PFPeA)	Perfluorohexanesulfonate (PFHxS)
Perfluorohexanoate (PFHxA)	Perfluorooctanesulfonate (PFOS)
Perfluoroheptanoate (PFHpA)	Perfluorooctane sulfonamide (PFOSA) ¹
Perfluorooctanoate (PFOA)	
Perfluorononanoate (PFNA)	
Perfluorodecanoate (PFDA)	
Perfluoroundecanoate (PFUnA)	
Perfluorododecanoate (PFDoA)	

EXTRACTION

Sample size may be up to 5 g (dry weight). After addition of isotopically labelled surrogate standards the sample is extracted by shaking one time with dilute acetic acid solution and then two times with methanolic ammonium hydroxide solution, each time collecting the supernatants.

COLUMN CHROMATOGRAPHY CLEANUP

The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through the same SPE cleanup procedure.

The final extract volume is 4 mL.

INSTRUMENTAL ANALYSIS

Analysis of the sample extract is performed on a high performance liquid chromatography reversed phase C18 column using a solvent gradient. The column is coupled to a triple quadrupole mass spectrometer run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Analytes, Ions and Quantification References

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 (169) ¹	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutane sulfonate (PFBS)	6.3	299	80 (99) ¹	¹⁸ O ₂ -PFHxS
Perfluorohexane sulphonate (PFHxS)	7.2	399	80 (99/119) ¹	¹⁸ O ₂ -PFHxS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 (99) ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₄ -PFOS
Surrogate Standard				
¹³ C ₄ -Perfluorobutanoic acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorohexanoic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C₄-PFOA
¹³ C ₅ -Perfluorononanoic acid (¹³ C ₅ -PFNA)	7.4	468	423	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -PFOUEA
¹⁸ O ₂ –Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	7.2	403	84 (103) ¹	¹³ C ₂ -PFOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 (99) ¹	¹³ C ₂ -PFOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -PFOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Alternate transition within brackets, may be used if necessary to avoid interference.

CALIBRATION

A series of at least five calibration solutions prepared in an aqueous matrix similar in composition to the sample extract is used to establish initial multi-level calibration. The calibration solutions contain the analytes of interest covering the working range of the instrument together with labelled surrogate and recovery standards. A mid-level calibration solution is analyzed at least after every 20th sample to demonstrate calibration stability. All calibration solutions are processed through SPE cleanup.

Nominal Concentrations of Calibration Solutions

	Concentration (ng/mL)							Authentic Standard		
	CAL A	CAL B	CAL C	CAL D	CAL E	CAL F	CAL G	CAL H	Amount Added to sample (ng)	
Native Compound										
PFBA	0.125	0.312	1.25	5	25	50	125	312	20	
PFPeA	0.125	0.312	1.25	5	25	50	125	312	20	
PFHxA	0.125	0.312	1.25	5	25	50	125	312	20	
PFHpA	0.125	0.312	1.25	5	25	50	125	312	20	
PFOA	0.125	0.312	1.25	5	25	50	125	312	20	
PFNA	0.125	0.312	1.25	5	25	50	125	312	20	
PFDA	0.125	0.312	1.25	5	25	50	125	312	20	
PFUnA	0.125	0.312	1.25	5	25	50	125	312	20	
PFDoA	0.125	0.312	1.25	5	25	50	125	312	20	
PFBS	0.25	0.625	2.5	10	50	100	250	625	40	
PFHxS	0.25	0.625	2.5	10	50	100	250	625	40	
PFOS	0.25	0.625	2.5	10	50	100	250	625	40	
PFOSA	0.125	0.312	1.25	5	25	50	125	312	20	
Surrogate Standards									Surrogate Standard Amount Added to sample (ng)	
¹³ C ₄ -PFBA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFHxA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFOA	9	9	9	9	9	9	9	9	36	
¹³ C₅-PFNA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFDA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFDoA	3	3	3	3	3	3	3	3	12	
¹⁸ O ₂ -PFHxS	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	18	
¹³ C ₄ -PFOS	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	18	
Recovery Standards										
¹³ C ₂ -PFOUEA	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	10	
¹³ C ₄ -PFOA	3	3	3	3	3	3	3	3	12	

Page 3 of 6

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 signal:noise for parent ion to daughter ion transition.
- Compound retention time must fall within 0.4 minutes of the predicted retention times from the daily Calibration Verification. Native compounds with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X² weighting fit and expressed as below:

$$Y = slope \times X + intercept$$
 Where:
$$Y = response \ ratio = \left(\frac{area \ of \ Target}{area \ of \ Surr} \times weight \ of \ Surr \ (ng)\right) \ , \ and$$

$$X = weight \ of \ target \ (ng)$$

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size (g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

REPORTING LIMITS

Concentrations and detection limits for the target analytes are reported. Typical reporting units for all data are ng/g on a dry weight basis.

The following are commonly requested reporting limits:

Method Detection Limit (MDL) - determined as specified by EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option). The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used: LMCL = ((lowest level cal conc.) x (extract volume))/sample size. Typical extract volume for PFCs in solids is 4 mL.

For the analysis of PFCs it is AXYS standard to report sample concentrations using the LMCL as the lower reporting limit. In cases where the SDL is higher than the LMCL, the SDL will be used as the lower reporting limit.

The SDL is defined as follows: Sample Specific Detection Limit or Sample Detection Limit (SDL) – determined individually for every sample analysis run by converting the area equivalent of 3.0 times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches of the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks Blanks are analyzed with a minimum frequency of 5% of client samples (i.e. each batch of up to 20 client samples contains a procedural blank.) 20 mL of reagent water is used as the blank sample matrix.
- Duplicates Where sufficient sample is available a duplicate sample is normally analyzed with each analysis batch containing greater than six (6) test samples, or as required by contract.
- OPR (Spiked Reference Sample) OPRs are analyzed with a minimum frequency of 5% of client samples (i.e. each batch of up to 20 client samples contains an OPR.) An aliquot of native standard (typically 20 µL equivalent to 10 ng per analyte) is added to 5 g of an approved clean solid matrix to prepare the spiked reference sample.
- Matrix Spike/Matrix Spike Duplicate may be analyzed upon client request.

QC Specification Table: Procedural Blank Levels and OPR Recoveries

Analyte		Procedural Blank Level ng/sample ¹	Acceptable Matrix Spike in OPR (% Recovery)
Perfluorobutanoate	(PFBA)	< 0.25	70 – 130
Perfluoropentanoate	(PFPeA)	< 0.25	60 – 130
Perfluorohexanoate	(PFHxA)	< 0.25	70 – 130
Perfluoroheptanoate	(PFHpA)	< 0.25	70 – 130
Perfluorooctanoate	(PFOA)	< 0.25	70 – 130
Perfluorononanoate	(PFNA)	< 0.25	70 – 130
Perfluorodecanoate	(PFDA)	< 0.25	70 – 130
Perfluoroundecanoate	(PFUnA)	< 0.25	40 – 130

Analyte		Procedural Blank Level ng/sample ¹	Acceptable Matrix Spike in OPR (% Recovery)
Perfluorododecanoate	(PFDoA)	< 0.25	70 – 130
Perfluorobutanesulfonate	(PFBS)	< 0.25	60 – 130
Perfluorohexanesulfonate	(PFHxS)	< 0.25	60 – 130
Perfluorooctanesulfonate	(PFOS)	< 0.25	70 – 130
Perfluorooctane sulfonamide	(PFOSA)	< 0.25	60 – 130

¹ Reporting limits (based on the lowest calibration standard - CAL A in Table 3 - and routine final extract volume of 4 mL) may exceed the stated blank criteria.

QC Specification Table: Surrogate Standard Recoveries, Calibration and Samples

Surrogate Standard		Recovery Range ¹
¹³ C₄-Perfluorobutyric acid	(¹³ C ₄ -PFBA)	20 - 150%
¹³ C ₂ -Perfluorocaproic acid	(¹³ C ₂ -PFHxA)	40 - 150%
¹³ C ₂ -Perfluorooctanoic acid	(¹³ C ₂ -PFOA)	40 - 150%
¹³ C ₅ -Perfluorononanoic acid	(¹³ C ₅ -PFNA)	40 - 150%
¹³ C ₂ -Perfluorodecanoic acid	(¹³ C ₂ -PFDA)	40 - 150%
¹³ C ₂ -Perfluorododecanoic acid	(¹³ C ₂ -PFDoA)	40 - 150%
¹⁸ O ₂ -Perfluorohexanesulfonate	(¹⁸ O ₂ -PFHxS)	40 - 150%
¹³ C ₄ -Perfluorooctanesulfonate	(¹³ C ₄ -PFOS)	40 - 150%

¹ Lower surrogate recoveries may be reported for individual samples where dilution analysis or spiked sample results demonstrate acceptable accuracy.

QC Specification Table: Other Parameters

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard.
Initial Calibration (native compounds)	Daily, (1/x²) weighed linear regression. Calculated concentrations must be within 30% of actual concentration. Surrogate recoveries must fall within the same limits as for the samples in the table above.
Continuing Calibration Verification (native compounds)	Every 20 samples, determined concentrations must be within 30% of actual concentrations. Surrogate recoveries must fall within the same limits as for the samples in the table above.
Instrumental Carryover and Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: ≤ 0.3% carryover and area response of analytes in instrument blank ≤ 800.
Duplicate Samples or MS/MSD	If conc. > 5 times R.L., RPD < 40% If conc. < 5 times R.L., difference between pairs < R.L.

PFCs by LC-MS/MS Method Detection Limit for PFCs in Solid samples June 2011

MDL Results

Axys Method: MLA-041 Rev 09

Analysis Type: Perfluorinated Organic Compounds (PFC)

Instrument Type: LC-MS/MS Matrix Spiked: SOLID Axys Workgroup: WG36738 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, April 29, 2002, no iteration

Instr. Analysis Date: 4-Jun-2011 **Sample ID:** WG36738-103 MDL 1 Data Filename: FC1G_213 S: 29 **Sample ID:** WG36738-104 Instr. Analysis Date: 4-Jun-2011 MDL 2 Data Filename: FC1G_213 S: 30 Sample ID: WG36738-105 Instr. Analysis Date: 4-Jun-2011 MDL 3 Data Filename: FC1G_213 S: 31 Instr. Analysis Date: 4-Jun-2011 MDL 4 Data Filename: FC1G_213 S: 32 **Sample ID:** WG36738-106 Instr. Analysis Date: 4-Jun-2011 MDL 5 Data Filename: FC1G 213 S: 33 Sample ID: WG36738-107 Sample ID: WG36738-108 Instr. Analysis Date: 4-Jun-2011 MDL 6 Data Filename: FC1G_213 S: 34 **Sample ID:** WG36738-109 Instr. Analysis Date: 4-Jun-2011 MDL 7 Data Filename: FC1G_213 S: 35 MDL 8 Data Filename: FC1G_213 S: 36 Sample ID: WG36738-110 Instr. Analysis Date: 4-Jun-2011

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 5 g of solid sample

	Method				Standard		
	Detection	Spiking Level	Number of	Mean	Devation	Student's	Mean
Native Analyte	Limit, ng/g	ng/g	Observations	ng/g	ng/g	t-Value	% rec.
PFBA	0.027	0.10	8	0.102	0.009	2.998	102
PFPEA	0.025	0.10	8	0.120	0.008	2.998	120
PFHXA	0.011	0.10	8	0.122	0.004	2.998	122
PFHPA	0.027	0.10	8	0.109	0.009	2.998	109
PFOA	0.036	0.10	8	0.120	0.012	2.998	120
PFNA	0.016	0.10	8	0.121	0.005	2.998	121
PFDA	0.071	0.10	8	0.102	0.024	2.998	102
PFUNA	0.071	0.10	8	0.110	0.024	2.998	110
PFDOA	0.057	0.10	8	0.097	0.019	2.998	97
PFBS	0.040	0.20	8	0.242	0.013	2.998	121
PFHXS	0.058	0.20	8	0.227	0.019	2.998	113
PFOS	0.097	0.20	8	0.275	0.032	2.998	137
PFOSA	0.080	0.10	8	0.141	0.027	2.998	141

Washington State Department of Ecology

CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS					
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks				
Project: N/A	Contract No: 4499				
Project Name:Urban Waters - Elliott Bay	AXYS Method: MLA-041				
Data Package Identification: DPWG44056	Program: Solid Samples				
Client Sample No.	Lab Sample ID				
LAB BLANK	WG43880-101				
OPR	WG43880-102				
1306020-04	L19746-1				
1306020-12	L19746-2				
1306020-13	L19746-3				
1306020-14	L19746-4 WG43880-103 DUPLICATE				
1306020-25	L19746-5				
1306020-31	L19746-6				
1306020-32	L19746-7				
1306020-33	L19746-8				
1306020-38	L19746-9				
1306020-39	L19746-10				
1306020-18	L19746-11				
1306020-23	L19746-12				
1306020-26	L19746-13				
1306020-27	L19746-14				

Chain of Custody EAP, MMU, Marine Sediment Monitoring Team

Date	Project	Year	Month	Station	ParameterText		MEL Sample ID
6/7/2013	Urban Waters	2013	Jun	173	PPCP & PFC	119746-1	1306020-04
6/6/2013	Urban Waters	2013	Jun	181	PPCP & PFC	-2	1306020-12
6/6/2013	Urban Waters	2013	Jun	182	PPCP & PFC	3	1306020-13
6/6/2013	Urban Waters	2013	Jun	183	PPCP & PFC	-4	1306020-14
6/7/2013	Urban Waters	2013	Jun	194	PPCP & PFC	- 5	1306020-25
6/6/2013	Urban Waters	2013	Jun	200	PPCP & PFC	- 6	1306020-31
6/7/2013	Urban Waters	2013	Jun	201	PPCP & PFC	- 7	1306020-32
6/7/2013	Urban Waters	2013	Jun	202	PPCP & PFC	-8	1306020-33
6/6/2013	Urban Waters	2013	Jun	U2	PPCP & PFC	-8	1306020-38
6/7/2013	Urban Waters	2013	Jun	U3	PPCP & PFC	-10	1306020-39

Relinquished By	Date/Time	Received By	Date/Time	Comments
Maggied July	6/10/2013	16th MV	G10/13 6:35	
- Here In The	6/11/13 10:30			
	,			

AXYS Rec'd: M.W.M. M. 10:20.

Chain of Custody EAP, MMU, Marine Sediment Monitoring Team

Date	Project	Year	Month	Station	ParameterText	~	MEL Sample ID
6/10/2013	Urban Waters	2013	Jun	187	PPCP & PFC	1 19746 - 11	1306020-18
6/10/2013	Urban Waters	2013	Jun	192	PPCP & PFC	-12	1306020-23
6/10/2013	Urban Waters	2013	Jun	195	PPCP & PFC	-13	1306020-26
6/10/2013	Urban Waters	2013	Jun	196	PPCP & PFC	-14	1306020-27

Relinquished By	Date/Time	Rèceived By	Date/Time	Comments
n Postishe	4/10/2013 18	istah Mil	4/0/13 635	
KL MID	6/11/13 10:2	30		·
	,			
	·		,	· · · · · · · · · · · · · · · · · · ·

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill	;
Date Shi	ipped:
AVVC	Clic

Yes (No) 11-JUN-13

Waybill #:

HAND DELIVERY 11-JUN-13 2/2

Date Shipped:	11-JUN-13	•	Date /Time Re	eceived: 11-JUN-	13 10:20	
AXYS Client & Contract #	4499-Wash	ington State	Dept of Ecology		,	
Project Number:			Receipt No:	WB1489	92	
Login Number:						
Received By: MWILMAN	t 1 A		Log in by:	1.WILMAN) Signature: M.W.	Mman
Axys Sample ID's:	46-1	TO 14		1		
Matrix Type: 14 sediments	•					
Condition of Shipping Container:	ta(t.					
Temperature upon Receipt: -17.2 C	elcius san	nples arrived fro	zen on dry ice		Thermometer ID: Corrected Temperature:	3270 -17.2 Celcius
Custody Seals: Shipping Contain	ers Yes (No)	Intact Yes /No	Seal Numbe	rs Yes/No		
Samp	oles Yes (No	Intact Yes /No	Seal Numbe	rs Yes/No		
Chain of Custody or Documents: Sample ID's Collection Location Date & Time Collection Collector's Name	Yes No Yes No Yes No Yes No Yes No		Tracking Report /Packi Sample Tag Numbers Sample Type Preservative Added Preservation Requester	Yes No Yes No Yes No		
Sample Tags		Yes/No				
Sample Labels		Yes				
Sample Labels Cross Referenced to C	OC .	(Yes)/No	Inf	ormation Agrees	Yes)/No	
Sample Tags Cross Referenced to Sa	mple Labels	Yes /No		ormation Agrees	Yes /No	
Sample Tags Cross Referenced to CC	C	Yes /No	Inf	ormation Agrees	Yes /No	
Comments:						
,						

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

for scanning Brooks 14-June-2013

Page: 1 of 14

s Identification	Rece	ived	Due	PR
	11-JU	JN-13		
Storage: WIF-4, 1D	Permit #: P-2012-04319-US			
			4	
Project #: URBAN WATERS - EBAY		-		
Description: S	Station: 173			
2:MOISTURE		:		USD
5:FC MOISTURE				USD
5:MOISTURE		:		USD
5:MOISTURE 2		:		USD
FC041		;		USD
HOMOGENIZATION		:		USD
PP075.1AP		:		USD
PP075.2AC		:		USD
PP075.3AN		:		USD
PP075.4BP		:		USD
PP075.5AP		:		USD
PFC EDD		:		USD
PPCP EDD		:		USD
PFOS DATA PKG		:		USD ·
PPC DATA PKG LIST 1		:		USD
PPC DATA PKG LIST 2		:		USD
PPC DATA PKG LIST 3		:		USD
PPC DATA PKG LIST 4		;		USD
PPC DATA PKG LIST 5		:		USD
SAMPLE RECEIPT	. 1	: 250 r	mL plastic	USD
	Identification Storage: WIF-4, 1D Project #: URBAN WATERS - EBAY Description: S 2:MOISTURE 5:FC MOISTURE 5:MOISTURE 5:MOISTURE 2 FC041 HOMOGENIZATION PP075.1AP PP075.2AC PP075.3AN PP075.4BP PP075.5AP PFC EDD PPCP EDD PFOS DATA PKG PPC DATA PKG LIST 1 PPC DATA PKG LIST 2 PPC DATA PKG LIST 3 PPC DATA PKG LIST 4 PPC DATA PKG LIST 5	Storage: WIF-4, 1D Permit #: P-2012-04319-US Project #: URBAN WATERS - EBAY Description: Station: 173 2:MOISTURE 5:FC MOISTURE 5:MOISTURE 5:MOISTURE 5:MOISTURE 2 FC041 HOMOGENIZATION PP075.1AP PP075.2AC PP075.3AN PP075.4BP PP075.5AP PFC EDD PPCP EDD PFC EDD PFC EDD PFOS DATA PKG PPC DATA PKG LIST 1 PPC DATA PKG LIST 3 PPC DATA PKG LIST 3 PPC DATA PKG LIST 4 PPC DATA PKG LIST 5	TI-JUN-13 Storage: WIF-4, 1D Permit #: P-2012-04319-US Project #: URBAN WATERS - EBAY Description: Station: 173	Identification Received Due 11-JUN-13 Storage: WIF-4, 1D Permit #: P-2012-04319-US Project #: URBAN WATERS - EBAY Description: Station: 173 2:MOISTURE 5:FC MOISTURE 5:MOISTURE 5:MOISTURE 5:MOISTURE 2 FC041 HOMOGENIZATION PP075.1AP PP075.2AC PP075.3AN PP075.4AP PP075.2AC PP075.3AN PP075.4BP PP075.5AP PFC EDD PPCP EDD PPCP EDD PPCP EDD PPCP EDD PPCP EDD PPC PDD PPC PDD PPC PDD PPC ATA PKG LIST 1 PPC DATA PKG LIST 2 PPC DATA PKG LIST 3 PPC DATA PKG LIST 4 PPC DATA PKG LIST 5

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 2 of 14

Client Sample	identinication	Receiv		PR
L19746-2		11-JUN	√ -13	
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US		
1306020-12	Desire A HERDANIMATERS FRAV			
06-JUN-13 00:00	Project #: URBAN WATERS - EBAY Description: S	tation: 181		
	Description: 0	realism. To		
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		•	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC	•	:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		;	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 3 of 14

Client Sample	Identification	Received	Due	PR
L19746-3		11-JUN-13		
	Storage: WIF-4, 1D	Permit#: P-2012-04319-US		
1306020-13				
06-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	Station: 182		
Solid	2:MOISTURE	:		USD
Solid	5:FC MOISTURE	:		USD
Solid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	:		USD
Solid	FC041	:		USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Sölid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	: ·		USD
D.Package	PFOS DATA PKG	:		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 :2	50 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 4 of 14

			ı ugc.	
Axys ID versus Client Sample		Received	Due	PR
L19746-4		11-JUN-13		
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US		
1306020-14				
06-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	station: 183		
Solid	2:MOISTURE	:		USD
Solid	5:FC MOISTURE	;		USD
Solid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	;		USD
Solid	FC041			USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	:		USD
D.Package	PFOS DATA PKG	*		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 : 2!	50 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 5 of 14

Axys ID versus			
Client Sample	Identification	Received	Due PR
L19746-5		11-JUN-13	
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US	
1306020-25			
07-JUN-13 00:00	Project#: URBAN WATERS - EBAY	Andrew 404	
	Description: S	tation, 194	
Solid	2:MOISTURE	:	USD
Solid	5:FC MOISTURE	:	USD
Solid	5:MOISTURE	:	USD
Solid	5:MOISTURE 2	:	USD
Solid	FC041	:	USD
Solid	HOMOGENIZATION	:	USD
Solid	PP075.1AP	;	USD
Solid	PP075.2AC	:	USD
Solid	PP075.3AN	:	USD
Solid	PP075.4BP	:	USD
Solid	PP075.5AP	:	USD
EDataDeliv	PFC EDD	:	USD
EDataDeliv	PPCP EDD	:	USD
D.Package	PFOS DATA PKG	:	USD
D.Package	PPC DATA PKG LIST 1	:	USD
D.Package	PPC DATA PKG LIST 2	:	USD
D.Package	PPC DATA PKG LIST 3	:	USD
D.Package	PPC DATA PKG LIST 4	:	USD
D.Package	PPC DATA PKG LIST 5	:	USD
ANY	SAMPLE RECEIPT	1 :25	50 mL plastic USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 6 of 14

Asses ID varant				
Axys ID versus Client Sample		Received	Due	PR
L19746-6		11-JUN-13		
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US		
1306020-31				
06-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	tation: 200		
Solid	2:MOISTURE	:		USD
Solid	5:FC MOISTURE	:		USD
Solid	5:MOISTURE	;		USD
Solid	5:MOISTURE 2	:		USD
Solid	FC041	;		USD
Solid	HOMOGENIZATION	;		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075,3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	:		USD
D.Package	PFOS DATA PKG	:		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2			USD
D.Package	PPC DATA PKG LIST 3	:		USD
D Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USĎ
ANY	SAMPLE RECEIPT	1 :2	.50 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 7 of 14

Client Sample	Identification	Receiv	ed Due	PR
L19746-7		11-JUN	i-13	
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US		
1306020-32				
07-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	itation: 201		
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		;	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		;	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		;	USD
Solid	PP075.5AP		•	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 8 of 14

			, ago.	- -
Axys ID versus Client Sample		Received	Due	PR
L19746-8		11-JUN-13	3	
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US		
1306020-33				
07-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	Station: 202		
0.414	OMOIOTUDE			USD
Solid	2:MOISTURE			USD
Solid	5:FC MOISTURE			USD
Solid	5:MOISTURE			USD
Solid	5:MOISTURE 2			USD
Solid	FC041	:		USD
Solid	HOMOGENIZATION			
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	:		USD
D.Package	PFOS DATA PKG	:		ÚSD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2			USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 :	250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 9 of 14

Client Sample	Identification	Receive	d Due	PR
L19746-9		11-JUN-	-13	
	Storage: WIF-4, 1D	Permit#: P-2012-04319-US		
1306020-38				
06-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	tation: U2		
Solid	2:MOISTURE		;	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		•	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		:	USD
D.Package	PFOS DATA PKG		;	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499

Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 10 of 14

			rage	
Axys ID versus Client Sample		Received	Due	PR
L19746-10		11-JUN-13		
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US		
1306020-39				
07-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	station: U3		
Solid	2:MOISTURE	;		USD
Solid	5:FC MOISTURE	:		USD
Sólid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	:		USD
Solid	FC041	:		USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC			USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP			USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	:		USD
D.Package	PFOS DATA PKG	:		ÜSD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	1 : 25	0 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 11 of 14

Client Sample	Identification	Rece	eived	Due	PR
L19746-11		11-J	UN-13	*** · · · · · · · · · · · · · · · · · ·	
	Storage: WIF-4, 1D	Permit #: P-2012-04319-US			
1306020-18					
10-JUN-13 00:00	Project #: URBAN WATERS - EBAY				
	Description: S	tation: 187			
Solid	2:MOISTURE		:		USD
Solid	5:FC MOISTURE		:		USD
Solid	5:MOISTURE		:		USD
Solid	5:MOISTURE 2		;		USD
Solid	FC041		:		USD
Solid	HOMOGENIZATION		:		USD
Solid	PP075.1AP		:		USD
Solid	PP075.2AC		:		USD
Solid	PP075.3AN		:		USD
Solid	PP075.4BP				USD
Solid	PP075.5AP		:		USD
EDataDeliv	PFC EDD		:		USD
EDataDeliv	PPCP EDD		:		USD
D.Package	PFOS DATA PKG		;		USD
D.Package	PPC DATA PKG LIST 1		:		USD
D.Package	PPC DATA PKG LIST 2		:		USD
D.Package	PPC DATA PKG LIST 3		;		USD
D.Package	PPC DATA PKG LIST 4		;		USD
D.Package	PPC DATA PKG LIST 5		:		USD
ANY	SAMPLE RECEIPT	1	: 250	mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 12 of 14

			ı ago.	
Axys ID versus Client Sample		Receive	d Due	PR
L19746-12		11-JUN-	13	
	Storage: WIF-4, 1D	Permit#: P-2012-04319-US		
1306020-23				
10-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	tation: 192		
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		* •	USD
Solid	5:MOISTURE 2		• •	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		;	USD
EDataDeliv	PPCP EDD		;	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	1	: 250 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 13 of 14

			9	
Axys ID versus Client Sample		Received	Due	PR
L19746-13		11-JUN-13		
	Storage: WIF-4, 1D	Permit#: P-2012-04319-US		
1306020-26				
10-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description: S	Station: 195		
Solid	2:MOISTURE	:		USD
Solid	5:FC MOISTURE	:		USD
Solid	5:MOISTURE	:		USD
Solid	5:MOISTURE 2	:		USD
Solid	FC041	:		USD
Solid	HOMOGENIZATION	:		USD
Solid	PP075.1AP	:		USD
Solid	PP075.2AC	:		USD
Solid	PP075.3AN	:		USD
Solid	PP075.4BP	:		USD
Solid	PP075.5AP	:		USD
EDataDeliv	PFC EDD	:		USD
EDataDeliv	PPCP EDD	:		USD
D.Package	PFOS DATA PKG	:		USD
D.Package	PPC DATA PKG LIST 1	:		USD
D.Package	PPC DATA PKG LIST 2	:		USD
D.Package	PPC DATA PKG LIST 3	:		USD
D.Package	PPC DATA PKG LIST 4	:		USD
D.Package	PPC DATA PKG LIST 5	:		USD
ANY	SAMPLE RECEIPT	. 1 :25	0 mL plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:33 AM

Login Number: L19746

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 14 of 14

			, age	
Axys ID versus Client Sample		Receive	ed Due	PR
L19746-14		11-JUN	I-13	
	Storage: WIF-4, 1D			
1306020-27				
10-JUN-13 00:00	Project #: URBAN WATERS - EBAY			
	Description	n: Station: 196		
Solid	2:MOISTURE		:	USD
Solid	5:FC MOISTURE		:	USD
Solid	5:MOISTURE		:	USD
Solid	5:MOISTURE 2		:	USD
Solid	FC041		:	USD
Solid	HOMOGENIZATION		:	USD
Solid	PP075.1AP		:	USD
Solid	PP075.2AC		:	USD
Solid	PP075.3AN		:	USD
Solid	PP075.4BP		:	USD
Solid	PP075.5AP		:	USD
EDataDeliv	PFC EDD		:	USD
EDataDeliv	PPCP EDD		•	USD
D.Package	PFOS DATA PKG		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		÷1	USD
D.Package	PPC DATA PKG LIST 4		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
ANY	SAMPLE RECEIPT	. 1	: 250 mL plastic	USD

Washington State Department of Ecology Request for Qualifications and Quote (RFQQ)

2013 MEL Cx 17 PSEMP Elliot Bay PPCP & PFC 2013

Laboratory Services

This Request for Quote and Qualifications will support an agreement with the Department of Ecology for the Contract laboratory to provide analytical services to the Department of Ecology.

 Responses due by 4:00 PM Port Orchard WA time:
 May 20, 2013 Late submissions will not be considered.

 Please respond via email to:
 Karin.Feddersen@ecy.wa.gov

Expected Work Commitment

Title: PSEMP Elliot Bay PPCP & PFC 2013

Scope of Qualifications:

- A. Provide analytical services to the Washington State Department of Ecology (Ecology). Details and specifications are provided in the attached Scope of Work (SOW). The apparent successful vendor must:
 - 1. Be currently accredited by the Ecology's Laboratory Accreditation Unit for all analyses described in this SOW for which accreditation is available.
 - 2. Have a minimum of 5 years experience in the method.
 - 3. Submit proof that they can provide the analysis as requested, including but not limited to a Method Detection Limit (MDL) supporting the requested reporting limits. Provide documentation of a standard analyzed at the reporting limit requested for this SOW.
 - 4. Submit blank data proving that they can meet the required blank contamination limits described in the SOW.
 - 5. Provide documentation of the quantitation limits (based on the lowest calibration standard) that the instrument can achieve.
 - 6. Provide quality control limits for laboratory control samples, matrix spikes, etc., for all analyses in this SOW.
 - 7. Provide results from the most recent International Intercalibration Study.
 - 8. Provide contact name, company name, address, and phone number for 3 client references who have had the requested analyses performed on the matrices specified in the SOW, and who have reviewed the raw data for these analyses.
 - 9. Provide the analysis as requested in the attached SOW.
- B. Ecology will pay vendor when all of the following have been satisfied:
 - 1. Sample analyses and documentation performed according to this SOW.
 - 2. Deliverables sent to Ecology within 30 calendar days of vendor receiving samples.
 - 3. Sufficient documentation for assessing the bias, usability and quality of the data.
 - 4. Receipt of properly completed invoices.

Deliverables:

- C. Deliverables will include:
 - 1. Paper hardcopies or CD (fully bookmarked and searchable PDF) of all raw data and reports;
 - 2. Results in Ecology-specified EDD format described in the SOW;

Other Factors for this Work Request:

- D. Laboratories who want to perform this work must:
 - 1. Provide a 3-page maximum length description of their qualifications specific to the SOW and their intended approach to performing the analysis, electronically or in hardcopy.

Include details of preparation method to be used on these samples.

2. Submit an example work product in the form of one fully bookmarked and searchable PDF file or one bound hardcopy with a table of contents. This product must include all raw data that would be needed to perform an independent review of the results: calibration reports, chromatograms, spectra, benchsheets, etc..

EXCEPTION: If the vendor has performed these same requested analyses for Ecology within the last 3 years, and a raw data package was submitted that uses the same instrument software that is proposed to be used for this SOW, no example work product is required.

- 3. Include in the quote, electronically or in hardcopy:
 - RFQQ customer reference number or title.
 - The names of two Laboratory representatives who will be responsible for the execution of these services and communications with the Ecology project manager.
 - The name and address of the bidder's firm.
 - Minority or Women's Business Enterprise status including Certification Number, if applicable.
 - The 20 most recent method blanks for the matrix/matrices of interest in this RFQQ.
 - The 20 most recent OPRs (LCS) for the matrix/matrices of interest in this RFQQ.

Ecology does not assume responsibility for any problems with e-mail or the method of delivery chosen.

Bid Selection Process:

- E. Ecology will review each bid to determine if the bid:
 - 1. Was received by the date and time requested.
 - 2. Is complete.
 - 3. Shows a good understanding of project goals and needs.
 - 4. Relevant experience with similar environmental samples.
 - 5. Meets all technical specifications. QC limits will be evaluated from each bidder.
 - 6. Meets the specified schedule for sample analysis and reporting.
 - 7. Provides complete and clear cost information.

Ecology may request written clarifications pertaining to technical or cost elements of the bid.

The selection process will be based on cost, relevant experience, and ability to provide the specified deliverables according to schedule.

The Department of Ecology reserves the right to reject any or all bids if they do not meet the above award criteria. Furthermore, the release of this RFQQ does not compel the state to purchase anything and Ecology reserves the right to refrain from contracting with all bidders. Any costs or liabilities associated with the preparation of your response to this RFQQ are not the responsibility of Ecology, or any of its representatives.

In the event it becomes necessary to revise any part of this RFQQ, addenda will be provided to all persons/firms who receive the RFQQ.

It is important that all potential costs are included in your bid; **Ecology cannot reimburse for costs not included in the successful bid**.

Ecology's Right to Cancel:

F. Ecology reserves the right to cancel this Work Request at any time, reject any and all responses received, award more than one Work Order, and/or not execute a Work Order from this Work Request without penalty to the agency. The release of this solicitation document does not obligate Ecology to contract for the services specified in this Work Request. The agency shall not be liable for any costs incurred by a Vendor in preparation of a proposal submitted in response to this Work Request, conducting interviews, acquiring accreditation, or any other activity related to responding to this Work Request.

Waive Minor Administrative Irregularities:

G. Ecology reserves the right to waive minor administrative irregularities contained in any Response. Additionally, Ecology reserves the right, at its sole option, to make corrections to Vendors' Responses when an obvious arithmetical error has been made in the price quotation. Vendors will not be allowed to make changes to their quoted price after the Response submission deadline.

Errors in Response:

H. Vendors are liable for all errors or omissions contained in their Responses. Vendors will not be allowed to alter Response documents after the deadline for Response submission. Ecology is not liable for any errors in Responses. Ecology reserves the right to contact Vendor for clarification of Response contents.

In those cases where it is unclear to what extent a requirement or price has been addressed, the evaluation team(s) may, at their discretion and acting through the Agency Project Manager, contact a Vendor to clarify specific points in the submitted Response. However, under no circumstances will the responding Vendor be allowed to make changes to the proposed items after the deadline stated for receipt of Responses.

Vendor Questions:

Specific questions concerning this Work Request must be submitted, in writing to the Work Request Coordinator by the date and time set forth in the Estimated Schedule of Events. Questions must be transmitted by electronic mail. Only written questions will receive official written responses. Copies of all written questions and Ecology responses will be posted on the WEBS. It will be the Vendor's responsibility to monitor this website during preparation of their response. Only posted answers to questions will be considered official.

Proprietary or Confidential Information:

J. Any information contained in the Response that is proprietary or confidential must be clearly designated. Marking of the entire Response or entire sections of the Response as proprietary or confidential will not be accepted nor honored. Ecology will not accept Responses where pricing is marked proprietary or confidential, and the Response will be rejected.

To the extent consistent with Chapter 42.56 RCW, the Public Records Act, Ecology shall maintain the confidentiality of Vendors' information marked confidential or proprietary. If a request is made to view Vendor's proprietary information, Ecology will notify Vendor of the request and of the date that the records will be released to the requester unless Vendor obtains a court order enjoining that disclosure. If a Vendor fails to obtain the court order enjoining disclosure, Ecology will release the requested information on the date specified.

The state's sole responsibility shall be limited to maintaining the above data in a secure area and to notify a Vendor of any request(s) for disclosure for so long as Ecology retains the Vendor's information in Ecology's records. Failure to so label such materials or failure to timely respond after notice of request for public disclosure has been given shall be deemed a waiver by a Vendor of any claim that such materials are exempt from disclosure.

Agency (Project Manager): Department of Ecology (Karin Feddersen)

Phone: 360-871-8829 Email: Karin.Feddersen@ecy.wa.gov Fax: 360-871-8850

Submit completed bid packages to Karin.Feddersen@ecy.wa.gov or fax to (360) 871-8850.

SCOPE OF WORK

This Scope of Work (SOW) does not include the collection of any samples.

The Department of Ecology (Ecology) will send up to 33 samples of sediment, and request up to two sets of matrix spike/matrix spike duplicates and up to three duplicates; for Pharmaceuticals and Personal Care Products (PPCP) and Perfluorinated Compounds (PFCs). In addition, up to two water rinseate blanks will be collected for possible analysis.

See Appendix for lists of analytes. Samples must be maintained as per the methods from the time of receipt at the laboratory until preparation.

Laboratories must bid on all of the analyses, with the exception of the list in Table A3. Please provide a separate quote for these analytes.

Laboratories must provide a copy of the extraction methods as performed.

Laboratories must analyze and provide data for an independent source standard (different vendor than the calibration standards).

Bidding Laboratories must provide a list of the QC limits they adhere to for each method in this SOW.

The successful vendor will be responsible for:

- A) Providing sufficient sample containers, ice chests, and blue ice for each sampling event;
 - OR
- B) Returning any Ecology-owned ice chests and blue ice to Ecology. The estimated cost of ground shipping these items should be included in the price quote responding to this RFQQ.

The final data package is to include raw data (aka EPA Tier IV or Level 4 deliverables) and results in an electronic data deliverable (EDD) format that meets the requirements in Table 4. The EDD format is needed for loading results to Ecology's Information Management (EIM) database. Other items may be included as needed to help understand the data package.

This Agreement does not make either the Contractor or any of its employees or agents an employee or agent of Ecology.

Items for analytical services:

1. Perform all result calculations using the initial calibration as per the method. In other words, do not use a single point calibration standard.

Reporting of Results

- 1. Report all results in ng/g, dry weight.
- 2. Include a copy of the "Request for Laboratory Services" with signed and dated Chain of Custody section: this form will be provided by Ecology.
- 3. Include Case Narratives and corrective action reports.

- 4. Provide description of: analytical method used; any modifications to the method, Quality Assurance/Quality Control (QA/QC) performed and results; definitions of all data qualifiers used; and any other information that helps client understand the data package.
- 5. Provide fully validatable deliverables package: Deliverables shall include copies of all raw data necessary to perform an independent evaluation of the results, including, but not limited to initial calibration and verification standards, sample and QC chromatograms and spectra, analytical sequence (run) logs, benchsheets, standard logs and Certificates of Analysis for standards, etc.
 - A. Include a fully paginated and bookmarked Adobe Acrobat (PDF) file on compact disk (CD) and/or paginated hardcopies of all raw data with a table of contents.
 - B. Bookmark each sample and each standard chromatogram for ease of review.
 - C. Rotate landscape pages as needed so that all information is viewable left to right in the electronic file.
 - D. Clearly identify all field and QC samples with the sample number or QC name in the raw data and report.
 - E. All initial calibration (ICAL) standards and CCVs, shall be clearly identified in the raw data.
 - F. An Independent Calibration Verification (ICV) standard must be analyzed from a separate source in order to verify the initial calibration standards. The ICV must be analyzed each time a new standard curve is prepared. Provide the results of the most recent ICV with the data.
 - G. Provide before and after printouts of any and all manual integrations.
 - H. Provide analytical sequence logs that include the date, time, and filename for the initial and continuing calibrations, all field and QC samples, check standards, etc., associated with the project.
- 6. Reporting Limits (RL), Estimated Quantitation Limit (EQL equivalent to "ML" in 1668), Method Detection Limit (MDL), Estimated Detection Limit (EDL).
 - A. Maximum RLs are defined in the table below.

Table 1.	Table 1. Analytical Methods and Reporting Limits for PPCPs and PFCs				
Analysis	Method Reference	Reporting Limit; sediment (dry weight basis)			
PPCPs	EPA 1694 or equivalent	0.2 to 500 ppb (depending on analyte)			
PFCs	HPLC/MS/MS http://water.epa.gov/scitech/meth ods/cwa/upload/Draft- Procedure-for-Analysis-of- Perfluorinated-Carboxylic-	0.10 to 0.20 ppb (depending on analyte)			

Acids-and-Sulfonic-Acids-in-
Sewage-Sludge-and-Biosolids-
by-HPLC-MS-MS.pdf
or equivalent

- B. If any of these limits cannot be met for individual samples due to interference or other issues, contact the client to discuss action to take.
- C. Provide the Estimated Quantitation Limit for each result (EQL: based on the lowest validated standard in calibration curve). Report the EQL in the electronic results file.
- D. Provide the most recent Method Detection Limit (MDL) study results for each analyte. Include the date of the most recent MDL study in the Case Narrative.
- E. Report down to the Estimated Detection Limits (EDL) aka Instrument Detection Limits (IDL) or Sample Detection Limits (SDL) based on 2.5 times the signal-to-noise ratio for HRMS analyses. Provide this value for each analyte by HRMS and LCMS in the electronic results file.

F. Dilutions

- a. Any results above the range of the calibration curve must be diluted to be within the range of the calibration curve.
- b. All results reported from dilution analyses must be within the range of the calibration curve.
- G. For non-detect values, record the EDL in the "Result Reported Value" column and a "UJ" the "Result Data Qualifier" column.
- H. Qualify detected values that are below the EQL as estimates ("J").
- I. Do not report below the EDL. Where the EDL is above the EQL due to interference, raise any values below the EDL to the value of the EDL and qualify "UJ".
- J. Calculate and report the Estimated Maximum Possible Concentration (EMPC) value for results that do not meet ion abundance ratio criteria. Qualify these results with "NJ".
- 7. The qualifiers used above are defined as:
 - A. "J" The analyte was positively identified. The associated numerical result is an estimate.
 - B. "U" The analyte was not detected at or above the reporting limit. (This qualifier will likely not be used if reporting all analytes down to the level of the EDL.)
 - C. "UJ" The analyte was not detected at or above the estimated reporting limit.
 - D. "NJ" The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. (See 6. J., above.)
- 8. Perform all QC samples as specified in the method.
 - A. Report results of Laboratory Control Samples (On-going Precision and Recovery standards), Matrix Spikes (if applicable), labeled compounds, internal standards, and surrogates as % recoveries in the EDD.

B. Report results of Standard or Certified Reference Materials, (e.g.: SRM 1944; CRM CARP-2), in the same units as the samples.

9. Method Blanks.

- A. Clearly identify samples associated with each laboratory method blank.
- B. The value of individual analytes found in the associated method blank must not exceed 1/10th of the sample level. If these limits are exceeded, contact the client to discuss actions to take. Most likely, the blank should be re-extracted along with any associated samples.
- C. If sample results are less than 10 times the concentration in the associated method blank, flag sample results with "B" even if the sample result has already been qualified "NJ"; but not when the blank result is qualified "NJ".

10. Sample identification.

- A. Provide the client sample ID (MEL lab ID) associated with all sample results.
- B. Provide the lab's internal sample ID associated with all results OR a table that cross-references MEL lab ID with the lab's internal sample ID.
- D. Clearly identify QA/QC samples and results: blanks, matrix spikes, Standard Reference Materials (SRM), lab duplicates. If samples are reanalyzed, these results need be clearly identified as such.
- E. Label all analyte peaks on chromatograms with either the congener name or the retention time and scale chromatograms such that peaks are visible above the baseline.

11. Analyte identification.

A. Provide the Chemistry Abstract Service Registry Number (CAS RN) for individual congeners.

12. Electronic results must be in Excel-compatible format as in Table 2:

Required Fields for Electronic Data Deliverables submitted to WA State Department of Ecology.				
Preferred				
Order	Field Name	Example		
1	MEL (Client) Sample ID	1311021-03		
2	Field ID (sample name on tag)	COLRIV034		
3	Result IUPAC Name	2,3'-DiCB		
4	Result Parameter Name	PCB-006		
5	Result Parameter CAS Number	25569-80-6		
6	Sample Extraction Date	11/14/2013(format as numerical date)		
7	Sample Analysis Date	11/15/2013 (format as numerical date)		
8	Lab Duplicate Flag	"Y" if lab duplicate, leave blank or "N" if not		
9	Re-analysis Flag	"Y" if a re-analysis, leave blank or "N" if not		
10	Result Reported Value	7.9 (format as number)		
11	Result Data Qualifier	J		
12	Result Value Units of Measure	pg/L		
13	Result Value EQL *	10 (format as number)		
14	Result Value EDL**	3.42 (format as number)		
15	Result Method Code	EPA 1668C		
16	Result Lab Name	Laboratory Name		
17	Contract Lab Sample ID	PR137954		
18	Others as needed by contract lab or MEL. If used, clearly identify field and content			
	* = Estimated Quantitation Limit (Based on the lowest validated standard in the calibration			
	curve and adjusted for weight, volume, % solids, etc., as applicable).			
	** = Estimated Sample Detection Limit; calculated from signal for each sample)			

Appendix A - Analyte Lists

Table A1 - Personal Care Products and Pharmaceuticals

1,7-Dimethylxanthine	Demeclocycline	Oxolinic acid
10-hydroxy-amitriptyline	Desmethyldiltiazem	Oxycodone
2-hydroxy-ibuprofen	Diazepam	Oxytetracycline
4-Epianhydrochlortetracycline	Digoxigenin	Paroxetine
4-Epianhydrotetracycline	Digoxin	Penicillin G
4-Epichlortetracycline	Diltiazem	Penicillin V
4-Epioxytetracycline	Diphenhydramine	Prednisolone
4-Epitetracycline	Doxycycline	Prednisone
Acetaminophen	Enalapril	Promethazine
Albuterol	Enrofloxacin	Propoxyphene
Alprazolam	Erythromycin-H20	Propranolol
Amitriptyline	Flumequine	Ranitidine
Amlodipine	Fluocinonide	Roxithromycin
Amphetamine	Fluoxetine	Sarafloxacin
Ampicillin	Fluticasone propionate	Sertraline
Anhydrochlortetracycline	Furosemide	Simvastatin
Anhydrotetracycline	Gemfibrozil	Sulfachloropyridazine
Atenolol	Glipizide	Sulfadiazine
Atorvastatin	Glyburide	Sulfadimethoxine
Azithromycin	Hydroclorothiazide	Sulfamerazine
Benzoylecgonine	Hydrocodone	Sulfamethazine
Benztropine	Hydrocortisone	Sulfamethizole
Betamethasone	Ibuprofen	Sulfamethoxazole
Bisphenol A	Isochlortetracycline	Sulfanilamide
Caffeine	Lincomycin	Sulfathiazole
Carbadox	Lomefloxacin	Tetracycline
Carbamazapine	Meprobamate	Theophylline
Cefotaxime	Metformin	Thiabendazole
Chlortetracycline	Methylprednisolone	Trenbolone
Cimetidine	Metoprolol	Trenbolone acetate
Ciprofloxacin	Miconazole	Triamterene
Clarithromycin	Minocycline	Triclocarban
Clinafloxacin	Naproxen	Triclosan
Clonidine	Norfloxacin	Trimethoprim
Cloxacillin	Norfluoxetine	Tylosin
Cocaine	Norgestimate	Valsartan
Codeine	Norverapamil	Verapamil
Cotinine	Ofloxacin	Virginiamycin
DEET	Ormetoprim	Warfarin
Dehydronifedipine	Oxacillin	
		,

Table A2 - Perfluorinated Chemicals

Carboxylic Acids
Perfluorobutanoate (PFBA)
Perfluoropentanoate (PFPeA)
Perfluorohexanoate (PFHxA)
Perfluoroheptanoate (PFHpA)
Perfluorooctanoate (PFOA)
Perfluorononanoate (PFNA)
Perfluorodecanoate (PFDA)
Perfluoroundecanoate (PFUnA)
Perfluorododecanoate (PFDoA)
Sulphonic Acids
Perfluorobutanesulfonate (PFBS)
Perfluorohexanesulfonate
(PFHxS)
Perfluorooctanesulfonate (PFOS)
Perfluorooctane sulfonamide
(PFOSA)

Table A3 - Personal Care Products and Pharmaceuticals (Supplemental and optional)

Amsacrine	Lomustine
Azathioprine	Medroxyprogesterone acetate
Busulfan	Melphalan
Carmustine	Metronidazole
Chloramphenicol	Medroxyprogesterone acetate
Citalopram	Melphalan
Clotrimazole	Metronidazole
Colchicine	Moxifloxacin
Cyclophosphamide	Norethindrone
Daunorubicin	Oxazepam
Diatrizoic acid	Rosuvastatin
Doxorubicin	Tamoxifen
Drospirenone	Teniposide
Etoposide	Venlafaxine
Iopamidol	Zidovudine

WASHINGTON STATE DEPARTMENT OF ECOLOGY AQUEOUS SAMPLES

Project Name: URBAN WATER - ELLIOTT BAY

PERFLUORINATED ORGANIC ANALYSIS AXYS METHOD: MLA-060

4499: L19747-1 and -3

28 June 2013

NARRATIVE

This narrative describes the analysis of two aqueous samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 11th of June 2013. Details of sample conditions upon receipt are provided on the Sample Receiving forms included in the Sample Documentation section of this data package. The samples were stored at 4°C prior to sample preparation, extraction and analysis.

Some documentation discrepancies were noticed between the Chain of Custody record and the sample labels by the analyst during the login of the samples. The client was notified of discrepancies and the details of the action taken have been included in the Sample Documentation section of the data package.

SAMPLE EXTRACTION AND ANALYSIS

Sample extraction, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-060: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Aqueous Samples by LC-MS/MS*. A method summary (MSU-060) of AXYS Method MLA-060 is included in the data package.

The samples and QC samples (a procedural blank and an Ongoing Precision and Recovery (OPR)) were analyzed in a batch named WG43899, the composition of which is shown on the Correlation Table and on the Batch List accompanying the extraction workup sheets. The procedural blank and the OPR were prepared using Canadian Springs water.

An accurately weighed sample (approximately 1L) was spiked with ¹³C-labelled quantification standards, and extracted and cleaned up using SPE cartridges. The cartridges were eluted with methanolic 0.3% NH₄OH. The resulted extract was instrumentally analyzed using HPLC/MS-MS.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Quadratic quantification equations with 1/X weighting fit were determined from a multipoint calibration series prepared alongside the samples. Formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in Analysis Chromatography section of the data package.

Alternate transitions are acquired for several analytes including PFOA, PFBS, PFHxS and PFOS. These transitions are listed in the method summary and may be used if necessary to avoid interference. Both

transitions are acquired and are present in the raw data (ie PFOA-1, PFOA-2) but only one transition is reported in the final reports.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data validation chemists made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard (CS0) or the sample specific detection limit, whichever was greater.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown, data is not reported beyond the measured calibration range.

REPORTING CONVENTIONS

For internal tracking, Axys assigned the Washington State Dept of Ecology a contract number 4499. Samples were logged under unique laboratory identifiers L19747-X, where X is a numeral. All data reports reference both the Axys ID and the client sample identifier. To assist in locating data, a table correlating AXYS ID with the client sample number is also included in this Data Package. The report forms were generated using Laboratory Information Management Software (LIMS).

Suffixes are added to the Axys IDs such that each GC-MS acquisition is uniquely identified. The suffixes appearing in this data package are:

i = instrumental re-analysis performed on the sample extract

The following laboratory qualifier flags were used for this data package:

U = identifies a compound that was not detected.

V = surrogate recovery not within method control limits

The results were reported with concentration units of nanograms per liter (ng/L) with concentrations and detection limits provided to three significant figures. The analysis results for each sample are provided on Analysis Report forms 1A and 2.

QA/QC NOTES

Samples and QC samples were analyzed in one analysis batch and were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR, sample duplicate and labeled compound recovery specifications were met with the following exceptions:

The recovery of ¹³C₂-PFDoA in 1306020-05 (AXYS ID: L19747-1) did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

ANALYTICAL DISCUSSION

The CS6 and CS7 calibration solutions were accidently injected prior to the procedural blank (AXYS ID: WG43889-101); therefore, the procedural blank and samples 1306020-05 and 1306020-32 (AXYS IDs: L19747-1 and -3, respectively were instrumentally re-analyzed to confirm possible instrumental carry-over. The re-analysis data showed that the original analysis data was affected by carry over and the re-analysis data are reported (indicated by the test suffix 'i' added to the AXYS ID).

DATA PACKAGE

This data package is assigned a unique identifier, DPWG44058, shown on the title page of this data package. Includes the following documentation after this narrative:

- Method Summary
- Method Detection Limit Study
- Sample Correlation Table
- Sample Receiving Documentation
- RFQQ Request for Qualifications and Quote
- Standard Solution Preparation Records
- Extraction work sheets
- Sample Data Reports (in order of AXYS Sample ID)
- Laboratory QC Data Reports
- Instrumental QC Data Reports (organized by analysis date)
- Sample Raw Data (in order of AXYS ID)
- Laboratory QC Sample Raw Data
- Instrument Run (injection) Log
- Instrument QC Raw Data
- Supplemental Unvalidated data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Jason MacKenzie, B.Sc.,

Product Development Chemist

28-June-2013 Date Signed

Method Summary

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Aqueous Samples by LC-MS/MS by AXYS Method MLA-060 Rev. 10 Ver. 04

Method MLA-060 describes the analysis of perfluorinated organic compounds (PFC) in aqueous samples. Typical quantification limits are in the range of 1 - 2 ng/L for a 0.5 L sample size.

ANALYTES OF INTEREST

Perfluorobutanoate (PFBA)	Perfluorobutanesulfonate (PFBS)
Perfluoropentanoate (PFPeA)	Perfluorohexanesulfonate (PFHxS)
Perfluorohexanoate (PFHxA)	Perfluorooctanesulfonate (PFOS)
Perfluoroheptanoate (PFHpA)	Perfluorooctane sulfonamide (PFOSA) 1
Perfluorooctanoate (PFOA)	
Perfluorononanoate (PFNA)	
Perfluorodecanoate (PFDA)	
Perfluoroundecanoate (PFUnA)	
Perfluorododecanoate (PFDoA)	

EXTRACTION AND CLEANUP

Sample size may be up to 1000 mL. Samples are stored in HDPE (high density polyethylene) containers. Samples are filtered, adjusted to pH 6.5, spiked with surrogate standards and extracted by solid phase extraction (SPE) using weak anion exchange cartridges. Wash and elution procedures are chosen to meet various analysis requirements. The eluates are spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through SPE in the same way as the samples.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches. The composition of a batch is detailed on a batch sheet. Each batch has the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks Blanks are analyzed with a minimum frequency of 5% of client samples.
- Duplicates With each analysis batch containing greater than six (6) test samples, or as required by contract, a duplicate sample is analyzed, provided there is sufficient sample.
- Matrix Spike/Matrix Spike Duplicate analyzed upon client request.
- OPR (Spiked Reference Sample) OPRs are analyzed with a minimum frequency of 5% of client samples.

QC Specification: Procedural Blank Levels and OPR Recoveries

Analyte		Procedural Blank Level ng/sample ²	OPR Recovery Range (%) ¹
Perfluorobutanoate	(PFBA)	<0.25	80 – 120 ¹
Perfluoropentanoate	(PFPeA)	<0.25	80 – 120 ¹
Perfluorohexanoate	(PFHxA)	<0.25	80 – 120 ¹
Perfluoroheptanoate	(PFHpA)	<0.25	80 – 120 ¹
Perfluorooctanoate	(PFOA)	<0.25	80 – 120 ¹
Perfluorononanoate	(PFNA)	<0.25	80 – 120 ¹
Perfluorodecanoate	(PFDA)	<0.25	80 – 120 ¹
Perfluoroundecanoate	(PFUnA)	<0.25	80 – 120 ¹
Perfluorododecanoate	(PFDoA)	<0.25	80 – 120 ¹
Perfluorobutanesulfonate	(PFBS)	<0.25	70 - 130
Perfluorohexanesulfonate	(PFHxS)	<0.25	70 – 130
Perfluorooctanesulfonate	(PFOS)	<0.25	70 – 130
Perfluorooctane sulfonamide	(PFOSA)	<0.25	70 – 130

¹ Marginal exceedance allowance – recovery for 2 compounds may be 75-125% and for one compound 70-130%.

QC Specification: Surrogate Standard Recoveries (Calibration Solutions and Samples)

Surrogate Standard	Recovery Range ¹
¹³ C ₄ -Heptafluorobutyric acid (¹³ C ₄ -PFBA)	20 - 150%
¹³ C ₂ -Perfluorocaproic acid (¹³ C ₂ -PFHxA)	40 - 150%
¹³ C ₂ - Perfluorooctanoic acid (¹³ C ₂ -PFOA)	40 - 150%
¹³ C ₅ -Heptadecafluorononanoic acid (¹³ C ₅ -PFNA)	40 - 150%
¹³ C ₂ - Perfluorodecanoic acid (¹³ C ₂ -PFDA)	40 - 150%
¹³ C ₂ -Perfluoro-n-(1,2)dodecanoic acid (¹³ C ₂ -PFDoA)	40 - 150%
¹⁸ O ₂ -Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	40 - 150%
¹³ C ₄ -Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	40 - 150%
¹³ C ₈ -Perfluoro-1-octanesulfonamide (¹³ C ₈ -PFOSA)	40 - 150%

¹ Lower recoveries may be accepted based on application and professional judgment

Reporting limits (based on the lowest calibration standard and routine final extract volume of 4 mL) may exceed the stated blank criteria.

QC Specification Table: Other Parameters

QC Parameter	Specification				
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard.				
Initial Calibration (native compounds)	Run initially, and as required to maintain calibration verification and instrument sensitivity.				
	(1/x) weighted quadratic, exclude origin.				
	Calculated conc. 75-125 % of actual (lowest cal may be 70-130%), $R^2 > 0.990$.				
	Surrogate recoveries must fall within the same limits as for the samples in the table above.				
Continuing Calibration	Run every 20 samples or more frequently, quantify against I-CAL.				
Verification (native compounds)	Calculated conc. 70-130% actual for a maximum of three compounds with the remainder 80–120 % of actual.				
	Surrogate recoveries must fall within the same limits as for the samples the table above.				
Instrumental Carryover and Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: \leq 0.3 % carryover and area response of analytes in instrument blank \leq 800.				
Duplicate Samples or	If conc. > 5 times R.L., RPD < 40%				
MS/MSD	If conc. < 5 times R.L., difference between pairs < R.L.				

ANALYSIS BY LC-MS/MS

Analysis of sample extracts for perfluorinated organics by HPLC-MS/MS is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The mass spectrometer is run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Instrument specifications:

Instrument	Waters 2690 or Waters 2795 HPLC, Micromass Quattro Ultima MS/MS
LC Column	Waters Xterra MS C_{18} Reverse Phase C18, 10.0 cm, 2.1 mm i.d., 3.5 μ m particle size (or equivalent)
Ionization	Negative Ion Electrospray
Acquisition	MRM mode, unit resolution
Injection Volume	15 μL

LC-MS/MS Operating Conditions:

	LC Gradien	General LC Conditions				
Time (min)	Flow mixture ¹	LC Flow Rate Program	Gradient Curve	Column Temp (°C)	40	
0.0	15% eluent A 85% eluent B	0.15 mL/min	1	Max Pressure (bar)	300	
1.0	15% eluent A 85% eluent B	0.15 mL/min	1	MS Conditions		
5.0	70% eluent A 30% eluent B	0.20 mL/min	4	Source Temp (°C)	120	
8.5	100% eluent A	0.20 mL/min	4	Desolvation Temp (°C)	300	
11	100% eluent A	0.20 mL/min	4	Capillary Voltage	2.75	
11.3 - 14.5	15% eluent A 85% eluent B	0.20 mL/min	2	Gases	~70L/hr cone ~300L/hr desolvation	

¹ Eluent A = 90% CH₃CN (aqueous)

Eluent B = 13 mM ammonium acetate in 0.1% acetic acid (aqueous)

Initial calibration of the LC-MS/MS instrument is performed by the analysis of six or more calibration solutions. A mid-level calibration standard is analyzed to verify the initial calibration after every 20th sample (including QC samples) injected at a minimum. All calibration solutions go through the same SPE extraction/cleanup procedures as the samples.

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 S:N for parent ion to daughter ion transition.
- Compound retention time must fall within 0.4 minutes of the predicted retention times from the daily Calibration Verification. Natives with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION AND DATA REPORTING PROCEDURES

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors.

Quadratic calibration equations are determined from a multi-point calibration series with 1/X weighing fit as described by the following general equation:

a,b,c are empirical constants

Concentrations in samples are determined as:

$$Sample\ Conc = \frac{-b \pm \sqrt{b^2 - 4c \left(a - \left(\frac{area\ of\ t\ arg\ et}{area\ of\ sur}\ x\ weight\ sur\right)\right)}}{2c\ x\ sample\ size}$$

The recovery of the surrogate standard is calculated **(by internal standard quantification against the recovery standard using an average RRF)** and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

Sample Specific Detection Limits (SDL) are determined .by converting the area equivalent of 3.0 times the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

Results are reported to the greater of the SDL or the concentration equivalent to the lowest calibration standard analyzed.

Analytes, Ions and Quantification References

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Target Analytes				
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 (169) ¹	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutanesulfonate (PFBS)	6.3	299	80 (99) ¹	¹⁸ O ₂ -PFHxS
Perfluorohexanesulfonate (PFHxS)	7.2	399	80 (99/119) ¹	¹⁸ O ₂ -PFHxS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 (99) ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₈ -PFOSA
Surrogate Standard				
¹³ C ₄ -Heptafluorobutyric acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorocaproic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C ₄ -PFOA
¹³ C ₅ -Heptadecafluorononanoic acid (¹³ C ₅ -PFNA)	7.4	468	423	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -PFOUEA
¹⁸ O ₂ –Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	7.2	403	84 (103) ¹	¹³ C ₂ -PFOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 (99) ¹	¹³ C ₂ -PFOUEA
¹³ C ₈ -Perfluorooctane sulfonamide (¹³ C ₈ -PFOSA)	9.9	506	78	¹³ C ₂ -PFOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -PFOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Alternate transition within brackets, may be used if necessary to avoid interference.

AXYS Analytical Services Ltd PFCs by LC-MS/MS Method Detection Limit for PFCs in Aqueous samples

MDL Results

Axys Method: MLA-060 Rev 09, modified with new surrogate ¹⁸O₂-PFHxS (equivalent to MLA-060 Rev 10)

Analysis Type: Perfluorinated Organic Compounds (PFC)

Instrument Type: LC-MS/MS Matrix Spiked: AQUEOUS Axys Workgroup: WG34009 Column Type: C18MS

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, April 29, 2002, no iteration

MDL 1 Data Filename:	FC0G_474 S: 23	Sample ID:	WG34009-102	Instr. Analysis Date:	24-Sep-2010
MDL 2 Data Filename:	FC0G_474 S: 24	Sample ID:	WG34009-103	Instr. Analysis Date:	24-Sep-2010
MDL 3 Data Filename:	FC0G_474 S: 25	Sample ID:	WG34009-104	Instr. Analysis Date:	24-Sep-2010
MDL 4 Data Filename:	FC0G_474 S: 26	Sample ID:	WG34009-105	Instr. Analysis Date:	24-Sep-2010
MDL 5 Data Filename:	FC0G_474 S: 27	Sample ID:	WG34009-106	Instr. Analysis Date:	24-Sep-2010
MDL 6 Data Filename:	FC0G_474 S: 28	Sample ID:	WG34009-107	Instr. Analysis Date:	24-Sep-2010
MDL 7 Data Filename:	FC0G_474 S: 29	Sample ID:	WG34009-108	Instr. Analysis Date:	25-Sep-2010
MDL 8 Data Filename:	FC0G_474 S: 30	Sample ID:	WG34009-109	Instr. Analysis Date:	25-Sep-2010
MDL 9 Data Filename:	FC0G 474 S: 31	Sample ID:	WG34009-110	Instr. Analysis Date:	25-Sep-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 500 mL of water

	wetnoa							
	Detection	Spiking Level	Number of	Mean	Standard	Student's	Mean	Est MU
Native Analyte	Limit, ng/L	ng/L	Observations	ng/L	Devation	t-Value	% rec.	(2rsd)
PFBA	0.47	1.00	9	1.130	0.162	2.896	113	32
PFPEA	0.29	1.00	9	1.057	0.099	2.896	106	20
PFHXA	0.20	1.00	9	0.620	0.069	2.896	62	14
PFHPA	0.28	1.00	9	1.019	0.098	2.896	102	20
PFOA-1	0.44	1.00	9	0.863	0.153	2.896	86	. 31
PFNA	0.40	1.00	9	1.059	0.138	2.896	106	28
PFDA	0.39	1.00	9	0.980	0.135	2.896	98	27
PFUNA	0.44	1.00	9	1.140	0.152	2.896	114	30
PFDOA	0.31	1.00	9	0.871	0.107	2.896	87	21
PFBS-1	0.58	2.00	9	2.054	0.202	2.896	103	20
PFHXS-1	0.72	2.00	9	2.568	0.248	2.896	128	25
PFOS-1	0.90	2.00	9	1.946	0.311	2.896	97	31
PFOSA	0.20	1.00	9	0.886	0.068	2.896	89	14

Washington State Department of Ecology

CORRELATION TABLE

Lab Name: AXYS Analytical Services Ltd. Project Manager: Georgina Brooks Project: N/A Contract No: 4499 Project Name:Urban Waters - Elliott Bay AXYS Method: MLA-060 Data Package Identification: DPWG44058 Program: Aqueous Samples Client Sample No. Lab Sample ID LAB BLANK WG43899-101 OPR WG43899-102	
Project: N/A Project Name: Urban Waters - Elliott Bay Data Package Identification: DPWG44058 Client Sample No. Lab Sample ID LAB BLANK Contract No: 4499 AXYS Method: MLA-060 Program: Aqueous Samples WG43899-101	
Data Package Identification: DPWG44058 Program: Aqueous Samples Client Sample No. Lab Sample ID LAB BLANK WG43899-101	
Client Sample No. Lab Sample ID LAB BLANK WG43899-101	
LAB BLANK WG43899-101	
LAB BLANK WG43899-101	
OPR WG43899-102	
1306020-05 L19747-1	
1306020-32 L19747-3	

CHAIN OF CUSTODY

2045 Mills Road West TEL: (250) 655-5800 Sidney, British Columbia, Canada V8L 5X2 FAX: (250) 655-5811 AXYS CLIENT #: 4499

Company Address Address Address Address Address Address Contact Phone FAX 360-407-6884 Email Margaret dutch@ecc. Project NameNumber: Undout Detrin Project NameNumber: Undout Detrin Project NameNumber: Attitut Bay Profession Matrix Date Time Type/No. Y/N Lab use only Standard Tyde/No. Y/N Lab use only	DEPORT TO	WW.0107.75	
Address Address Address Address PUBOX 47600 Contact Phone FAX 360-407-6001 FAX 360-407-6884 E-mail Morrowet dutch (Decy Elifoli Bour Phone Matrix Date Fine Hone Matrix Fine Hone Matrix Fine Hone Matrix Fine Hone Fine March Dutch Signature: Magnet Dutch Signature: Magnet Dutch Signature: Magnet Dutch AXYS Lab ID Time Time Nye/No. Y/N Lab use only TA 174 (1306020-09) TO 306 Matrix TO 306 Dutch Time Received by (Signature) Maco Of Supplied Security (1) Security (1) Signature) Maco Of Supplied Security (1) Signature) Macon Of Supplied Security (1) Signature	REPORT TO:	INVOICE TO:	ANALYSIS REQUESTED
Contact Phone 369-707-6091 Phone FAX 860-407-6884 E-mail Project Name/Number: Curbound test of the following sampling content sample Identification Matrix Date Time Type/No. 173(1306020-09) Standard Preservative 173(1306020-09) Standard Preservative 173(1306020-09) Standard Preservative 173(1306020-09) Standard Preservative AXYS Lab ID Lab use only Time Type/No. 174(1306020-09) Standard Preservative AXYS Lab ID Lab use only Standard Preservative AXYS Lab ID Lab	-VVI DEDICI CAOOG		1 3 4 1
Contact Phone	Address 300 Det mond Dest	Address	a &
Phone 3cel-107-6201 Phone			I 15
Phone 3cel-107-6201 Phone	014maia (298504-760)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
FAX E-mail Mosque-et. dutch@ecg. Project Name:Number: J Wa	Contact Madaid Dutch	Contact	
E-mail Margas et. dust hoecus. Project Name: Number: Justich Signature: Margas et Dustich Elli Dit Bous Profession Sampling Sampling Sontainer Type/No. Signature: Margas et Dustich Elli Dit Bous Profession Sampling Sampling Sontainer Type/No. Matrix Date Time Type/No. Sampling Sontainer Preservative AXYS Lab ID Lab use only Sta. 174 (1306020-05) works 4713 0950 m. 11 pts/lic N LP747-1 Sta. 173 (1306020-05) works 4713 0950 m. 11 pts/lic N LP747-1 Sta. 173 (1306020-05) 1050 fm -2 1 (soa bubbles seenin rinse) Sta. 201 (1306020-032) 1142 fm -3 1 Sta. 203 (1306020-333) 1143 fm -3 1 Sta. 203 (1306020-333) 1143 fm -3 1 Sta. 203 (1306020-333) 1143 fm -3 1 Sta. 2	Phone 3695-407-6021	Phone	
Project Name/Number: June 1970 Sampler's Name: Magazet Distribution of Signature: Maga	FAX 360-407-6884	FAX	
Project Name/Number: June 1970 Sampler's Name: Magazet Distribution of Signature: Maga	E-mail MOTO FOT dutable les	E-mail	
Signature: Magacet Detah Ellioff Bour Preservative AXYS Lab ID Sampling Sampling Sampling Sampling Time Type/No. Y/N Lab use only Sta i 74 (i 3 06020-05) water 47/13 0950am 11 postic V L9747-1 Sta i 73 (1306020-04) 1050am -2 (soap bubbles seen in riase) Sta 201 (1306020-32) 1142 Am -3 (soap bubbles seen in riase) Sta 201 (306020-33) V 3323pm V -4 (soap bubbles seen in riase) Relinquished by (Signature) Date Time Received by (Signature) Relinquished by (Signature) Date Time Received by (Signature) Time Received by (Signature) Time Time Time Time Received by (Signature) Time Ti	110000010110110110110110110110110110110	Sampler's Name: Morphotet Dutth	1 1 1 1 1
Client Sampling Matrix Date Time Type/No. Preservative AXYS Lab ID Sta 174 (1306020-05) World (1713 0950au 11 profile V 1717 - 1	urba ubterstartative- J.		127 1 1
Client Sample Identification Matrix Date Time Type/No. Y/N Lab use only L9747-1 SOAD bubbles Seenin ria Se) STO 173 (1306020-04) STO 201 (1306020-32) STO 201 (1306020-33) Y 132 20m Y/N Lab use only L9747-1 SOAD bubbles Seenin ria Se) STO 201 (1306020-33) Y 132 20m Y/N Lab use only L9747-1 SOAD bubbles Seenin ria Se) STO 201 (1306020-33) Y 132 20m Y 1 (soap bubbles Security In Se) Relinquished by (Signature) Date Time Received by (Signature) Received by (Signature) August Act 39 Courier Waybill No.	FILEHO DUCVIDEASIDED	Tracques Track	
3ta 174 (1306020-09) water 4713 0950am 11 plastic N L9747-1 1 (soap bubbles seen in rinse) sta 173 (1306020-09) 1050am 1242 am 1-3 1 (soap bubbles seen in rinse) 3to 201 (1306020-33) V 13:25am V -4 1 (soap bubbles securin vinse) 1142 am 1-3	Client Sample Identification		
5to 173 (1306020-04)			
Sto. 201 (130 60 20 - 32)	Ja 173 (1306020-09) WORD 61+113		
Relinquished by (Signature) Date Time Received by (Signature) No 2010 J. J. J. G. 39	STO 173 (1306020-04)		1 (soapboddies seenin rinse)
Relinquished by (Signature) Date Time Received by (Signature) Waybill No.	3 3 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2		
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39	5to 202 (3060 20-33) V V	13125pm V -4	1 (soa phubbles secrinvinse)
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
No soin 1) the 6/10/13 6:30 1 2 2 1 1 1 2 6:39			
Maggie Dutet 6/10/13 6:30 pur pate of Mh Time 6/10/13 6:39	Relinquished by (Signature) Date Time	Received by (Signature) / Courier	Waybill No.
Third to the state of the state	No said of with 6/10/13 6:30.	De 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
Relinguished by (Signature) / Date Time Received by (Signature)	Relinguished by (Signature) Date Time		
G/1/13 (0:30 Date WN13 Time 0:50 Sample Receipt	G/1/13 11:30	Dist. 11 /1/0/13	Sample Receipt
Remarks / Type Of Preservative Cooler	Remarks / Type Of Preservative	Date 11 Oct 12 11me 10 . 50	Cooler
Temp °C	· · · · · · · · · · · · · · · · · · ·	Temp °C	
Custody Seal #		Custody Se	al#
Seal Intact Y / N			
Sample Tags Y / N	,	Sample Tag	s Y/N

CHAIN OF CUSTODY

2045 Mills Road West TEL: (250) 655-5800 Sidney, British Columbia, Canada V8L 5X2 FAX: (250) 655-5811 AXYS CLIENT #: 44 99

Sidney, British Columbia, Canada	VOL JAZ TAA.	(230) 033-	3011				AX10 C)LILIY	ιπ. [-{ !	/		
REPORT TO:			INVOICE TO);				1	ANALYS	SIS REQU	JESTED		
Company WA Dept	- of Ecol	looi .	Compan	y sa	Ne			3-	57				
Address 300 Desm	and Dica	5501	Addres					[<u>-</u> 9 -	₹				
DO BOY U	7600	/		***************************************				S.	Ŕ.	-			
	WA 9850	4-76a						- X	73				
Contact A	+ 10	7100) Conta	ct				l Ğ	b			į	
Phone 22 0 40 7	= 6 0 11		Phon	e] ~ .	ā				
FAX 2/0-4/07-/	COL		FA					Rinsaked	49				}
	2539							i	R)				
E-mail Margaret du	mangea	1. wa.9	00	ame: Masc	SEE DO	Ach		PRE	h				
Project Name/Number: Jurban Inhahve-Elliott Bay	LONE ST	Lelocy		, , , , , , ,				R- \	+=				
THIT CALVE - ELLIOTT BOLY				Maigau		1		1 mgm				ļ	
Client Sample Identification	1 1	Sampling	Sampling	Container	Preservative		Lab ID						
1	Matrix	Date	Time	Type/No.	Y/N		se only	_	<u> </u>				
sta 194 (1306020-25)	water 6	17/13	1Lphstic	1406pm	N	L1974	8-1		(500	Dbub	bles.		in
Sta187 (1306020-18)	6	10/13		0904			2_	L			sax		
3ta 192 (1306020-23				1092			3	1		10	we ?	.09.1	ctron)
sta 195 (1306020-26)			l l	1127			-y	1					
sta 193(1306020-24				1311			-5	1					
sta196/1306020-271	1	1	4	1406			-60						
				(
				-									ı

	<u> </u>			×									
Relinquished by (Signature)	Date Ti	ime	Received by	(Signature)		100	Courier	L		l	ill No.		i
1/1/2 1 2 4 4		39m	7 7 V	1. 1	Time 6 - 10	-13 (00)	Joaner			wayı	m ivo.		
Magace Dutch 6			Date Date Date Date Date Date Date Date	(Signature)	Time G								I
Relinquisted by (Signature)	' /	ime /	I I I I I	(Signature) N	$(\cdot, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	<u>~~</u>		S	Sample R	eceipt			
Harry Man	11/15 10.	30	Date \ \ \ \ \ \ \ \ \ \	INIS	Time U.20)				-	Ol		
Remarks / Type Of Preservative	,						Temp °C				Cooler		
							Custody Sea	al #					
							Seal Intact		Y/N				
j.							<u> </u>						
1		ŀ					Sample Tag	S	Y/N			j.	

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill : Date Shipped:		Yes)No 10-JUN-13		Waybill #; Date /Time	Received:	HAND DEL 11-JUN-13	IVERED 11 JUI 10:20	N 13 #1	
AXYS Client &	Contract #	4499-Washing	gton State	Dept of Ecolog	ý				
Project Number:				Receipt No	:	WB14891		1	/
Login Number:			~~~				<u> </u>	hW	<u> </u>
Axys Sample ID's:	MGIERDEN LI9747 - Water	1 to 4 &	L1974	8-1+66	ma	vde	. Signature:	XX	
Condition of Shippir Temperature upon F	•	_*_	ed on wet ice,	temp blank presen	t .		Thermom Corrected Temper		3270 .5 Celcius
Custody Seals:	Shipping Contain	ers Yes(No)	ntact Yes /No	Seal Num	bers Yes/	No			
	Samp	es Yes No	ntact Yes /No	Seal Num	bers Yes/	'No			
Date & T		Yes /No Yes /No Yes (No Yes /No Yes /No		Tracking Report /Pa Sample Tag Numbe Sample Type Preservative Added Preservation Reques	rs	Yes No Yes No Yes No Yes No Yes No		,	
Sample Tags			Yes (No) (Yes)/No		-				
Sample Labels	Defended to C	20	(Yes)/No		Information	Δατρος	Yes /No		
• .	ss Referenced to C		Yes /No		Information		Yes /No		
	s Referenced to Sar s Referenced to CO		Yes /No		Information	=	Yes /No		
	The COC The b D's that, P4 (13000) P4 on la	offle laboristics with	els only	listed Sey y had part on the Co	of H		- Orique Mation 31 ::		
Action Taken: Shown in analysi	Contacted brackets s produc	project N this is (tinformat	ranager Ponsista	, the Sampl ut with p each b	e ID's veriou ottle	logged s Subr	in are t vissions. in as in	le no	umbers ted.

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:48 AM

Login Number: L19748

Account: 4499

Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

for scanning Perocks 14-June-2013

Page: 1 of 2

			9	
Axys ID versus Client Sample		Receiv	/ed Due	PR
	identification			110
L19748-1	Character MUE A Floor	11-JUI	N-13	
	Storage: WIF-4, Floor			
1306020-25	Project #: URBAN WATERS - EBAY			
07-JUN-13 14:06	Description: Sta 194			
	Bescription, Clario-			
EDataDeliv	PPCP EDD		:	USD
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		;	USD
D.Package	PPC DATA PKG LIST 5		:	USD
Aqueous	PP075.1AP		:	USD
Aqueous	PP075.2AC		:	USD
Aqueous	PP075.3AN		:	USD
Aqueous	PP075.5AP		:	USD
ANY	SAMPLE RECEIPT	1	:1 L plastic	USD
L19748-2		11-JUI	N-13	
	Storage: WIF-4, Floor			
1306020-18		J		
10-JUN-13 09:04	Project #: URBAN WATERS - EBAY			
	Description: Sta 187			
Comments: Backup	for either L19748-1 or -3	1	: 1 L plastic	USD
	SAMPLE RECEIPT	<u>'</u> 11-JUI		
L19748-3	Storage: WIF-4, Floor	11-301	14-13	
1000000 00	Citago, Will 1, 1188			
1306020-23 10-JUN-13 10:02	Project #: URBAN WATERS - EBAY			
10-3014-10 10.02	Description: Sta 192			
EDataDeliv	PPCP EDD .		:	USD
D.Package	PPC DATA PKG LIST 4		:	USD
Aqueous	PP075.4BP		:	USD
ANY	SAMPLE RECEIPT	1	: 1 L plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:48 AM

Login Number: L19748

Account: 4499 Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

Page: 2 of 2

Axys ID versus Client Sample		Recei	ved Due	PR
L19748-4		11-JU	N-13	***************************************
	Storage: WIF-4, Floor			
1306020-26				
10-JUN-13 11:27	Project #: URBAN WATERS - EBAY			
	Description: Sta 195			
	· · · · · · · · · · · · · · · · · · ·			USD
EDataDeliv	PPCP EDD		:	
D.Package	PPC DATA PKG LIST 1		:	USD
D.Package	PPC DATA PKG LIST 2		:	USD
D.Package	PPC DATA PKG LIST 3		:	USD
D.Package	PPC DATA PKG LIST 5		:	USD
Aqueous	PP075.1AP		:	USD
Aqueous	PP075.2AC		:	USD
Aqueous	PP075.3AN		:	USD
Aqueous	PP075.5AP		1.	USD
ANY	SAMPLE RECEIPT	1	:1 L plastic	USD
L19748-5		11 - JU	N-13	-
	Storage: WIF-4, Floor			
1306020-24				
10-JUN-13 13:11	Project #: URBAN WATERS - EBAY			
	Description: Sta 193			
EDataDeliv	PPCP EDD		:	USD
D.Package	PPC DATA PKĠ LIST 4		:	USD
Aqueous	PP075.4BP		:	USD
ANY	SAMPLE RECEIPT	1 .	: 1 L plastic	USD
L19748-6		11-JUN-13		
	Storage: WIF-4, Floor			
1306020-27				
10-JUN-13 14:06	Project #: URBAN WATERS - EBAY			
	Description: Sta 196			
•	for either L19748-4 or -5		4.1158	1100
ANY	SAMPLE RECEIPT	1	: 1 L plastic	USD

Login Chain of Custody Report (In01)

Jun. 14, 2013 11:45 AM

Login Number: L19747

Account: 4499

Washington State Dept of Ecology

Project: URBAN WATERS - EBAY

for scanning Brooks 14-June -2013

Page: 1 of 1

Axys ID versus Client Sample		ъ.	l Do	PR
	identification	Recei		FK
L19747-1	Storage: WIC-2, Shelf C	11-JU	N-13	
	Storage: WIG-2, Shell G			
1306020-05 07-JUN-13 09:50	Project #: URBAN WATERS - EBAY			
07-JUN-13 09:50	Description: Sta 174			
EDataDeliv	PFC EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
Aqueous	FC060		:	USD
ANY	SAMPLE RECEIPT	1	:1 L plastic	USD
L19747-2		11-JUN-13		
	Storage: WIC-2, Shelf C			
1306020-04				
07-JUN-13 10:50	Project #: URBAN WATERS - EBAY			
O D . In	Description: Sta 173			
Comments: Backup ANY	SAMPLE RECEIPT	1	: 1 L plastic	USD
	SAMPLE RECEIPT	11-JU		
L19747-3	Storage: WIC-2, Shelf C	11-30	14-12	
1306020-32	otologo. Wio 2, olion o			
07-JUN-13 11:42	Project #: URBAN WATERS - EBAY			
07 0014 10 11.12	Description: Sta 201			
EDataDeliv	PFC EDD		:	USD
D.Package	PFOS DATA PKG		:	USD
Aqueous	FC060		:	USD
ANY	SAMPLE RECEIPT	1	: 1 L plastic	USD
L19747-4		11-JUN-13		
	Storage: WIC-2, Shelf C			
1306020-33	·			
07-JUN-13 13:25	Project #: URBAN WATERS - EBAY			
O	Description: Sta 202			
Comments: Backup	for L19747-3 SAMPLE RECEIPT	1	: 1 L plastic	USD
4INT	SAIVIFLE RECEIT I	1	, i L piasuo	U00

Washington State Department of Ecology Request for Qualifications and Quote (RFQQ)

2013 MEL Cx 17 PSEMP Elliot Bay PPCP & PFC 2013

Laboratory Services

This Request for Quote and Qualifications will support an agreement with the Department of Ecology for the Contract laboratory to provide analytical services to the Department of Ecology.

Date Issued: 5/14/2013 May 20, 2013 Late submissions will not Responses due by 4:00 PM Port Orchard WA time: be considered. Please respond via email to: Karin.Feddersen@ecy.wa.gov

Expected Work Commitment

Title: PSEMP Elliot Bay PPCP & PFC 2013

Scope of Qualifications:

- A. Provide analytical services to the Washington State Department of Ecology (Ecology). Details and specifications are provided in the attached Scope of Work (SOW). The apparent successful vendor must:
 - 1. Be currently accredited by the Ecology's Laboratory Accreditation Unit for all analyses described in this SOW for which accreditation is available.
 - 2. Have a minimum of 5 years experience in the method.
 - 3. Submit proof that they can provide the analysis as requested, including but not limited to a Method Detection Limit (MDL) supporting the requested reporting limits. Provide documentation of a standard analyzed at the reporting limit requested for this SOW.
 - 4. Submit blank data proving that they can meet the required blank contamination limits described in the SOW.
 - 5. Provide documentation of the quantitation limits (based on the lowest calibration standard) that the instrument can achieve.
 - 6. Provide quality control limits for laboratory control samples, matrix spikes, etc., for all analyses in this SOW.
 - 7. Provide results from the most recent International Intercalibration Study.
 - 8. Provide contact name, company name, address, and phone number for 3 client references who have had the requested analyses performed on the matrices specified in the SOW, and who have reviewed the raw data for these analyses.
 - 9. Provide the analysis as requested in the attached SOW.
- B. Ecology will pay vendor when all of the following have been satisfied:
 - 1. Sample analyses and documentation performed according to this SOW.
 - 2. Deliverables sent to Ecology within 30 calendar days of vendor receiving samples.
 - 3. Sufficient documentation for assessing the bias, usability and quality of the data.
 - 4. Receipt of properly completed invoices.

Deliverables:

- C. Deliverables will include:
 - 1. Paper hardcopies or CD (fully bookmarked and searchable PDF) of all raw data and reports;
 - 2. Results in Ecology-specified EDD format described in the SOW;

Other Factors for this Work Request:

- D. Laboratories who want to perform this work must:
 - 1. Provide a 3-page maximum length description of their qualifications specific to the SOW and their intended approach to performing the analysis, electronically or in hardcopy.

Include details of preparation method to be used on these samples.

2. Submit an example work product in the form of one fully bookmarked and searchable PDF file or one bound hardcopy with a table of contents. This product must include all raw data that would be needed to perform an independent review of the results: calibration reports, chromatograms, spectra, benchsheets, etc..

EXCEPTION: If the vendor has performed these same requested analyses for Ecology within the last 3 years, and a raw data package was submitted that uses the same instrument software that is proposed to be used for this SOW, no example work product is required.

- 3. Include in the quote, electronically or in hardcopy:
 - RFQQ customer reference number or title.
 - The names of two Laboratory representatives who will be responsible for the execution of these services and communications with the Ecology project manager.
 - The name and address of the bidder's firm.
 - Minority or Women's Business Enterprise status including Certification Number, if applicable.
 - The 20 most recent method blanks for the matrix/matrices of interest in this RFQQ.
 - The 20 most recent OPRs (LCS) for the matrix/matrices of interest in this RFQQ.

Ecology does not assume responsibility for any problems with e-mail or the method of delivery chosen.

Bid Selection Process:

- E. Ecology will review each bid to determine if the bid:
 - 1. Was received by the date and time requested.
 - 2. Is complete.
 - 3. Shows a good understanding of project goals and needs.
 - 4. Relevant experience with similar environmental samples.
 - 5. Meets all technical specifications. QC limits will be evaluated from each bidder.
 - 6. Meets the specified schedule for sample analysis and reporting.
 - 7. Provides complete and clear cost information.

Ecology may request written clarifications pertaining to technical or cost elements of the bid.

The selection process will be based on cost, relevant experience, and ability to provide the specified deliverables according to schedule.

The Department of Ecology reserves the right to reject any or all bids if they do not meet the above award criteria. Furthermore, the release of this RFQQ does not compel the state to purchase anything and Ecology reserves the right to refrain from contracting with all bidders. Any costs or liabilities associated with the preparation of your response to this RFQQ are not the responsibility of Ecology, or any of its representatives.

In the event it becomes necessary to revise any part of this RFQQ, addenda will be provided to all persons/firms who receive the RFQQ.

It is important that all potential costs are included in your bid; **Ecology cannot reimburse for costs not included in the successful bid**.

Ecology's Right to Cancel:

F. Ecology reserves the right to cancel this Work Request at any time, reject any and all responses received, award more than one Work Order, and/or not execute a Work Order from this Work Request without penalty to the agency. The release of this solicitation document does not obligate Ecology to contract for the services specified in this Work Request. The agency shall not be liable for any costs incurred by a Vendor in preparation of a proposal submitted in response to this Work Request, conducting interviews, acquiring accreditation, or any other activity related to responding to this Work Request.

Waive Minor Administrative Irregularities:

G. Ecology reserves the right to waive minor administrative irregularities contained in any Response. Additionally, Ecology reserves the right, at its sole option, to make corrections to Vendors' Responses when an obvious arithmetical error has been made in the price quotation. Vendors will not be allowed to make changes to their quoted price after the Response submission deadline.

Errors in Response:

H. Vendors are liable for all errors or omissions contained in their Responses. Vendors will not be allowed to alter Response documents after the deadline for Response submission. Ecology is not liable for any errors in Responses. Ecology reserves the right to contact Vendor for clarification of Response contents.

In those cases where it is unclear to what extent a requirement or price has been addressed, the evaluation team(s) may, at their discretion and acting through the Agency Project Manager, contact a Vendor to clarify specific points in the submitted Response. However, under no circumstances will the responding Vendor be allowed to make changes to the proposed items after the deadline stated for receipt of Responses.

Vendor Questions:

I. Specific questions concerning this Work Request must be submitted, in writing to the Work Request Coordinator by the date and time set forth in the Estimated Schedule of Events. Questions must be transmitted by electronic mail. Only written questions will receive official written responses. Copies of all written questions and Ecology responses will be posted on the WEBS. It will be the Vendor's responsibility to monitor this website during preparation of their response. Only posted answers to questions will be considered official.

Proprietary or Confidential Information:

J. Any information contained in the Response that is proprietary or confidential must be clearly designated. Marking of the entire Response or entire sections of the Response as proprietary or confidential will not be accepted nor honored. Ecology will not accept Responses where pricing is marked proprietary or confidential, and the Response will be rejected.

To the extent consistent with <u>Chapter 42.56 RCW</u>, the Public Records Act, Ecology shall maintain the confidentiality of Vendors' information marked confidential or proprietary. If a request is made to view Vendor's proprietary information, Ecology will notify Vendor of the request and of the date that the records will be released to the requester unless Vendor obtains a court order enjoining that disclosure. If a Vendor fails to obtain the court order enjoining disclosure, Ecology will release the requested information on the date specified.

The state's sole responsibility shall be limited to maintaining the above data in a secure area and to notify a Vendor of any request(s) for disclosure for so long as Ecology retains the Vendor's information in Ecology's records. Failure to so label such materials or failure to timely respond after notice of request for public disclosure has been given shall be deemed a waiver by a Vendor of any claim that such materials are exempt from disclosure.

Agency (Project Manager): Department of Ecology (Karin Feddersen)

Phone: 360-871-8829 Email: Karin.Feddersen@ecy.wa.gov Fax: 360-871-8850

Submit completed bid packages to Karin.Feddersen@ecy.wa.gov or fax to (360) 871-8850.

SCOPE OF WORK

This Scope of Work (SOW) does not include the collection of any samples.

The Department of Ecology (Ecology) will send up to 33 samples of sediment, and request up to two sets of matrix spike/matrix spike duplicates and up to three duplicates; for Pharmaceuticals and Personal Care Products (PPCP) and Perfluorinated Compounds (PFCs). In addition, up to two water rinseate blanks will be collected for possible analysis.

See Appendix for lists of analytes. Samples must be maintained as per the methods from the time of receipt at the laboratory until preparation.

Laboratories must bid on all of the analyses, with the exception of the list in Table A3. Please provide a separate quote for these analytes.

Laboratories must provide a copy of the extraction methods as performed.

Laboratories must analyze and provide data for an independent source standard (different vendor than the calibration standards).

Bidding Laboratories must provide a list of the QC limits they adhere to for each method in this SOW.

The successful vendor will be responsible for:

A) Providing sufficient sample containers, ice chests, and blue ice for each sampling event;

OR

B) Returning any Ecology-owned ice chests and blue ice to Ecology. The estimated cost of ground shipping these items should be included in the price quote responding to this RFQQ.

The final data package is to include raw data (aka EPA Tier IV or Level 4 deliverables) and results in an electronic data deliverable (EDD) format that meets the requirements in Table 4. The EDD format is needed for loading results to Ecology's Information Management (EIM) database. Other items may be included as needed to help understand the data package.

This Agreement does not make either the Contractor or any of its employees or agents an employee or agent of Ecology.

Items for analytical services:

1. Perform all result calculations using the initial calibration as per the method. In other words, do not use a single point calibration standard.

Reporting of Results

- 1. Report all results in ng/g, dry weight.
- 2. Include a copy of the "Request for Laboratory Services" with signed and dated Chain of Custody section: this form will be provided by Ecology.
- 3. Include Case Narratives and corrective action reports.

- 4. Provide description of: analytical method used; any modifications to the method, Quality Assurance/Quality Control (QA/QC) performed and results; definitions of all data qualifiers used; and any other information that helps client understand the data package.
- 5. Provide fully validatable deliverables package: Deliverables shall include copies of all raw data necessary to perform an independent evaluation of the results, including, but not limited to initial calibration and verification standards, sample and QC chromatograms and spectra, analytical sequence (run) logs, benchsheets, standard logs and Certificates of Analysis for standards, etc.
 - A. Include a fully paginated and bookmarked Adobe Acrobat (PDF) file on compact disk (CD) and/or paginated hardcopies of all raw data with a table of contents.
 - B. Bookmark each sample and each standard chromatogram for ease of review.
 - C. Rotate landscape pages as needed so that all information is viewable left to right in the electronic file.
 - D. Clearly identify all field and QC samples with the sample number or QC name in the raw data and report.
 - E. All initial calibration (ICAL) standards and CCVs, shall be clearly identified in the raw data.
 - F. An Independent Calibration Verification (ICV) standard must be analyzed from a separate source in order to verify the initial calibration standards. The ICV must be analyzed each time a new standard curve is prepared. Provide the results of the most recent ICV with the data.
 - G. Provide before and after printouts of any and all manual integrations.
 - H. Provide analytical sequence logs that include the date, time, and filename for the initial and continuing calibrations, all field and QC samples, check standards, etc., associated with the project.
- 6. Reporting Limits (RL), Estimated Quantitation Limit (EQL equivalent to "ML" in 1668), Method Detection Limit (MDL), Estimated Detection Limit (EDL).
 - A. Maximum RLs are defined in the table below.

Table 1. Analytical Methods and Reporting Limits for PPCPs and PFCs						
Analysis	Method Reference	Reporting Limit; sediment (dry weight basis)				
PPCPs	EPA 1694 or equivalent	0.2 to 500 ppb (depending on analyte)				
PFCs	HPLC/MS/MS http://water.epa.gov/scitech/meth ods/cwa/upload/Draft- Procedure-for-Analysis-of- Perfluorinated-Carboxylic-	0.10 to 0.20 ppb (depending on analyte)				

Acids-and-Sulfonic-Acids-in-
Sewage-Sludge-and-Biosolids-
by-HPLC-MS-MS.pdf
or equivalent

- B. If any of these limits cannot be met for individual samples due to interference or other issues, contact the client to discuss action to take.
- C. Provide the Estimated Quantitation Limit for each result (EQL: based on the lowest validated standard in calibration curve). Report the EQL in the electronic results file.
- D. Provide the most recent Method Detection Limit (MDL) study results for each analyte. Include the date of the most recent MDL study in the Case Narrative.
- E. Report down to the Estimated Detection Limits (EDL) aka Instrument Detection Limits (IDL) or Sample Detection Limits (SDL) based on 2.5 times the signal-to-noise ratio for HRMS analyses. Provide this value for each analyte by HRMS and LCMS in the electronic results file.

F. Dilutions

- a. Any results above the range of the calibration curve must be diluted to be within the range of the calibration curve.
- b. All results reported from dilution analyses must be within the range of the calibration curve.
- G. For non-detect values, record the EDL in the "Result Reported Value" column and a "UJ" the "Result Data Qualifier" column.
- H. Qualify detected values that are below the EQL as estimates ("J").
- I. Do not report below the EDL. Where the EDL is above the EQL due to interference, raise any values below the EDL to the value of the EDL and qualify "UJ".
- J. Calculate and report the Estimated Maximum Possible Concentration (EMPC) value for results that do not meet ion abundance ratio criteria. Qualify these results with "NJ".
- 7. The qualifiers used above are defined as:
 - A. "J" The analyte was positively identified. The associated numerical result is an estimate.
 - B. "U" The analyte was not detected at or above the reporting limit. (This qualifier will likely not be used if reporting all analytes down to the level of the EDL.)
 - C. "UJ" The analyte was not detected at or above the estimated reporting limit.
 - D. "NJ" The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. (See 6. J., above.)
- 8. Perform all QC samples as specified in the method.
 - A. Report results of Laboratory Control Samples (On-going Precision and Recovery standards), Matrix Spikes (if applicable), labeled compounds, internal standards, and surrogates as % recoveries in the EDD.

B. Report results of Standard or Certified Reference Materials, (e.g.: SRM 1944; CRM CARP-2), in the same units as the samples.

9. Method Blanks.

- A. Clearly identify samples associated with each laboratory method blank.
- B. The value of individual analytes found in the associated method blank must not exceed 1/10th of the sample level. If these limits are exceeded, contact the client to discuss actions to take. Most likely, the blank should be re-extracted along with any associated samples.
- C. If sample results are less than 10 times the concentration in the associated method blank, flag sample results with "B" even if the sample result has already been qualified "NJ"; but not when the blank result is qualified "NJ".

10. Sample identification.

- A. Provide the client sample ID (MEL lab ID) associated with all sample results.
- B. Provide the lab's internal sample ID associated with all results OR a table that cross-references MEL lab ID with the lab's internal sample ID.
- D. Clearly identify QA/QC samples and results: blanks, matrix spikes, Standard Reference Materials (SRM), lab duplicates. If samples are reanalyzed, these results need be clearly identified as such.
- E. Label all analyte peaks on chromatograms with either the congener name or the retention time and scale chromatograms such that peaks are visible above the baseline.

11. Analyte identification.

A. Provide the Chemistry Abstract Service Registry Number (CAS RN) for individual congeners.

12. Electronic results must be in Excel-compatible format as in Table 2:

Required Fields for Electronic Data Deliverables submitted to WA State Department of Ecology.						
Preferred						
Order	Field Name	Example				
1	MEL (Client) Sample ID	1311021-03				
2	Field ID (sample name on tag)	COLRIV034				
3	Result IUPAC Name	2,3'-DiCB				
4	Result Parameter Name	PCB-006				
5	Result Parameter CAS Number	25569-80-6				
6	Sample Extraction Date	11/14/2013(format as numerical date)				
7	Sample Analysis Date	11/15/2013 (format as numerical date)				
8	Lab Duplicate Flag	"Y" if lab duplicate, leave blank or "N" if not				
9	Re-analysis Flag	"Y" if a re-analysis, leave blank or "N" if not				
10	Result Reported Value	7.9 (format as number)				
11	Result Data Qualifier	J				
12	Result Value Units of Measure	pg/L				
13	Result Value EQL *	10 (format as number)				
14	Result Value EDL**	3.42 (format as number)				
15	Result Method Code	EPA 1668C				
16	Result Lab Name	Laboratory Name				
17	Contract Lab Sample ID	PR137954				
18	Others as needed by contract lab or MEL.	If used, clearly identify field and content				
	* = Estimated Quantitation Limit (Based on the lowest validated standard in the calibration					
	curve and adjusted for weight, volume, % solids, etc., as applicable).					
	** = Estimated Sample Detection Limit; calculated from signal for each sample)					

Appendix A - Analyte Lists

Table A1 - Personal Care Products and Pharmaceuticals

1,7-Dimethylxanthine	Demeclocycline	Oxolinic acid
10-hydroxy-amitriptyline	Desmethyldiltiazem	Oxycodone
2-hydroxy-ibuprofen	Diazepam	Oxytetracycline
4-Epianhydrochlortetracycline	Digoxigenin	Paroxetine
4-Epianhydrotetracycline	Digoxin	Penicillin G
4-Epichlortetracycline	Diltiazem	Penicillin V
4-Epioxytetracycline	Diphenhydramine	Prednisolone
4-Epitetracycline	Doxycycline	Prednisone
Acetaminophen	Enalapril	Promethazine
Albuterol	Enrofloxacin	Propoxyphene
Alprazolam	Erythromycin-H20	Propranolol
Amitriptyline	Flumequine	Ranitidine
Amlodipine	Fluocinonide	Roxithromycin
Amphetamine	Fluoxetine	Sarafloxacin
Ampicillin	Fluticasone propionate	Sertraline
Anhydrochlortetracycline	Furosemide	Simvastatin
Anhydrotetracycline	Gemfibrozil	Sulfachloropyridazine
Atenolol	Glipizide	Sulfadiazine
Atorvastatin	Glyburide	Sulfadimethoxine
Azithromycin	Hydroclorothiazide	Sulfamerazine
Benzoylecgonine	Hydrocodone	Sulfamethazine
Benztropine	Hydrocortisone	Sulfamethizole
Betamethasone	Ibuprofen	Sulfamethoxazole
Bisphenol A	Isochlortetracycline	Sulfanilamide
Caffeine	Lincomycin	Sulfathiazole
Carbadox	Lomefloxacin	Tetracycline
Carbamazapine	Meprobamate	Theophylline
Cefotaxime	Metformin	Thiabendazole
Chlortetracycline	Methylprednisolone	Trenbolone
Cimetidine	Metoprolol	Trenbolone acetate
Ciprofloxacin	Miconazole	Triamterene
Clarithromycin	Minocycline	Triclocarban
Clinafloxacin	Naproxen	Triclosan
Clonidine	Norfloxacin	Trimethoprim
Cloxacillin	Norfluoxetine	Tylosin
Cocaine	Norgestimate	Valsartan
Codeine	Norverapamil	Verapamil
Cotinine	Ofloxacin	Virginiamycin
DEET	Ormetoprim	Warfarin
Dehydronifedipine	Oxacillin	
		,

Table A2 - Perfluorinated Chemicals

Carboxylic Acids
Perfluorobutanoate (PFBA)
Perfluoropentanoate (PFPeA)
Perfluorohexanoate (PFHxA)
Perfluoroheptanoate (PFHpA)
Perfluorooctanoate (PFOA)
Perfluorononanoate (PFNA)
Perfluorodecanoate (PFDA)
Perfluoroundecanoate (PFUnA)
Perfluorododecanoate (PFDoA)
Sulphonic Acids
Perfluorobutanesulfonate (PFBS)
Perfluorohexanesulfonate
(PFHxS)
Perfluorooctanesulfonate (PFOS)
Perfluorooctane sulfonamide
(PFOSA)

Table A3 - Personal Care Products and Pharmaceuticals (Supplemental and optional)

Amsacrine	Lomustine
Azathioprine	Medroxyprogesterone acetate
Busulfan	Melphalan
Carmustine	Metronidazole
Chloramphenicol	Medroxyprogesterone acetate
Citalopram	Melphalan
Clotrimazole	Metronidazole
Colchicine	Moxifloxacin
Cyclophosphamide	Norethindrone
Daunorubicin	Oxazepam
Diatrizoic acid	Rosuvastatin
Doxorubicin	Tamoxifen
Drospirenone	Teniposide
Etoposide	Venlafaxine
Iopamidol	Zidovudine

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

September 6, 2013

Subject: PSEMP Urban Waters: Elliot Bay

MEL LIMS ID: 1306020; Rinse Blanks

Laboratory: AXYS Analytical Services Ltd. (AXYS)

Project Officer: Maggie Dutch
By: Karin Feddersen

Data Review for Perfluorinated Organic Compounds (PFC) Analysis by AXYS Method MLA-060 Rev. 10 Ver. 04 REVISED 9/5/2013

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and bias.

Samples were prepared and analyzed according to AXYS method MLA-060 Revision 10, version 04 for Perfluorinated Organic Compounds in Aqueous Samples by LC-MS/MS. Procedures are described in the method summary of the accompanying AXYS report.

Results for the rinse blanks (water) have been reported in units of nanograms per Liter (ng/L); parts per trillion (ppt).

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as an estimated value. No non-detect results were amended to detections for these samples.

Preservation and Holding Times

No holding times have been established for PFCs in water. EPA has not yet conducted a formal holding time study. The default holding times are 30 days from the date of collection until extraction,

and 60 days from extraction to analysis, if stored in the dark at 0-4°C. Extraction and analysis took place within these time frames. (All samples were extracted within 7 days of collection and analyzed within a few days of extraction.)

The sample coolers were verified to be at 0.5°C upon receipt at the contract lab, and were subsequently stored at 4°C.

Method Blanks

The blank is labeled WG43899-101 i.

No target analytes were detected in the laboratory blank above the reporting limit.

Calibration

All calibration standards were calculated to be within $\pm 30\%$ of their true value.

Internal Standard Recoveries

Recoveries for labeled compounds in these samples were within AXYS quality control limits described in the method summary of the accompanying AXYS report, with several exceptions. Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects.

Ion ratios

All ion ratios met AXYS criteria for positive identification.

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPR is labeled WG43899-102.

Target analyte and labeled compound recoveries were within quality control limits as described in the method summary of the accompanying AXYS report.

Duplicate

No duplicates were analyzed on the water samples.

Data Qualifier Codes

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

September 6, 2013

Subject: PSEMP Urban Waters: Elliot Bay

MEL LIMS ID: 1306020; Sediments

Laboratory: AXYS Analytical Services Ltd. (AXYS)

Project Officer: Maggie Dutch
By: Karin Feddersen

Data Review for Perfluorinated Organic Compounds (PFC) Analysis by AXYS Method MLA-041 Rev. 09 Ver. 02 REVISED 9/5/2013

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and bias.

Samples were prepared and analyzed according to AXYS method MLA-041 Rev 09, version 02 for Perfluorinated Organic Compounds in Solid Samples (sediment, soil) by LC-MS/MS. Procedures are described in the method summary of the accompanying AXYS report.

Results for the sediments have been reported in two batches in units of nanograms per gram (ng/g); parts per billion (ppb).

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as an estimated value. Results are to be considered tentatively identified, as no daughter ion could be confirmed. In addition, the potential exists for interfering compounds that cannot be resolved from the analyte; and suppression and /or enhancement effects may be present at concentrations below the reporting limit due to interference.

Each EDD has been amended to include the MDL for each analyte.

Results are reported in the "MEL Amended" fields and qualified "NJ" when they met the following conditions:

- A carbon13-labeled standard specific for the analyte is present and used for identification and quantification; e.g.: PFNA and ¹³C₅-PFNA.
- Retention time within ± 0.4 seconds of the calibration verification for the compound
- Greater than 5 times the method blank level
- Greater than the Method Detection Limit (MDL).
- Signal to noise ratio greater than 3

Holding Times

No holding times have been established for PFC in solids. EPA has not yet conducted a formal holding time study. The default holding time for water is 30 days from the date of collection until extraction and 60 days from extraction to analysis, if stored in the dark at 0-4°C. AXYS method stipulates storage in the dark at -20°C. All samples were extracted within 7 days of collection and analyzed within 7 days of extraction.

The sample coolers were verified to be at -3.6°C and -17.2°C upon receipt at the contract lab, and were subsequently stored at -20°C.

Method Blanks

The blanks are labeled WG43862-101 and WG43880-101.

No target analytes were detected in the laboratory blank above the reporting limit.

Calibration

All calibration standards were calculated to be within $\pm 30\%$ of their true value.

Internal Standard Recoveries

Recoveries for labeled compounds in these samples were within AXYS quality control limits described in the method summary of the accompanying AXYS report, with several exceptions. Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects.

Ion ratios

All ion ratios met AXYS criteria for positive identification.

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPRs are labeled WG43862-102 and WG43880-102.

Target analyte and labeled compound recoveries were within quality control limits as described in the method summary of the accompanying AXYS report.

Duplicate

Duplicates were analyzed for samples 1306020-08 and 1306020-14. No target analytes were detected in the samples or their duplicates above the reporting limit.

Data Qualifier Codes

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Axys Analytical Services Ltd 2045 Mills Road West SIDNEY, BRITISH COLUMBIA, CANADA V8L 5X2 TEL 250-655-5800 FAX 250-655-5811 www.axysanalytical.com

AXYS Client No.: 4499

Client Address: Washington State Dept. of Ecology

7411 Beach Drive East

Port Orchard, WA, US, 98366-8204

The AXYS contact for these data is Georgina Brooks.

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS

SOLID SAMPLES

PROJECT NAME: URBAN WATERS - ELLIOTT BAY

Contract: 4499

Data Package Identification: DPWG44301

Analysis WG43863, WG43864 & WG44109

23 July 2013

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS AXYS METHOD: MLA-075

4499: L19741-1 to -19

Project Name: URBAN WATER - ELLIOTT BAY

25 July 2013

NARRATIVE

This narrative describes the analysis of nineteen solid (marine sediment) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 7th of June 2013. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank, a laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample and a duplicate sample were analyzed in three analysis batches as WG43863, WG43864 and WG44109. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: *Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS*. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed dried sub-sample of each marine sediment sample (between 0.5 and 1 grams) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The resulting extract was instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions	
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1	
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2	
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3	
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4	
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5	

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier L19741-X, where X is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract is given an extra "test suffix" code. The single letter code (per extra work performed) is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

(A) = the parent sample for a duplicate pair

R = repeat analysis using a fresh aliquot of sample

The following laboratory qualifier flags were used in this data package:

B = analyte found in the sample and the associated blank

H = result provided as information only; concentration is estimated

MAX = result reported as maximum value due to structural cross interference for compounds

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

U = identifies a compound that was not detected

UJ = identifies a compound that was not detected and the detection limit is greater than the

lowest calibration equivalent

V = surrogate recovery is not within method/contract control limits

X = results reported separately

The analytical results were reported to three significant figures on a dry mass basis with concentration units of nanograms per gram (ng/g).

QA/QC NOTES

The client samples and QC samples were analyzed in three separate analysis batches (as WG43863, WG43864 and WG44109) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

• Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.

- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This has been visually inspected and does not affect the data.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met with the following exceptions:

Note: Soils/sediments are documented as achieving poorer recoveries than other matrices, however the cause(s) for this is unknown.

List 1 Compounds

WG43863

For the OPR sample (AXYS ID: WG43863-102), the percent recoveries of Oxolinic Acid and Penicillin V were biased high by a lowered instrument response for the surrogate compound 13C3-Trimethoprim used for quantification The results for these compounds were flagged with an 'N' on the report forms. Other data may be similarly affected.

Where the percent recoveries for surrogate compounds fell below 10%, the native analyte was reported in an "information only" capacity and was flagged with an 'H' on the report forms. Where the surrogate percent recovery was observed to be below 1% or did not meet the signal to noise method criteria, the target analytes and the surrogate compound were all deemed to be not quantifiable and were flagged as 'NQ' on the report forms.

The percent recovery of the surrogate compound 13C3-Trimethoprim for the samples 1306020-11, 1306020-15, 1306020-16, 1306020-20, 1306020-30, 1306020-37 and the laboratory procedural blank (AXYS IDs: L19741-7, -8, -9, -12, -14,-18 and WG43863-101) did not meet method criteria and have been flagged with a 'V' on the report forms..

WG44109

For the OPR sample (AXYS ID: WG44109-102), the percent recoveries for several target analytes did not meet method criteria and have been flagged with an 'N' on the report form. Excluding Azithromycin, the same analytes were not detected in any of the field samples. Azithromycin was detected in sample 1306020-07 (AXYS ID: L19741-4); the results may be similarly affected.

Where the percent recoveries for surrogate compounds fell below 10%, the native analyte was reported in an "information only" capacity and was flagged with an 'H' on the report forms. Where the surrogate percent recovery was observed to be below 1% or did not meet the signal to noise method criteria, the target analytes and the surrogate compound were all deemed to be not quantifiable and were flagged as 'NQ' on the report forms.

For some samples, the percent recovery of the surrogate compounds 13C3-Trimethoprim, D5-Fluoxetine and 13C2-Erythromycin-H2O in some samples did not meet method criteria and have been flagged with a 'V' on the report forms.

List 2 Compounds (WG43863)

The target analyte ACTC was detected above the reporting limit for the laboratory procedural blank (AXYS ID: WG43863-101). ACTC was detected in all field samples at a similar concentration with results flagged with a 'B' on the report forms. This should be considered during review and data interpretation.

List 3 Compounds (WG43863)

For the OPR sample (AXYS ID: WG43863-102), the percent recovery of the target analyte Triclosan (132%) was marginally above the upper method criteria limit of (130%) and has been flagged with an 'N' on the report

The percent recovery of the surrogate compounds D6-Bisphenol, D6-Gemfibrozil and 13C6-Triclocarban in the laboratory procedural blank, duplicate sample and sample 1306020-36 (AXYS IDs: WG43863-101, -103 and L19741-17 respectively) did not meet method criteria and have been flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

List 4 Compounds (WG43864)

Clonidine was detected in the laboratory procedural blank (AXYS ID: WG43864-101). The concentrations detected in the client samples should be compared to that of this sample during data review. Where detected, Clonidine was flagged with a 'B' on the report form.

The recovery of multiple surrogates in the several samples did not meet the method criteria; this compound was flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, these slight variances from the method acceptance criteria were deemed to not affect the quantification of the target analytes. Where the percent recovery for the surrogate compound D3-Cimetidine fell below 10%, the exact associated native analyte was reported in an "information only" capacity and flagged with an 'H' on the report form.

List 5 Compounds (WG43863)

DEET was detected in the laboratory procedural blank (AXYS ID: WG43863-103) at a concentration of 1.54 ng/g. The same analyte was detected in the sample 1306020-19 and duplicate sample (AXYS IDs: L19741-11 and WG43863-103) below or near the same level as the laboratory blank sample. The results were flagged with a 'B' on the report forms. The detection of DEET in the laboratory blank should be considered carefully during data review and interpretation.

For the OPR sample (AXYS ID: WG43863-102), the recovery for Betamethasone was above the upper criteria limit and has been flagged with an 'N' on the report form. The same compound was not detected in any of the field samples.

The recovery of several surrogate compounds in most samples did not meet method criteria and have been flagged with a 'V' on the report forms. As the isotope dilution/internal standard method of quantification produces data that are recovery corrected, the variances from method criteria were deemed to not affect the quantification of the related target analytes. Percent surrogate recoveries are used as general method performance indicator only.

Where the percent recovery of a surrogate compound was below 10%, the exact associated native analyte was reported as "information only" capacity and flagged with an 'H' on the report form. Where the percent recovery for a surrogate compound was below 1% or the instrument response did not meet signal to noise criteria, the associated target analytes were deemed not quantifiable and flagged as 'NQ' on the report forms.

ANALYTICAL DISCUSSION

List 1 Compounds

The results for the initial instrumental analysis of the samples and QC samples (under analysis batch WG43863) did not meet method specifications for some target analytes and surrogate compounds. Accordingly, as remedial action, the entire analysis batch was repeated for this analysis (analysis batch WG44109). With the exception of the target analytes Clinafloxacin, Oxolinic Acid and Penicillin V, the sample and QC sample extracts were instrumentally re-analyzed with overall improvement for data quality; the results were subsequently reported from this data. For Clinafloxacin, Oxolinic Acid and Penicllin V, the initial instrument calibration data did not meet method criteria. As such, the results for these analytes for all client

and QC samples were reported from the original data. Data not reported from analysis batch WG43863 or WG44109 was identified with an 'X' on the report forms. All results reported from the repeat analysis data are indicated with the suffix 'R' added to the AXYS IDs on the report forms.

List 2, 3, 4 and 5 Compounds

No analytical difficulties were encountered.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG44301, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Method Detection Limits
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- RFQQ Request for Qualifications and Quote
- Preparation Logs for Standard Solutions
- Sample Homogenization Records
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unreported raw data

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Andrew Porat

25-30L-13
Date Signed

Summary of AXYS Method MLA-075 Rev 05 Ver 02:

AXYS Method MLA-075: ANALYTICAL PROCEDURES FOR THE ANALYSIS OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN SOLID, AQUEOUS AND TISSUE SAMPLES BY LC-MS/MS

This method is suitable for the determination of a suite of pharmaceutical and personal care compounds in solid and aqueous samples (Lists 1, 2, 3, 4, 5 and 6) and in tissue samples (Lists 1, 3, 4, 5 and 6) samples. The analysis requires extraction at two different pH conditions: basic extraction for analysis of List 4 analytes and acidic extraction for the analysis of List 1, 2, 3, 5 and 6 analytes.

Target Analytes

List 1 (Acid extraction, positive ESI)					
Acetaminophen	Norfloxacin				
Ampicillin ¹	Norgestimate				
Azithromycin	Ofloxacin				
Caffeine	Ormetoprim				
Carbadox	Oxacillin ¹				
Carbamazepine	Oxolinic acid				
Cefotaxime	Penicillin G ¹				
Ciprofloxacin ¹	Penicillin V				
Clarithromycin	Roxithromycin				
Clinafloxacin	Sarafloxacin				
Cloxacillin	Sulfachloropyridazine				
Dehydronifedipine	Sulfadiazine				
Digoxigenin	Sulfadimethoxine				
Digoxin	Sulfamerazine				
Diltiazem	Sulfamethazine				
1,7-Dimethylxanthine	Sulfamethizole				
Diphenhydramine	Sulfamethoxazole				
Enrofloxacin	Sulfanilamide				
Erythromycin	Sulfathiazole				
Flumequine	Thiabendazole				
Fluoxetine	Trimethoprim				
Lincomycin	Tylosin				
Lomefloxacin	Virginiamycin M1				
Miconazole					

List 2 (Tetracyclines, positive ESI)	
Anhydrochlortetracycline (ACTC)	4-Epichlortetracycline (ECTC)
Anhydrotetracycline (ATC)	4-Epioxytetracycline (EOTC)
Chlortetracycline (CTC)	4-Epitetracycline (ETC)
Demeclocycline	Isochlortetracycline (ICTC)
Doxycycline	Minocycline
4-Epianhydrochlortetracycline (EACTC)	Oxytetracycline (OTC)
4-Epianhydrotetracycline (EATC)	Tetracycline (TC)
List 3 (Acid extraction, negative ESI)	
Bisphenol A	2-hydroxy-ibuprofen
Furosemide	Ibuprofen
Gemfibrozil	Naproxen
Glipizide	Triclocarban
Glyburide	Triclosan
Hydrochlorothiazide	Warfarin
List 4 (Base extraction, positive ESI)	
Albuterol	Cotinine
Amphetamine	Enalapril
Atenolol	Hydrocodone
Atorvastatin	Metformin
Cimetidine	Oxycodone
Clonidine	Ranitidine
Codeine	Triamterene
List 5 (Acid Extraction, positive ESI)	
Alprazolam	Metoprolol
Amitriptyline	Norfluoxetine
Amlodipine	Norverapamil
Benzoylecgonine	Paroxetine
Benztropine	Prednisolone
Betamethasone	Prednisone
Cocaine	Promethazine
DEET (N,N-diethyl-m-toluamide)	Propoxyphene
Desmethyldiltiazem	Propranolol
Diazepam	Sertraline
Fluocinonide	Simvastatin
Fluticasone propionate	Theophylline

Hydrocortisone	Trenbolone
10-hydroxy-amitriptyline	Trenbolone acetate
Meprobamate	Valsartan
Methylprednisolone	Verapamil
List 6 (Acid Extraction, positive ESI)	
Amsacrine	lopamidol
Azathioprine	Lomustine
Busulfan	Medroxyprogesterone acetate
Carmustine	Melphalan
Chloramphenicol	Metronidazole
Citalopram	Moxifloxacin ²
Clotrimazole	Norethindrone
Colchicine	Oxazepam
Cyclophosphamide	Rosuvastatin
Daunorubicin	Tamoxifen
Diatrizoic acid	Teniposide
Doxorubicin	Venlafaxine
Drospirenone	Zidovudine
Etoposide	

Analysis result is classified as 'information value' of estimated concentration.

EXTRACTION

The analysis requires extraction at two different pH conditions: at pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, 5 and 6). Prior to extraction and/or clean-up, samples are adjusted to the required pH and spiked with surrogates.

Solid samples are extracted by sonication with aqueous buffered acetonitrile and with pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to for the complete list of analytes.

All aqueous samples are filtered and the aqueous portion is cleaned up by solid phase extraction before analysis by LC/ESI-MS/MS.

Aqueous samples with no or limited visible particulate (e.g. surface water, ground water, wastewater treatment final effluent, typically with <100 mg/L TSS) normally can be processed with up to 1L samples sizes. The sample is filtered and routinely only the aqueous phase is analyzed. However, upon specific agreement a separate extraction may be performed on the solids phase. The solids extract may in this case either be carried through the analysis

Page 3 of 51

² Moxifloxacin in solid samples is classified as 'information value' of estimated concentration.

individually as a separate sample that is reported separately, or the aqueous extract and the solids extract may be combined just prior to clean-up and reported as a combined aqueous/solids phase result.

For mixed phase aqueous/solids samples with significant solids and distinct aqueous and solids phases such as wastewater influent or process streams the sample may either be analyzed as an aqueous phase only or as two separate samples, one aqueous and one solid.

COLUMN CHROMATOGRAPHY CLEANUP

Extracts are cleaned up during the SPE extraction.

INSTRUMENTAL ANALYSIS

Analysis of the sample extract is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The LC/MS/MS is run in MRM (Multiple Reaction Monitoring) mode and quantification is performed by recording the peak areas of the applicable parent ion/daughter ion transitions. Some analytes are analyzed in the ESI positive mode and some are analyzed in the ESI negative mode.

Analytes, Ions and Quantification References

List 1 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Sulfanilamide	2.02	0.432	¹³ C ₂ , ¹⁵ N-Acetaminophen	190.0	155.8	¹³ C ₆ -Sulfamethazine
Acetaminophen	4.68	1.000	¹³ C ₂ , ¹⁵ N-Acetaminophen	152.2	110.0	¹³ C ₂ , ¹⁵ N-Acetaminophen
Sulfadiazine	5.32	1.137	¹³ C ₂ , ¹⁵ N-Acetaminophen	251.2	156.1	¹³ C ₆ -Sulfamethazine
1,7-Dimethylxanthine	7.02	0.753	¹³ C ₃ -Caffeine	181.2	124.0	¹³ C ₃ -Caffeine
Sulfathiazole	8.00	0.858	¹³ C ₃ -Caffeine	256.3	156.0	¹³ C ₆ -Sulfamethoxazole
Sulfamerazine	8.78	0.942	¹³ C ₃ -Caffeine	265.0	156.0	¹³ C ₆ -Sulfamethazine
Caffeine	9.32	1.000	¹³ C ₃ -Caffeine	195.0	138.0	¹³ C ₃ -Caffeine
Lincomycin	9.47	0.953	¹³ C ₃ -Trimethoprim	407.2	126.0	¹³ C ₃ -Trimethoprim
Trimethoprim	9.94	1.000	¹³ C ₃ -Trimethoprim	291.2	230.0	¹³ C ₃ -Trimethoprim
Sulfamethizole	10.09	0.983	¹³ C ₆ -Sulfamethazine	271.0	156.0	¹³ C ₆ -Sulfamethoxazole
Cefotaxime	10.09	1.015	¹³ C ₃ -Trimethoprim	456.4	396.1	¹³ C ₃ -Trimethoprim
Sulfamethazine	10.31	1.000	¹³ C ₆ -Sulfamethazine	279.0	156.0	¹³ C ₆ -Sulfamethazine
Ofloxacin	10.53	0.974	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	362.2	318.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Carbadox	10.53	1.005	d ₆ -Thiabendazole	263.2	231.2	¹³ C ₃ -Trimethoprim
Ormetoprim	10.53	1.059	¹³ C ₃ -Trimethoprim	275.3	259.1	¹³ C ₃ -Trimethoprim
Norfloxacin	10.59	0.980	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	320.0	302.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Thiabendazole	10.59	1.000	d ₆ -Thiabendazole	202.1	175.1	d ₆ -Thiabendazole
Ciprofloxacin	10.81	1.000	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	332.2	314.2	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Sulfachloropyridazine	10.97	1.069	¹³ C ₆ -Sulfamethazine	285.0	156.0	¹³ C ₆ -Sulfamethazine
Lomefloxacin	11.14	1.031	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	352.2	308.1	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Enrofloxacin	11.22	1.038	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	360.2	316.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Sulfamethoxazole	11.33	1.000	¹³ C ₆ -Sulfamethoxazole	254.0	156.0	¹³ C ₆ -Sulfamethoxazole
Sarafloxacin	11.84	1.095	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	386.1	299.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Clinafloxacin	12.04	1.059	¹³ C ₆ -Sulfamethoxazole	366.3	348.1	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Digoxigenin	12.68	1.115	¹³ C ₆ -Sulfamethoxazole	391.2	355.2	¹³ C ₃ -Trimethoprim
Oxolinic Acid	13.11	0.819	¹³ C ₃ -Atrazine	262.1	244.0	¹³ C ₃ -Trimethoprim
Sulfadimethoxine	13.33	1.172	¹³ C ₆ -Sulfamethoxazole	311.0	156.0	¹³ C ₆ -Sulfamethoxazole
Azithromycin	13.55	0.846	¹³ C ₃ -Atrazine	749.9	591.6	¹³ C ₃ -Trimethoprim
Penicillin G	14.46	0.903	¹³ C ₃ -Atrazine	367.1	159.9	¹³ C ₃ -Trimethoprim
Diphenhydramine	14.57	0.910	¹³ C ₃ -Atrazine	256.2	167.0	¹³ C ₃ -Trimethoprim
Ampicillin	14.68	0.917	¹³ C ₃ -Atrazine	350.3	160.2	¹³ C ₃ -Trimethoprim

[e	4=	0.0-0	1 130 44 .	0000	4===	130
Flumequine	15.25	0.953	¹³ C ₃ -Atrazine	262.0	173.7	¹³ C ₃ -Trimethoprim
Penicillin V	15.29	0.955	¹³ C₃-Atrazine	383.2	159.9	¹³ C ₃ -Trimethoprim
Diltiazem	15.34	0.958	¹³ C ₃ -Atrazine	415.5	178.0	¹³ C ₃ -Trimethoprim
Carbamazepine	15.38	1.007	d ₁₀ -Carbamazepine	237.4	194.2	d ₁₀ -Carbamazepine
Erythromycin ¹	15.94	1.000	¹³ C ₂ -Erythromycin	734.4	158	not quantified
Oxacillin	16.30	1.018	¹³ C ₃ -Atrazine	434.1	160.2	¹³ C ₃ -Trimethoprim
Tylosin	16.37	1.022	¹³ C ₃ -Atrazine	916.6	772.5	¹³ C ₆ -Sulfamethazine
Digoxin	16.58	1.036	¹³ C ₃ -Atrazine	798.5	651.3	¹³ C ₃ -Trimethoprim
Dehydronifedipine	16.65	0.981	d ₅ -Fluoxetine	345.1	284.1	¹³ C ₃ -Trimethoprim
Cloxacillin	16.82	0.991	d ₅ -Fluoxetine	468.1	160.1	¹³ C ₃ -Trimethoprim
Erythromycin anhydrate 1	16.90	1.000	¹³ C ₂ -Erythromycin anhydrate	716.4	158	¹³ C ₂ -Erythromycin anhydrate
Fluoxetine	16.97	1.000	d ₅ -Fluoxetine	310.1	148.0	d ₅ -Fluoxetine
Virginiamycin M1	17.40	1.025	d ₅ -Fluoxetine	526.3	508.3	¹³ C ₃ -Trimethoprim
Clarithromycin	17.61	1.038	d ₅ -Fluoxetine	748.9	158.2	¹³ C ₆ -Sulfamethazine
Roxithromycin	17.83	1.051	d ₅ -Fluoxetine	837.6	679.0	¹³ C ₆ -Sulfamethazine
Miconazole	20.93	1.233	d ₅ -Fluoxetine	417.0	161.0	¹³ C ₃ -Trimethoprim
Norgestimate	21.80	1.285	d ₅ -Fluoxetine	370.5	124.0	¹³ C ₃ -Trimethoprim
Surrogate Standard						
¹³ C ₂ , ¹⁵ N-Acetaminophen	4.68	0.292	¹³ C ₃ -Atrazine	155.2	111.0	¹³ C ₃ -Atrazine
¹³ C ₃ -Caffeine	9.32	0.582	¹³ C ₃ -Atrazine	198.0	140.0	¹³ C ₃ -Atrazine
¹³ C ₃ -Trimethoprim	9.94	0.621	¹³ C ₃ -Atrazine	294.2	233.0	¹³ C ₃ -Atrazine
¹³ C ₆ -Sulfamethazine	10.26	0.641	¹³ C ₃ -Atrazine	285.1	162.1	¹³ C ₃ -Atrazine
d ₆ -Thiabendazole	10.48	0.655	¹³ C ₃ -Atrazine	208.1	180.1	¹³ C ₃ -Atrazine
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	10.81	0.675	¹³ C ₃ -Atrazine	336.1	318.2	¹³ C ₃ -Atrazine
¹³ C ₆ -Sulfamethoxazole	11.37	0.710	¹³ C ₃ -Atrazine	260.0	162.0	¹³ C ₃ -Atrazine
d ₁₀ -Carbamazepine	15.28	0.954	¹³ C ₃ -Atrazine	247	204	¹³ C ₃ -Atrazine
¹³ C ₂ -Erythromycin ¹	15.86	0.991	¹³ C ₃ -Atrazine	736.4	160.0	monitor for less than 5%
¹³ C ₂ -Erythromycin anhydrate ¹	16.90	1.056	¹³ C ₃ -Atrazine	718.4	160.0	¹³ C ₃ -Atrazine
d ₅ -Fluoxetine	16.97	1.060	¹³ C₃-Atrazine	315.3	153.0	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	16.01	1.000		219.1	176.9	External Standard
			•			

Because of intramolecular dehydration during the analytical procedure erythromycin is quantified as the dehydration product "erythromycin – H_2O ". The peak area of the $^{13}C_2$ -Erythromycin is monitored and must be less than 5% of the $^{13}C_2$ -Erythromycin - H_2O peak area. If it is greater, the Erythromycin - H_2O result is flagged as 'accuracy unknown'.

List 2 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	etention Typical RRT Reference Ior		Parent Ion Mass	Daughter Ion Mass	Quantified against
Minocycline	3.45	0.739	d ₆ -Thiabendazole	458.0	441.0	d ₆ -Thiabendazole
Epitetracycline (ETC)	5.71	1.223	d ₆ -Thiabendazole	445.2	410.2	d ₆ -Thiabendazole
Epioxytetracycline (EOTC)	6.51	1.394	d ₆ -Thiabendazole	461.2	426.2	d ₆ -Thiabendazole
Oxytetracycline (OTC)	7.29	1.561	d ₆ -Thiabendazole	461.2	426.2	d ₆ -Thiabendazole
Tetracycline (TC)	7.74	1.657	d ₆ -Thiabendazole	445.2	410.2	d ₆ -Thiabendazole
Demeclocycline	9.63	0.470	¹³ C ₃ -Atrazine	465.0	430.0	d ₆ -Thiabendazole
Epichlortetracycline (ECTC)	9.92	0.485	¹³ C ₃ -Atrazine	479.0	444.0	d ₆ -Thiabendazole
Isochlortetracycline (ICTC) 1	9.95	0.486	¹³ C ₃ -Atrazine	479.0	462.0	d ₆ -Thiabendazole
Chlortetracycline (CTC)	11.90	0.581	¹³ C ₃ -Atrazine	479.0	444.0	d ₆ -Thiabendazole
Doxycycline	14.40	0.703	¹³ C ₃ -Atrazine	445.2	428.2	d ₆ -Thiabendazole
Epianhydrotetracycline (EATC)	15.08	0.737	¹³ C ₃ -Atrazine	427.2	409.8	d ₆ -Thiabendazole
Anhydrotetracycline (ATC)	16.45	0.804	¹³ C ₃ -Atrazine	427.2	409.8	d ₆ -Thiabendazole
Epianhydrochlortetracycline (EACTC)	18.90	0.923	¹³ C ₃ -Atrazine	461.2	444.0	d ₆ -Thiabendazole
Anhydrochlortetracycline (ACTC)	20.63	1.008	¹³ C ₃ -Atrazine	461.2	444.0	d ₆ -Thiabendazole
Surrogate Standard						
d ₆ -Thiabendazole	4.67	0.228	¹³ C ₃ -Atrazine	208.0	180.0	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	20.51	1.000		219.1	176.9	External Standard

¹ The presence of ECTC will create positive interference with ICTC due to use of a common transition ion.

List 3 - Acid Extraction, Negative Electrospray Ionization (-)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Hydrochlorathiazide	2.24	0.440	¹³ C ₆ -2,4,5-T	296.0	268.8	¹³ C-d₃-Naproxen
Hydrochlorathiazide*	2.24	0.440	¹³ C ₆ -2,4,5-T	296.0	204.8	¹³ C-d ₃ -Naproxen
Furosemide	3.19	0.627	¹³ C ₆ -2,4,5-T	329.0	204.7	¹³ C-d ₃ -Naproxen
Furosemide*	3.19	0.627	¹³ C ₆ -2,4,5-T	329.0	284.8	¹³ C-d ₃ -Naproxen
2-hydroxy-ibuprofen	4.10	0.806	¹³ C ₆ -2,4,5-T	221.1	176.8	¹³ C ₃ -Ibuprofen
Glipizide	6.68	1.008	d11-Glipizide	444.2	319.0	d11-Glipizide
Glipizide*	6.68	1.008	d11-Glipizide	444.2	169.8	d11-Glipizide
Naproxen	6.68	1.000	¹³ C-d₃-Naproxen	228.9	168.6	¹³ C-d₃-Naproxen
Bisphenol A	6.77	1.007	d6-Bisphenol A	227.0	211.9	d6-Bisphenol A
Bisphenol A*	6.77	1.007	d6-Bisphenol A	227.0	132.9	d6-Bisphenol A
Warfarin	7.00	1.007	d ₅ -Warfarin	307.0	161.0	d₅-Warfarin
Glyburide	8.40	1.010	d3-Glyburide	492.1	169.8	d3-Glyburide
Glyburide*	8.40	1.010	d3-Glyburide	492.1	367.0	d3-Glyburide
Ibuprofen	8.48	1.000	¹³ C ₃ -Ibuprofen	205.1	161.1	¹³ C ₃ -Ibuprofen
Gemfibrozil	9.35	1.000	d ₆ -Gemfibrozil	249.0	121.0	d ₆ -Gemfibrozil
Triclocarban	9.46	0.997	¹³ C ₆ -Triclocarban	312.9	159.7	¹³ C ₆ -Triclocarban
Triclosan	9.60	1.000	¹³ C ₁₂ -Triclosan	286.8	35.0	¹³ C ₁₂ -Triclosan
Surrogate Standard						
d ₁₁ -Glipizide	6.63	1.303	¹³ C ₆ -2,4,5-T	455.0	319.0	¹³ C ₆ -2,4,5-T
d ₁₁ -Glipizide*	6.63	1.303	¹³ C ₆ -2,4,5-T	455.0	169.8	¹³ C ₆ -2,4,5-T
¹³ C-d ₃ -Naproxen	6.68	1.312	¹³ C ₆ -2,4,5-T	232.9	168.6	¹³ C ₆ -2,4,5-T
d ₆ -Bisphenol A	6.72	1.320	¹³ C ₆ -2,4,5-T	233.0	214.8	¹³ C ₆ -2,4,5-T
d ₆ -Bisphenol A*	6.72	1.320	¹³ C ₆ -2,4,5-T	233.0	137.8	¹³ C ₆ -2,4,5-T
d ₅ -Warfarin	6.95	1.365	¹³ C ₆ -2,4,5-T	312	161.0	¹³ C ₆ -2,4,5-T
d ₃ -Glyburide	8.32	1.635	¹³ C ₆ -2,4,5-T	495.0	169.9	¹³ C ₆ -2,4,5-T
d ₃ -Glyburide*	8.32	1.635	¹³ C ₆ -2,4,5-T	495.0 370.1		¹³ C ₆ -2,4,5-T
¹³ C ₃ -Ibuprofen	8.48	1.666	¹³ C ₆ -2,4,5-T	208.2	163.1	¹³ C ₆ -2,4,5-T
d ₆ -Gemfibrozil	9.35	1.837	¹³ C ₆ -2,4,5-T	255	121	¹³ C ₆ -2,4,5-T
¹³ C ₆ -Triclocarban	9.49	1.864	¹³ C ₆ -2,4,5-T	318.9	159.7	¹³ C ₆ -2,4,5-T
¹³ C ₁₂ -Triclosan	9.60	1.886	¹³ C ₆ -2,4,5-T	298.8	35	¹³ C ₆ -2,4,5-T

Recovery Standard					
¹³ C ₆ -2,4,5-Trichlorophenoxy- acetic acid (¹³ C ₆ -2,4,5-T)	5.09	1.000	258.8	200.7	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

List 4 - Base Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Atorvastatin	3.84	0.934	d3-Cotinine	559.3	440.0	d5-Enalapril
Atorvastatin*	3.84	0.934	d3-Cotinine	559.3	466.0	d5-Enalapril
Cotinine	4.11	1.000	d3-Cotinine	177.0	98.0	d3-Cotinine
Cimetidine	4.84	0.994	d3-Cimetidine	253.1	159.0	d3-Cimetidine
Triamterene	5.35	1.099	d3-Cimetidine	254.1	236.9	d4-Clonidine
Triamterene*	5.35	1.099	d3-Cimetidine	254.1	103.7	d4-Clonidine
Enalapril	6.52	1.000	d5-Enalapril	377.2	233.9	d5-Enalapril
Enalapril*	6.52	1.000	d5-Enalapril	377.2	159.8	d5-Enalapril
Oxycodone	6.70	0.953	d6-Oxycodone	316.2	240.9	d6-Oxycodone
Oxycodone*	6.70	0.953	d6-Oxycodone	316.2	298.0	d6-Oxycodone
Clonidine	6.75	0.985	d4-Clonidine	230.0	43.9	d4-Clonidine
Clonidine*	6.75	0.985	d4-Clonidine	230.0	212.5	d4-Clonidine
Amphetamine	8.12	1.000	d5-Amphetamine	136.1	90.8	d5-Amphetamine
Amphetamine*	8.12	1.000	d5-Amphetamine	136.1	118.9	d5-Amphetamine
Albuterol	8.31	0.989	d ₃ -Albuterol	240.0	148.0	d ₃ -Albuterol
Codeine	8.56	0.985	d6-Codeine	300.2	214.9	d6-Codeine
Hydrocodone	8.75	0.972	d3-Hydrocodone	300.2	198.8	d3-Hydrocodone
Hydrocodone*	8.75	0.972	d3-Hydrocodone	300.2	170.6	d3-Hydrocodone
Ranitidine	8.81	0.985	d7-Atenolol	315.0	175.9	d ₃ -Albuterol
Atenolol	8.88	0.993	d7-Atenolol	267.2	144.7	d7-Atenolol
Atenolol*	8.88	0.993	d7-Atenolol	267.2	189.7	d7-Atenolol
Metformin	9.56	1.000	d ₆ -Metformin	130.1	60.1	d ₆ -Metformin
Surrogate Standards						
d ₃ -Cotinine	4.11	0.530	d3-Amitriptyline	180.0	79.9	d3-Amitriptyline
d ₃ -Cotinine*	4.11	0.530	d3-Amitriptyline	180.0	101.0	d3-Amitriptyline
d ₃ -Cimetidine	4.87	0.628	d3-Amitriptyline	256.0	161.8	d3-Amitriptyline
d ₃ -Cimetidine*	4.87	0.628	d3-Amitriptyline	256.0	94.8	d3-Amitriptyline
d ₅ -Enalapril	6.52	0.841	d3-Amitriptyline	382.0	238.8	d3-Amitriptyline
d ₅ -Enalapril*	6.52	0.841	d3-Amitriptyline	382.0	164.8	d3-Amitriptyline
d ₄ -Clonidine	6.85	0.884	d3-Amitriptyline	234.0	47.9	d3-Amitriptyline
d ₄ -Clonidine*	6.85	0.884	d3-Amitriptyline	234.0	216.7	d3-Amitriptyline

d ₆ -Oxycodone	7.03	0.907	d3-Amitriptyline	322.1	262.0	d3-Amitriptyline
d ₆ -Oxycodone*	7.03	0.907	d3-Amitriptyline	322.1	304.1	d3-Amitriptyline
d ₅ -Amphetamine	8.12	1.048	d3-Amitriptyline	141.1	92.9	d3-Amitriptyline
d ₅ -Amphetamine*	8.12	1.048	d3-Amitriptyline	141.1	123.9	d3-Amitriptyline
d ₃ -Albuterol	8.40	1.084	d3-Amitriptyline	243.0	151.0	d3-Amitriptyline
d ₆ -Codeine	8.69	1.121	d3-Amitriptyline	306.0	217.9	d3-Amitriptyline
d ₆ -Codeine*	8.69	1.121	d3-Amitriptyline	306.0	151.8	d3-Amitriptyline
d ₇ -Atenolol	8.94	1.154	d3-Amitriptyline	274.0	144.7	d3-Amitriptyline
d ₇ -AtenoloI*	8.94	1.154	d3-Amitriptyline	274.0	189.7	d3-Amitriptyline
d ₃ -Hydrocodone	9.00	1.161	d3-Amitriptyline	303.1	198.9	d3-Amitriptyline
d ₃ -Hydrocodone*	9.00	1.161	d3-Amitriptyline	303.1	170.8	d3-Amitriptyline
d ₆ -Metformin	9.56	1.234	d3-Amitriptyline	136.1	60.1	d3-Amitriptyline
Recovery Standards						
d ₃ -Amitriptyline	7.75	1.000		281.0	232.7	External Standard
d ₃ -Amitriptyline*	7.75	1.000		281.0	90.7	External Standard
d ₉ -Albuterol	8.40	1.000		249	148.3	External Standard
d ₉ -Albuterol*	8.40	1.000		249	167	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

List 5 – Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT		Parent Ion Mass	Daughter Ion Mass	Quantified against
Theophylline	2.52	1.000	¹³ C, ¹⁵ N ₂ -Theophylline	181.1	123.8	¹³ C, ¹⁵ N ₂ -Theophylline
Theophylline*	2.52	1.000	¹³ C, ¹⁵ N ₂ -Theophylline*	181.1	95.8	¹³ C, ¹⁵ N ₂ -Theophylline*
Benzoylecgonine	5.48	1.028	d8-Benzoylecgonine	290.1	167.8	d8-Benzoylecgonine
Benzoylecgonine*	5.48	1.028	d8-Benzoylecgonine	290.1	104.8	d8-Benzoylecgonine
Metoprolol	8.13	1.009	d7-Metoprolol	268.2	190.7	d7-Metoprolol
Metoprolol*	8.13	1.009	d7-Metoprolol	268.2	115.7	d7-Metoprolol
Cocaine	8.74	1.000	d3-Cocaine	304.1	181.8	d3-Cocaine
Cocaine*	8.74	1.000	d3-Cocaine	304.1	81.9	d3-Cocaine
Meprobamate	11.09	0.785	d7-Propranolol	219.0	157.8	d7-Metoprolol
Meprobamate*	11.09	0.785	d7-Propranolol	219.0	96.9	d7-Metoprolol
10-hydroxy-amitriptyline	11.70	0.829	d7-Propranolol	294.2	215.0	d7-Propranolol
10-hydroxy-amitriptyline*	11.70	0.829	d7-Propranolol	294.2	276.0	d7-Propranolol
Propranolol	14.35	1.016	d7-Propranolol	260.2	115.8	d7-Propranolol
Propranolol*	14.35	1.016	d7-Propranolol	260.2	182.7	d7-Propranolol
Prednisone	16.47	0.953	d4-Hydrocortisone	359.2	341.0	d7-Propranolol
Prednisone*	16.47	0.953	d4-Hydrocortisone	359.2	146.7	d7-Propranolol
Hydrocortisone	17.29	1.000	d4-Hydrocortisone	363.2	120.7	d4-Hydrocortisone
Hydrocortisone*	17.29	1.000	d4-Hydrocortisone	363.2	326.7	d4-Hydrocortisone
Prednisolone	17.29	1.000	d4-Hydrocortisone	361.2	343.0	d7-Propranolol
Prednisolone*	17.29	1.000	d4-Hydrocortisone	361.2	324.7	d7-Propranolol
Promethazine	18.39	1.008	d4-Promethazine	285.1	197.8	d4-Promethazine
Promethazine*	18.39	1.008	d4-Promethazine	285.1	85.7	d4-Promethazine
Desmethyldiltiazem	18.53	1.016	d4-Promethazine	401.2	177.8	d4-Promethazine
Desmethyldiltiazem*	18.53	1.016	d4-Promethazine	401.2	149.5	d4-Promethazine
Paroxetine	20.28	1.007	d6-Paroxetine	330.2	191.8	d6-Paroxetine
Paroxetine*	20.28	1.007	d6-Paroxetine	330.2	69.8	d6-Paroxetine
DEET	20.63	1.014	d7-DEET	192.0	118.6	d7-DEET
DEET	20.63	1.014	d7-DEET	192.0	90.7	d7-DEET
Norverapamil	20.63	1.014	d7-DEET	441.3	164.7	d7-Propranolol
Norverapamil*	20.63	1.014	d7-DEET	441.3	149.7	d7-Propranolol
Verapamil	21.16	0.994	d3-Methylprednisolone	455.3	164.8	d6-Amitriptyline
Verapamil*	21.16	0.994	d3-Methylprednisolone	455.3	149.8	d6-Amitriptyline
Betamethasone	21.29	0.967	d6-Amitriptyline	393.2	355.1	d6-Amitriptyline

Betamethasone*	21.29	0.967	d6-Amitriptyline	393.2	373.0	d6-Amitriptyline
Methylprednisolone	21.29	1.000	d3-Methylprednisolone	375.2	357.0	d3-Methylprednisolone
Methylprednisolone*	21.29	1.000	d3-Methylprednisolone	375.2	339.0	d3-Methylprednisolone
Propoxyphene	21.56	1.006	d5-Propoxyphene	340.2	57.9	d5-Propoxyphene
Propoxyphene*	21.56	1.006	d5-Propoxyphene	340.2	266.1	d5-Propoxyphene
Amitriptyline	22.02	1.000	d6-Amitriptyline	278.2	232.8	d6-Amitriptyline
Amitriptyline*	22.02	1.000	d6-Amitriptyline	278.2	90.7	d6-Amitriptyline
Trenbolone	22.02	1.000	d6-Amitriptyline	271.2	198.7	d5-Alprazolam
Trenbolone*	22.02	1.000	d6-Amitriptyline	271.2	252.8	d5-Alprazolam
Benztropine	22.55	1.000	d3-Benztropine	308.2	166.7	d3-Benztropine
Benztropine*	22.55	1.000	d3-Benztropine	308.2	151.7	d3-Benztropine
Alprazolam	23.08	1.011	d5-Alprazolam	309.1	280.9	d5-Alprazolam
Alprazolam*	23.08	1.011	d5-Alprazolam	309.1	204.9	d5-Alprazolam
Amlodipine	23.40	0.962	d5-Norfluoxetine	409.1	237.8	d5-Norfluoxetine
Amlodipine*	23.40	0.962	d5-Norfluoxetine	409.1	293.8	d5-Norfluoxetine
Norfluoxetine	24.39	1.002	d5-Norfluoxetine	296.1	133.7	d5-Norfluoxetine
Sertraline	25.87	0.897	d5-Diazepam	306.1	274.8	d7-Propranolol
Sertraline*	25.87	0.897	d5-Diazepam	306.1	158.7	d7-Propranolol
Diazepam	29.14	1.011	d5-Diazepam	285.1	192.8	d5-Diazepam
Diazepam*	29.14	1.011	d5-Diazepam	285.1	153.8	d5-Diazepam
Valsartan	31.92	1.107	d5-Diazepam	436.2	235.0	d5-Propoxyphene
Valsartan*	31.92	1.107	d5-Diazepam	436.2	291.0	d5-Propoxyphene
Fluocinonide	34.90	1.211	d5-Diazepam	495.2	337.0	d5-Alprazolam
Fluocinonide*	34.90	1.211	d5-Diazepam	495.2	475.0	d5-Alprazolam
Trenbolone acetate	37.27	1.293	d5-Diazepam	313.2	253.0	d5-Alprazolam
Trenbolone acetate*	37.27	1.293	d5-Diazepam	313.2	271.0	d5-Alprazolam
Fluticasone propionate	37.74	1.309	d5-Diazepam	501.2	293.0	d7-Metoprolol
Fluticasone propionate*	37.74	1.309	d5-Diazepam	501.2	313.0	d7-Metoprolol
Simvastatin	39.96	1.386	d5-Diazepam	419.3	285.0	d5-Propoxyphene
Simvastatin*	39.96	1.386	d5-Diazepam	419.3	198.9	d5-Propoxyphene
Surrogate Standards						
¹³ C, ¹⁵ N ₂ -Theophylline	2.52	0.136	¹³ C ₃ -Atrazine	184.0	124.7	¹³ C ₃ -Atrazine
¹³ C, ¹⁵ N ₂ -Theophylline*	2.52	0.136	¹³ C ₃ -Atrazine	184.0	96.8	¹³ C ₃ -Atrazine
d ₈ -Benzoylecgonine	5.33	0.288	¹³ C ₃ -Atrazine	298.1	170.9	¹³ C ₃ -Atrazine
d ₈ -Benzoylecgonine*	5.33	0.288	¹³ C ₃ -Atrazine	298.1	109.8	¹³ C ₃ -Atrazine
d ₇ -Metoprolol	8.06	0.435	¹³ C ₃ -Atrazine	275.0	190.8	¹³ C ₃ -Atrazine
d ₇ -Metoprolol*	8.06	0.435	¹³ C ₃ -Atrazine	275.0	122.7	¹³ C ₃ -Atrazine

d ₃ -Cocaine	8.74	0.472	¹³ C ₃ -Atrazine	307.1	184.9	¹³ C ₃ -Atrazine
d ₃ -Cocaine*	8.74	0.472	¹³ C ₃ -Atrazine	307.1	84.8	¹³ C ₃ -Atrazine
d ₇ -Propranolol	14.12	0.762	¹³ C ₃ -Atrazine	267.0	116.0	¹³ C ₃ -Atrazine
d ₇ -Propranolol*	14.12	0.762	¹³ C ₃ -Atrazine	267.0	188.7	¹³ C ₃ -Atrazine
d ₄ -Hydrocortisone	17.29	0.933	¹³ C₃-Atrazine	367.0	120.8	¹³ C ₃ -Atrazine
d ₄ -Hydrocortisone*	17.29	0.933	¹³ C₃-Atrazine	367.0	331.0	¹³ C ₃ -Atrazine
d ₄ -Promethazine	18.24	0.984	¹³ C₃-Atrazine	289.0	201.8	¹³ C ₃ -Atrazine
d ₄ -Promethazine*	18.24	0.984	¹³ C ₃ -Atrazine	289.0	86.0	¹³ C ₃ -Atrazine
d ₆ -Paroxetine	20.14	1.087	¹³ C₃-Atrazine	336.0	197.8	¹³ C ₃ -Atrazine
d ₆ -Paroxetine*	20.14	1.087	¹³ C₃-Atrazine	336.0	75.8	¹³ C ₃ -Atrazine
d ₇ -DEET	20.35	1.098	¹³ C₃-Atrazine	199.1	125.8	¹³ C ₃ -Atrazine
d ₇ -DEET*	20.35	1.098	¹³ C₃-Atrazine	199.1	97.8	¹³ C ₃ -Atrazine
d ₃ -Methylprednisolone	21.29	1.149	¹³ C ₃ -Atrazine	378.2	360	¹³ C ₃ -Atrazine
d ₃ -Methylprednisolone*	21.29	1.149	¹³ C ₃ -Atrazine	378.2	342	¹³ C ₃ -Atrazine
d ₅ -Propoxyphene	21.43	1.157	¹³ C₃-Atrazine	345.2	57.9	¹³ C ₃ -Atrazine
d ₅ -Propoxyphene*	21.43	1.157	¹³ C₃-Atrazine	345.2	266.1	¹³ C ₃ -Atrazine
d ₆ -Amitriptyline	22.02	1.188	¹³ C₃-Atrazine	284.0	233.0	¹³ C ₃ -Atrazine
d ₆ -Amitriptyline*	22.02	1.188	¹³ C₃-Atrazine	284.0	90.8	¹³ C ₃ -Atrazine
d ₃ -Benztropine	22.55	1.217	¹³ C₃-Atrazine	311.0	166.7	¹³ C ₃ -Atrazine
d ₃ -Benztropine*	22.55	1.217	¹³ C ₃ -Atrazine	311.0	151.7	¹³ C ₃ -Atrazine
d ₅ -Alprazolam	22.82	1.232	¹³ C₃-Atrazine	314.1	285.9	¹³ C ₃ -Atrazine
d ₅ -Alprazolam*	22.82	1.232	¹³ C₃-Atrazine	314.1	209.9	¹³ C ₃ -Atrazine
d ₅ -Norfluoxetine	24.33	1.313	¹³ C₃-Atrazine	301.0	138.7	¹³ C ₃ -Atrazine
d ₅ -Diazepam	28.83	1.556	¹³ C ₃ -Atrazine	290.1	197.9	¹³ C ₃ -Atrazine
d ₅ -Diazepam*	28.83	1.556	¹³ C ₃ -Atrazine	290.1	153.8	¹³ C ₃ -Atrazine
Recovery Standards						
¹³ C ₃ -Atrazine	18.53	1.000		219.1	176.9	External Standard
¹³ C ₃ -Atrazine *	18.53	1.000		219.1	134.0	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

CALIBRATION

Initial calibration is performed using a series of seven calibration solutions that encompass the working concentration range. Initial calibration solutions contain the suite of labelled surrogate and recovery standards and authentic targets. The concentration of the native analytes in the solutions varies to encompass the working range of the instrument, while the concentrations of the surrogates and recovery standards remain constant. A mid-level solution is analyzed every 12 hours or every 20 samples, whichever occurs first. The List 1, List 3, List 4 and List 5 calibration standards are prepared in 75:25 methanol:0.1% formic acid buffer and the List 2 calibration standards in methanol.

Initial calibration for any native compound requires at least 5 consecutive calibration levels. All 7 calibration solutions in the table below may be analyzed, but in certain cases only 5 or 6 of the levels are used to establish the initial calibration. In the table below the calibration concentrations routinely included are printed in bold type. If the number of routinely included calibration points shown for a compound is less that five, concentrations below and/or above are added as necessary based on analyst judgement to achieve the minimum five consecutive concentration levels. Note that reporting limits are adjusted as necessary to reflect the lowest calibration concentration included in the initial calibration.

Nominal Concentrations of Calibration Solutions

List 1 (Acid extraction, positive ESI)

Compound name				on Standar			
-	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Acetaminophen	3.75	12.5	37.5	187	625	2500	12500
Ampicillin	0.375	1.25	3.75	18.7	62.5	250	1250
Azithromycin	0.375	1.25	3.75	18.7	62.5	250	1250
Caffeine	3.75	12.5	37.5	187	625	2500	12500
Carbadox	0.375	1.25	3.75	18.7	62.5	250	1250
Carbamazapine	0.375	1.25	3.75	18.7	62.5	250	1250
Cefotaxime	1.5	5	15	<i>7</i> 5	250	1000	5000
Ciprofloxacin	1.5	5	15	75	250	1000	5000
Clarithromycin	0.375	1.25	3.75	18.7	62.5	250	1250
Clinafloxacin	1.5	5	15	75	250	1000	5000
Cloxacillin	0.75	2.5	7.5	37.5	125	500	2500
Dehydronifedipine	0.15	0.5	1.5	7.5	25	100	500
Digoxigenin	1.5	5	15	75	250	1000	5000
Digoxin	1.5	5	15	75	250	1000	5000
Diltiazem	0.075	0.25	0.75	3.75	12.5	50	250
1,7-Dimethylxanthine	15	50	150	750	2500	10000	50000
Diphenhydramine	0.15	0.5	1.5	7.5	25	100	500
Enrofloxacin	0.75	2.5	7.5	37.5	125	500	2500
Erythromycin	0.075	0.25	0.75	3.75	12.5	50	250

Flumequine	0.375	1.25	3.75	18.7	62.5	250	1250
Fluoxetine	0.375	1.25	3.75	18.7	62.5	250	1250
Lincomycin	0.75	2.5	7.5	37.5	125	500	2500
Lomefloxacin	0.75	2.5	7.5	37.5	125	500	2500
Miconazole	0.375	1.25	3.75	18.7	62.5	250	1250
Norfloxacin	3.75	12.5	37.5	187	625	2500	12500
Norgestimate	0.75	2.5	7.5	37.5	125	500	2500
Ofloxacin	0.375	1.25	3.75	18.7	62.5	250	1250
Ormetoprim	0.15	0.5	1.5	7.5	25	100	500
Oxacillin	0.75	2.5	7.5	37.5	125	500	2500
Oxolinic acid	0.15	0.5	1.5	7.5	25	100	500
Penicillin G	0.75	2.5	7.5	37.5	125	500	2500
Penicillin V	0.75	2.5	7.5	37.5	125	500	2500
Roxithromycin	0.075	0.25	0.75	3.75	12.5	50	250
Sarafloxacin	3.75	12.5	37.5	187	625	2500	12500
Sulfachloropyridazine	0.375	1.25	3.75	18.7	62.5	250	1250
Sulfadiazine	0.375	1.25	3.75	18.7	62.5	250	1250
Sulfadimethoxine	0.075	0.25	0.75	3.75	12.5	50	250
Sulfamerazine	0.15	0.5	1.5	7.5	25	100	500
Sulfamethazine	0.15	0.5	1.5	7.5	25	100	500
Sulfamethizole	0.15	0.5	1.5	7.5	25	100	500
Sulfamethoxazole	0.15	0.5	1.5	7.5	25	100	500
Sulfanilamide	3.75	12.5	37.5	187.5	625	2500	12500
Sulfathiazole	0.375	1.25	3.75	18.7	62.5	250	1250
Thiabendazole	0.375	1.25	3.75	18.7	62.5	250	1250
Trimethoprim	0.375	1.25	3.75	18.7	62.5	250	1250
Tylosin	1.5	5	15	75	250	1000	5000
Virginiamycin M1	0.75	2.5	7.5	37.5	125	500	2500
Surrogate Standards							
¹³ C ₂ , ¹⁵ N-Acetaminophen	50	50	50	50	50	50	50
¹³ C ₃ -Caffeine	75	75	75	75	75	75	75
d ₁₀ -Carbamazepine	25	25	25	25	25	25	25
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	100	100	100	100	100	100	100
¹³ C ₂ -Erythromycin	25	25	25	25	25	25	25
d ₅ -Fluoxetine	25	25	25	25	25	25	25
¹³ C ₆ -Sulfamethazine	25	25	25	25	25	25	25
¹³ C ₆ -Sulfamethoxazole	25	25	25	25	25	25	25
d ₆ -Thiabendazole	25	25	25	25	25	25	25
¹³ C ₃ -Trimethoprim	25	25	25	25	25	25	25
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 2 (Tetracyclines)

Compound name		Cal	ibration St (Te	andards L tracycline		nL)	
·	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Anhydrochlortetracycline (ACTC)	3.75	12.5	31.25	62.5	125	375	1000
Anhydrotetracycline (ATC)	3.75	12.5	31.25	62.5	125	375	1000
Chlortetracycline (CTC)	1.5	5	12.5	25	50	150	400
Demeclocycline	3.75	12.5	31.2	62.5	125	375	1000
Doxycycline	1.5	5	12.5	25	50	150	400
4-Epianhydrochlortetracycline (EACTC)	15	50	125	250	500	1500	4000
4-Epianhydrotetracycline (EATC)	3.75	12.5	31.2	62.5	125	375	1000
4-Epichlortetracycline (ECTC)	3.75	12.5	31.2	62.5	125	375	1000
4-Epioxytetracycline (EOTC)	1.5	5	12.5	25	50	150	400
4-Epitetracycline (ETC)	1.5	5	12.5	25	50	150	400
Isochlortetracycline (ICTC)	1.5	5	12.5	25	50	150	400
Minocycline	15	50	125	250	500	1500	4000
Oxytetracycline (OTC)	1.5	5	12.5	25	50	150	400
Tetracycline (TC)	1.5	5	12.5	25	50	150	400
Surrogate Standards							
d ₆ -Thiabendazole	25	25	25	25	25	25	25
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 3 (Acid extraction, negative ESI)

Compound name	Calibration Standards List 3 (ng/mL) (Acid extraction, negative ESI)							
•	Level A	Level B	Level C	Level D	Level E	Level F	Level G	
Bisphenol A	125	250	500	1000	2000	4000	8000	
Furosemide	10	33	100	500	1665	6660	20000	
Gemfibrozil	0.375	1.25	3.75	18.7	62.5	250	750	
Glipizide	1.5	5.0	15	75	250	1000	3000	
Glyburide	0.75	2.5	7.5	37.5	125	500	1500	
Hydroclorothiazide	5.0	16.6	50	150	300	500	625	
2-hydroxy-ibuprofen	20	66	200	1000	3330	13330	40000	
Ibuprofen	3.75	12.5	37.5	187	625	2500	7500	
Naproxen	0.75	2.50	7.50	37.5	125	500	1500	
Triclocarban	0.75	2.5	7.5	37.5	125	500	1500	
Triclosan	15	50	150	750	2500	10000	30000	
Warfarin	0.375	1.25	3.75	18.7	62.5	250	750	
Surrogate Standards								
d ₆ -Bisphenol A	5000	5000	5000	5000	5000	5000	5000	
d ₆ -Gemfibrozil	25	25	25	25	25	25	25	
d ₁₁ -Glipizide	100	100	100	100	100	100	100	
d ₃ -Glyburide	100	100	100	100	100	100	100	
¹³ C ₃ -Ibuprofen	100	100	100	100	100	100	100	
¹³ C, d ₃ -Naproxen	75	75	75	75	75	75	75	
¹³ C ₆ -Triclocarban	12.5	12.5	12.5	12.5	12.5	12.5	12.5	
¹³ C ₁₂ -Triclosan	100	100	100	100	100	100	100	
d₅-Warfarin	25	25	25	25	25	25	25	
Recovery Standard								
¹³ C ₆ -2,4,5-Trichloropheno- xyacetic Acid(¹³ C ₆ -2,4,5-T)	50	50	50	50	50	50	50	

List 4 (Base extraction, positive ESI)

Compound Name Cevel A Level B Level C Level D Level E Level A	F Level G
Amphetamine 0.375 1.25 3.75 18.7 62.5 250 Atenolol 0.15 0.50 1.50 7.50 25 100 Atorvastatin 0.375 1.25 3.75 18.7 62.5 250 Cimetidine 0.15 0.50 1.5 7.5 25 100 Clonidine 0.375 1.25 3.75 18.7 62.5 250 Codeine 0.75 2.5 7.5 37.5 125 500 Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	
Atenolol 0.15 0.50 1.50 7.50 25 100 Atorvastatin 0.375 1.25 3.75 18.7 62.5 250 Cimetidine 0.15 0.50 1.5 7.5 25 100 Clonidine 0.375 1.25 3.75 18.7 62.5 250 Codeine 0.75 2.5 7.5 37.5 125 500 Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	250
Atorvastatin 0.375 1.25 3.75 18.7 62.5 250 Cimetidine 0.15 0.50 1.5 7.5 25 100 Clonidine 0.375 1.25 3.75 18.7 62.5 250 Codeine 0.75 2.5 7.5 37.5 125 500 Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	1250
Cimetidine 0.15 0.50 1.5 7.5 25 100 Clonidine 0.375 1.25 3.75 18.7 62.5 250 Codeine 0.75 2.5 7.5 37.5 125 500 Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	500
Clonidine 0.375 1.25 3.75 18.7 62.5 250 Codeine 0.75 2.5 7.5 37.5 125 500 Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	1250
Codeine 0.75 2.5 7.5 37.5 125 500 Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	500
Cotinine 0.375 1.25 3.75 18.7 62.5 250 Enalapril 0.075 0.25 0.75 3.75 12.5 50	1250
Enalapril 0.075 0.25 0.75 3.75 12.5 50	2500
	1250
Hydrocodone 0.375 1.25 3.75 18.7 62.5 250	250
	1250
Metformin 0.75 2.5 7.5 37.5 125 500	2500
Oxycodone 0.15 0.50 1.50 7.50 25 100	500
Ranitidine 0.15 0.50 1.50 7.50 25 100	500
Triamterene 0.075 0.25 0.75 3.75 12.5 50	250
Labeled Compounds	
d ₃ -Albuterol 25 25 25 25 25	25
d ₅ -Amphetamine 5.0 5.0 5.0 5.0 5.0 5.0	5.0
d ₇ -Atenolol 15 15 15 15 15	15
d_3 -Cimetidine 7.5 7.5 7.5 7.5 7.5	7.5
d₄-Clonidine 100 100 100 100 100 100	100
d ₆ -Codeine 50 50 50 50 50	50
d₃-Cotinine 15 15 15 15 15 15	15
d₅-Enalapril 5.0 5.0 5.0 5.0 5.0 5.0	5.0
d₃-Hydrocodone 15 15 15 15 15 15	15
d ₆ -Metformin 100 100 100 100 100 100	100
d ₆ -Oxycodone 15 15 15 15 15	15
Labeled injection standards	
d₃-Amitriptyline 12.5 12.5 12.5 12.5 12.5 12.5 12.5	12.5
d ₉ -Albuterol 25 25 25 25 25	

List 5 (Acid extraction, positive ESI)

Compound name	Calibration Standards List 5 (ng/mL) (Acid extraction, positive ESI)							
	Level A	Level B	Level C	Level D	Level E	Level F	Level G	
Alprazolam	0.075	0.25	0.75	3.75	12.5	50	150	
Amitriptyline	0.075	0.25	0.75	3.75	12.5	50	150	
Amlodipine	0.375	1.25	3.75	18.7	62.5	250	750	
Benzoylecgonine	0.075	0.25	0.75	3.75	12.5	50	150	
Benztropine	0.075	0.25	0.75	3.75	12.5	50	150	
Betamethasone	0.375	1.25	3.75	18.7	62.5	250	750	
Cocaine	0.0375	0.125	0.375	1.87	6.25	25	75	
DEET	0.15	0.5	1.5	7.5	25	100	300	
Desmethyldiltiazem	0.0375	0.125	0.375	1.87	6.2	25	75	
Diazepam	0.075	0.25	0.75	3.75	12.5	50	150	
Fluocinonide	1.50	5.0	15.0	75	250	1000	3000	
Fluticasone propionate	0.50	1.67	5.0	25	83.3	333	1000	
Hydrocortisone	15.0	50	150	750	2500	10000	30000	
10-hydroxy-amitriptyline	0.0375	0.125	0.375	1.87	6.25	25	75	
Meprobamate	1.00	3.33	10.0	50	167	667	2000	
Methylprednisolone	1.00	3.33	10.0	50	167	667	2000	
Metoprolol	0.375	1.25	3.75	18.7	62.5	250	750	
Norfluoxetine	0.375	1.25	3.75	18.7	62.5	250	750	
Norverapamil	0.0375	0.125	0.375	1.87	6.25	25	75	
Paroxetine	1.0	3.33	10.0	50	167	667	2000	
Prednisolone	1.5	5.0	15.0	75	250	1000	3000	
Prednisone	5.0	16.7	50.0	250	833	3330	10000	
Promethazine	0.10	0.33	1.0	5.0	16.7	66.7	200	
Propoxyphene	0.075	0.25	0.75	3.75	12.5	50	150	
Propranolol	0.50	1.67	5.0	25	83.3	333	1000	
Sertraline	0.10	0.33	1.0	5.0	16.6	67	200	
Simvastatin	5.0	16.7	50.0	250	833	3330	10000	
Theophylline	15	50	150	750	25000	10000	30000	
Trenbolone	1.0	3.33	10.0	50	167	667	2000	
Trenbolone acetate	0.075	0.25	0.75	3.75	12.5	50	150	
Valsartan	1.0	3.33	10.0	50	167	667	2000	
Verapamil Verapamil	0.0375	0.125	0.375	1.87	6.25	25	75	
Labeled Compounds								
d ₅ -Alprazolam	10	10	10	10	10	10	10	
d ₆ -Amitriptyline	10	10	10	10	10	10	10	
d ₈ -Benzoylecgonine	10	10	10	10	10	10	10	
d ₃ -Benztropine	5.0	5.0	5.0	5.0	5.0	5.0	5.0	

AXYS Analytica	ıl Services Ltd.
-----------------------	------------------

10	10	10	10	10	10	10
10	10	10	10	10	10	10
10	10	10	10	10	10	10
2000	2000	2000	2000	2000	2000	2000
500	500	500	500	500	500	500
100	100	100	100	100	100	100
50	50	50	50	50	50	50
25	25	25	25	25	25	25
25	25	25	25	25	25	25
15	15	15	15	15	15	15
100	100	100	100	100	100	100
500	500	500	500	500	500	500
50	50	50	50	50	50	50
	10 10 2000 500 100 50 25 25 15 100 500	10 10 10 10 2000 2000 500 500 100 100 50 50 25 25 25 25 15 15 100 100 500 500	10 10 10 10 10 10 2000 2000 2000 500 500 500 100 100 100 50 50 50 25 25 25 25 25 25 15 15 15 100 100 100 500 500 500	10 10 10 10 10 10 10 10 2000 2000 2000 2000 500 500 500 500 100 100 100 100 50 50 50 50 25 25 25 25 25 25 25 25 15 15 15 15 100 100 100 100 500 500 500 500	10 10 10 10 10 10 10 10 10 10 2000 2000 2000 2000 2000 500 500 500 500 500 100 100 100 100 100 50 50 50 50 50 25 25 25 25 25 25 25 25 25 25 15 15 15 15 15 100 100 100 100 500 500 500 500 500 500	10 2000 100 100 100 </td

ANALYTE IDENTIFICATION

Positive identification of target PPCP compounds, surrogate standard and recovery standards require:

- ≥ 3:1 signal:noise for parent ion to daughter ion transition.
- Guideline (if there is evidence of peak shifting analyst judgement applies): Compound retention time should fall within 0.4 minutes of the predicted retention times from the daily calibration standard. Natives with labelled surrogate standards should elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION

Concentrations of the targets compounds are calculated either by isotope dilution quantification against the surrogate standard or by internal standard quantification against the recovery standard with linear regression calibration, using a 1/X weighting type, excluding origin.

General equation :
$$Y = slope \times X + intercept$$

Where:
$$Y = Response ratio = \left(\frac{area Target}{area SUR} \times weight SUR spiked (ng)\right)$$

 $X = weight of target (ng)$

SUR = the surrogate standard

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area SUR}} \times \text{weight SUR spiked (ng)-intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size}}\right)$$

The percent recovery of surrogate standards (% SUR) are calculated by internal standard quantification against the recovery standard. Surrogate recoveries are used only as a general QC indicator of overall data quality.

% SUR = 100 x
$$\left(\frac{\text{area SUR}}{\text{area REC}}\right)$$
x $\left(\frac{\text{weight of REC spiked}}{\text{RRF}}\right)$ x $\left(\frac{1}{\text{weight SUR spiked}}\right)$

Where:

REC = the recovery standard as listed in Tables 13,14,15,16

RRF is the average relative response factor from the Initial Calibration data:

$$RRF = \left(\frac{\text{area SUR}}{\text{area REC}}\right) \times \left(\frac{\text{weight of REC}}{\text{weight of SUR}}\right)$$

REPORTING LIMITS

Sample specific detection limits (SDLs) are calculated by QuanLynx software using 3 times the signal of the noise in the target channel converted to an equivalent sample concentration.

Concentrations and detection limits for the target analytes are reported. The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed or the SDL, whichever is greater. Typical reporting units for all data are ng/g or ng/L. Concentrations for solids are reported on a dry weight basis. Concentrations in aqueous samples are reported on a volume basis. Concentrations for tissues are reported on a wet weight basis.

The following are commonly requested reporting limits:

Method Detection Limit (MDL) - determined as specified by EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option). The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used. ((lowest level cal conc.) x (extract volume))/sample size. The typical extract volume for PPCP is 4 mL.

For the analysis of PPCP it is AXYS standard to report sample concentrations using the LMCL as the lower reporting limit. In cases where the SDL is higher than the LMCL, the SDL will be used as the lower reporting limit.

The SDL is defined as follows: Sample Specific Detection Limit or Sample Detection Limit (SDL) - determined individually for every sample analysis run by converting the area equivalent of 3.0

times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

QUALITY ASSURANCE/QUALITY CONTROL

All samples are analyzed in batches with the following composition:

- Batch Size Each batch consists of up to twenty test samples and additional QC samples.
- Blanks One procedural blank is analyzed for each batch. The procedural blank is prepared by spiking an aliquot of the surrogate standard solution into a clean matrix. The procedural blank is extracted and analyzed using the same procedures as the test samples in the analysis batch.
- On-going Precision and Recovery (OPR) Samples On-going Precision and Recovery
 (OPR) is demonstrated by the analysis of a spiked reference matrix (SPM) analyzed with
 each batch. The OPR sample is prepared by spiking an aliquot of the authentic spiking
 solution into an accurately weighed in-house reference matrix (known to contain low
 background levels of target analytes). The reference sample to be analyzed is assigned to
 the analyst when the batch is assigned. The matrix is spiked with an aliquot of surrogate
 standard solution and after an equilibration time of at least 30 minutes is extracted.
- Duplicates 5% of the test samples within a batch (containing 7 or more test samples) are analyzed in duplicate, or as required by contract, provided sufficient sample is available.
- Surrogate/Authentic/Recovery (SAR) solution is an optional diagnostic test that may be prepared and analyzed with a batch.

The batch composition may vary according to batch or quality control requirements specified by a client. Each batch is carried through the complete analytical process as a unit. For sample data to be reportable the batch QC data must meet the acceptance criteria.

QC Specification Table: Authentic and Surrogate Standard Recoveries in samples

	OPR Recovery and surrogate re-			Blank		
	covery	covery in sample (% Recovery)		Average Recovery (%)		Level (ng)
	Low	High	Low	High		. 57
List 1 Compounds (APOS)						
Acetaminophen	70	140	70	140	30	≤15
Ampicillin ²						
Azithromycin	10	130	10	130	130	≤1.5
Caffeine	25	160	35	150	60	≤15
Carbadox	25	180	35	180	40	≤1.5
Carbamazepine	25	200	35	200	40	≤1.5
Cefotaxime	10	300	10	300	60	≤6
Ciprofloxacin	25	180	35	180	40	≤6
Clarithromycin	50	160	50	160	30	≤1.5
Clinafloxacin	25	300	35	300	70	≤6
Cloxacillin ²	70	130	70	130	30	≤3
Dehydronifedipine	35	160	40	160	30	≤0.6

	OPR R	ecovery				
	and surrogate re-			Blank		
		covery in sample		erage	RSD	Level
	(% Re	covery)	Recov	/ery (%)	(%)	(ng)
	Low	High	Low	High		
Digoxigenin	50	150	60	140	30	≤6
Digoxin	35	200	40	200	30	≤6
Diltiazem	20	160	25	160	50	≤0.3
1,7-Dimethylxanthine	30	300	40	300	60	≤60
Diphenhydramine	70	130	70	130	30	≤0.6
Enrofloxacin	30	220	40	220	40	≤3
Erythromycin - H ₂ O	70	130	70	130	30	≤0.3 ³
Flumequine	40	160	50	160	30	≤1.5
Fluoxetine	60	150	70	140	30	≤1.5
Lincomycin	10	300	10	300	70	≤3
Lomefloxacin, aqueous matrix	50	250	60	250	30	≤3
solid matrix	50	400	60	400	30	≤3
Miconazole	35	130	40	130	30	≤1.5
Norfloxacin	10	250	25	220	40	≤15
Norgestimate	35	130	40	130	30	≤3
Ofloxacin	60	250	70	250	30	≤1.5
Ormetoprim	70	150	70	150	30	≤0.6
Oxacillin ²	20	130	20	130	40	≤3
Oxolinic Acid	60	150	70	150	30	≤0.6
Penicillin G ²	10	130	10	130	40	≤3
Penicillin V	40	140	50	140	30	≤3
Roxithromycin	50	140	50	140	30	≤0.3
Sarafloxacin, aqueous matrix	50	200	60	180	30	≤15
solid matrix	50	300	60	300	30	≤15
Sulfachloropyridazine	60	160	70	160	30	≤1.5
Sulfadiazine	70	130	70	130	30	≤1.5
Sulfadimethoxine	35	160	40	160	30	≤0.3
Sulfamerazine	60	140	60	140	30	≤0.6
Sulfamethazine	70	130	70	130	30	≤0.6
Sulfamethizole	30	140	35	140	30	≤0.6
Sulfamethoxazole	70	130	70	130	30	≤0.6
Sulfanilamide	2	160	3	150	150	≤15
Sulfathiazole	30	180	30	160	50	≤1.5
Thiabendazole	60	150	60	150	30	≤1.5
Trimethoprim	50	150	60	150	30	≤1.5
Tylosin	70	130	70	130	30	≤6
Virginiamycin M1	15	300	15	250	90	≤3
Surrogate Standard						
¹³ C ₂ , ¹⁵ N-Acetaminophen	30	160	40	150	30	
¹³ C ₃ -Caffeine	40	140	50	140	30	
d ₁₀ -Carbamazepine	40	140	50	140	30	
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	7	150	9	140	70	
¹³ C ₂ -Erythromycin - H ₂ O	35	130	35	130	30	
d ₅ -Fluoxetine	10	160	10	150	70	
¹³ C ₆ -Sulfamethazine	30	160	35	150	40	
¹³ C ₆ -Sulfamethoxazole	30	140	40	130	30	
d ₆ -Thiabendazole	25	180	30	160	50	

	OPR Recovery						
		and surrogate re-		IPR			
	covery in sample		Average Recovery (%)		RSD	Level	
	Low	covery)			(%)	(ng)	
¹³ C ₃ -Trimethoprim	30	High 140	Low 40	High 130	30		
Recovery Standard	- 50	140		100	- 00		
¹³ C ₃ -Atrazine							
List 2 Compounds (TCYS)							
Anhydrochlortetracycline (ACTC)	15	200	20	180	70	≤15	
Anhydrotetracycline (ATC)	20	160	20	150	50	≤15	
Chlortetracycline (CTC)	30	250	35	250	60	≤6	
Demeclocycline	35	180	35	160	50	≤15	
Doxycycline	35	180	40	180	40	≤6	
Epianhydrochlortetracycline (EACTC)	6	130	7	130	70	≤60	
Epianhydrotetracycline (EATC)	15	200	20	200	60	≤15	
Epichlortetracycline (ECTC)	25	180	30	160	50	≤15	
Epioxytetracycline (EOTC)	25	180	35	160	40	≤6	
Epitetracycline (ETC)	35	200	40	180	40	≤6	
Isochlortetracycline (ICTC)	25	180	35	160	40	≤6	
Minocycline	1	250	2	200	110	≤60	
Oxytetracycline (OTC)	20	200	30	200	40	≤6	
Tetracycline (TC)	20	200	30	180	40	≤6	
Surrogate Standard							
d ₆ -Thiabendazole	25	140	25	130	50		
Recovery Standard							
¹³ C ₃ -Atrazine							
List 3 Compounds (ANEG)							
Bisphenol A	70	130	70	130	30	≤500	
Furosemide	65	130	70	130	30	<u>≤</u> 40	
Gemfibrozil	60	140	70	130	30	≤1.5	
Glipizide	55	170	60	160	30	≤6	
Glyburide	50	180	55	170	30	≤3	
Hydroxychlorothiazide	45	200	50	180	30	≤20	
2-hydroxy-ibuprofen	70	130	70	130	30	≤80	
Ibuprofen	70	130	70	130	30	≤15	
Naproxen	50	150	60	150	30	≤3	
Triclocarban	60	140	70	130	30	≤3	
Triclosan	70	130	70	130	30	≤60	
Warfarin	70	140	70	140	30	≤1.5	
Surrogate Standards							
d ₆ -Bisphenol A	50	170	60	160	30		
d ₆ -Gemfibrozil	50	150	55	140	30		
d ₁₁ -Glipizide	30	180	35	170	50		
d ₃ -Glyburide	20	160	25	150	40		
¹³ C ₃ -Ibuprofen	50	140	55	140	30		
¹³ C-d ₃ -Naproxen	30	150	35	140	30		
¹³ C ₆ -Triclocarban	20	160	25	150	50		
¹³ C ₁₂ -Triclosan	20	160	30	150	40		
d ₅ -Warfarin	35	250	50	250	30		

	OPR Recovery					
	and surrogate re-			Blank		
	covery in sample			erage	RSD	Level
	Low	covery) High	Low	/ery (%)	(%)	(ng)
December Ctendend	LOW	nigii	LOW	High		
Recovery Standard						
¹³ C ₆ -2,4,5-Trichloro-phenoxyacetic acid						
List 4 Compounds (BPOS)						
Albuterol	50	160	50	160	30	≤0.3
Amphetamine	50	160	60	150	30	≤1.5
Atenolol	70	130	70	130	30	≤0.6
Atorvastatin	20	130	25	130	40	≤1.5
Cimetidine	15	130	20	130	50	≤0.6
Clonidine	70	130	70	130	30	≤1.5
Codeine	70	130	70	130	30	≤3
Cotinine	70	130	70	130	30	≤1.5
Enalapril	70	130	70	130	30	≤0.3
Hydrocodone	70	130	70	130	30	≤1.5
Metformin	70	160	70	160	30	≤3
Oxycodone	65	130	70	130	30	≤0.6
Ranitidine	25	140	30	140	50	≤0.6
Triamterene	70	140	70	140	30	≤0.3
Surrogate Standards						
d ₃ -Albuterol	20	140	30	130	30	
d₅-Amphetamine	20	130	25	130	40	
d ₇ -Atenolol	50	130	70	130	30	
d ₃ -Cimetidine	15	130	15	130	50	
d ₄ -Clonidine	50	130	70	130	30	
d ₆ -Codeine	50	130	70	130	30	
d ₃ -Cotinine	50	140	70	135	30	
d₅-Enalapril	50	130	70	130	30	
d ₃ -Hydrocodone	50	130	70	130	30	
d ₆ -Metformin	3	130	4	130	130	
d ₆ -Oxycodone	50	150	60	140	30	
Recovery Standards	30	130	- 00	140	30	
<u> </u>						
d ₃ -Amitriptyline						
List 5 Compounds (APOS)						
Alprazolam	70	130	70	130	30	≤0.3
Amitriptyline	70	130	70	130	30	≤0.3
Amlodipine	45	130	50	130	30	≤1.5
Benzoylecgonine	70	130	70	130	30	≤0.3
Benztropine	70	130	70	130	30	≤0.3
Betamethasone	20	240	30	220	40	≤1.5
Cocaine	70	130	70	130	30	≤0.15
DEET	70	130	70	130	30	≤1
Desmethyldiltiazem	3	350	5	320	80	≤0.15
Diazepam	70	130	70	130	30	≤0.3
Fluocinonide	7	230	9	220	70	<u>=6.5</u> ≤6
** * **	1	ı			l	-

Fluticasone propionate 20 160 25 150 50 52		OPR Recovery and surrogate re-			Blank			
Company Comp					erage	PSD		
Low High Low High Hi		_			_			
Hydrocortisone		-		Low	High	(,	(9)	
10-hydroxy-amitriptyline 70	Fluticasone propionate	20	160	25	150	50	≤2	
Merrobamate 65 150 70 140 30 ≤4 Methylprednisolone 35 240 40 220 50 ≲10 Metoprolol 70 130 70 130 30 ≤1.5 Norfluoxetine 70 130 70 130 30 ≤1.5 Norverapamil 55 130 60 130 30 ≤4.5 Prednisolone 35 240 40 220 50 ≤6 Prednisone 50 180 60 170 30 ≤20 Promethazine 70 130 70 130 30 ≤20 Promethazine 70 130 70 130 30 ≤20 Propoxyphene 70 130 70 130 30 ≤20 Propoxyphene 70 130 70 150 30 ≤2 Sertraline 50 130 55 130 30 <t< td=""><td>Hydrocortisone</td><td>15</td><td>220</td><td>20</td><td>200</td><td>80</td><td>≤60</td></t<>	Hydrocortisone	15	220	20	200	80	≤60	
Methylprednisolone 35 240 40 220 50 ≤10 Metoprolol 70 130 70 130 30 ≤1.5 Norfluoxetine 70 130 70 130 30 ≤1.5 Norverapamil 55 130 60 130 30 ≤0.15 Paroxetine 70 130 70 130 30 ≤4 Prednisolone 35 240 40 220 50 ≤6 Prednisone 50 180 60 170 30 ≤2 Prednisone 50 180 60 170 30 ≤2 Promethazine 70 130 70 130 30 ≤2 Promethazine 70 130 70 130 30 ≤2 Sertraline 50 130 70 130 30 ≤2 Setraline 50 130 55 130 30 ≤2	10-hydroxy-amitriptyline	70	130	70	130	30	≤0.15	
Metoprotol 70	Meprobamate	65	150	70	140	30	≤4	
Norfluoxetine 70	Methylprednisolone	35	240	40	220	50	≤10	
Norverapamil 55	Metoprolol	70	130	70	130	30	≤1.5	
Paroxetine 70 130 70 130 30 ≤4 Prednisolone 35 240 40 220 50 ≤6 Prednisone 50 180 60 170 30 ≤20 Promethazine 70 130 70 130 30 ≤0.4 Propoxyphene 70 130 70 130 30 ≤0.4 Propoxyphene 70 130 70 130 30 ≤0.4 Propranolol 70 150 70 150 30 ≤2 Sertraline 50 130 55 130 30 ≤0.3 Simvastatin 1 150 1 140 100 ≤20 Theophylline 10 1000 70 900 50 ≤60 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130	Norfluoxetine	70	130	70	130	30	≤1.5	
Prednisolone 35 240 40 220 50 ≤6 Prednisone 50 180 60 170 30 ≤20 Promethazine 70 130 70 130 30 ≤0.4 Propoxyphene 70 130 70 130 30 ≤0.4 Propranolol 70 150 70 150 30 ≤2 Sertraline 50 130 55 130 30 ≤0.4 Simvastatin 1 150 1 140 100 ≤20 Theophylline 10 1000 70 900 50 ≤60 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤3 Trenbolone acetate, aqueous matrix solid matrix 55 250 60 250 30 ≤0.3 Verapamil 70 140 70 130 30 ≤4 Verapamil 70 145 7	Norverapamil	55	130	60	130	30	≤0.15	
Prednisone 50 180 60 170 30 ≤20 Promethazine 70 130 70 130 30 ≤0.4 Propoxyphene 70 130 70 130 30 ≤0.3 Propranolol 70 150 70 150 30 ≤0.3 Sertraline 50 130 55 130 30 ≤0.4 Simvastatin 1 150 1 140 100 ≤0 Theophylline 10 1000 70 900 50 ≤60 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 140 70 130 30 ≤4 Verapamil 70 <td>Paroxetine</td> <td>70</td> <td>130</td> <td>70</td> <td>130</td> <td>30</td> <td>≤4</td>	Paroxetine	70	130	70	130	30	≤4	
Promethazine 70 130 70 130 30 ≤0.4 Propoxyphene 70 130 70 130 30 ≤0.3 Propoxyphene 70 150 70 150 30 ≤0.3 Propranolol 70 150 70 150 30 ≤2 Sertraline 50 130 55 130 30 ≤0.4 Simvastatin 1 150 1 140 100 ≤0 Theophylline 10 1000 70 900 50 ≤60 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 250 60 250 30 ≤0.3 Valsartan 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 250 60 250 30 ≤0.3 Valsartan 70<	Prednisolone	35	240	40	220	50	≤6	
Propoxyphene 70 130 70 130 30 ≤0.3 Propranolol 70 150 70 150 30 ≤2 Sertraline 50 130 55 130 30 ≤0.4 Simvastatin 1 150 1 140 100 ≤20 Theophylline 10 1000 70 900 50 ≤60 Trenbolone 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤0.3 Valsartan 70 145 70 140 30 ≤0.3 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards Userapamila Programila Programma Prog	Prednisone	50	180	60	170	30	≤20	
Propranolol 70 150 70 150 30 ≤2 Sertraline 50 130 55 130 30 ≤0.4 Simvastatin 1 150 1 140 100 ≤20 Theophylline 10 1000 70 900 50 ≤60 Trenbolone 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards Usersation of the standards <td cols<="" td=""><td>Promethazine</td><td>70</td><td>130</td><td>70</td><td>130</td><td>30</td><td>≤0.4</td></td>	<td>Promethazine</td> <td>70</td> <td>130</td> <td>70</td> <td>130</td> <td>30</td> <td>≤0.4</td>	Promethazine	70	130	70	130	30	≤0.4
Sertraline 50 130 55 130 30 ≤0.4 Simvastatin 1 150 1 140 100 ≤20 Theophylline 10 1000 70 900 50 ≤60 Trenbolone 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.3 Surrogate Standards 30 45 130 45 130 30 ≤4 Verapamil 45 130 45 130 30 ≤0.15 Surrogate Standards d ₅ -Alprazolam 45 130 45 130 30 d ₈ -Benzoylecgonine	Propoxyphene	70	130	70	130	30	≤0.3	
Simvastatin 1 150 1 140 100 ≤20 Theophylline 10 1000 70 900 50 ≤60 Trenbolone 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤0.3 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards Usery Amitriptyline 10 130 45 130 30 d ₅ -Alprazolam 45 130 45 130 30 40 d ₈ -Banzoylecgonine 10 170 20 160 40 40 d ₈ -Banzoylecgonine 10 170 20 160 40 40 d ₈ -Banzoylecgonine 10 170 20 160 40 40 d ₈ -Banzoyl	Propranolol	70	150	70	150	30	≤2	
Theophylline 10 1000 70 900 50 ≤60 Trenbolone 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards Userapamil 45 130 45 130 30 d ₅ -Alprazolam 45 130 45 130 30 d ₆ -Amitriptyline 10 130 20 130 40 d ₈ -Benzoylecgonine 10 170 20 160 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 25 150 40	Sertraline	50	130	55	130	30	≤0.4	
Trenbolone 70 140 70 135 30 ≤4 Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards d₅-Alprazolam 45 130 45 130 30 d₅-Amitriptyline 10 130 20 130 40 d₃-Benzoylecgonine 10 170 20 160 40 d₃-Benztropine 20 140 25 130 40 d₃-Benztropine 20 140 25 130 40 d₃-Benztropine 20 140 25 130 40 d₃-Cocaine 25 140 30 130 50 d₁-DEET 15 160 20 150 40 d₃-Hydrocortisone <td>Simvastatin</td> <td>1</td> <td>150</td> <td>1</td> <td>140</td> <td>100</td> <td>≤20</td>	Simvastatin	1	150	1	140	100	≤20	
Trenbolone acetate, aqueous matrix solid matrix 55 130 60 130 30 ≤0.3 Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards d₅-Alprazolam 45 130 45 130 30 d₅-Amitriptyline 10 130 20 130 40 d₃-Benzoylecgonine 10 170 20 160 40 d₃-Benztropine 20 140 25 130 40 d₃-Cocaine 25 140 30 130 50 d₁-DEET 15 160 20 150 40 d₄-Hydrocortisone 4	Theophylline	10	1000	70	900	50	≤60	
solid matrix 55 250 60 250 30 ≤0.3 Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards Userogate Standards Userogate Standards d₅-Alprazolam 45 130 45 130 30 d₅-Amitriptyline 10 130 20 130 40 d₃-Benzoylecgonine 10 170 20 160 40 d₃-Benztropine 20 140 25 130 40 d₃-Benztropine 20 140 25 130 40 d₃-Benztropine 20 140 25 130 40 d₃-Cocaine 25 140 30 130 50 d¬-DEET 15 160 20 150 40 d₃-Hydrocortisone 40 240 45 230 50	Trenbolone	70	140	70	135	30	≤4	
Valsartan 70 130 70 130 30 ≤4 Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards Userogate Standards Userogate Standards Userogate Standards	Trenbolone acetate, aqueous matrix	55	130	60	130	30	≤0.3	
Verapamil 70 145 70 140 30 ≤0.15 Surrogate Standards 30 45 130 45 130 30 d ₆ -Anitriptyline 10 130 20 130 40 d ₈ -Benzoylecgonine 10 170 20 160 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₆ -Paroxetine 7 150 9 140 60	solid matrix	55	250	60	250	30	≤0.3	
Surrogate Standards 45 130 45 130 30 d ₆ -Amitriptyline 10 130 20 130 40 d ₈ -Benzoylecgonine 10 170 20 160 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₆ -Paroxetine 7 150 9 140 60 d ₆ -Paroxetine 7 150 9 140 60 d ₆ -Propoxyphene 30 130 40 130 30 d ₇ -Prop	Valsartan	70	130	70	130	30	≤4	
d ₅ -Alprazolam 45 130 45 130 30 d ₆ -Amitriptyline 10 130 20 130 40 d ₈ -Benzoylecgonine 10 170 20 160 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propra	Verapamil	70	145	70	140	30	≤0.15	
d ₆ -Amitriptyline 10 130 20 130 40 d ₈ -Benzoylecgonine 10 170 20 160 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₇ -Propr	Surrogate Standards							
d ₈ -Benzoylecgonine 10 170 20 160 40 d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₆ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₇ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₇ -Propr	d ₅ -Alprazolam	45	130	45	130	30		
d ₃ -Benztropine 20 140 25 130 40 d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₇ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₈ -Propoxyph	d ₆ -Amitriptyline	10	130	20	130	40		
d ₃ -Cocaine 25 140 30 130 50 d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₇ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₈ -Propoxyphene 20 200 25 180 60 Recovery Stan	d ₈ -Benzoylecgonine	10	170	20	160	40		
d ₇ -DEET 15 160 20 150 40 d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 d ₇ -Prophylline 20 200 25 180 60 Recovery Standards 8 8 8 8 8	d ₃ -Benztropine	20	140	25	130	40		
d ₅ -Diazepam 15 160 25 150 40 d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 1 ³ C ₁ , 1 ⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₃ -Cocaine	25	140	30	130	50		
d ₄ -Hydrocortisone 40 240 45 230 50 d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 1 ³ C ₁ , 1 ⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₇ -DEET	15	160	20	150	40		
d ₃ -Methylprednisolone 15 160 20 150 60 d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 1 ³ C ₁ , 1 ⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₅ -Diazepam	15	160	25	150	40		
d ₇ -Metoprolol 25 140 30 140 30 d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 1 ³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₄ -Hydrocortisone	40	240	45	230	50		
d ₅ -Norfluoxetine 20 130 20 130 50 d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 ¹³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₃ -Methylprednisolone	15	160	20	150	60		
d ₆ -Paroxetine 7 150 9 140 60 d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 ¹³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	• •	25	140	30	140	30		
d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 ¹³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₅ -Norfluoxetine	20	130	20	130	50		
d ₄ -Promethazine 3 140 5 130 80 d ₅ -Propoxyphene 30 130 40 130 30 d ₇ -Propranolol 25 140 30 130 30 ¹³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards	d ₆ -Paroxetine	7	150	9	140	60		
d ₇ -Propranolol 25 140 30 130 30 ¹³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards 0		3	140	5	130	80		
d ₇ -Propranolol 25 140 30 130 30 ¹³ C ₁ , ¹⁵ N ₂ -Theophylline 20 200 25 180 60 Recovery Standards 0		30	130	40	130	30		
13C ₁ , 15N ₂ -Theophylline 20 200 25 180 60 Recovery Standards		25	140	30	130	30		
Recovery Standards		20	200	25	180	60		
¹³ C ₃ -Atrazine	· · ·							
	¹³ C ₃ -Atrazine							

¹ OPR and IPR limits derived from actual method performance data according to EPA 821B98003, appendix D. ² Analysis result is classified as "Information Value" of estimated concentration.

Background level of Erythromycin - H₂O in the associated labeled surrogate may elevate the Erythromycin - H₂O blank value. Sample results may be blank corrected where acceptable by contract.

QC Specification Table: Instrumental Acceptance Specifications

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration point.
Initial Calibration (native compounds)	Initial, (1/X) weighted linear regression (followed by regular Cal/Ver procedures and repeated as necessary to maintain Cal/Ver results within established acceptance ranges. Calculated concentrations 70-130%, one point per compound may be 60-140% Internal guideline - correlation coefficient >0.985. Calibration curves with lower correlation coefficient values meeting all above criteria may be accepted based on batch specific QC results and professional judgement. For hydrocortisone, an increased frequency of Initial Calibration variance from method acceptance limits has been observed and is attributed to transient instrumental instability of response correctable by instrumental reanalysis. If the results are deemed to be fit for the intended purpose the hydrocortisone data may be flagged and reported with an explanation of the
	variance, otherwise instrumental re-analysis to correct the QC variance is required.
OPENING Calibration Verification	Every 20 samples. Determined concentrations within 70-130 % of actual. Allowable exception: A maximum of 1 compound per List or 10% of the compounds on a List, whichever is greater, may fall outside 70-130% provided they are in the range 60-140% of actual.
CLOSING Calibration Verification	Determined concentrations within 70-130 % of actual. Allowable exceptions: 1) Results for the greater of 1 compound or 10% of the compounds on a List may fall outside 60-140% provided the RPD between the CLOSING result and the OPENING result is <40%. 2) Closing calibration verification limits do not apply to Furosemide and Hydrochlorothiazide.
Instrumental Carryover And Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: < 0.3 % carryover and area response of analytes in instrument blank < 800 judged following two previous methanol blank injections.

APPENDIX I: LIMITATIONS TO PERFORMANCE

1. **SOIL/SEDIMENT SAMPLES**

The following surrogates can show recoveries in soil and sediment samples that do not meet method criteria. The exact reason is not known, as recoveries are in the normal range for other matrices including biosolids samples that undergo identical processing, and for aqueous samples as well. The interaction of dissolved inorganic components of the matrix with the analytes and the material in the Oasis HLB cartridge is the most likely cause for compounds in List 1 and List 5 showing low recovery.

Surrogate	List	Issue
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	List 1	Low Recovery
¹³ C-d ₃ -Naproxen	List 3	Low Recovery
¹³ C ₃ -Ibuprofen	List 3	Low Recovery
¹³ C ₆ -Triclocarban	List 3	Low Recovery
d ₅ -Warfarin	List 3	Low Recovery
d ₆ -Bisphenol A	List 3	Low Recovery
d ₆ -Gemfibrozil	List 3	Low Recovery
d ₆ -Amitryptilline	List 5	Low Recovery
d ₃ -Benztropine	List 5	Low Recovery
d ₃ -Cocaine	List 5	Low Recovery
d ₅ -Norfluoxetine	List 5	Low Recovery
d ₆ -Paroxetine	List 5	Low Recovery
d ₅ -Propoxyphene	List 5	Low Recovery
d ₇ -Propranolol	List 5	Low Recovery

The following analytes show recoveries in the spiked matrix sample (SPM) not meeting existing method specifications. In addition, reporting of analytes in soil/sediment samples can require flagging due to surrogate recovery issues.

Analyte	List	Issue
Cefotaxime	List 1	High Recovery
Enrofloxacin	List 1	High Recovery/Not Reportable
Lomefloxacin	List 1	High Recovery/Not Reportable
Ofloxacin	List 1	High Recovery/Not Reportable
Oxolinic Acid	List 1	High Recovery
Penicillin V	List 1	High Recovery
Sarafloxacin	List 1	High Recovery/Not Reportable
Clinafloxacin	List 1	High Recovery/Not Reportable
Norfloxacin	List 1	High Recovery/Not Reportable
Ciprofloxacin	List 1	Not Reportable
Lincomycin	List 1	Low Recovery
Oxacillin	List 1	Low Recovery
Penicillin G	List 1	Low Recovery
Sulfamethizole	List 1	Low Recovery

2. 1,7-DIMETHYLXANTHINE, THEOPHYLLINE AND THEOBROMINE

1,7-Dimethylxanthine is an analyte in List 1, Theophylline or 1,3-dimethylxanthine is an analyte in List 5 of the same method. These analytes are isomers, and hence co-elute in both List 1 and List 5 instrumental runs, leading to a systematic over-reporting of each compound in the Spiked Matrix (SPM) samples. The recovery criteria for these compounds takes into account the effect of the cross interference on data accuracy. Any positive detection of either analyte is presumed to be a sum of the two analytes. Neither the HPLC, nor the mass spectrometer, can differentiate between the two compounds.

3. ROXITHROMYCIN, CLARITHROMYCIN AND TYLOSIN REQUANTIFICATIO

Roxithromycin, clarithromycin and tylosin are all quantified against ¹³C-sulfamethazine. This surrogate is chemically different from the analytes, and can sometimes show low recovery in samples even when the three analytes are not affected. If the recovery of ¹³C-sulfamethazine is less than 10%, upon request, roxithromycin, clarithromycin and tylosin are requantified against the recovery standard ¹³C-atrazine and flagged as estimated minimum concentrations if detected. The data is evaluated and flagged using procedures outlined in AXYS Document QDO-027 "Rules for the Application of Non-Quantifiable Flags (NQ) to MLA-075 Results".

4. CORRECTION PROCEDURE FOR HYDROCODONE AND CODEINE CROSS INTERFERENCE.

An examination of sample data and investigatory work reveals that there is significant analytical cross-interference between hydrocodone and codeine in the List 4 analysis. This interference arises from the chemical similarity of these compounds. The compounds have the same molecular weight and chemical formula, $C_{18}H_{21}NO_3$, and due to this structural similarity they are not separated on the HPLC column used in this analysis. In addition, full product ion scan data reveals that the quantitation transitions for each of these compounds show mass spectrometric interferences from the presence of the other compound. The extent of this interference is constant across the concentration range of the method, except close to the reporting limit where there is increased uncertainty.

The interference affects all analytical runs including the calibration. Impact on the spiked matrix (SPM/OPR) data is minimal because the effects from the calibration and sample data cancel each other out. Therefore, reported spike recovery data will not change significantly.

Correction

An algebraic correction of the results of hydrocodone and codeine is possible due to the constancy of the cross-interference. Using this algebraic correction enables Axys to report approximate concentrations of hydrocodone and codeine with the interferences taken into account. Use of this correction also enables Axys to detect and correct for false positive occurrence. In addition, the selection of a new quantitation transition for codeine (300.0 \rightarrow 215.0) has greatly reduced the cross interference of hydrocodone in codeine.

Algebraic Solution

Area Correction

$$H_{199} = \frac{Y - aX}{1 - ab}$$
, and

$$C_{215} = \frac{X - bY}{1 - ab}$$

where

X, Y = Observed areas of codeine and hydrocodone, respectively

C, H = Corrected areas for codeine and hydrocodone, respectively

a, b = Cross Interference constants, a = 0.564 (codeine in hydrocodone) and b = 0.022 (hydrocodone in codeine).

Correction of Linearity

Because the ratio of codeine:hydrocodone concentration is constant in the linearity calibration solutions, the linearity slope is reduced for each compound by a constant R = 0.737 for hydrocodone and 0.966 for codeine.

Concentration

$$C_{corr} = \frac{C_{uncorr} * A_{corr}}{R * A_{uncorr}},$$

where

A_{corr} is H or C

Auncorr is X or Y

R is the linearity correction.

Correction Limits

For hydrocodone, if $\frac{Y-H_{199}}{Y}$ > 0.5 , the concentration will be reported as ND < Y.

For codeine, if $\frac{X-C_{215}}{X}$ > 0.5 , the concentration will be reported as ND < X.

Application of the Correction

This correction is carried out in LIMS after data evaluation. The correction is applied to all samples except the calibration runs (calibration correction is already part of the correction), and the calibration verification runs.

Positive or Negative Bias

The sample correction and linearity corrections work in opposite directions. In a scenario where one analyte is present at relatively high levels and the other analyte is not present, or present at low levels, the effect from the linearity correction will dominate. If the relative amounts are comparable, the effect of the sample area correction will dominate.

Page 31 of 51

Uncertainty and Impact on Sample Data

The correction approach takes into account the increased uncertainty due this cross-interference. If the measured area response for a compound is at least two times the correction required, data indicates that the correction can be carried out and the corrected concentration is reported. However, if the correction required is higher than this threshold, the compound is reported as not detected with a detection limit equal to the observed concentration. The effect will be to elevate the detection limit of the lower concentration analyte in the presence of relatively higher concentrations of the alternate analyte.

5. METHYL ESTER INTERFERENCE OF BETA-LACTAM ANTIBIOTICS

Cloxacillin, oxacillin and penicillin G are reported as 'Information Values' of estimated concentration. These compounds are determined by LC-MS/MS using ions from the methanol adduct of the compound (M+CH₃OH). There is indication that methyl esters of these compounds can also form in standard solutions over time. Ions from these methyl esters cannot be distinguished from methanol adduct ions formed from the parent compound. The consequence of this reaction could be a slow, but continuous increase of instrument response for these compounds in the calibration solutions. The rate of change in response is different for each compound. This behavior has not yet been observed/documented in client samples. The result of this standard transformation is to confer greater uncertainty on measured concentrations of these three compounds.

6. POTENTIAL AMPHETAMINE INTERFERENCE

The presence of an interfering compound with potential to obscure or cause false positive detection of amphetamine has been observed in some water and solids samples. Use of the secondary transition response, itself prone to interference, is not reliable in overcoming the interference problem. Partial or complete chromatographic resolution of the interfering compound has been observed - i.e. a shift of the native compound peak RT (retention time) relative to that of the d5-amphetamine surrogate is indicative of the interference. Where evidence of this interference is observed amphetamine results are flagged in reports as "estimated maximum possible values".

- 1. Positive identification of amphetamine requires an RT difference of 0.10 minutes or less between native and labeled amphetamine.
- 2. Where the RT differences between a candidate peak and labeled amphetamine is greater than +0.10 minutes, the result will be quantified as amphetamine but flagged as an "estimated maximum possible concentration" on reports. The flag must be edited by hand in LIMS; EMPC, K or NDR dependent on client flagging requirements.
- 3. Where the RT difference between the closest native peak and labeled amphetamine is sufficient to avoid "masking" of any amphetamine response (generally requires an RT difference of 0.25 minutes or greater) amphetamine will be reported as not detected.
- 4. Where multiple injection data for a sample are available (e.g. a neat and a diluted run), instrument analysts will report amphetamine from the chromatogram producing the most definitive result based on an evaluation of peak shape and peak resolution. The result will

be quantified as amphetamine but flagged as an "estimated maximum possible concentration" on reports. The flag must be edited by hand in LIMS; EMPC, K or NDR dependent on client flagging requirements.

- 5. Extracts will not be routinely diluted and reinjected for improvement of amphetamine interference alone as there is no evidence that this is systematically effective.
- 6. For amphetamine with a high peak area response above the SPM, the 1st channel should be confirmed by the 2nd channel. If no peak is present in the 2nd channel, the peak in the 1st channel is possibly not amphetamine and should be removed from the 1st channel.

7. POTENTIAL DEGRADATION OF RANITIDINE IN THE STANDARD SOLUTION

Degradation of ranitidine in the standard solution used to prepare OPR tests has been observed intermittently under the specific conditions of the storage. Where OPR test results indicate the possibility of spiking solution degradation, the ranitidine OPR assigned value is adjusted based on the results of a secondary QC test solution (SAR) prepared from the same ampoule that has been analyzed alongside samples. This problem has been demonstrated to have no impact on sample data accuracy

APPENDIX II: EXTRACTION OF TISSUE SAMPLES

The analysis requires extraction at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5).

Two separate tissue sub-samples (one for acidic extraction and the other for basic extraction) are spiked with surrogates, extracted by sonication with pure acetonitrile and then with aqueous buffer (separate extractions at pH 2 and at pH 10, respectively), concentrated by rotary evaporation, decanted, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The acidic and basic extracts are then separately cleaned up by solid phase extraction (SPE) and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs for the complete list of analytes.

QC Acceptance Limits, Tissues

List 1	ist 1 OPR Recovery			Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Acetaminophen	70	130		
Azithromycin	70	250		
Caffeine	70	130		
Carbadox	10	130		
Carbamazepine	70	150		
Cefotaxime	70	300		
Ciprofloxacin	70	130		
Clarithromycin	70	250		
Clinafloxacin	70	200		
Cloxacillin ²	70	250		
Dehydronifedipine	70	200		
Diphenhydramine	60	130		
Diltiazem	70	200		
Digoxin	70	250		
Digoxigenin	50	200		
Enrofloxacin	70	130		
Erythromycin-H ₂ O	70	130		
Flumequine	60	200		
Fluoxetine	70	130		
Lincomycin	70	300		
Lomefloxacin	70	150		
Miconazole	5	130		
Norfloxacin	70	150		
Norgestimate	5	130		
Ofloxacin	70	200		
Ormetoprim	70	130		
Oxacillin ²	70	200		
Oxolinic acid	70	130		
Penicillin G ²	20	130		
Penicillin V	70	250		
Roxithromycin	50	200		
Sarafloxacin	50	130		
Sulfachloropyridazine	70	200		

Sulfadiazine	70	300		
Sulfadimethoxine	70	130		
Sulfamerazine	70	200		
Sulfamethazine	70	130		
Sulfamethizole	60	130		
Sulfamethoxazole	70	130		
Sulfanilamide	50	300		
Sulfathiazole	70	130		
Thiabendazole	70	130		
Trimethoprim	70	130		
Tylosin	60	200		
Virginiamycin M1	30	200		
1,7-Dimethylxanthine	70	250		
¹³ C ₂ , ¹⁵ N-acetaminophen	30	150	30	250
¹³ C ₃ -Caffeine	30	150	20	250
d10-Carbamazepine	30	150	30	150
¹³ C ₃ ,N ¹⁵ -ciprofloxacin	30	150	30	200
¹³ C₂-Erythromycin-H₂O	30	206	5	200
d5-Fluoxetine	30	150	20	150
¹³ C ₆ -Sulfamethazine	30	150	30	150
¹³ C ₆ -Sulfamethoxazole	30	150	10	150
d6-Thiabendazole	30	150	30	150
¹³ C ₃ -Trimethoprim	30	150	30	200

OPR Recovery - List 2
This method has not been validated for List 2 compounds in tissue samples

List 3	OPR R	OPR Recovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Bisphenol A	60	130		
Furosemide	70	150		
Gemfibrozil	70	130		
Glipizide	70	130		
Glyburide	70	130		
Hydrochlorothiazide	20	130		
2-Hydroxy-Ibuprofen	70	221		
Ibuprofen	70	130		
Naproxen	70	130		
Triclocarban	70	130		
Triclosan	70	146		
Warfarin	70	130		
d6-Bisphenol A	30	150	30	150
d6-Gemfibrozil	20	150	5	150
d11-Glipizide	30	150	30	150
d3-Glyburide	20	150	5	150
¹³ C ₃ -Ibuprofen	30	150	10	150

¹³ C-d3-Naproxen	30	150	30	150
¹³ C ₆ -Triclocarban ¹	NQ	150	NQ	150
¹³ C ₁₂ -Triclosan ¹	5	150	NQ	150
d5-Warfarin	30	150	10	150

List 4	OPR R	OPR Recovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Albuterol	60	130		
Amphetamine	70	130		
Atenolol	70	130		
Atorvastatin	70	150		
Cimetidine	30	130		
Clonidine	70	130		
Codeine	70	130		
Cotinine	70	130		
Enalapril	70	130		
Hydrocodone	70	130		
Metformin	70	130		
Oxycodone	70	150		
Ranitidine ¹	NQ	150		
Triamterene	70	130		
d3-Albuterol	20	150	5	150
d5-Amphetamine	30	150	5	150
d7-Atenolol	30	150	30	300
d3-Cimetidine 1	30	150	NQ	500
d4-Clonidine	30	150	30	300
d6-Codeine	10	150	5	150
d3-Cotinine	30	150	30	300
d5-Enalapril	30	150	10	150
d3-Hydrocodone	30	150	20	150
d6-Metformin	10	150	5	200
d6-Oxycodone	30	150	30	150

List 5	OPR R	OPR Recovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Alprazolam	70	130		
Amitriptyline	70	130		
Amlodipine	70	130		
Benzoylecgonine	70	130		
Benztropine	70	150		
Betamethasone	70	250		
Cocaine	70	130		
DEET	70	150		
Desmethyldiltiazem	70	200		
Diazepam	70	130		
Fluocinonide	70	130		
Fluticasone Propionate	20	130		
Hydrocortisone	70	150		

10-Hydroxy-Amitriptyline	70	130		
Meprobamate	70	130		
Methylprednisolone	50	150		
Metoprolol	70	130		
Norfluoxetine	70	130		
Norverapamil	60	130		
Paroxetine	70	130		
Prednisolone	70	150		
Prednisone	70	150		
Promethazine	70	130		
Propoxyphene	70	130		
Propranolol	70	130		
Sertraline	10	130		
Simvastatin	10	130		
Theophylline	70	273		
Trenbolone	70	130		
Trenbolone acetate	30	130		
Valsartan	20	130		
Verapamil	70	200		
d5-Alprazolam	30	150	30	150
d6-Amitriptyline	30	150	10	150
d8-Benzoylecgonine	30	150	20	150
d3-Benztropine	30	150	10	150
d3-Cocaine	30	150	30	150
d7-DEET	30	150	30	150
d5-Diazepam	30	150	10	150
d3-Methylprednisolone	30	200	30	150
d7-Metoprolol	30	150	30	200
d5-Norfluoxetine	30	150	5	300
d6-Paroxetine	20	150	5	150
d4-Promethazine	30	150	20	150
d5-propoxyphene	30	150	30	200
d7-Propranolol	30	150	30	200
¹³ C, ¹⁵ N ₂ -Theophylline	30	150	20	150
d4-Hydrocortisone	30	150	30	200

¹ NQ= Not Quantifiable. Low recovery rate may preclude quantification

 $^{^{\}rm 2}\,$ Analysis result classified as 'Information Value' of estimated concentration.

APPENDIX III: EFFECTS OF ADDING ASCORBIC ACID TO SAMPLES.

Ascorbic acid is added to quench free chlorine in aqueous samples that have been chlorinated. The presence of free chlorine has severe effects on the recovery of analytes and most surrogate compounds. 50 mg/L of ascorbic acid is usually added to samples. The vast majority of analytes and standards are not affected by ascorbic acid addition. It is possible that some analytes may show enhanced recovery. The effects of ascorbic acid on each analyte/standard is shown below.

Analyte	List	Effect	Surrogates	List	Effect
Acetaminophen	List 1	Normal	¹³ C ₂ , ¹⁵ N-Acetaminophen	List 1	Normal
Azithromycin	List 1	Normal	¹³ C ₃ -Caffeine	List 1	Normal
Caffeine	List 1	Normal	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	List 1	Normal
Carbadox	List 1	Normal	¹³ C ₂ -Erythromycin-H ₂ O	List 1	Normal
Carbamazepine	List 1	Normal	d5-Fluoxetine	List 1	Normal
Cefotaxime	List 1	Normal	¹³ C ₆ -Sulfamethazine	List 1	Normal
Ciprofloxacin	List 1	Normal	¹³ C ₆ -Sulfamethoxazole	List 1	Normal
Clarithromycin	List 1	Normal	d6-Thiabendazole	List 1	Normal
Clinafloxacin	List 1	Normal	¹³ C ₃ -Trimethoprim	List 1	Normal
Cloxacillin	List 1	Normal	d6-Thiabendazole	List 2	Normal
Dehydronifedipine	List 1	Normal	d6-Bisphenol	List 3	Normal
Diphenhydramine	List 1	Marginal low bias	d6-Gemfibrozil	List 3	Normal
Diltiazem	List 1	Marginal low bias	d11-Glipizide	List 3	Normal
Digoxin	List 1	Normal	d3-Glyburide	List 3	Normal
Digoxigenin	List 1	Normal	¹³ C ₃ -Ibuprofen	List 3	High bias
Enrofloxacin	List 1	Normal	¹³ C-d3-Naproxen	List 3	Normal
Erythromycin-H ₂ O	List 1	Normal	¹³ C ₆ -Triclocarban	List 3	Normal
Flumequine	List 1	Normal	¹³ C ₁₂ -Triclosan	List 3	Normal
Fluoxetine	List 1	Normal	d5-Warfarin	List 4	Normal
Lincomycin	List 1	Normal	d3-Albuterol	List 4	Normal
Lomefloxacin	List 1	Normal	d6-Metformin	List 4	Normal
Miconazole	List 1	Normal	d3-Cotinine	List 4	Normal
Norfloxacin	List 1	Normal	d3-Cimetidine	List 4	Normal
Norgestimate	List 1	Normal	d5-Enalapril	List 4	Normal
Ofloxacin	List 1	Normal	d6-Oxycodone	List 4	Normal
Ormetoprim	List 1	Normal	d4-Clonidine	List 4	Normal
Oxacillin	List 1	Normal	d5-Amphetamine	List 4	Normal
Oxolinic Acid	List 1	Normal	d6-Codeine	List 4	Normal
Penicillin G	List 1	Normal	d3-Hydrocodone	List 4	Normal
Penicillin V	List 1	Normal	d7-Atenolol	List 4	Normal
Roxithromycin	List 1	Normal	d5-Alprazolam	List 5	Normal
Sarafloxacin	List 1	Normal	d6-Amitriptyline	List 5	Normal
Sulfachloropyridazine	List 1	Normal	d8-Benzoylecgonine	List 5	Normal
Sulfadiazine	List 1	Normal	d3-Benztropine	List 5	Normal
Sulfadimethoxine	List 1	Normal	d3-Cocaine	List 5	Normal
Sulfamerazine	List 1	Normal	d7-DEET	List 5	Normal
Sulfamethazine	List 1	Normal	d5-Diazepam	List 5	Normal
Sulfamethizole	List 1	Normal	d3-Methylprednisolone	List 5	Normal
Sulfamethoxazole	List 1	Normal	d7-Metoprolol	List 5	Normal
Sulfanilamide	List 1	Normal	d5-Norfluoxetine	List 5	Normal
	•	•	•		-

Sulfathiazole	List 1	Normal	d6-Paroxetine	List 5	Normal
Thiabendazole	List 1	Normal	d4-Promethazine	List 5	Normal
Trimethoprim	List 1	Normal	d5-propoxyphene	List 5	Normal
Tylosin	List 1	Normal	d5-propoxyphene d7-Propranolol	List 5	Normal
Virginiamycin M1	List 1	Normal	¹³ C, ¹⁵ N ₂ -Theophylline	List 5	Normal
1,7- Dimethylxanthine	List 1	Normal	d4-Hydrocortisone	List 5	Normal
CTC	List 2	Normal	u4-Hydrocorusone	LISU	INUITIIAI
ECTC	List 2	Normal			
ACTC	List 2	Normal			
EACTC	List 2	Normal			
ICTC		Normal			
	List 2	Normal			
Demeclocycline	List 2				
Doxycycline	List 2	Normal			
OTC	List 2	Normal			
EOTC	List 2	Normal			
TC	List 2	Normal			
ETC	List 2	Normal			
EATC	List 2	High Bias			
ATC	List 2	Normal		-	
Minocycline (458>441)	List 2	Normal		1	
Bisphenol A	List 3	Normal		1	
Furosemide	List 3	Normal		1	
Gemfibrozil	List 3	Normal			
Glipizide	List 3	Normal			
Glyburide	List 3	Normal			
Hydrochlorothiazide	List 3	Normal			
2-hydroxy-ibuprofen	List 3	Normal			
Ibuprofen	List 3	Normal			
Naproxen	List 3	Normal			
Triclocarban	List 3	Normal			
Triclosan	List 3	Normal			
Warfarin	List 3	Normal			
Albuterol	List 4	Normal			
Amphetamine	List 4	Normal			
Atenolol	List 4	Normal			
Atorvastatin	List 4	Normal			
Cimetidine	List 4	Normal			
Clonidine	List 4	Normal			
Codeine	List 4	Normal			
Cotinine	List 4	Normal			
Enalapril	List 4	Normal			
Hydrocodone	List 4	Normal			
Metformin	List 4	Normal			
Oxycodone	List 4	Normal			
Ranitidine	List 4	Normal			
Triamterene	List 4	Normal			
Alprazolam	List 5	Normal			
Amitriptyline	List 5	Normal			
Amlodipine	List 5	Normal			
Benzoylecgonine	List 5	Normal			
Benztropine	List 5	Normal			
Betamethasone	List 5	Normal			
Cocaine	List 5	Normal			
DEET	List 5	Normal			
Desmethyldiltiazem	List 5	Normal			
, , , , , , , , , , , , , , , , , , ,			I .	1	1

Diazepam	List 5	Normal		
Fluocinonide	List 5	Normal		
Fluticasone Propionate	List 5	Normal		
Hydrocortisone	List 5	Normal		
10-hydroxy-amitriptyline	List 5	Normal		
Meprobamate	List 5	Normal		
Methylprednisolone	List 5	Normal		
Metoprolol	List 5	Normal		
Norfluoxetine	List 5	Normal		
Norverapamil	List 5	Normal		
Paroxetine	List 5	High Bias		
Prednisolone	List 5	Normal		
Prednisone	List 5	Normal		
Promethazine	List 5	Normal		
Propoxyphene	List 5	Normal		
Propranolol	List 5	Normal		
Sertraline	List 5	Normal		
Simvastatin	List 5	Normal		
Theophylline	List 5	Normal	 	
Trenbolone	List 5	Normal		
Trenbolone acetate	List 5	Normal		
Valsartan	List 5	Normal		
Verapamil	List 5	Normal		

APPENDIX IV: SUMMARY COMPARISON OF USEPA METHOD 1694 AND AXYS METHOD MLA-075.

Area	EPA 1694	MLA-075
Applicable Matrices	Aqueous, Solids	Aqueous, Solids, <i>Tissue</i>
Analytes Offered	73 compounds, 2 fractions, 4 instrumental runs	146 compounds, 2 fractions, 6 instrumental runs
Sample Containers	Amber glass	Amber glass or <i>HDPE</i>
Chlorine Quenching (water samples)	80 mg sodium thiosulfate per liter, ascorbic acid allowable alternative	50 mg ascorbic acid per liter
Sample Preservation	pH 5-9 if hold time >48hr or freeze	None
Sample Storage Temperature	< 6°C or frozen (aqueous, solids)	Aqueous: < 4 °C; Solids: <-20 °C
Sample Hold Time (guideline only)	Aqueous, 7 days at < 6°C, undefined for frozen storage Solids, 7 days at <-10 °C	Aqueous: 7days for < 4 °C storage Solids: 7 days for -20 °C storage
Extract Hold Time	40 days	40 days
Extraction (separate acid, base fractions)	Aqueous: adjust to pH 2 or pH 10, stabilize with EDTA	Aqueous: adjust to pH 2 or pH 10, stabilize with EDTA
	Solids: adjust to pH 2 or pH 10, stabilize with EDTA, ultrasonic extract into buffered acetonitrile, exchange to water solution	Solids: adjust to pH 2 or pH 10, stabilize with EDTA, ultrasonic extract into buffered acetonitrile, exchange to water solution
Clean-up (separate acid, base fractions)	SPE (HLB), elute in methanol	SPE (HLB), elute in methanol
Instrumental Acquisition	LC-MS/MS, 3 +ESI runs, 1 -ESI run	LC-MS/MS, 5 +ESI runs, 1 -ESI run
Calibration Range, ng/mL in standard	Minimum 5 points, range 0.25- 25000 mg/mL	Minimum 5 points, range 0.08- 30000 ng/mL
Calibration Model	Multi-level, constant RRF; alternative models allowable	Multi-level, 1/x weighted linear regression
Initial Calibration Limits	RSD of RRF >20% (isotope dilution) or <35% (internal standard)	Calculated points 70-130% of actual (allowable exception per compound 60-140%)

Area	EPA 1694	MLA-075
Calibration Verification Limits	70-130%	Calculated points 70-130% of actual (allowable exception one compound per list or 10% of compounds per list may be 60-140%)
Quantification Type	Isotope dilution or internal standard	Isotope dilution or internal standard
Quantification References	18 isotopically labeled compounds	67 isotopically labeled compounds
Initial Precision and Recovery (IPR) Limits, %	range 6-180 %	performance based, generally 3- 250 %
On-Going Precision and Recovery (OPR) Limits, %	range 5-200 %	performance based, generally 2- 300 %
Blank Limits, ng per sample	range 1-500 ng	performance based, generally 0.3 - 80 ng
Surrogate Recovery Limits, %	range 5- 200 %	performance based, generally 3-250 %
Lower Reporting Limit, ng per sample based on low calibration standard	range 1 – 500 ng	performance based, generally 0.3 – 500 ng

APPENDIX V: ANALYSIS OF LIST 6 COMPOUNDS IN AQUEOUS, SOLID AND TISSUE SAMPLES.

The aqueous, solid and tissue sample extraction and cleanup procedures for List 6 compounds are the same as for List 1, 2, 3 and 5 compounds, and List 6 compounds may be analyzed from the same extract.

QC Acceptance Limit Guidelines for List 6 Compounds

List 6 Native Compounds (APOS) Amsacrine, aqueous 5	very ir	n sample covery) High		rage ery (%) High	RSD (%)	Blank Level (ng)
List 6 Native Compounds (APOS) Amsacrine, aqueous 5	50 2		Low	High		(9)
Amsacrine, aqueous 5	2	130				
' '	2	130				
solid			60	130	30	
	.)()	130	3	130	100	≤ 0.8
		130	20	130	30	
Azathioprine, all matrices 7	70	130	70	130	30	≤ 8
Busulfan, all matrices 7	70	130	70	130	30	≤ 24
,	70	130	70	130	30	
	60	130	60	130	30	≤ 80
	70	180	70	160	30	
· · · · · · · · · · · · · · · · · · ·	70	150	70	150	30	
	70	150	70	150	30	≤ 900
	70	250	70	250	30	
	70	130	70	130	30	
	40	160	50	160	30	≤ 0.4
-	50	130	60	130	30	
Clotrimazole, all matrices 7	70	130	70	130	30	≤ 2
	70	130	70	130	30	
	70	130	70	130	30	≤ 2
	70	140	70	140	30	
	70	130	70	130	30	
	70	130	70	130	30	≤ 1.6
	70	140	70	130	30	
' '	60	140	60	130	30	
	25	260	30	240	70	≤ 16
	70	130	70	130	30	
, · · · · · · · · · · · · · · · · · · ·	70	130	70	130	30	. 40
	60	140	70	130	30	≤ 40
	70	130	70	130	30	
· ·	30 15	180	30	160	45 70	< 0.4
	70	200 130	15 70	180 130	70 30	≤ 24
	70	130	70	130	30	
' ' '	70	130	70	130	30	≤ 8
	70	140	70	130	30	_ 3
	70	150	70	140	30	
	60	140	60	130	30	≤ 4
	70	130	70	130	30	

		Recovery		IPR		
	covery	rogate re- in sample covery)		erage very (%)	RSD (%)	- Blank Level (ng)
	Low	High	Low	High		(119)
lopamidol, aqueous	70	140	70	140	30	
solid	70	130	70	130	30	≤ 80
tissue	70	130	70	130	30	
Lomustine, aqueous	40	130	50	130	30	
solid	20	140	30	140	40	≤ 50
tissue	40	130	40	130	30	
Medroxyprogesterone acetate, aqueous	60	130	60	130	30	
solid 	70	130	70	130	30	≤ 4
tissue	70	130	70	130	30	
Melphalan, aqueous	50	130	50	130	30	.04
solid	60 50	130	60 50	130	30 30	≤ 64
tissue		130	50	130		
Metronidazole, all matrices	70	130	70	130	30	≤ 4
Moxifloxacin, aqueous	70	130	70	130	30	≤ 4
Solid ¹	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
tissue	50	130	50	130	30	≤ 4
Norethindrone, aqueous	60	180	60	170	30	.04
solid	50	140	50 70	140	30	≤ 64
tissue	60	200	70 70	180	30	
Oxazepam, aqueous solid	70 60	130 130	70 70	130 130	30 30	≤ 16
tissue	70	130	70	130	30	≥ 10
Rosuvastatin, all matrices	70	130	70	130	30	≤ 16
	70	130	70	130	30	2 10
Tamoxifen, aqueous solid	40	180	70 50	180	30	≤ 0.4
tissue	70	130	70	130	30	≥ 0.4
Teniposide, aqueous	15	130	15	130	30	
solid	15	130	20	130	40	≤ 8
tissue	40	130	50	130	30	
Venlafaxine, aqueous	70	130	70	130	30	
solid	70	130	70	130	30	≤ 1.2
tissue	25	200	30	180	60	
Zidovudine, all matrices	70	130	70	130	30	≤ 50
Surrogate Standards						
¹³ C ₄ -Azathioprine, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	20	150	20	150	40	
d ₈ -Busulfan, aqueous	50 50	150	50	150	30	
solid		150	50	150	30	
tissue	50	160	50	160	30	
d ₆ -Citalopram, aqueous	50	150	50	150	30	
solid 	2	150	2	150	150	
tissue	50	150	50	150	30	

	OPR R	Recovery		IPR		
		rogate re-			DOD	Blank
		in sample covery)		erage very (%)	RSD (%)	Level (ng)
	Low	High	Low	High		(119)
d ₅ -Clotrimazole, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	15	150	20	150	40	
d ₆ -Colchicine, all matrices	50	150	50	150	30	
d ₄ -Cyclophosphamide, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	40	150	30	
¹³ C,d ₃ -Daunorubicin, aqueous	10	150	10	150	80	
solid	1	150	1	150	250	
tissue	50	150	50	150	30	
d ₆ -Diatrizoic acid, aqueous	50	150	50	150	30	
solid	2	150	2	150	120	
tissue	15	150	15	150	30	
¹³ C ₃ -Drospirenone, aqueous	50	150	50 50	150	30	
solid tissue	50 30	150 150	50 40	150 150	30 30	
d ₃ -Etoposide, aqueous	10	150	10	150	80	
solid	50	150	50	150	30	
tissue	50	150	50	150	30	
d ₈ -lopamidol, aqueous	15	150	15	150	30	
solid	5	150	7	150	100	
tissue	50	150	50	150	30	
d ₆ -Medroxyprogesterone acetate, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	30	150	30	150	30	
d ₈ -Melphalan, aqueous	4	150	4	150	60	
solid	10	150	10	150	50	
tissue	2	150	2\3	150	100	
d ₄ -Metronidazole, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	50	180	50	160	30	
¹³ C,d ₃ -Moxifloxacin, aqueous	15	150	15	150	50	
Solid ¹	n.a.	n.a.	n.a.	n.a.	n.a.	
tissue	50	150	50	150	30	
d ₆ -Norethindrone, aqueous	50 50	150	50 50	150	30	
solid tissue	50 50	180 150	50 50	160 150	30 30	
d ₅ -Oxazepam, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	40	150	30	
d ₆ -Rosuvastatin, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	50	150	30	
d ₅ -Tamoxifen, aqueous	30	150	40	150	30	
solid	8	150	8	150	80	
tissue	5	150	5	150	60	

		OPR Recovery and surrogate re- covery in sample (% Recovery)			Blank		
						RSD (%)	Level (ng)
		Low	High	Low	High		(3,
d ₆ -Venlafaxine,	aqueous	50	150	50	150	30	
	solid	35	150	40	150	30	
	tissue	30	150	40	150	30	
d ₃ -Zidovudine,	aqueous	50	150	50	150	30	
	solid	50	150	50	150	30	
	tissue	50	180	50	180	30	
Recovery Standard							
¹³ C ₃ -Atrazine							

The acceptance limits in the table 21 above are guidelines based on initial estimate: recoveries outside of these limits do not invalidate results

Nominal Concentrations of Native Standard, Surrogate Standard and Recovery Standard Solutions for List 6 Compounds

Compound Name	Nominal concentration of Standard Solution	Typical amount spiked (ng)
Native Standard Solution for List 6 acid extracted analytes	(µg/mL)	ng spiked from 240 μL or 100 μL spike
Amsacrine	0.24	24
Azathioprine	2.4	240
Busulfan	7.2	720
Carmustine	24	2400
Chloramphenicol	240	24000
Citalopram	0.05	12
Clotrimazole	0.6	60
Colchicine	0.6	60
Cyclophosphamide	0.2	48
Daunorubicin	4.8	480
Diatrizoic acid	5	1200
Doxorubicin	7.2	720
Drospirenone	2.4	240
Etoposide	1.2	120
lopamidol	10	2400
Lomustine	14.4	1440
Medroxyprogesterone acetate	1.2	120
Melphalan	19.2	1920
Metronidazole	1.2	120
Moxifloxacin	1.2	120
Norethindrone	19.2	1920
Oxazepam	4.8	480

Rosuvastatin	4.8	480
Tamoxifen	0.05	12
Teniposide	2.4	240
Venlafaxine	0.05	12
Zidovudine	14.4	1440
Surrogate Standard Solution for List 6 acid extracted analytes	(μg/mL)	ng spiked from 25 μL spike
¹³ C ₄ -Azathioprine	9.6	240
d ₈ -Busulfan	28.8	720
d ₆ -Citalopram	0.4	10
d ₅ -Clotrimazole	2.4	60
d ₆ -Colchicine	2.4	60
d₄-Cyclophosphamide	1.6	40
¹³ C,d ₃ -Daunorubicin	19.2	480
d ₆ -Diatrizoic Acid	40	1000
¹³ C ₃ -Drospirenone	9.6	240
d ₃ -Etoposide	4.8	120
d ₈ -lopamidol	80	2000
d ₆ -Medroxyprogesterone acetate	4.8	120
d ₈ -Melphalan	76.8	1920
d₄-Metronidazole	4.8	120
¹³ C,d ₃ -Moxifloxacin	4.8	120
d ₆ -Norethindrone	76.8	1920
d ₅ -Oxazepam	19.2	480
d ₆ -Rosuvastatin	19.2	480
d ₅ -Tamoxifen	0.4	10
d ₆ -Venlafaxine	0.4	10
d ₃ -Zidovudine	57.6	1440
Recovery Standard Solution for List 6 acid extracted analytes	(µg/mL)	ng spiked from 100 µL spike
¹³ C ₃ -Atrazine	2.0	200
¹³ C ₆ -2,4,5-Trichlorophenoxyacetic acid	2.0	200
-		•

Nominal Concentrations of Calibration Solutions for List 6 Compounds (ng/mL)

Compound name	Calibration Standards List 6 (Acid extraction, positive ESI)							
	Level A	Level B	Level C	Level D	Level E	Level F	Level G	
Amsacrine	0.2	0.6	2	6	20	60	200	
Azathioprine	2	6	20	60	200	600	2000	
Busulfan	6	18	60	180	600	1800	6000	
Carmustine	20	60	200	600	2000	6000	20000	
Chloramphenicol	220	550	1100	2200	4400	8800	22000	
Citalopram	0.1	0.3	1	3	10	30	100	
Clotrimazole	0.5	1.5	5	15	50	150	500	
Colchicine	0.5	1.5	5	15	50	150	500	
Cyclophosphamide	0.4	1.2	4	12	40	120	400	

		1	1	1	1	1	1
Daunorubicin	4	12	40	120	400	1200	4000
Diatrizoic acid	10	30	100	300	1000	3000	10000
Doxorubicin	6	18	60	180	600	1800	6000
Drospirenone	2	6	20	60	200	600	2000
Etoposide	1	3	10	30	100	300	1000
lopamidol	20	60	200	600	2000	6000	20000
Lomustine	12	36	120	360	1200	3600	12000
Medroxyprogesterone acetate	1	3	10	30	100	300	1000
Melphalan	16	48	160	480	1600	4800	16000
Metronidazole	1	3	10	30	100	300	1000
Moxifloxacin	1	3	10	30	100	300	1000
Norethindrone	16	48	160	480	1600	4800	16000
Oxazepam	4	12	40	120	400	1200	4000
Rosuvastatin	4	12	40	120	400	1200	4000
Tamoxifen	0.1	0.3	1	3	10	30	100
Teniposide	2	6	20	60	200	600	2000
Venlafaxine	0.1	0.3	1	3	10	30	100
Zidovudine	12	36	120	360	1200	3600	12000
Surrogate Standards							
¹³ C ₄ -Azathioprine	60	60	60	60	60	60	60
d ₈ -Busulfan	180	180	180	180	180	180	180
d ₆ -Citalopram	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₅ -Clotrimazole	15	15	15	15	15	15	15
d ₆ -Colchicine	15	15	15	15	15	15	15
d₄-Cyclophosphamide	10	10	10	10	10	10	10
¹³ C,d ₃ -Daunorubicin	120	120	120	120	120	120	120
d ₆ -Diatrizoic Acid	250	250	250	250	250	250	250
¹³ C ₃ -Drospirenone	60	60	60	60	60	60	60
d ₃ -Etoposide	30	30	30	30	30	30	30
d ₈ -lopamidol	500	500	500	500	500	500	500
d ₆ -Medroxyprogesterone acetate	30	30	30	30	30	30	30
d ₈ -Melphalan	480	480	480	480	480	480	480
d ₄ -Metronidazole	30	30	30	30	30	30	30
¹³ C,d ₃ -Moxifloxacin	30	30	30	30	30	30	30
d ₆ -Norethindrone	480	480	480	480	480	480	480
d₅-Oxazepam	120	120	120	120	120	120	120
d ₆ -Rosuvastatin	120	120	120	120	120	120	120
d₅-Tamoxifen	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₆ -Venlafaxine	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₃ -Zidovudine	360	360	360	360	360	360	360
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50
	1	1	l			l	L

List 6 – Acid Extraction, Positive Electrospray Ionization (+)ESI: Analytes, Ions and Quantification References (The acquisition ion masses in this table reflect the instrument settings. The actual MS/MS resolution is normally 1 amu.)

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
lopamidol	2.4	1.000	d ₈ -lopamidol	795.0	777.9 (558.8) *	d ₈ -lopamidol
Diatrizoic acid	4.3	1.000	d ₆ -Diatrizoic acid	631.9	360.9 (614.6) *	d ₆ -Diatrizoic acid
Metronidazole	6.5	1.032	d₄-Metronidazole	171.9	128 (82.1) *	d₄-Metronidazole
Carmustine	10.2	0.895	¹³ C₄-Azathioprine	185 ** (187) *	80 (82) *	¹³ C₄-Azathioprine
Azathioprine	11.3	0.991	¹³ C₄-Azathioprine	277.9	142.0 (232.0) *	¹³ C₄-Azathioprine
Busulfan	11.8	1.017	d ₈ -Busulfan	264	151 (247) *	d ₈ -Busulfan
Zidovudine	12.0	1.000	d ₃ -Zidovudine	268.0	127.0 (110.0) *	d ₃ -Zidovudine
Moxifloxacin	14.5	1.000	¹³ C,d ₃ -Moxifloxacin	402.1	384.2 (358.2) *	¹³ C,d ₃ -Moxifloxacin
Chloramphenicol	14.7	0.980	d ₄ -Cyclophosphamide	340	275 (323) *	d ₄ -Cyclophosphamide
Cyclophosphamide	15.1	1.007	d ₄ -Cyclophosphamide	260.9	140.0 (233.0) *	d ₄ -Cyclophosphamide
Venlafaxine	15.1	1.000	d ₆ -Venlafaxine	278.3	58.4 (260.2) *	d ₆ -Venlafaxine
Amsacrine	15.1	1.000	d ₆ -Venlafaxine	394.0	315.1 (179.1) *	d ₆ -Venlafaxine
Melphalan	15.6	1.006	d ₈ -Melphalan	305	288 (246) *	d ₈ -Melphalan
Colchicine	16.0	1.000	d ₆ -Colchicine	400.1	358.1 (341.1) *	d ₆ -Colchicine
Lomustine	16.1	1.066	d ₆ -Venlafaxine	205 **	123 (80.1) *	d ₆ -Venlafaxine
Etoposide	16.2	1.000	d ₃ -Etoposide	606.2	229.2 (589.2) *	d ₃ -Etoposide
Citalopram	16.2	1.000	d ₆ -Citalopram	325.1	109.1 (262.1) *	d ₆ -Citalopram
Doxorubicin	16.4	0.932	¹³ C,d ₃ -Daunorubicin	544.0	397.0 (361.0) *	¹³ C,d ₃ -Daunorubicin

Daunorubicin	17.7	1.006	¹³ C,d ₃ -Daunorubicin	528.1	321.1 (363.1) *	¹³ C,d ₃ -Daunorubicin
Oxazepam	17.8	1.006	d₅-Oxazepam	287.0	241.0 (269.0) *	d₅-Oxazepam
Teniposide	18.2	1.123	d ₃ -Etoposide	674.1	229.1 (383.2) *	d ₃ -Etoposide
Rosuvastatin	18.5	1.000	d ₆ -Rosuvastatin	482.1	258.1 (300.1) *	d ₆ -Rosuvastatin
Norethindrone	19.2	1.005	d ₆ -Norethindrone	299.0	109.1 (91.1) *	d ₆ -Norethindrone
Drospirenone	19.9	1.000	¹³ C ₃ -Drospirenone	367.2	97.1 (349.2) *	¹³ C ₃ -Drospirenone
Clotrimazole	20.1	1.000	d ₅ -Clotrimazole	277	165 (199) *	d₅-Clotrimazole
Tamoxifen	20.9	1.000	d₅-Tamoxifen	372.3	72.3 (129.2) *	d₅-Tamoxifen
Medroxyprogesterone acetate	21.6	1.000	d ₆ -Medroxyprogesterone acetate	387.2	327.2 (123.1) *	d ₆ -Medroxyprogesterone acetate
Surrogate Standard						
d ₈ -lopamidol	2.4	0.136	¹³ C ₃ -Atrazine	803.0	785.9 (562.9) *	¹³ C ₃ -Atrazine
d ₆ -Diatrizoic acid	4.3	0.244	¹³ C ₃ -Atrazine	637.9	367.0 (620.6) *	¹³ C ₃ -Atrazine
d ₄ -Metronidazole	6.3	0.358	¹³ C ₃ -Atrazine	176.0	128 (82.1) *	¹³ C ₃ -Atrazine
¹³ C ₄ -Azathioprine	11.4	0.648	¹³ C ₃ -Atrazine	281.9	146.0 (236.0) *	¹³ C₃-Atrazine
d ₈ -Busulfan	11.6	0.659	¹³ C ₃ -Atrazine	272	159.1 (255) *	¹³ C ₃ -Atrazine
d ₃ -Zidovudine	12.0	0.682	¹³ C ₃ -Atrazine	271.0	130.1 (113.0) *	¹³ C ₃ -Atrazine
¹³ C,d ₃ -Moxifloxacin	14.5	0.824	¹³ C ₃ -Atrazine	406.1	388.2 (362.2) *	¹³ C ₃ -Atrazine
d ₄ -Cyclophosphamide	15.0	0.852	¹³ C ₃ -Atrazine	265.2	140.0 (234.9) *	¹³ C ₃ -Atrazine
d ₆ -Venlafaxine	15.1	0.858	¹³ C ₃ -Atrazine	284.4	64.4 (266.3) *	¹³ C ₃ -Atrazine
d ₈ -Melphalan	15.5	0.881	¹³ C ₃ -Atrazine	313	296 (254.1) *	¹³ C ₃ -Atrazine
d ₆ -Colchicine	16.0	0.909	¹³ C ₃ -Atrazine	406.0	362.1 (344.1) *	¹³ C ₃ -Atrazine

d ₆ -Citalopram	16.2	0.920	¹³ C ₃ -Atrazine	331.2	109.1 (262.2) *	¹³ C ₃ -Atrazine
d ₃ -Etoposide	16.2	0.920	¹³ C ₃ -Atrazine	609.2	229.1 (592.2) *	¹³ C ₃ -Atrazine
¹³ C,d ₃ -Daunorubicin	17.6	1.000	¹³ C ₃ -Atrazine	532.1	325.1 (367.1) *	¹³ C ₃ -Atrazine
d ₅ -Oxazepam	17.7	1.006	¹³ C ₃ -Atrazine	292.0	246.1 (274.1) *	¹³ C ₃ -Atrazine
d ₆ -Rosuvastatin	18.5	1.051	¹³ C ₃ -Atrazine	488.1	264.2 (306.2) *	¹³ C ₃ -Atrazine
d ₆ -Norethindrone	19.1	1.085	¹³ C ₃ -Atrazine	305.1	237.2 (114.9, 91.1) *	¹³ C ₃ -Atrazine
¹³ C ₃ -Drospirenone	19.9	1.131	¹³ C ₃ -Atrazine	370.1	97.1 (352.2) *	¹³ C ₃ -Atrazine
d ₅ -Clotrimazole	20.1	1.142	¹³ C ₃ -Atrazine	282	170 (199) *	¹³ C ₃ -Atrazine
d ₅ -Tamoxifen	20.9	1.188	¹³ C ₃ -Atrazine	377.4	72.3	¹³ C ₃ -Atrazine
d ₆ -Medroxyprogesterone acetate	21.6	1.227	¹³ C ₃ -Atrazine	393.1	330.2 (126.1) *	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	17.6			219.1	176.9 (134.0) *	External Standard

^{* =} Confirmation ions in instances of interference

^{** =} Parent ion monitored from the breakdown product

MLA-075 Rev 02, List 1 analytes (Acidic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method:

MLA-075 Rev 02, List 1 analytes

Analysis Type:

PPCP (Pharmaceuticals and Personal Care Products), List 1 analytes

Instrument Type: Matrix Spiked:

LC-MS/MS SOLIDS

Axys Workgroup: Column Type:

WG32245 C18

MDL Protocol:

Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QA0J_064 S: 17
MDL 2 Data Filename:	QA0J_064 S: 18
MDL 3 Data Filename:	QA0J_064 S: 19
MDL 4 Data Filename:	QA0J_064 S: 20
MDL 5 Data Filename:	QA0J_064 S: 21
MDL 6 Data Filename:	QA0J_064 S: 22
MDL 7 Data Filename:	QA0J_064 S: 23
14D1 0 D 1 M1	0401.004.0.04

Sample ID: WG32245-107 Sample ID: WG32245-108 Sample ID: WG32245-109 Sample ID: WG32245-110 **Sample ID:** WG32245-111 **Sample ID:** WG32245-112

Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 7-Apr-2010 Instr. Analysis Date: 7-Apr-2010

Instr. Analysis Date: 6-Apr-2010

QA0J_064 S: 21 QA0J 064 S: 22 QA0J_064 S: 23 MDL 8 Data Filename: QA0J_064 S: 24

Sample ID: WG32245-113 Sample ID: WG32245-114

Instr. Analysis Date: 7-Apr-2010 Instr. Analysis Date: 7-Apr-2010

see below

see below

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

	Method Detection Limit,	Eniking Layol	Number of	Mean	Standard	Student's	
Nietive America		ng/g	Observations	ng/g	Devation	t-Value	
Native Analyte ACETAMINOPHEN	ng/g 3.3	11979 50	8	46.4	1.1	2.998	
AZITHROMYCIN	1.2	5	8	4.38	0.42	2.998	
CAFFEINE	11	50	8	50.2	3.73	2.998	
CARBADOX	1.4	5	8	3.83	0.46	2.998	
CARBAMAZEPINE	0.59	5	8	5.75	0.20	2.998	
CEFOTAXIME	7.8	20	8	19.9	2.59	2.998	
CIPROFLOXACIN	3.7	20	8	25.8	1.2	2.998	
CLARITHROMYCIN	1.1	5	8	4.31	0.37	2.998	
CLINAFLOXACIN	6.3	20	8	43.1	2.1	2.998	
CLOXACILLIN	1.8	10	8	10.5	0.59	2.998	
DEHYDRONIFEDIPINE	0.41	2	8	2.22	0.14	2.998	
DIPHENHYDRAMINE	0.41	2	8	1.94	0.09	2.998	
DILTIAZEM	0.15	1	8	0.963	0.05	2.998	
DIGOXIN	16	20	8	27.7	5.49	2.998	
DIGOXIGENIN	7.5	20	8	24.5	2.51	2.998	
ENROFLOXACIN	2.9	10	8	15.4	0.96	2.998	
ERYTHROMYCIN-H2O	0.26	ï	8	1.07	0.09	2.998	
FLUMEQUINE	1.1	5	8	5.36	0.38	2.998	
FLUOXETINE	0.78	5	8	5.24	0.26	2.998	
LINCOMYCIN	2.8	10	8	8.37	0.92	2.998	
LOMEFLOXACIN	5.9	10	8	20.7	1.97	2.998	
MICONAZOLE	0.38	5	8	3.86	0.13	2.998	
NORFLOXACIN	7.6	50	8	57.1	2.52	2.998	
NORGESTIMATE	1.7	10	8	8.70	0.57	2.998	
OFLOXACIN	1.9	5	8	8.98	0.63	2.998	
ORMETOPRIM	0.22	2	8	1.86	0.1	2.998	
OXACILLIN	1.4	10	8	9.77	0.48	2.998	
OXOLINIC ACID	0.46	2	8	2.25	0.15	2.998	
PENICILLIN G	0.56	10	8	1.43	0.19	2.998	
PENICILLIN V	1.9	10	8	10.6	0.62	2.998	
ROXITHROMYCIN	0.21	1	8	0.788	0.07	2.998	
SARAFLOXACIN	21	50	8	92.3	6.98	2.998	
SULFACHLOROPYRIDAZINE	1.6	5	8	4.81	0.5	2.998	
SULFADIAZINE	1.3	5	8	4.87	0.44	2.998	
SULFADIMETHOXINE	0.29	1	8	1.01	0.10	2.998	
SULFAMERAZINE	0.75	2	8	1.40	0.25	2.998	
SULFAMETHAZINE	1.5	2	8	2.14	0.52	2.998	
SULFAMETHIZOLE	0.43	2	8	1.79	0.14	2.998	

Page 59 of 1921

SULFAMETHOXAZOLE	0.75	2	8	1.95	0.25	2.998		
SULFANILAMIDE	14.5	50	8	39.9	4.83	2.998		
SULFATHIAZOLE	0.94	5	8	4.34	0.31	2.998		
THIABENDAZOLE	1.0	5	8	4.64	0.35	2.998		
TRIMETHOPRIM	0.85	5	8	5,02	0.28	2.998		
TYLOSIN	4.8	20	8	18.9	1.59	2.998		
VIRGINIAMYCIN	1.3	10	8	11.4	0.44	2.998		
1,7 DIMETHYLXANTHINE	37	200	8	341	12.31	2.998		
Axys Method:	MLA-075 Rev 04 \	√er 02. List 1 ana	alytes					
Analysis Type:	PPCP (Pharmace)			s), List 1	analytes			
Instrument Type:	LC-MS/MS							
Matrix Spiked:	SOLIDS					٠.		
Axys Workgroup:	WG39040							
Column Type:	C18							
MDL Protocol:	Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration							
MDL 1 Data Filename:	QA2J 015 S: 31	Sample ID:	WG39040-107		Instr. Analy	sis Date:	12-Feb-2012	
MDL 2 Data Filename:	QA2J 015 S: 32	Sample ID:	WG39040-108		Instr. Analy	sis Date:	12-Feb-2012	
MDL 3 Data Filename:	QA2J 015 S: 33	Sample ID:	WG39040-109		Instr. Analy	/sis Date:	12-Feb-2012	
MDL 4 Data Filename:	QA2J 015 S: 34		WG39040-110		Instr. Analy		12-Feb-2012	
MDL 5 Data Filename:	QA2J_015 S: 35	Sample ID:	WG39040-111		Instr. Analy		12-Feb-2012	
MDL 6 Data Filename:	QA2J_015 S: 36		WG39040-112		Instr. Analy	the state of the s	12-Feb-2012	
MDL 7 Data Filename:	QA2J_015 S: 37		WG39040-113		Instr. Analy		12-Feb-2012	
MDL 8 Data Filename:	QA2J_015 S: 38	Sample ID:	WG39040-114		Instr. Analy	sis Date:	12-Feb-2012	
ALL CONCE	NTRATIONS REPO	RTED ON THIS	FORM ARE CON	CENTRA	ATIONS IN SA	AMPLES		
			sed on 1 g of sol					
	Method							
	Detection Limit,	Spiking Level	Number of	Mean	Standard	Student's		
Native Analyte	ng/g	ng/g	Observations	ng/g	Devation	t-Value		
CARBAMAZEPINE	0.29	5	8	4.86	0.10	2.998		
ERYTHROMYCIN-H2O	0.81	4	8	3.37	0.27	2.998		

⁼ Meets all 40 CFR MDL protocol requirements = MDL lower than ¹/₁₀ of the spiking level

MLA-075 Rev 02, List 2 analytes (Tetracyclines, Acidic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 2 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 2 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32245 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

QB0K 082 S: 28	Sample ID:	WG32245-107 I2	Instr. Analysis Date:	20/04/2010
	Sample ID:	WG32245-108 I2	Instr. Analysis Date:	20/04/2010
	Sample ID:	WG32245-109 I2	Instr. Analysis Date:	20/04/2010
	Sample ID:	WG32245-110 I2	Instr. Analysis Date:	20/04/2010
			Instr. Analysis Date:	20/04/2010
AMEN.			Instr. Analysis Date:	20/04/2010
. -				
	QB0K_082 S: 28 QB0K_082 S: 29 QB0K_082 S: 30 QB0K_082 S: 31 QB0K_082 S: 32 QB0K_082 S: 33 QB0K_082 S: 34 QB0K_082 S: 34	QB0K_082 S: 29	QB0K_082 S: 29	QB0K_082 S: 29 Sample ID: WG32245-108 I2 Instr. Analysis Date: QB0K_082 S: 30 Sample ID: WG32245-109 I2 Instr. Analysis Date: QB0K_082 S: 31 Sample ID: WG32245-110 I2 Instr. Analysis Date: QB0K_082 S: 32 Sample ID: WG32245-111 I2 Instr. Analysis Date: QB0K_082 S: 33 Sample ID: WG32245-112 I2 Instr. Analysis Date: QB0K_082 S: 34 Sample ID: WG32245-113 I2 Instr. Analysis Date:

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

Native Analyte	Method Detection Limit, ng/g	Spiking Level ng/g	Number of Observations	Mean ng/g	Standard Devation ng/g	Student's t-Value	Mean % recovery
Anhydrochlortetracycline (ACTC)	11	50.0	8	34.6	3.6	2.998	69
Anhydrotetracycline (ATC)	14	50.0	8	29.3	4.6	2.998	59
Chlortetracycline (CTC)	12	20.0	8	31.9	3.9	2.998	159
Demeclocycline	9.7	50.0	8	38.1	3.2	2.998	76
Doxycycline	5.7	20.0	8	19.6	1.9	2.998	98
4-Epianhydrochlortetracycline (EACTC)	23	200	8	62.8	7.5	2.998	31
4-Epianhydrotetracycline (EATC)	15	50.0	8	27.4	4.9	2.998	55
4-Epichlortetracycline (ECTC)	24	50.0	8	50.8	8.0	2.998	102
4-Epioxytetracycline (EOTC)	6.5	20.0	8	20.2	2.2	2,998	101
4-Epitetracycline (ETC)	9.5	20.0	8	26.8	3.2	2.998	134
Isochlortetracycline (ICTC)	3.8	20.0	8	14.9	1.3	2.998	74
Minocycline	14	200	7	57.1	4.4	3.143	29
Oxytetracycline (OTC)	7.5	20.0	8	22.8	2.5	2.998	114
Tetracycline (TC)	7.0	20.0	8	22.4	2.3	2.998	112

= Meets all 40 CFR MDL protocol requirements

= MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 3 analytes (Acidic extraction, negative ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 3 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 3 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32245 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QF0K 072 S: 28	Sample ID: V	NG32245-107	Instr. Analysis Date:	
MDL 2 Data Filename:	QF0K 072 S: 29	Sample ID: V	NG32245-108	Instr. Analysis Date:	1-Apr-2010
MDL 3 Data Filename:	QF0K 072 S: 30	Sample ID: V	NG32245-109	Instr. Analysis Date:	
MDL 4 Data Filename:		Sample ID: V	NG32245-110	Instr. Analysis Date:	1-Apr-2010
MDL 5 Data Filename:	QF0K 072 S: 32	Sample ID: V	NG32245-111	Instr. Analysis Date:	1-Apr-2010
MDL 6 Data Filename:	QF0K 072 S: 33	Sample ID: V	NG32245-112	Instr. Analysis Date:	
MDL 7 Data Filename:	QF0K 072 S: 34	Sample ID: V	NG32245-113	Instr. Analysis Date:	1-Apr-2010
MDL 8 Data Filename:	QF0K 072 S: 35	Sample ID: V	NG32245-114	Instr. Analysis Date:	1-Apr-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

Native Analyte	Method Detection Limit, ng/g	Spiking Level ng/g	Number of Observations	Mean ng/g	Standard Devation	Student's t-Value	Mean % recovery
Bisphenol A-1	255	1017	8	1055	85	2.998	104
Furosemide-1	52	133	8	131	17.4	2.998	99
Gemfibrozil	1.6	5.00	8	5.64	0.54	2.998	113
Glipizide-1	6.6	20.0	8	22.4	2.21	2.998	112
- Glyburide-1	7.8	10.0	8	11.1	2.60	2.998	111
Hydrochlorothiazide-1	11	66.7	8	23.7	3.60	2.998	36
2-hydroxy-ibuprofen	100	267	8	343	33.5	2.998	129
lbuprofen	. 20	50.0	8	60.8	6.54	2.998	122
Naproxen	12	10.0	8	12.9	3.90	2.998	129
Triclocarban	2.0	10.0	8	11.2	0.68	2.998	112
Triclosan	126	206	8	234	41.9	2.998	114
Warfarin	1.9	5.00	8	5.73	0.65	2.998	115

= Meets all 40 CFR MDL protocol requirements

= MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 4 analytes (Basic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 4 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 4 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32246 Column Type: HILIC

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename: QG0K 074 S: 25	Sample ID: WG32246-107 Instr. Analysis Date: 8-Apr-2010
MDL 2 Data Filename: QG0K 074 S: 26	Sample ID: WG32246-108 Instr. Analysis Date: 8-Apr-2010
MDL 3 Data Filename: QG0K_074 S: 27	Sample ID: WG32246-109 Instr. Analysis Date: 8-Apr-2010
MDL 4 Data Filename: QG0K_074 S: 28	Sample ID: WG32246-110 Instr. Analysis Date: 8-Apr-2010
MDL 5 Data Filename: QG0K_074 S: 29	Sample ID: WG32246-111 Instr. Analysis Date: 8-Apr-2010
MDL 6 Data Filename: QG0K_074 S: 30	Sample ID: WG32246-112 Instr. Analysis Date: 8-Apr-2010
MDL 7 Data Filename: QG0K_074 S: 31	Sample ID: WG32246-113 Instr. Analysis Date: 8-Apr-2010
MDL 8 Data Filename: QG0K 074 S: 32	Sample ID: WG32246-114 Instr. Analysis Date: 8-Apr-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

	Method Detection	Spiking Level	Number of	Mean	Standard	Student's	Mean
Native Analyte	Limit, ng/g	ng/g	Observations	ng/g	Devation	t-Value	% recovery
ALBUTEROL	0.81	1.00	8	1.10	0.269	2.998	110
AMPHETAMINE	6.11	5.00	8	6.41	2.039	2.998	128
ATENOLOL	0.84	2.00	8	1.90	0.280	2.998	95
ATORVASTATIN	0.71	5.00	8	3.70	0.237	2.998	74
CIMETIDINE	0.42	2.00	8	1.78	0.139	2.998	89
CLONIDINE	1.31	5.00	8	3.94	0.435	2.998	79
CODEINE	4.21	10.0	8	10.2	1.405	2.998	102
COTININE	0.46	5.00	8	3.96	0.152	2.998	79
ENALAPRIL	0.34	1.00	8	0.98	0.114	2.998	98
HYDROCODONE	2.23	5.00	8	6.37	0.744	2.998	127
METFORMIN	10.8	10	8	11.45	3.598	2.998	115
OXYCODONE	0.60	2.00	8	1.45	0.202	2.998	72
RANITIDINE	0.87	2.00	8	1.58	0.291	2.998	79
TRIAMTERENE	0.25	1.00	8	0.94	0.083	2.998	94

= Meets all 40 CFR MDL protocol requirements

= MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 5 analytes (Acidic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 5 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 5 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32245 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

Instr. Analysis Date: 17-Apr-2010 MDL 1 Data Filename: QE0J_071 S: 18 Sample ID: WG32245-107 | Sample ID: WG32245-108 | Instr. Analysis Date: 17-Apr-2010 MDL 2 Data Filename: QE0J_071 S: 19 Instr. Analysis Date: 17-Apr-2010 MDL 3 Data Filename: QE0J 071 S: 20 Sample ID: WG32245-109 | Sample ID: WG32245-110 I Instr. Analysis Date: 17-Apr-2010 MDL 4 Data Filename: QE0J_071 S: 21 Instr. Analysis Date: 17-Apr-2010 MDL 5 Data Filename: QE0J_071 S: 22 Sample ID: WG32245-111 I Instr. Analysis Date: 17-Apr-2010 Sample ID: WG32245-112 I MDL 6 Data Filename: QE0J_071 S: 23 Instr. Analysis Date: 17-Apr-2010 MDL 7 Data Filename: QE0J 071 S: 24 Sample ID: WG32245-113 | Sample ID: WG32245-114 I Instr. Analysis Date: 17-Apr-2010 MDL 8 Data Filename: QE0J_071 S: 25

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

	Method	i			Standard		
4	Detection Limit,	Spiking Level	Number of	Mean	Devation	Student's	ļ
Native Analyte	ng/g	ng/g	Observations	ng/g	ng/g	t-Value	
Alprazolam-1	0.35	1.00	8	0.91	0.12	2.998	
Amitriptyline-1	0.29	1.00	8	1.15	0.10	2.998	-
Amlodipine-1	2.1	5.00	8	5.09	0.70	2,998	ŀ
Benzoylecgonine-1	0.16	1.00	8	0.98	0.06	2.998	ŀ
Benztropine-1	0.27	1.00	8	1.15	0.09	2.998	see below
Betamethasone-1	11	5.00	8	5.79	3.67	2.998	, I
Cocaine-1	0.07	0.50	8	0.55	0.02	2.998	
DEET-1	0.32	0.50	8	0.69	0.11	2.998	ŀ
Desmethyldiltiazem-1	0.16	0.50	8	0.76	0.05	2.998	ŀ
Diazepam-1	0.38	1.00	8	0.96	0.13	2.998	ļ
Fluocinonide-1	3.7	20:0	8	18.9	1.25	2,998	
Fluticasone Propionate-1	5.3	6.67	8	4.07	1.77	2.998	ļ
Hydrocortisone-1	134	200	8	201	45	2.998	ļ
10-hydroxy-amitriptyline-1	0.18	0.50	8	0.49	0.06	2.998	, ,
Meprobamate-1	4.8	13.3	8	15.40	1.61	2.998	
Methylprednisolone-1	10	13.3	8	20.0	3.44	2.998	see below
Metoprolol-1	2.3	5.00	8	5.39	0.76	2.998	
Norfluoxetine	1.0	5.00	8	5.29	0.34	2.998	
Norverapamil-1	0.15	0.50	8	0.51	0.05	2.998	
Paroxetine-1	3.6	13.3	8	14.4	1,19	2.998	
Prednisolone-1	6.4	20.0	8	20.1	2.12	2.998	
Prednisone-1	33	66.7	8	61.9	11.2	2.998	٧.
Promethazine-1	0.30	1.33	8	1.24	0.10	2.998	
Propoxyphene-1	0.60	1.00	8	1.04	0.20	2.998	
Propranolol-1	1.3	6.67	8	7.29	0.42	2.998	
Sertraline-1	0.23	1.33	8	1.14	0.08	2.998	
Simvastatin-1	24	66.7	8	57.4	7.90	2.998	
Theophylline-1	287	200	8	513	96	2.998	
Trenbolone-1	5.4	13.33	8	15.8	1.81	2.998	
Trenbolone acetate-1	1.5	1.00	8	1.05	0.49	2.998	
Valsartan-1	4.6	13.33	8	13.6	1.53	2.998	
Verapamil-1	0.16	0.50	8	0.45	0.05	2.998	

Axys Method: MLA-075 Rev 04 Ver 01, List 5 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 5 analytes

Instrument Type: LC-MS/MS
Matrix Spiked: SOLIDS

Axys Workgroup: WG39040 Column Type: C18 MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration Sample ID: WG39040-107 Instr. Analysis Date: 12-Feb-2012 MDL 1 Data Filename: QE2Q_037 S: 18 Instr. Analysis Date: 12-Feb-2012 MDL 2 Data Filename: QE2Q 037 S: 19 Sample ID: WG39040-108 Sample ID: WG39040-109 Instr. Analysis Date: 12-Feb-2012 MDL 3 Data Filename: QE2Q_037 S: 20 Instr. Analysis Date: 12-Feb-2012 MDL 4 Data Filename: QE2Q_037 S. 21 Sample ID: WG39040-110 Sample ID: WG39040-111 Instr. Analysis Date: 12-Feb-2012 MDL 5 Data Filename: QE2Q_037 S: 22 Instr. Analysis Date: 12-Feb-2012 MDL 6 Data Filename: QE2Q_037 S: 23 Sample ID: WG39040-112 Sample ID: WG39040-113 Instr. Analysis Date: 12-Feb-2012 MDL 7 Data Filename: QE2Q_037 S: 24 Instr. Analysis Date: 12-Feb-2012 MDL 8 Data Filename: QE2Q_037 S: 25 Sample ID: WG39040-114 ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids Method Standard **Devation Student's** Detection Limit, Spiking Level Number of Mean ng/g t-Value Observations ng/g **Native Analyte** ng/g ng/g 1.00 1.82 0.06 2.998 0.19 Benztropine-1 2.998 1.35 13.33 13.6 Methylprednisolone-1 4.0

= Meets all 40 CFR MDL protocol requirements

= Meets all 40 Cr o mbc production and the spiking level

Washington State Department of Ecology

CORRELATION TABLE

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS

Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks					
Project: N/A	Contract No: 4499					
Project Name:Urban Waters - Elliott Bay	AXYS Method: MLA-075					
Data Package Identification: DPWG44301	Program: Solid Samples					
Client Sample No.	Lab Sample ID					
LAB BLANK	WG43863-101					
OPR	WG43863-102					
LAB BLANK	WG43864-101					
OPR	WG43864-102					
LAB BLANK	WG44109-101					
OPR	WG44109-102					
4000000 04	140744					
1306020-01	L19741-1					
1306020-02	L19741-2					
1306020-03	L19741-3					
1306020-07 1306020-08	L19741-4 L19741-5 WG43863-103 DUPLICATE					
1306020-08	L19741-5 WG43863-103 DUPLICATE					
1306020-09 1306020-11	L19741-6 L19741-7					
1306020-11	L19741-8					
1306020-16	L19741-9					
1306020-17	L19741-10 WG44109-103 DUPLICATE					
1306020-17	L19741-11					
1306020-20	L19741-12					
1306020-21	L19741-13					
1306020-30	L19741-14					
1306020-34	L19741-15					
1306020-35	L19741-16					
1306020-36	L19741-17					
1306020-37	L19741-18					
1306020-28	L19741-19					

Chain of Custody

	a a	
P, MMU, Marine Sediment Monitori	ng Team	1306020-28-19

615/2013	hirbay w.	2013	EAP,	MMU, Ma	rine Sediment Monitoring Team	1306020-28-
Date	Project	Year	Month		ParameterText	MEL Sample ID
6/5/2013	Urban Waters	2013	Jun	114 🍃	PPCP & PFC	1306020-01 49741-1
6/4/2013	Urban Waters	2013	Jun	115 🛚	PPCP & PFC	1306020-02 -2
6/3/2013	Urban Waters	2013	Jun	172 👳	PPCP & PFC	1306020-03 - 3
6/4/2013	Urban Waters	2013	Jun	176 🍙	PPCP & PFC	1306020-07 -4
6/4/2013	Urban Waters	2013	Jun	177 🌼	PPCP & PFC	1306020-08 -5
6/4/2013	Urban Waters	2013	Jun	178 🥜	PPCP & PFC	1306020-09 - 4
6/4/2013	Urban Waters	2013	Jun	178	PPCP & PFC	1306020-09
6/4/2013	Urban Waters	2013	Jun	180 ♥	PPCP & PFC	1306020-11 -7
6/5/2013	Urban Waters	2013	Jun	184 ~	PPCP & PFC	1306020-15 - 8
6/4/2013	Urban Waters	2013	Jun	185 🧷	PPCP & PFC	1306020-16 -9
6/5/2013	Urban Waters	2013	Jun	186 €	PPCP & PFC	1306020-17 - 10
6/5/2013	Urban Waters	2013	Jun	188 🛷	PPCP & PFC	1306020-19 -11
6/3/2013	Urban Waters	2013	Jun	189 🏻	PPCP & PFC	1306020-20 -12
6/3/2013	Urban Waters	2013	Jun	190 🥏	PPCP & PFC	1306020-21 - 13
6/3/2013	Urban Waters	2013	Jun	199 🚁	PPCP & PFC	1306020-3014
6/5/2013	Urban Waters	2013	Jun	203 6	PPCP & PFC	1306020-34 -15
6/5/2013	Urban Waters	2013	Jun	204 🌼	PPCP & PFC	1306020-35 - 16
6/5/2013	Urban Waters	2013	Jun	205 🎤	PPCP & PFC	1306020-36 -17
6/5/2013	Urban Waters	2013	Jun	U1 6	PPCP & PFC	1306020-37 -18

Relinquished By	Date/Time	Received By	Date/Time	Comments
Margaret Duth	6/5/2013	Offeete	6/5/2013	
OC Groozer	6/6/2013	Margaret autil	6/6/2013	
Margaest Stith	46/6/2013	AND IN LOND	6/6/2013	
them	8/7/2013	M. Wilman	81-UVL-10	11:15

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

		SAMPLE	KECEIVING KEC	טאכ			
Waybill : Date Shipped:	Yes (No) 06-JUN-13		Waybill #: Date /Time R	leceived:		LIVERED 07 JUN 13 3 11:15	
AXYS Client & Contract #	4499-Wash	ington State	Dept of Ecology				
Project Number:			Receipt No:		WB14889	• , ,	1./
Login Number:						-	<u> </u>
Received By: MGIERDEN	. 1		Log in by:	may	urden	Signature:	
Axys Sample ID's: L1974	1-1-01	9				Ψ	<u> </u>
Matrix Type: 19 Marine seds	1 .						
Condition of Shipping Container:	tact						
Temperature upon Receipt: -3.6 Ce	lcius ice	packs frozen, ne	o temp blank present			Thermometer II Corrected Temperature	
Custody Seals: Shipping Contain	ners Yes (No	Intact Yes /No	Seal Number	ers Yes	/No		
Samp	oles Yes (No	Intact Yes /No	Seal Number	ers Yes	/No		
Chain of Custody or Documents: Sample ID's Collection Location Date & Time Collection Collector's Name	(Yes/No (Yes)/No (es)/No (Yes/No Yes /No		Tracking Report /Pack Sample Tag Numbers Sample Type Preservative Added Preservation Requeste		Yes (No Yes (No Yes (No Yes (No Yes (No		
Sample Tags		Yes (No)					
Sample Labels		Yes /No					
Sample Labels Cross Referenced to C	ОС	(Yes)/No	Inf	ormation	Agrees	(Yes)No	
Sample Tags Cross Referenced to Sa	mple Labels	Yes /No	Inf	ormation	Agrees	Yes /No	
Sample Tags Cross Referenced to CC	C	Yes /No	Inf	ormation	Agrees	Yes /No	
Comments:							
419741 on to	–19 The CL	<u>c</u> -	ample wa gBrooks e client	10 N	rand - June	written 2-2013	
					——————————————————————————————————————		
	·					•,	-
							······································
Action Taken:	,						
Action raken.							
					***************************************	······································	

Axys Analytical Services Ltd 2045 Mills Road West SIDNEY, BRITISH COLUMBIA, CANADA V8L 5X2 TEL 250-655-5800 FAX 250-655-5811 www.axysanalytical.com

AXYS Client No.: 4499

Client Address: Washington State Dept. of Ecology

7411 Beach Drive East

Port Orchard, WA, US, 98366-8204

The AXYS contact for these data is Georgina Brooks.

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS

SOLID SAMPLES

PROJECT NAME: URBAN WATERS – ELLIOTT BAY

Contract: 4499
Data Package Identification: DPWG44305

Analysis WG43881 and WG43882

25 July 2013

WASHINGTON STATE DEPARTMENT OF ECOLOGY **SOLID SAMPLES**

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS **AXYS METHOD: MLA-075**

4499: L19746-1 to -14

Project Name: URBAN WATER - ELLIOTT BAY

26 July 2013

NARRATIVE

This narrative describes the analysis of fourteen solid (marine sediment) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 11th of June 2013. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank, a laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample and a duplicate sample were analyzed in two analysis batches as WG43881 and WG43882. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed dried sub-sample of each marine sediment sample (between 0.5 and 1 grams) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The resulting extract was instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1.
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier L19741-X, where X is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract is given an extra "test suffix" code. The single letter code (per extra work performed) is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

(A) = the parent sample for a duplicate pair

The following laboratory qualifier flags were used in this data package:

H = result provided as information only; concentration is estimated

MAX = result reported as maximum value due to structural cross interference for compounds

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

U = identifies a compound that was not detected

UJ = identifies a compound that was not detected and the detection limit is greater than

the lowest calibration equivalent

V = surrogate recovery is not within method/contract control limits

The analytical results were reported to three significant figures on a dry mass basis with concentration units of nanograms per gram (ng/g).

QA/QC NOTES

The client samples and QC samples were analyzed in two separate analysis batches (as WG43863 and WG43864) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

• Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the laboratory procedural blank results.

- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- Due to the limitation of the software, the signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This has been visually inspected and does not affect the data.
- All linearity, calibration verification, OPR, duplicate sample and labeled compound recovery specifications were met with the following exceptions:

Note: Soils/sediments are documented as achieving poorer recoveries than other matrices, however the cause(s) for this is unknown.

List 1 Compounds

For the OPR sample (AXYS ID: WG43881-102), the percent recovery of Oxolinic Acid (161%) did not meet the upper method criteria limit (150%) and was flagged with an 'N' on the report form. Data were not considered to be affected.

The percent recovery of D6-Thiabendazole for sample 1306020-39 (AXYS ID: L19746-10), 13C3-Caffeine for sample 1306020-23 (AXYS ID: L19746-12) and samples 1306020-04, 1306020-32 and 1306020-27 (AXYS IDs: L19746-1, -7 and -14 respectively) for 13C2-Erythromycin-H2O did not meet method criteria and have been flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as a general method performance indicator only.

Where the percent recoveries for surrogate compounds fell below 10%, the native analyte was reported in an "information only" capacity and was flagged with an 'H' on the report forms. Where the surrogate percent recovery was observed to be below 1% or did not meet the signal to noise method criteria, all target analytes and the surrogate compound were all deemed to be not quantifiable and were flagged as 'NQ' on the report forms.

List 2 Compounds

The recovery of D6-Thiabendazole in sample 1306020-39 (AXYS ID: L19746-10) did not meet method criteria; this compound was flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

List 3 Compounds

For the OPR sample (AXYS ID: WG43881-102), the percent recovery for Furosemide, Hydrochlorothiazide and 2-Hydroxy-Ibuprofen did not meet method criteria. The results for these compounds have been flagged with an 'N' on the report forms. Other data may be similarly affected.

For the duplicate sample (AXYS ID: WG43863-103) and parent sample 1306020-14 (AXYS ID: L19746-4), the precision for Triclocarban was above 40% for relative percent difference (RPD). In AXYS' experience, it's recommended to consider the detection limits for the analyte during data review. For this target analyte, the concentrations were less than ten times the detection limit. Overall, good agreement was found between the duplicate samples for all target analytes. The variability (RPD) calculated for Triclocarban may be due to the sample matrix, which was marine sediment.

The percent recovery of the surrogate compounds D6-Bisphenol, 13C-Ibuprofen and 13C6-Triclocarban in the laboratory procedural blank and duplicate sample (AXYS IDs: WG43881-101 and -103 respectively) did not meet method criteria and were flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, these variances from method criteria were deemed

to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

List 4 Compounds

The recovery of multiple surrogates in several samples did not meet the method criteria; these compounds were flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

List 5 Compounds

Data are not blank corrected. DEET was detected (0.863 ng/g) in the laboratory procedural blank (AXYS ID: WG43881-101) and at a similar level (0.654 ng/g) for the sample 1306020-26 (AXYS ID: L19746-13). The result for the field sample was flagged with a 'B' on the report form. This should be considered carefully during data review and interpretation.

For the on-going precision and recovery (OPR) sample (AXYS ID: WG43881-102), the percent recovery for Betamethasone (153%) was marginally above the upper method criteria limit (150%) and was flagged with an 'N' on the report forms. Data are not considered to be affected.

The percent recovery of several surrogate compounds in the field samples did not meet method criteria and were flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that are recovery corrected, the variance from method criteria was deemed to not affect quantification of the associated target analytes. However, in cases where the surrogate recovery fell below 10%, the native target analyte was reported as "information only" and flagged with an 'H' on the report forms. Other nonnative target analytes not meeting the same criteria were flagged as not quantifiable (NQ) on the report forms. Where the surrogate recovery was below 1% or the instrument response did not meet signal to noise criteria, the native target analyte and surrogate compounds were flagged as 'NQ' on the report forms.

ANALYTICAL DISCUSSION

List 1 Compounds

The initial calibration results for the initial instrumental analysis of the field and QC samples did not meet method specifications for some target analytes. Accordingly, as remedial action, the entire analysis batch was re-injected following initial instrument calibration. The initial calibration data for the re-injections met method criteria and was deemed acceptable for reporting. The results for all field and QC samples were reported from the re-injection data and is indicated with the suffix 'i' following the AXYS ID on the report forms.

List 4 Compounds

The initial instrumental analysis data for sample 1306020-14 (AXYS ID: L19746-4) was suspected to be affected by sample to sample carryover for some target analytes. To confirm the results, the sample extract was re-injected. The re-injection data confirmed sample to sample carryover for the initial results. Subsequently, the results from the re-injection data were reported and are indicated with the suffix 'i' following the AXYS ID on the report forms.

List 2, 3 and 5 Compounds

No analytical difficulties were encountered.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG44305, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Method Detection Limits
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- RFQQ Request for Qualifications and Quote
- Preparation Logs for Standard Solutions
- Sample Homogenization Records
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unreported raw data

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Andrew Porat

Summary of AXYS Method MLA-075 Rev 05 Ver 02:

AXYS Method MLA-075: ANALYTICAL PROCEDURES FOR THE ANALYSIS OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN SOLID, AQUEOUS AND TISSUE SAMPLES BY LC-MS/MS

This method is suitable for the determination of a suite of pharmaceutical and personal care compounds in solid and aqueous samples (Lists 1, 2, 3, 4, 5 and 6) and in tissue samples (Lists 1, 3, 4, 5 and 6) samples. The analysis requires extraction at two different pH conditions: basic extraction for analysis of List 4 analytes and acidic extraction for the analysis of List 1, 2, 3, 5 and 6 analytes.

Target Analytes

List 1 (Acid extraction, positive ESI)						
Acetaminophen	Norfloxacin					
Ampicillin ¹	Norgestimate					
Azithromycin	Ofloxacin					
Caffeine	Ormetoprim					
Carbadox	Oxacillin ¹					
Carbamazepine	Oxolinic acid					
Cefotaxime	Penicillin G ¹					
Ciprofloxacin ¹	Penicillin V					
Clarithromycin	Roxithromycin					
Clinafloxacin	Sarafloxacin					
Cloxacillin	Sulfachloropyridazine					
Dehydronifedipine	Sulfadiazine					
Digoxigenin	Sulfadimethoxine					
Digoxin	Sulfamerazine					
Diltiazem	Sulfamethazine					
1,7-Dimethylxanthine	Sulfamethizole					
Diphenhydramine	Sulfamethoxazole					
Enrofloxacin	Sulfanilamide					
Erythromycin	Sulfathiazole					
Flumequine	Thiabendazole					
Fluoxetine	Trimethoprim					
Lincomycin	Tylosin					
Lomefloxacin	Virginiamycin M1					
Miconazole						

List 2 (Tetracyclines, positive ESI)	
Anhydrochlortetracycline (ACTC)	4-Epichlortetracycline (ECTC)
Anhydrotetracycline (ATC)	4-Epioxytetracycline (EOTC)
Chlortetracycline (CTC)	4-Epitetracycline (ETC)
Demeclocycline	Isochlortetracycline (ICTC)
Doxycycline	Minocycline
4-Epianhydrochlortetracycline (EACTC)	Oxytetracycline (OTC)
4-Epianhydrotetracycline (EATC)	Tetracycline (TC)
List 3 (Acid extraction, negative ESI)	
Bisphenol A	2-hydroxy-ibuprofen
Furosemide	Ibuprofen
Gemfibrozil	Naproxen
Glipizide	Triclocarban
Glyburide	Triclosan
Hydrochlorothiazide	Warfarin
List 4 (Base extraction, positive ESI)	
Albuterol	Cotinine
Amphetamine	Enalapril
Atenolol	Hydrocodone
Atorvastatin	Metformin
Cimetidine	Oxycodone
Clonidine	Ranitidine
Codeine	Triamterene
List 5 (Acid Extraction, positive ESI)	
Alprazolam	Metoprolol
Amitriptyline	Norfluoxetine
Amlodipine	Norverapamil
Benzoylecgonine	Paroxetine
Benztropine	Prednisolone
Betamethasone	Prednisone
Cocaine	Promethazine
DEET (N,N-diethyl-m-toluamide)	Propoxyphene
Desmethyldiltiazem	Propranolol
Diazepam	Sertraline
Fluocinonide	Simvastatin
Fluticasone propionate	Theophylline

Hydrocortisone	Trenbolone
10-hydroxy-amitriptyline	Trenbolone acetate
Meprobamate	Valsartan
Methylprednisolone	Verapamil
List 6 (Acid Extraction, positive ESI)	
Amsacrine	lopamidol
Azathioprine	Lomustine
Busulfan	Medroxyprogesterone acetate
Carmustine	Melphalan
Chloramphenicol	Metronidazole
Citalopram	Moxifloxacin ²
Clotrimazole	Norethindrone
Colchicine	Oxazepam
Cyclophosphamide	Rosuvastatin
Daunorubicin	Tamoxifen
Diatrizoic acid	Teniposide
Doxorubicin	Venlafaxine
Drospirenone	Zidovudine
Etoposide	

Analysis result is classified as 'information value' of estimated concentration.

EXTRACTION

The analysis requires extraction at two different pH conditions: at pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, 5 and 6). Prior to extraction and/or clean-up, samples are adjusted to the required pH and spiked with surrogates.

Solid samples are extracted by sonication with aqueous buffered acetonitrile and with pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to for the complete list of analytes.

All aqueous samples are filtered and the aqueous portion is cleaned up by solid phase extraction before analysis by LC/ESI-MS/MS.

Aqueous samples with no or limited visible particulate (e.g. surface water, ground water, wastewater treatment final effluent, typically with <100 mg/L TSS) normally can be processed with up to 1L samples sizes. The sample is filtered and routinely only the aqueous phase is analyzed. However, upon specific agreement a separate extraction may be performed on the solids phase. The solids extract may in this case either be carried through the analysis

Page 3 of 51

² Moxifloxacin in solid samples is classified as 'information value' of estimated concentration.

individually as a separate sample that is reported separately, or the aqueous extract and the solids extract may be combined just prior to clean-up and reported as a combined aqueous/solids phase result.

For mixed phase aqueous/solids samples with significant solids and distinct aqueous and solids phases such as wastewater influent or process streams the sample may either be analyzed as an aqueous phase only or as two separate samples, one aqueous and one solid.

COLUMN CHROMATOGRAPHY CLEANUP

Extracts are cleaned up during the SPE extraction.

INSTRUMENTAL ANALYSIS

Analysis of the sample extract is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The LC/MS/MS is run in MRM (Multiple Reaction Monitoring) mode and quantification is performed by recording the peak areas of the applicable parent ion/daughter ion transitions. Some analytes are analyzed in the ESI positive mode and some are analyzed in the ESI negative mode.

Analytes, Ions and Quantification References

List 1 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Sulfanilamide	2.02	0.432	¹³ C ₂ , ¹⁵ N-Acetaminophen	190.0	155.8	¹³ C ₆ -Sulfamethazine
Acetaminophen	4.68	1.000	¹³ C ₂ , ¹⁵ N-Acetaminophen	152.2	110.0	¹³ C ₂ , ¹⁵ N-Acetaminophen
Sulfadiazine	5.32	1.137	¹³ C ₂ , ¹⁵ N-Acetaminophen	251.2	156.1	¹³ C ₆ -Sulfamethazine
1,7-Dimethylxanthine	7.02	0.753	¹³ C ₃ -Caffeine	181.2	124.0	¹³ C ₃ -Caffeine
Sulfathiazole	8.00	0.858	¹³ C ₃ -Caffeine	256.3	156.0	¹³ C ₆ -Sulfamethoxazole
Sulfamerazine	8.78	0.942	¹³ C ₃ -Caffeine	265.0	156.0	¹³ C ₆ -Sulfamethazine
Caffeine	9.32	1.000	¹³ C ₃ -Caffeine	195.0	138.0	¹³ C ₃ -Caffeine
Lincomycin	9.47	0.953	¹³ C ₃ -Trimethoprim	407.2	126.0	¹³ C ₃ -Trimethoprim
Trimethoprim	9.94	1.000	¹³ C ₃ -Trimethoprim	291.2	230.0	¹³ C ₃ -Trimethoprim
Sulfamethizole	10.09	0.983	¹³ C ₆ -Sulfamethazine	271.0	156.0	¹³ C ₆ -Sulfamethoxazole
Cefotaxime	10.09	1.015	¹³ C ₃ -Trimethoprim	456.4	396.1	¹³ C ₃ -Trimethoprim
Sulfamethazine	10.31	1.000	¹³ C ₆ -Sulfamethazine	279.0	156.0	¹³ C ₆ -Sulfamethazine
Ofloxacin	10.53	0.974	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	362.2	318.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Carbadox	10.53	1.005	d ₆ -Thiabendazole	263.2	231.2	¹³ C ₃ -Trimethoprim
Ormetoprim	10.53	1.059	¹³ C ₃ -Trimethoprim	275.3	259.1	¹³ C ₃ -Trimethoprim
Norfloxacin	10.59	0.980	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	320.0	302.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Thiabendazole	10.59	1.000	d ₆ -Thiabendazole	202.1	175.1	d ₆ -Thiabendazole
Ciprofloxacin	10.81	1.000	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	332.2	314.2	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Sulfachloropyridazine	10.97	1.069	¹³ C ₆ -Sulfamethazine	285.0	156.0	¹³ C ₆ -Sulfamethazine
Lomefloxacin	11.14	1.031	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	352.2	308.1	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Enrofloxacin	11.22	1.038	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	360.2	316.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Sulfamethoxazole	11.33	1.000	¹³ C ₆ -Sulfamethoxazole	254.0	156.0	¹³ C ₆ -Sulfamethoxazole
Sarafloxacin	11.84	1.095	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	386.1	299.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Clinafloxacin	12.04	1.059	¹³ C ₆ -Sulfamethoxazole	366.3	348.1	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Digoxigenin	12.68	1.115	¹³ C ₆ -Sulfamethoxazole	391.2	355.2	¹³ C ₃ -Trimethoprim
Oxolinic Acid	13.11	0.819	¹³ C ₃ -Atrazine	262.1	244.0	¹³ C ₃ -Trimethoprim
Sulfadimethoxine	13.33	1.172	¹³ C ₆ -Sulfamethoxazole	311.0	156.0	¹³ C ₆ -Sulfamethoxazole
Azithromycin	13.55	0.846	¹³ C ₃ -Atrazine	749.9	591.6	¹³ C ₃ -Trimethoprim
Penicillin G	14.46	0.903	¹³ C ₃ -Atrazine	367.1	159.9	¹³ C ₃ -Trimethoprim
Diphenhydramine	14.57	0.910	¹³ C ₃ -Atrazine	256.2	167.0	¹³ C ₃ -Trimethoprim
Ampicillin	14.68	0.917	¹³ C ₃ -Atrazine	350.3	160.2	¹³ C ₃ -Trimethoprim

[e	4=	0.0-0	1 130 44 .	0000	4===	130
Flumequine	15.25	0.953	¹³ C ₃ -Atrazine	262.0	173.7	¹³ C ₃ -Trimethoprim
Penicillin V	15.29	0.955	¹³ C₃-Atrazine	383.2	159.9	¹³ C ₃ -Trimethoprim
Diltiazem	15.34	0.958	¹³ C ₃ -Atrazine	415.5	178.0	¹³ C ₃ -Trimethoprim
Carbamazepine	15.38	1.007	d ₁₀ -Carbamazepine	237.4	194.2	d ₁₀ -Carbamazepine
Erythromycin ¹	15.94	1.000	¹³ C ₂ -Erythromycin	734.4	158	not quantified
Oxacillin	16.30	1.018	¹³ C ₃ -Atrazine	434.1	160.2	¹³ C ₃ -Trimethoprim
Tylosin	16.37	1.022	¹³ C ₃ -Atrazine	916.6	772.5	¹³ C ₆ -Sulfamethazine
Digoxin	16.58	1.036	¹³ C ₃ -Atrazine	798.5	651.3	¹³ C ₃ -Trimethoprim
Dehydronifedipine	16.65	0.981	d ₅ -Fluoxetine	345.1	284.1	¹³ C ₃ -Trimethoprim
Cloxacillin	16.82	0.991	d ₅ -Fluoxetine	468.1	160.1	¹³ C ₃ -Trimethoprim
Erythromycin anhydrate 1	16.90	1.000	¹³ C ₂ -Erythromycin anhydrate	716.4	158	¹³ C ₂ -Erythromycin anhydrate
Fluoxetine	16.97	1.000	d ₅ -Fluoxetine	310.1	148.0	d ₅ -Fluoxetine
Virginiamycin M1	17.40	1.025	d ₅ -Fluoxetine	526.3	508.3	¹³ C ₃ -Trimethoprim
Clarithromycin	17.61	1.038	d ₅ -Fluoxetine	748.9	158.2	¹³ C ₆ -Sulfamethazine
Roxithromycin	17.83	1.051	d ₅ -Fluoxetine	837.6	679.0	¹³ C ₆ -Sulfamethazine
Miconazole	20.93	1.233	d ₅ -Fluoxetine	417.0	161.0	¹³ C ₃ -Trimethoprim
Norgestimate	21.80	1.285	d ₅ -Fluoxetine	370.5	124.0	¹³ C ₃ -Trimethoprim
Surrogate Standard						
¹³ C ₂ , ¹⁵ N-Acetaminophen	4.68	0.292	¹³ C ₃ -Atrazine	155.2	111.0	¹³ C ₃ -Atrazine
¹³ C ₃ -Caffeine	9.32	0.582	¹³ C ₃ -Atrazine	198.0	140.0	¹³ C ₃ -Atrazine
¹³ C ₃ -Trimethoprim	9.94	0.621	¹³ C ₃ -Atrazine	294.2	233.0	¹³ C ₃ -Atrazine
¹³ C ₆ -Sulfamethazine	10.26	0.641	¹³ C ₃ -Atrazine	285.1	162.1	¹³ C ₃ -Atrazine
d ₆ -Thiabendazole	10.48	0.655	¹³ C ₃ -Atrazine	208.1	180.1	¹³ C ₃ -Atrazine
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	10.81	0.675	¹³ C ₃ -Atrazine	336.1	318.2	¹³ C ₃ -Atrazine
¹³ C ₆ -Sulfamethoxazole	11.37	0.710	¹³ C ₃ -Atrazine	260.0	162.0	¹³ C ₃ -Atrazine
d ₁₀ -Carbamazepine	15.28	0.954	¹³ C ₃ -Atrazine	247	204	¹³ C ₃ -Atrazine
¹³ C ₂ -Erythromycin ¹	15.86	0.991	¹³ C ₃ -Atrazine	736.4	160.0	monitor for less than 5%
¹³ C ₂ -Erythromycin anhydrate ¹	16.90	1.056	¹³ C ₃ -Atrazine	718.4	160.0	¹³ C ₃ -Atrazine
d ₅ -Fluoxetine	16.97	1.060	¹³ C₃-Atrazine	315.3	153.0	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	16.01	1.000		219.1	176.9	External Standard
			•			

Because of intramolecular dehydration during the analytical procedure erythromycin is quantified as the dehydration product "erythromycin – H_2O ". The peak area of the $^{13}C_2$ -Erythromycin is monitored and must be less than 5% of the $^{13}C_2$ -Erythromycin - H_2O peak area. If it is greater, the Erythromycin - H_2O result is flagged as 'accuracy unknown'.

List 2 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Minocycline	3.45	0.739	d ₆ -Thiabendazole	458.0	441.0	d ₆ -Thiabendazole
Epitetracycline (ETC)	5.71	1.223	d ₆ -Thiabendazole	445.2	410.2	d ₆ -Thiabendazole
Epioxytetracycline (EOTC)	6.51	1.394	d ₆ -Thiabendazole	461.2	426.2	d ₆ -Thiabendazole
Oxytetracycline (OTC)	7.29	1.561	d ₆ -Thiabendazole	461.2	426.2	d ₆ -Thiabendazole
Tetracycline (TC)	7.74	1.657	d ₆ -Thiabendazole	445.2	410.2	d ₆ -Thiabendazole
Demeclocycline	9.63	0.470	¹³ C ₃ -Atrazine	465.0	430.0	d ₆ -Thiabendazole
Epichlortetracycline (ECTC)	9.92	0.485	¹³ C ₃ -Atrazine	479.0	444.0	d ₆ -Thiabendazole
Isochlortetracycline (ICTC) 1	9.95	0.486	¹³ C ₃ -Atrazine	479.0	462.0	d ₆ -Thiabendazole
Chlortetracycline (CTC)	11.90	0.581	¹³ C ₃ -Atrazine	479.0	444.0	d ₆ -Thiabendazole
Doxycycline	14.40	0.703	¹³ C ₃ -Atrazine	445.2	428.2	d ₆ -Thiabendazole
Epianhydrotetracycline (EATC)	15.08	0.737	¹³ C ₃ -Atrazine	427.2	409.8	d ₆ -Thiabendazole
Anhydrotetracycline (ATC)	16.45	0.804	¹³ C ₃ -Atrazine	427.2	409.8	d ₆ -Thiabendazole
Epianhydrochlortetracycline (EACTC)	18.90	0.923	¹³ C ₃ -Atrazine	461.2	444.0	d ₆ -Thiabendazole
Anhydrochlortetracycline (ACTC)	20.63	1.008	¹³ C ₃ -Atrazine	461.2	444.0	d ₆ -Thiabendazole
Surrogate Standard						
d ₆ -Thiabendazole	4.67	0.228	¹³ C ₃ -Atrazine	208.0	180.0	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	20.51	1.000		219.1	176.9	External Standard

¹ The presence of ECTC will create positive interference with ICTC due to use of a common transition ion.

List 3 - Acid Extraction, Negative Electrospray Ionization (-)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Hydrochlorathiazide	2.24	0.440	¹³ C ₆ -2,4,5-T	296.0	268.8	¹³ C-d ₃ -Naproxen
Hydrochlorathiazide*	2.24	0.440	¹³ C ₆ -2,4,5-T	296.0	204.8	¹³ C-d ₃ -Naproxen
Furosemide	3.19	0.627	¹³ C ₆ -2,4,5-T	329.0	204.7	¹³ C-d ₃ -Naproxen
Furosemide*	3.19	0.627	¹³ C ₆ -2,4,5-T	329.0	284.8	¹³ C-d ₃ -Naproxen
2-hydroxy-ibuprofen	4.10	0.806	¹³ C ₆ -2,4,5-T	221.1	176.8	¹³ C ₃ -Ibuprofen
Glipizide	6.68	1.008	d11-Glipizide	444.2	319.0	d11-Glipizide
Glipizide*	6.68	1.008	d11-Glipizide	444.2	169.8	d11-Glipizide
Naproxen	6.68	1.000	¹³ C-d₃-Naproxen	228.9	168.6	¹³ C-d ₃ -Naproxen
Bisphenol A	6.77	1.007	d6-Bisphenol A	227.0	211.9	d6-Bisphenol A
Bisphenol A*	6.77	1.007	d6-Bisphenol A	227.0	132.9	d6-Bisphenol A
Warfarin	7.00	1.007	d ₅ -Warfarin	307.0	161.0	d ₅ -Warfarin
Glyburide	8.40	1.010	d3-Glyburide	492.1	169.8	d3-Glyburide
Glyburide*	8.40	1.010	d3-Glyburide	492.1	367.0	d3-Glyburide
Ibuprofen	8.48	1.000	¹³ C ₃ -Ibuprofen	205.1	161.1	¹³ C ₃ -Ibuprofen
Gemfibrozil	9.35	1.000	d ₆ -Gemfibrozil	249.0	121.0	d ₆ -Gemfibrozil
Triclocarban	9.46	0.997	¹³ C ₆ -Triclocarban	312.9	159.7	¹³ C ₆ -Triclocarban
Triclosan	9.60	1.000	¹³ C ₁₂ -Triclosan	286.8	35.0	¹³ C ₁₂ -Triclosan
Surrogate Standard						
d ₁₁ -Glipizide	6.63	1.303	¹³ C ₆ -2,4,5-T	455.0	319.0	¹³ C ₆ -2,4,5-T
d ₁₁ -Glipizide*	6.63	1.303	¹³ C ₆ -2,4,5-T	455.0	169.8	¹³ C ₆ -2,4,5-T
¹³ C-d ₃ -Naproxen	6.68	1.312	¹³ C ₆ -2,4,5-T	232.9	168.6	¹³ C ₆ -2,4,5-T
d ₆ -Bisphenol A	6.72	1.320	¹³ C ₆ -2,4,5-T	233.0	214.8	¹³ C ₆ -2,4,5-T
d ₆ -Bisphenol A*	6.72	1.320	¹³ C ₆ -2,4,5-T	233.0	137.8	¹³ C ₆ -2,4,5-T
d ₅ -Warfarin	6.95	1.365	¹³ C ₆ -2,4,5-T	312	161.0	¹³ C ₆ -2,4,5-T
d ₃ -Glyburide	8.32	1.635	¹³ C ₆ -2,4,5-T	495.0	169.9	¹³ C ₆ -2,4,5-T
d ₃ -Glyburide*	8.32	1.635	¹³ C ₆ -2,4,5-T	495.0	370.1	¹³ C ₆ -2,4,5-T
¹³ C ₃ -Ibuprofen	8.48	1.666	¹³ C ₆ -2,4,5-T	208.2	163.1	¹³ C ₆ -2,4,5-T
d ₆ -Gemfibrozil	9.35	1.837	¹³ C ₆ -2,4,5-T	255	121	¹³ C ₆ -2,4,5-T
¹³ C ₆ -Triclocarban	9.49	1.864	¹³ C ₆ -2,4,5-T	318.9	159.7	¹³ C ₆ -2,4,5-T
¹³ C ₁₂ -Triclosan	9.60	1.886	¹³ C ₆ -2,4,5-T	298.8	35	¹³ C ₆ -2,4,5-T

Recovery Standard					
¹³ C ₆ -2,4,5-Trichlorophenoxy- acetic acid (¹³ C ₆ -2,4,5-T)	5.09	1.000	258.8	200.7	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

List 4 - Base Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Atorvastatin	3.84	0.934	d3-Cotinine	559.3	440.0	d5-Enalapril
Atorvastatin*	3.84	0.934	d3-Cotinine	559.3	466.0	d5-Enalapril
Cotinine	4.11	1.000	d3-Cotinine	177.0	98.0	d3-Cotinine
Cimetidine	4.84	0.994	d3-Cimetidine	253.1	159.0	d3-Cimetidine
Triamterene	5.35	1.099	d3-Cimetidine	254.1	236.9	d4-Clonidine
Triamterene*	5.35	1.099	d3-Cimetidine	254.1	103.7	d4-Clonidine
Enalapril	6.52	1.000	d5-Enalapril	377.2	233.9	d5-Enalapril
Enalapril*	6.52	1.000	d5-Enalapril	377.2	159.8	d5-Enalapril
Oxycodone	6.70	0.953	d6-Oxycodone	316.2	240.9	d6-Oxycodone
Oxycodone*	6.70	0.953	d6-Oxycodone	316.2	298.0	d6-Oxycodone
Clonidine	6.75	0.985	d4-Clonidine	230.0	43.9	d4-Clonidine
Clonidine*	6.75	0.985	d4-Clonidine	230.0	212.5	d4-Clonidine
Amphetamine	8.12	1.000	d5-Amphetamine	136.1	90.8	d5-Amphetamine
Amphetamine*	8.12	1.000	d5-Amphetamine	136.1	118.9	d5-Amphetamine
Albuterol	8.31	0.989	d ₃ -Albuterol	240.0	148.0	d ₃ -Albuterol
Codeine	8.56	0.985	d6-Codeine	300.2	214.9	d6-Codeine
Hydrocodone	8.75	0.972	d3-Hydrocodone	300.2	198.8	d3-Hydrocodone
Hydrocodone*	8.75	0.972	d3-Hydrocodone	300.2	170.6	d3-Hydrocodone
Ranitidine	8.81	0.985	d7-Atenolol	315.0	175.9	d ₃ -Albuterol
Atenolol	8.88	0.993	d7-Atenolol	267.2	144.7	d7-Atenolol
Atenolol*	8.88	0.993	d7-Atenolol	267.2	189.7	d7-Atenolol
Metformin	9.56	1.000	d ₆ -Metformin	130.1	60.1	d ₆ -Metformin
Surrogate Standards						
d ₃ -Cotinine	4.11	0.530	d3-Amitriptyline	180.0	79.9	d3-Amitriptyline
d ₃ -Cotinine*	4.11	0.530	d3-Amitriptyline	180.0	101.0	d3-Amitriptyline
d ₃ -Cimetidine	4.87	0.628	d3-Amitriptyline	256.0	161.8	d3-Amitriptyline
d ₃ -Cimetidine*	4.87	0.628	d3-Amitriptyline	256.0	94.8	d3-Amitriptyline
d ₅ -Enalapril	6.52	0.841	d3-Amitriptyline	382.0	238.8	d3-Amitriptyline
d ₅ -Enalapril*	6.52	0.841	d3-Amitriptyline	382.0	164.8	d3-Amitriptyline
d ₄ -Clonidine	6.85	0.884	d3-Amitriptyline	234.0	47.9	d3-Amitriptyline
d ₄ -Clonidine*	6.85	0.884	d3-Amitriptyline	234.0	216.7	d3-Amitriptyline

d ₆ -Oxycodone	7.03	0.907	d3-Amitriptyline	322.1	262.0	d3-Amitriptyline
d ₆ -Oxycodone*	7.03	0.907	d3-Amitriptyline	322.1	304.1	d3-Amitriptyline
d ₅ -Amphetamine	8.12	1.048	d3-Amitriptyline	141.1	92.9	d3-Amitriptyline
d ₅ -Amphetamine*	8.12	1.048	d3-Amitriptyline	141.1	123.9	d3-Amitriptyline
d ₃ -Albuterol	8.40	1.084	d3-Amitriptyline	243.0	151.0	d3-Amitriptyline
d ₆ -Codeine	8.69	1.121	d3-Amitriptyline	306.0	217.9	d3-Amitriptyline
d ₆ -Codeine*	8.69	1.121	d3-Amitriptyline	306.0	151.8	d3-Amitriptyline
d ₇ -Atenolol	8.94	1.154	d3-Amitriptyline	274.0	144.7	d3-Amitriptyline
d ₇ -AtenoloI*	8.94	1.154	d3-Amitriptyline	274.0	189.7	d3-Amitriptyline
d ₃ -Hydrocodone	9.00	1.161	d3-Amitriptyline	303.1	198.9	d3-Amitriptyline
d ₃ -Hydrocodone*	9.00	1.161	d3-Amitriptyline	303.1	170.8	d3-Amitriptyline
d ₆ -Metformin	9.56	1.234	d3-Amitriptyline	136.1	60.1	d3-Amitriptyline
Recovery Standards						
d ₃ -Amitriptyline	7.75	1.000		281.0	232.7	External Standard
d ₃ -Amitriptyline*	7.75	1.000		281.0	90.7	External Standard
d ₉ -Albuterol	8.40	1.000		249	148.3	External Standard
d ₉ -Albuterol*	8.40	1.000		249	167	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

List 5 – Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT		Parent Ion Mass	Daughter Ion Mass	Quantified against
Theophylline	2.52	1.000	¹³ C, ¹⁵ N ₂ -Theophylline	181.1	123.8	¹³ C, ¹⁵ N ₂ -Theophylline
Theophylline*	2.52	1.000	¹³ C, ¹⁵ N ₂ -Theophylline*	181.1	95.8	¹³ C, ¹⁵ N ₂ -Theophylline*
Benzoylecgonine	5.48	1.028	d8-Benzoylecgonine	290.1	167.8	d8-Benzoylecgonine
Benzoylecgonine*	5.48	1.028	d8-Benzoylecgonine	290.1	104.8	d8-Benzoylecgonine
Metoprolol	8.13	1.009	d7-Metoprolol	268.2	190.7	d7-Metoprolol
Metoprolol*	8.13	1.009	d7-Metoprolol	268.2	115.7	d7-Metoprolol
Cocaine	8.74	1.000	d3-Cocaine	304.1	181.8	d3-Cocaine
Cocaine*	8.74	1.000	d3-Cocaine	304.1	81.9	d3-Cocaine
Meprobamate	11.09	0.785	d7-Propranolol	219.0	157.8	d7-Metoprolol
Meprobamate*	11.09	0.785	d7-Propranolol	219.0	96.9	d7-Metoprolol
10-hydroxy-amitriptyline	11.70	0.829	d7-Propranolol	294.2	215.0	d7-Propranolol
10-hydroxy-amitriptyline*	11.70	0.829	d7-Propranolol	294.2	276.0	d7-Propranolol
Propranolol	14.35	1.016	d7-Propranolol	260.2	115.8	d7-Propranolol
Propranolol*	14.35	1.016	d7-Propranolol	260.2	182.7	d7-Propranolol
Prednisone	16.47	0.953	d4-Hydrocortisone	359.2	341.0	d7-Propranolol
Prednisone*	16.47	0.953	d4-Hydrocortisone	359.2	146.7	d7-Propranolol
Hydrocortisone	17.29	1.000	d4-Hydrocortisone	363.2	120.7	d4-Hydrocortisone
Hydrocortisone*	17.29	1.000	d4-Hydrocortisone	363.2	326.7	d4-Hydrocortisone
Prednisolone	17.29	1.000	d4-Hydrocortisone	361.2	343.0	d7-Propranolol
Prednisolone*	17.29	1.000	d4-Hydrocortisone	361.2	324.7	d7-Propranolol
Promethazine	18.39	1.008	d4-Promethazine	285.1	197.8	d4-Promethazine
Promethazine*	18.39	1.008	d4-Promethazine	285.1	85.7	d4-Promethazine
Desmethyldiltiazem	18.53	1.016	d4-Promethazine	401.2	177.8	d4-Promethazine
Desmethyldiltiazem*	18.53	1.016	d4-Promethazine	401.2	149.5	d4-Promethazine
Paroxetine	20.28	1.007	d6-Paroxetine	330.2	191.8	d6-Paroxetine
Paroxetine*	20.28	1.007	d6-Paroxetine	330.2	69.8	d6-Paroxetine
DEET	20.63	1.014	d7-DEET	192.0	118.6	d7-DEET
DEET	20.63	1.014	d7-DEET	192.0	90.7	d7-DEET
Norverapamil	20.63	1.014	d7-DEET	441.3	164.7	d7-Propranolol
Norverapamil*	20.63	1.014	d7-DEET	441.3	149.7	d7-Propranolol
Verapamil	21.16	0.994	d3-Methylprednisolone	455.3	164.8	d6-Amitriptyline
Verapamil*	21.16	0.994	d3-Methylprednisolone	455.3	149.8	d6-Amitriptyline
Betamethasone	21.29	0.967	d6-Amitriptyline	393.2	355.1	d6-Amitriptyline

Betamethasone*	21.29	0.967	d6-Amitriptyline	393.2	373.0	d6-Amitriptyline
Methylprednisolone	21.29	1.000	d3-Methylprednisolone	375.2	357.0	d3-Methylprednisolone
Methylprednisolone*	21.29	1.000	d3-Methylprednisolone	375.2	339.0	d3-Methylprednisolone
Propoxyphene	21.56	1.006	d5-Propoxyphene	340.2	57.9	d5-Propoxyphene
Propoxyphene*	21.56	1.006	d5-Propoxyphene	340.2	266.1	d5-Propoxyphene
Amitriptyline	22.02	1.000	d6-Amitriptyline	278.2	232.8	d6-Amitriptyline
Amitriptyline*	22.02	1.000	d6-Amitriptyline	278.2	90.7	d6-Amitriptyline
Trenbolone	22.02	1.000	d6-Amitriptyline	271.2	198.7	d5-Alprazolam
Trenbolone*	22.02	1.000	d6-Amitriptyline	271.2	252.8	d5-Alprazolam
Benztropine	22.55	1.000	d3-Benztropine	308.2	166.7	d3-Benztropine
Benztropine*	22.55	1.000	d3-Benztropine	308.2	151.7	d3-Benztropine
Alprazolam	23.08	1.011	d5-Alprazolam	309.1	280.9	d5-Alprazolam
Alprazolam*	23.08	1.011	d5-Alprazolam	309.1	204.9	d5-Alprazolam
Amlodipine	23.40	0.962	d5-Norfluoxetine	409.1	237.8	d5-Norfluoxetine
Amlodipine*	23.40	0.962	d5-Norfluoxetine	409.1	293.8	d5-Norfluoxetine
Norfluoxetine	24.39	1.002	d5-Norfluoxetine	296.1	133.7	d5-Norfluoxetine
Sertraline	25.87	0.897	d5-Diazepam	306.1	274.8	d7-Propranolol
Sertraline*	25.87	0.897	d5-Diazepam	306.1	158.7	d7-Propranolol
Diazepam	29.14	1.011	d5-Diazepam	285.1	192.8	d5-Diazepam
Diazepam*	29.14	1.011	d5-Diazepam	285.1	153.8	d5-Diazepam
Valsartan	31.92	1.107	d5-Diazepam	436.2	235.0	d5-Propoxyphene
Valsartan*	31.92	1.107	d5-Diazepam	436.2	291.0	d5-Propoxyphene
Fluocinonide	34.90	1.211	d5-Diazepam	495.2	337.0	d5-Alprazolam
Fluocinonide*	34.90	1.211	d5-Diazepam	495.2	475.0	d5-Alprazolam
Trenbolone acetate	37.27	1.293	d5-Diazepam	313.2	253.0	d5-Alprazolam
Trenbolone acetate*	37.27	1.293	d5-Diazepam	313.2	271.0	d5-Alprazolam
Fluticasone propionate	37.74	1.309	d5-Diazepam	501.2	293.0	d7-Metoprolol
Fluticasone propionate*	37.74	1.309	d5-Diazepam	501.2	313.0	d7-Metoprolol
Simvastatin	39.96	1.386	d5-Diazepam	419.3	285.0	d5-Propoxyphene
Simvastatin*	39.96	1.386	d5-Diazepam	419.3	198.9	d5-Propoxyphene
Surrogate Standards						
¹³ C, ¹⁵ N ₂ -Theophylline	2.52	0.136	¹³ C ₃ -Atrazine	184.0	124.7	¹³ C ₃ -Atrazine
¹³ C, ¹⁵ N ₂ -Theophylline*	2.52	0.136	¹³ C ₃ -Atrazine	184.0	96.8	¹³ C ₃ -Atrazine
d ₈ -Benzoylecgonine	5.33	0.288	¹³ C ₃ -Atrazine	298.1	170.9	¹³ C ₃ -Atrazine
d ₈ -Benzoylecgonine*	5.33	0.288	¹³ C ₃ -Atrazine	298.1	109.8	¹³ C ₃ -Atrazine
d ₇ -Metoprolol	8.06	0.435	¹³ C ₃ -Atrazine	275.0	190.8	¹³ C ₃ -Atrazine
d ₇ -Metoprolol*	8.06	0.435	¹³ C ₃ -Atrazine	275.0	122.7	¹³ C ₃ -Atrazine

d ₃ -Cocaine	8.74	0.472	¹³ C ₃ -Atrazine	307.1	184.9	¹³ C ₃ -Atrazine
d ₃ -Cocaine*	8.74	0.472	¹³ C ₃ -Atrazine	307.1	84.8	¹³ C ₃ -Atrazine
d ₇ -Propranolol	14.12	0.762	¹³ C ₃ -Atrazine	267.0	116.0	¹³ C ₃ -Atrazine
d ₇ -Propranolol*	14.12	0.762	¹³ C ₃ -Atrazine	267.0	188.7	¹³ C ₃ -Atrazine
d ₄ -Hydrocortisone	17.29	0.933	¹³ C₃-Atrazine	367.0	120.8	¹³ C ₃ -Atrazine
d ₄ -Hydrocortisone*	17.29	0.933	¹³ C ₃ -Atrazine	367.0	331.0	¹³ C ₃ -Atrazine
d ₄ -Promethazine	18.24	0.984	¹³ C ₃ -Atrazine	289.0	201.8	¹³ C ₃ -Atrazine
d ₄ -Promethazine*	18.24	0.984	¹³ C ₃ -Atrazine	289.0	86.0	¹³ C ₃ -Atrazine
d ₆ -Paroxetine	20.14	1.087	¹³ C₃-Atrazine	336.0	197.8	¹³ C ₃ -Atrazine
d ₆ -Paroxetine*	20.14	1.087	¹³ C ₃ -Atrazine	336.0	75.8	¹³ C ₃ -Atrazine
d ₇ -DEET	20.35	1.098	¹³ C₃-Atrazine	199.1	125.8	¹³ C ₃ -Atrazine
d ₇ -DEET*	20.35	1.098	¹³ C ₃ -Atrazine	199.1	97.8	¹³ C ₃ -Atrazine
d ₃ -Methylprednisolone	21.29	1.149	¹³ C₃-Atrazine	378.2	360	¹³ C ₃ -Atrazine
d ₃ -Methylprednisolone*	21.29	1.149	¹³ C ₃ -Atrazine	378.2	342	¹³ C ₃ -Atrazine
d ₅ -Propoxyphene	21.43	1.157	¹³ C ₃ -Atrazine	345.2	57.9	¹³ C ₃ -Atrazine
d ₅ -Propoxyphene*	21.43	1.157	¹³ C ₃ -Atrazine	345.2	266.1	¹³ C ₃ -Atrazine
d ₆ -Amitriptyline	22.02	1.188	¹³ C₃-Atrazine	284.0	233.0	¹³ C ₃ -Atrazine
d ₆ -Amitriptyline*	22.02	1.188	¹³ C ₃ -Atrazine	284.0	90.8	¹³ C ₃ -Atrazine
d ₃ -Benztropine	22.55	1.217	¹³ C₃-Atrazine	311.0	166.7	¹³ C ₃ -Atrazine
d ₃ -Benztropine*	22.55	1.217	¹³ C ₃ -Atrazine	311.0	151.7	¹³ C ₃ -Atrazine
d ₅ -Alprazolam	22.82	1.232	¹³ C₃-Atrazine	314.1	285.9	¹³ C ₃ -Atrazine
d ₅ -Alprazolam*	22.82	1.232	¹³ C ₃ -Atrazine	314.1	209.9	¹³ C ₃ -Atrazine
d ₅ -Norfluoxetine	24.33	1.313	¹³ C₃-Atrazine	301.0	138.7	¹³ C ₃ -Atrazine
d ₅ -Diazepam	28.83	1.556	¹³ C ₃ -Atrazine	290.1	197.9	¹³ C ₃ -Atrazine
d ₅ -Diazepam*	28.83	1.556	¹³ C ₃ -Atrazine	290.1	153.8	¹³ C ₃ -Atrazine
Recovery Standards						
¹³ C ₃ -Atrazine	18.53	1.000		219.1	176.9	External Standard
¹³ C ₃ -Atrazine *	18.53	1.000		219.1	134.0	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

CALIBRATION

Initial calibration is performed using a series of seven calibration solutions that encompass the working concentration range. Initial calibration solutions contain the suite of labelled surrogate and recovery standards and authentic targets. The concentration of the native analytes in the solutions varies to encompass the working range of the instrument, while the concentrations of the surrogates and recovery standards remain constant. A mid-level solution is analyzed every 12 hours or every 20 samples, whichever occurs first. The List 1, List 3, List 4 and List 5 calibration standards are prepared in 75:25 methanol:0.1% formic acid buffer and the List 2 calibration standards in methanol.

Initial calibration for any native compound requires at least 5 consecutive calibration levels. All 7 calibration solutions in the table below may be analyzed, but in certain cases only 5 or 6 of the levels are used to establish the initial calibration. In the table below the calibration concentrations routinely included are printed in bold type. If the number of routinely included calibration points shown for a compound is less that five, concentrations below and/or above are added as necessary based on analyst judgement to achieve the minimum five consecutive concentration levels. Note that reporting limits are adjusted as necessary to reflect the lowest calibration concentration included in the initial calibration.

Nominal Concentrations of Calibration Solutions

List 1 (Acid extraction, positive ESI)

Compound name				on Standar action, pos			
-	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Acetaminophen	3.75	12.5	37.5	187	625	2500	12500
Ampicillin	0.375	1.25	3.75	18.7	62.5	250	1250
Azithromycin	0.375	1.25	3.75	18.7	62.5	250	1250
Caffeine	3.75	12.5	37.5	187	625	2500	12500
Carbadox	0.375	1.25	3.75	18.7	62.5	250	1250
Carbamazapine	0.375	1.25	3.75	18.7	62.5	250	1250
Cefotaxime	1.5	5	15	75	250	1000	5000
Ciprofloxacin	1.5	5	15	75	250	1000	5000
Clarithromycin	0.375	1.25	3.75	18.7	62.5	250	1250
Clinafloxacin	1.5	5	15	75	250	1000	5000
Cloxacillin	0.75	2.5	7.5	37.5	125	500	2500
Dehydronifedipine	0.15	0.5	1.5	7.5	25	100	500
Digoxigenin	1.5	5	15	75	250	1000	5000
Digoxin	1.5	5	15	75	250	1000	5000
Diltiazem	0.075	0.25	0.75	3.75	12.5	50	250
1,7-Dimethylxanthine	15	50	150	750	2500	10000	50000
Diphenhydramine	0.15	0.5	1.5	7.5	25	100	500
Enrofloxacin	0.75	2.5	7.5	37.5	125	500	2500
Erythromycin	0.075	0.25	0.75	3.75	12.5	50	250

Flumequine	0.375	1.25	3.75	18.7	62.5	250	1250
Fluoxetine	0.375	1.25	3.75	18.7	62.5	250	1250
Lincomycin	0.75	2.5	7.5	37.5	125	500	2500
Lomefloxacin	0.75	2.5	7.5	37.5	125	500	2500
Miconazole	0.375	1.25	3.75	18.7	62.5	250	1250
Norfloxacin	3.75	12.5	37.5	187	625	2500	12500
Norgestimate	0.75	2.5	7.5	37.5	125	500	2500
Ofloxacin	0.375	1.25	3.75	18.7	62.5	250	1250
Ormetoprim	0.15	0.5	1.5	7.5	25	100	500
Oxacillin	0.75	2.5	7.5	37.5	125	500	2500
Oxolinic acid	0.15	0.5	1.5	7.5	25	100	500
Penicillin G	0.75	2.5	7.5	37.5	125	500	2500
Penicillin V	0.75	2.5	7.5	37.5	125	500	2500
Roxithromycin	0.075	0.25	0.75	3.75	12.5	50	250
Sarafloxacin	3.75	12.5	37.5	187	625	2500	12500
Sulfachloropyridazine	0.375	1.25	3.75	18.7	62.5	250	1250
Sulfadiazine	0.375	1.25	3.75	18.7	62.5	250	1250
Sulfadimethoxine	0.075	0.25	0.75	3.75	12.5	50	250
Sulfamerazine	0.15	0.5	1.5	7.5	25	100	500
Sulfamethazine	0.15	0.5	1.5	7.5	25	100	500
Sulfamethizole	0.15	0.5	1.5	7.5	25	100	500
Sulfamethoxazole	0.15	0.5	1.5	7.5	25	100	500
Sulfanilamide	3.75	12.5	37.5	187.5	625	2500	12500
Sulfathiazole	0.375	1.25	3.75	18.7	62.5	250	1250
Thiabendazole	0.375	1.25	3.75	18.7	62.5	250	1250
Trimethoprim	0.375	1.25	3.75	18.7	62.5	250	1250
Tylosin	1.5	5	15	75	250	1000	5000
Virginiamycin M1	0.75	2.5	7.5	37.5	125	500	2500
Surrogate Standards							
¹³ C ₂ , ¹⁵ N-Acetaminophen	50	50	50	50	50	50	50
¹³ C ₃ -Caffeine	75	75	75	75	75	75	75
d ₁₀ -Carbamazepine	25	25	25	25	25	25	25
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	100	100	100	100	100	100	100
¹³ C ₂ -Erythromycin	25	25	25	25	25	25	25
d ₅ -Fluoxetine	25	25	25	25	25	25	25
¹³ C ₆ -Sulfamethazine	25	25	25	25	25	25	25
¹³ C ₆ -Sulfamethoxazole	25	25	25	25	25	25	25
d ₆ -Thiabendazole	25	25	25	25	25	25	25
¹³ C ₃ -Trimethoprim	25	25	25	25	25	25	25
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 2 (Tetracyclines)

Compound name		Cal	ibration St (Te	andards L tracycline		nL)	
p	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Anhydrochlortetracycline (ACTC)	3.75	12.5	31.25	62.5	125	375	1000
Anhydrotetracycline (ATC)	3.75	12.5	31.25	62.5	125	375	1000
Chlortetracycline (CTC)	1.5	5	12.5	25	50	150	400
Demeclocycline	3.75	12.5	31.2	62.5	125	375	1000
Doxycycline	1.5	5	12.5	25	50	150	400
4-Epianhydrochlortetracycline (EACTC)	15	50	125	250	500	1500	4000
4-Epianhydrotetracycline (EATC)	3.75	12.5	31.2	62.5	125	375	1000
4-Epichlortetracycline (ECTC)	3.75	12.5	31.2	62.5	125	375	1000
4-Epioxytetracycline (EOTC)	1.5	5	12.5	25	50	150	400
4-Epitetracycline (ETC)	1.5	5	12.5	25	50	150	400
Isochlortetracycline (ICTC)	1.5	5	12.5	25	50	150	400
Minocycline	15	50	125	250	500	1500	4000
Oxytetracycline (OTC)	1.5	5	12.5	25	50	150	400
Tetracycline (TC)	1.5	5	12.5	25	50	150	400
Surrogate Standards							
d ₆ -Thiabendazole	25	25	25	25	25	25	25
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 3 (Acid extraction, negative ESI)

Compound name	Calibration Standards List 3 (ng/mL) (Acid extraction, negative ESI)								
•	Level A	Level B	Level C	Level D	Level E	Level F	Level G		
Bisphenol A	125	250	500	1000	2000	4000	8000		
Furosemide	10	33	100	500	1665	6660	20000		
Gemfibrozil	0.375	1.25	3.75	18.7	62.5	250	750		
Glipizide	1.5	5.0	15	75	250	1000	3000		
Glyburide	0.75	2.5	7.5	37.5	125	500	1500		
Hydroclorothiazide	5.0	16.6	50	150	300	500	625		
2-hydroxy-ibuprofen	20	66	200	1000	3330	13330	40000		
Ibuprofen	3.75	12.5	37.5	187	625	2500	7500		
Naproxen	0.75	2.50	7.50	37.5	125	500	1500		
Triclocarban	0.75	2.5	7.5	37.5	125	500	1500		
Triclosan	15	50	150	750	2500	10000	30000		
Warfarin	0.375	1.25	3.75	18.7	62.5	250	750		
Surrogate Standards									
d ₆ -Bisphenol A	5000	5000	5000	5000	5000	5000	5000		
d ₆ -Gemfibrozil	25	25	25	25	25	25	25		
d ₁₁ -Glipizide	100	100	100	100	100	100	100		
d ₃ -Glyburide	100	100	100	100	100	100	100		
¹³ C ₃ -Ibuprofen	100	100	100	100	100	100	100		
¹³ C, d ₃ -Naproxen	75	75	75	75	75	75	75		
¹³ C ₆ -Triclocarban	12.5	12.5	12.5	12.5	12.5	12.5	12.5		
¹³ C ₁₂ -Triclosan	100	100	100	100	100	100	100		
d₅-Warfarin	25	25	25	25	25	25	25		
Recovery Standard									
¹³ C ₆ -2,4,5-Trichloropheno- xyacetic Acid(¹³ C ₆ -2,4,5-T)	50	50	50	50	50	50	50		

List 4 (Base extraction, positive ESI)

Compound Name	Calibration Standards List 4 (ng/mL) (Base extraction, positive ESI)								
•	Level A	Level B	Level C	Level D	Level E	Level F	Level G		
Albuterol	0.075	0.25	0.75	3.75	12.5	50	250		
Amphetamine	0.375	1.25	3.75	18.7	62.5	250	1250		
Atenolol	0.15	0.50	1.50	7.50	25	100	500		
Atorvastatin	0.375	1.25	3.75	18.7	62.5	250	1250		
Cimetidine	0.15	0.50	1.5	7.5	25	100	500		
Clonidine	0.375	1.25	3.75	18.7	62.5	250	1250		
Codeine	0.75	2.5	7.5	37.5	125	500	2500		
Cotinine	0.375	1.25	3.75	18.7	62.5	250	1250		
Enalapril	0.075	0.25	0.75	3.75	12.5	50	250		
Hydrocodone	0.375	1.25	3.75	18.7	62.5	250	1250		
Metformin	0.75	2.5	7.5	37.5	125	500	2500		
Oxycodone	0.15	0.50	1.50	7.50	25	100	500		
Ranitidine	0.15	0.50	1.50	7.50	25	100	500		
Triamterene	0.075	0.25	0.75	3.75	12.5	50	250		
Labeled Compounds									
d ₃ -Albuterol	25	25	25	25	25	25	25		
d ₅ -Amphetamine	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
d ₇ -Atenolol	15	15	15	15	15	15	15		
d ₃ -Cimetidine	7.5	7.5	7.5	7.5	7.5	7.5	7.5		
d ₄ -Clonidine	100	100	100	100	100	100	100		
d ₆ -Codeine	50	50	50	50	50	50	50		
d ₃ -Cotinine	15	15	15	15	15	15	15		
d₅-Enalapril	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
d ₃ -Hydrocodone	15	15	15	15	15	15	15		
d ₆ -Metformin	100	100	100	100	100	100	100		
d ₆ -Oxycodone	15	15	15	15	15	15	15		
Labeled injection standards									
d ₃ -Amitriptyline	12.5	12.5	12.5	12.5	12.5	12.5	12.5		
d ₉ -Albuterol	25	25	25	25	25	25	25		

List 5 (Acid extraction, positive ESI)

Compound name		Ca	alibration S (Acid extr	tandards L		L)	
	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Alprazolam	0.075	0.25	0.75	3.75	12.5	50	150
Amitriptyline	0.075	0.25	0.75	3.75	12.5	50	150
Amlodipine	0.375	1.25	3.75	18.7	62.5	250	750
Benzoylecgonine	0.075	0.25	0.75	3.75	12.5	50	150
Benztropine	0.075	0.25	0.75	3.75	12.5	50	150
Betamethasone	0.375	1.25	3.75	18.7	62.5	250	750
Cocaine	0.0375	0.125	0.375	1.87	6.25	25	75
DEET	0.15	0.5	1.5	7.5	25	100	300
Desmethyldiltiazem	0.0375	0.125	0.375	1.87	6.2	25	75
Diazepam	0.075	0.25	0.75	3.75	12.5	50	150
Fluocinonide	1.50	5.0	15.0	75	250	1000	3000
Fluticasone propionate	0.50	1.67	5.0	25	83.3	333	1000
Hydrocortisone	15.0	50	150	750	2500	10000	30000
10-hydroxy-amitriptyline	0.0375	0.125	0.375	1.87	6.25	25	75
Meprobamate	1.00	3.33	10.0	50	167	667	2000
Methylprednisolone	1.00	3.33	10.0	50	167	667	2000
Metoprolol	0.375	1.25	3.75	18.7	62.5	250	750
Norfluoxetine	0.375	1.25	3.75	18.7	62.5	250	750
Norverapamil	0.0375	0.125	0.375	1.87	6.25	25	75
Paroxetine	1.0	3.33	10.0	50	167	667	2000
Prednisolone	1.5	5.0	15.0	75	250	1000	3000
Prednisone	5.0	16.7	50.0	250	833	3330	10000
Promethazine	0.10	0.33	1.0	5.0	16.7	66.7	200
Propoxyphene	0.075	0.25	0.75	3.75	12.5	50	150
Propranolol	0.50	1.67	5.0	25	83.3	333	1000
Sertraline	0.10	0.33	1.0	5.0	16.6	67	200
Simvastatin	5.0	16.7	50.0	250	833	3330	10000
Theophylline	15	50	150	750	25000	10000	30000
Trenbolone	1.0	3.33	10.0	50	167	667	2000
Trenbolone acetate	0.075	0.25	0.75	3.75	12.5	50	150
Valsartan	1.0	3.33	10.0	50	167	667	2000
	0.0375	0.125	0.375	1.87	6.25	25	75
Labeled Compounds							
d ₅ -Alprazolam	10	10	10	10	10	10	10
d ₆ -Amitriptyline	10	10	10	10	10	10	10
d ₈ -Benzoylecgonine	10	10	10	10	10	10	10
d ₃ -Benztropine	5.0	5.0	5.0	5.0	5.0	5.0	5.0

AXYS Ar	nalytical	Services	Ltd.
----------------	-----------	----------	------

d ₃ -Cocaine	10	10	10	10	10	10	10
d ₇ -DEET	10	10	10	10	10	10	10
d ₅ -Diazepam	10	10	10	10	10	10	10
d ₄ -Hydrocortisone	2000	2000	2000	2000	2000	2000	2000
d ₃ -Methylprednisolone	500	500	500	500	500	500	500
d ₇ -Metoprolol	100	100	100	100	100	100	100
d ₅ -Norfluoxetine	50	50	50	50	50	50	50
d ₆ -Paroxetine	25	25	25	25	25	25	25
d ₄ -Promethazine	25	25	25	25	25	25	25
d₅-Propoxyphene	15	15	15	15	15	15	15
d ₇ -Propranolol	100	100	100	100	100	100	100
¹³ C ₁ , ¹⁵ N ₂ -Theophylline	500	500	500	500	500	500	500
Labeled Injection Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

ANALYTE IDENTIFICATION

Positive identification of target PPCP compounds, surrogate standard and recovery standards require:

- ≥ 3:1 signal:noise for parent ion to daughter ion transition.
- Guideline (if there is evidence of peak shifting analyst judgement applies): Compound retention time should fall within 0.4 minutes of the predicted retention times from the daily calibration standard. Natives with labelled surrogate standards should elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION

Concentrations of the targets compounds are calculated either by isotope dilution quantification against the surrogate standard or by internal standard quantification against the recovery standard with linear regression calibration, using a 1/X weighting type, excluding origin.

General equation :
$$Y = slope \times X + intercept$$

Where:
$$Y = Response ratio = \left(\frac{area Target}{area SUR} \times weight SUR spiked (ng)\right)$$

 $X = weight of target (ng)$

SUR = the surrogate standard

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area SUR}} \times \text{weight SUR spiked (ng)-intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size}}\right)$$

The percent recovery of surrogate standards (% SUR) are calculated by internal standard quantification against the recovery standard. Surrogate recoveries are used only as a general QC indicator of overall data quality.

% SUR = 100 x
$$\left(\frac{\text{area SUR}}{\text{area REC}}\right)$$
x $\left(\frac{\text{weight of REC spiked}}{\text{RRF}}\right)$ x $\left(\frac{1}{\text{weight SUR spiked}}\right)$

Where:

REC = the recovery standard as listed in Tables 13,14,15,16

RRF is the average relative response factor from the Initial Calibration data:

$$RRF = \left(\frac{\text{area SUR}}{\text{area REC}}\right) \times \left(\frac{\text{weight of REC}}{\text{weight of SUR}}\right)$$

REPORTING LIMITS

Sample specific detection limits (SDLs) are calculated by QuanLynx software using 3 times the signal of the noise in the target channel converted to an equivalent sample concentration.

Concentrations and detection limits for the target analytes are reported. The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed or the SDL, whichever is greater. Typical reporting units for all data are ng/g or ng/L. Concentrations for solids are reported on a dry weight basis. Concentrations in aqueous samples are reported on a volume basis. Concentrations for tissues are reported on a wet weight basis.

The following are commonly requested reporting limits:

Method Detection Limit (MDL) - determined as specified by <u>EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option).</u> The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used. ((lowest level cal conc.) x (extract volume))/sample size. The typical extract volume for PPCP is 4 mL.

For the analysis of PPCP it is AXYS standard to report sample concentrations using the LMCL as the lower reporting limit. In cases where the SDL is higher than the LMCL, the SDL will be used as the lower reporting limit.

The SDL is defined as follows: Sample Specific Detection Limit or Sample Detection Limit (SDL) – determined individually for every sample analysis run by converting the area equivalent of 3.0

times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

QUALITY ASSURANCE/QUALITY CONTROL

All samples are analyzed in batches with the following composition:

- Batch Size Each batch consists of up to twenty test samples and additional QC samples.
- Blanks One procedural blank is analyzed for each batch. The procedural blank is prepared by spiking an aliquot of the surrogate standard solution into a clean matrix. The procedural blank is extracted and analyzed using the same procedures as the test samples in the analysis batch.
- On-going Precision and Recovery (OPR) Samples On-going Precision and Recovery (OPR) is demonstrated by the analysis of a spiked reference matrix (SPM) analyzed with each batch. The OPR sample is prepared by spiking an aliquot of the authentic spiking solution into an accurately weighed in-house reference matrix (known to contain low background levels of target analytes). The reference sample to be analyzed is assigned to the analyst when the batch is assigned. The matrix is spiked with an aliquot of surrogate standard solution and after an equilibration time of at least 30 minutes is extracted.
- Duplicates 5% of the test samples within a batch (containing 7 or more test samples) are analyzed in duplicate, or as required by contract, provided sufficient sample is available.
- Surrogate/Authentic/Recovery (SAR) solution is an optional diagnostic test that may be prepared and analyzed with a batch.

The batch composition may vary according to batch or quality control requirements specified by a client. Each batch is carried through the complete analytical process as a unit. For sample data to be reportable the batch QC data must meet the acceptance criteria.

QC Specification Table: Authentic and Surrogate Standard Recoveries in samples

	OPR Recovery and surrogate re- covery in sample (% Recovery)		IPR			Blank
			Average Recovery (%)		RSD (%)	Level (ng)
	Low	High	Low	High		, 0,
List 1 Compounds (APOS)						
Acetaminophen	70	140	70	140	30	≤15
Ampicillin ²						
Azithromycin	10	130	10	130	130	≤1.5
Caffeine	25	160	35	150	60	≤15
Carbadox	25	180	35	180	40	≤1.5
Carbamazepine	25	200	35	200	40	≤1.5
Cefotaxime	10	300	10	300	60	≤6
Ciprofloxacin	25	180	35	180	40	≤6
Clarithromycin	50	160	50	160	30	≤1.5
Clinafloxacin	25	300	35	300	70	≤6
Cloxacillin ²	70	130	70	130	30	≤3
Dehydronifedipine	35	160	40	160	30	≤0.6

	OPR Recovery					
		rogate re-		IPR		Blank
		in sample	Ave	erage	RSD	Level
	(% Re	covery)	Recov	/ery (%)	(%)	(ng)
	Low	High	Low	High		
Digoxigenin	50	150	60	140	30	≤6
Digoxin	35	200	40	200	30	≤6
Diltiazem	20	160	25	160	50	≤0.3
1,7-Dimethylxanthine	30	300	40	300	60	≤60
Diphenhydramine	70	130	70	130	30	≤0.6
Enrofloxacin	30	220	40	220	40	≤3
Erythromycin - H ₂ O	70	130	70	130	30	≤0.3 ³
Flumequine	40	160	50	160	30	≤1.5
Fluoxetine	60	150	70	140	30	≤1.5
Lincomycin	10	300	10	300	70	≤3
Lomefloxacin, aqueous matrix	50	250	60	250	30	≤3
solid matrix	50	400	60	400	30	≤3
Miconazole	35	130	40	130	30	≤1.5
Norfloxacin	10	250	25	220	40	≤15
Norgestimate	35	130	40	130	30	≤3
Ofloxacin	60	250	70	250	30	≤1.5
Ormetoprim	70	150	70	150	30	≤0.6
Oxacillin ²	20	130	20	130	40	≤3
Oxolinic Acid	60	150	70	150	30	≤0.6
Penicillin G ²	10	130	10	130	40	≤3
Penicillin V	40	140	50	140	30	≤3
Roxithromycin	50	140	50	140	30	≤0.3
Sarafloxacin, aqueous matrix	50	200	60	180	30	≤15
solid matrix	50	300	60	300	30	≤15
Sulfachloropyridazine	60	160	70	160	30	≤1.5
Sulfadiazine	70	130	70	130	30	≤1.5
Sulfadimethoxine	35	160	40	160	30	≤0.3
Sulfamerazine	60	140	60	140	30	≤0.6
Sulfamethazine	70	130	70	130	30	≤0.6
Sulfamethizole	30	140	35	140	30	≤0.6
Sulfamethoxazole	70	130	70	130	30	≤0.6
Sulfanilamide	2	160	3	150	150	≤15
Sulfathiazole	30	180	30	160	50	≤1.5
Thiabendazole	60	150	60	150	30	≤1.5
Trimethoprim	50	150	60	150	30	≤1.5
Tylosin	70	130	70	130	30	≤6
Virginiamycin M1	15	300	15	250	90	≤3
Surrogate Standard						
¹³ C ₂ , ¹⁵ N-Acetaminophen	30	160	40	150	30	
¹³ C ₃ -Caffeine	40	140	50	140	30	
d ₁₀ -Carbamazepine	40	140	50	140	30	
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	7	150	9	140	70	
¹³ C ₂ -Erythromycin - H ₂ O	35	130	35	130	30	
d ₅ -Fluoxetine	10	160	10	150	70	
¹³ C ₆ -Sulfamethazine	30	160	35	150	40	
¹³ C ₆ -Sulfamethoxazole	30	140	40	130	30	
d ₆ -Thiabendazole	25	180	30	160	50	

	OPR Recovery		IDD			
		rogate re-		IPR		Blank Level
		in sample		erage	RSD	
	(% Re	covery)	Recov	/ery (%)	(%)	(ng)
12	Low	High	Low	High		
¹³ C ₃ -Trimethoprim	30	140	40	130	30	
Recovery Standard						
¹³ C ₃ -Atrazine						
List 2 Compounds (TCYS)						
Anhydrochlortetracycline (ACTC)	15	200	20	180	70	≤15
Anhydrotetracycline (ATC)	20	160	20	150	50	≤15
Chlortetracycline (CTC)	30	250	35	250	60	≤6
Demeclocycline	35	180	35	160	50	≤15
Doxycycline	35	180	40	180	40	≤6
Epianhydrochlortetracycline (EACTC)	6	130	7	130	70	≤60
Epianhydrotetracycline (EATC)	15	200	20	200	60	≤15
Epichlortetracycline (ECTC)	25	180	30	160	50	≤15
Epioxytetracycline (EOTC)	25	180	35	160	40	≤6
Epitetracycline (ETC)	35	200	40	180	40	≤6
Isochlortetracycline (ICTC)	25	180	35	160	40	≤6
Minocycline	1	250	2	200	110	≤60
Oxytetracycline (OTC)	20	200	30	200	40	≤6
Tetracycline (TC)	20	200	30	180	40	≤6
Surrogate Standard					-	-
d ₆ -Thiabendazole	25	140	25	130	50	
Recovery Standard						
¹³ C ₃ -Atrazine						
List 3 Compounds (ANEG)						
Bisphenol A	70	130	70	130	30	≤500
Furosemide	65	130	70	130	30	≤40
Gemfibrozil	60	140	70	130	30	≤1.5
Glipizide	55	170	60	160	30	≤6
Glyburide	50	180	55	170	30	≤3
Hydroxychlorothiazide	45	200	50	180	30	≤20
2-hydroxy-ibuprofen	70	130	70	130	30	≤80
Ibuprofen	70	130	70	130	30	≤15
Naproxen	50	150	60	150	30	≤3
Triclocarban	60	140	70	130	30	≤3
Triclosan Warfarin	70 70	130 140	70 70	130 140	30 30	≤60 ≤1.5
Surrogate Standards	70	140	70	140	30	≥1.5
d ₆ -Bisphenol A	50	170	60	160	30	
d ₆ -Bispriction A d ₆ -Gemfibrozil	50	150	55	140	30	
d ₁ -Glipizide	30	180	35	170	50	
d ₁₁ -Glipizide d ₃ -Glyburide	20	160	25	150	40	
13C ₃ -Ibuprofen	50	140	55	140	30	
13C-d ₃ -Naproxen	30	150	35	140	30	
13C ₆ -Triclocarban	20	160	25	150	50	
¹³ C ₁₂ -Triclosan	20	160	30	150	40	
d ₅ -Warfarin	35	250	50	250	30	
u ₅ -vvalialili	33	230	50	230	30	1

	OPR Recovery		IPR			
		rogate re-		IPK		Blank
	-	in sample		erage	RSD	Level
	Low	covery) High	Low	/ery (%)	(%)	(ng)
December Ctendend	LOW	nigii	LOW	High		
Recovery Standard						
¹³ C ₆ -2,4,5-Trichloro-phenoxyacetic acid						
List 4 Compounds (BPOS)						
Albuterol	50	160	50	160	30	≤0.3
Amphetamine	50	160	60	150	30	≤1.5
Atenolol	70	130	70	130	30	≤0.6
Atorvastatin	20	130	25	130	40	≤1.5
Cimetidine	15	130	20	130	50	≤0.6
Clonidine	70	130	70	130	30	≤1.5
Codeine	70	130	70	130	30	≤3
Cotinine	70	130	70	130	30	≤1.5
Enalapril	70	130	70	130	30	≤0.3
Hydrocodone	70	130	70	130	30	≤1.5
Metformin	70	160	70	160	30	≤3
Oxycodone	65	130	70	130	30	≤0.6
Ranitidine	25	140	30	140	50	≤0.6
Triamterene	70	140	70	140	30	≤0.3
Surrogate Standards						
d ₃ -Albuterol	20	140	30	130	30	
d₅-Amphetamine	20	130	25	130	40	
d ₇ -Atenolol	50	130	70	130	30	
d ₃ -Cimetidine	15	130	15	130	50	
d ₄ -Clonidine	50	130	70	130	30	
d ₆ -Codeine	50	130	70	130	30	
d ₃ -Cotinine	50	140	70	135	30	
d₅-Enalapril	50	130	70	130	30	
d ₃ -Hydrocodone	50	130	70	130	30	
d ₆ -Metformin	3	130	4	130	130	
d ₆ -Oxycodone	50	150	60	140	30	
Recovery Standards	30	130	- 00	140	30	
<u> </u>						
d ₃ -Amitriptyline						
List 5 Compounds (APOS)						
Alprazolam	70	130	70	130	30	≤0.3
Amitriptyline	70	130	70	130	30	≤0.3
Amlodipine	45	130	50	130	30	≤1.5
Benzoylecgonine	70	130	70	130	30	≤0.3
Benztropine	70	130	70	130	30	≤0.3
Betamethasone	20	240	30	220	40	≤1.5
Cocaine	70	130	70	130	30	≤0.15
DEET	70	130	70	130	30	≤1
Desmethyldiltiazem	3	350	5	320	80	≤0.15
Diazepam	70	130	70	130	30	≤0.3
Fluocinonide	7	230	9	220	70	<u>=6.5</u> ≤6
** * **	1	ı			l	-

	OPR Recovery		IPR			
	and surrogate re-		A			Blank
		in sample covery)		erage /ery (%)	RSD (%)	Level
	Low	High	Low	High	(%)	(ng)
Fluticasone propionate	20	160	25	150	50	≤2
Hydrocortisone	15	220	20	200	80	<u> </u>
10-hydroxy-amitriptyline	70	130	70	130	30	≤0.15
Meprobamate	65	150	70	140	30	<u>≤</u> 0.15
Methylprednisolone	35	240	40	220	50	≤10
Metoprolol	70	130	70	130	30	≤1.5
Norfluoxetine	70	130	70	130	30	≤1.5
Norverapamil	55	130	60	130	30	≤0.15
Paroxetine	70	130	70	130	30	<u>=0.10</u> ≤4
Prednisolone	35	240	40	220	50	≤6
Prednisone	50	180	60	170	30	≤20
Promethazine	70	130	70	130	30	≤0.4
Propoxyphene	70	130	70	130	30	≤0.3
Propranolol	70	150	70	150	30	≤2
Sertraline	50	130	55	130	30	≤0.4
Simvastatin	1	150	1	140	100	≤20
Theophylline	10	1000	70	900	50	≤60
Trenbolone	70	140	70	135	30	≤4
Trenbolone acetate, aqueous matrix	55	130	60	130	30	≤0.3
solid matrix	55	250	60	250	30	≤0.3
Valsartan	70	130	70	130	30	≤4
Verapamil	70	145	70	140	30	≤0.15
Surrogate Standards						
d ₅ -Alprazolam	45	130	45	130	30	
d ₆ -Amitriptyline	10	130	20	130	40	
d ₈ -Benzoylecgonine	10	170	20	160	40	
d ₃ -Benztropine	20	140	25	130	40	
d ₃ -Cocaine	25	140	30	130	50	
d ₇ -DEET	15	160	20	150	40	
d₅-Diazepam	15	160	25	150	40	
d ₄ -Hydrocortisone	40	240	45	230	50	
d ₃ -Methylprednisolone	15	160	20	150	60	
d ₇ -Metoprolol	25	140	30	140	30	
d ₅ -Norfluoxetine	20	130	20	130	50	
d ₆ -Paroxetine	7	150	9	140	60	
d ₄ -Promethazine	3	140	5	130	80	
d ₅ -Propoxyphene	30	130	40	130	30	
d ₇ -Propranolol	25	140	30	130	30	
¹³ C ₁ , ¹⁵ N ₂ -Theophylline	20	200	25	180	60	
Recovery Standards						
¹³ C ₃ -Atrazine						

OPR and IPR limits derived from actual method performance data according to EPA 821B98003, appendix D. Analysis result is classified as "Information Value" of estimated concentration.

Background level of Erythromycin - H₂O in the associated labeled surrogate may elevate the Erythromycin - H₂O blank value. Sample results may be blank corrected where acceptable by contract.

QC Specification Table: Instrumental Acceptance Specifications

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration point.
Initial Calibration (native compounds)	Initial, (1/X) weighted linear regression (followed by regular Cal/Ver procedures and repeated as necessary to maintain Cal/Ver results within established acceptance ranges. Calculated concentrations 70-130%, one point per compound may be 60-140% Internal guideline - correlation coefficient >0.985. Calibration curves with lower correlation coefficient values meeting all above criteria may be accepted based on batch specific QC results and professional judgement. For hydrocortisone, an increased frequency of Initial Calibration variance from method acceptance limits has been observed and is attributed to transient instrumental instability of response correctable by instrumental reanalysis. If the results are deemed to be fit for the intended purpose the hydrocortisone data may be flagged and reported with an explanation of the
	variance, otherwise instrumental re-analysis to correct the QC variance is required.
OPENING Calibration Verification	Every 20 samples. Determined concentrations within 70-130 % of actual. Allowable exception: A maximum of 1 compound per List or 10% of the compounds on a List, whichever is greater, may fall outside 70-130% provided they are in the range 60-140% of actual.
CLOSING Calibration Verification	Determined concentrations within 70-130 % of actual. Allowable exceptions: 1) Results for the greater of 1 compound or 10% of the compounds on a List may fall outside 60-140% provided the RPD between the CLOSING result and the OPENING result is <40%. 2) Closing calibration verification limits do not apply to Furosemide and Hydrochlorothiazide.
Instrumental Carryover And Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: < 0.3 % carryover and area response of analytes in instrument blank < 800 judged following two previous methanol blank injections.

APPENDIX I: LIMITATIONS TO PERFORMANCE

1. SOIL/SEDIMENT SAMPLES

The following surrogates can show recoveries in soil and sediment samples that do not meet method criteria. The exact reason is not known, as recoveries are in the normal range for other matrices including biosolids samples that undergo identical processing, and for aqueous samples as well. The interaction of dissolved inorganic components of the matrix with the analytes and the material in the Oasis HLB cartridge is the most likely cause for compounds in List 1 and List 5 showing low recovery.

Surrogate	List	Issue
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	List 1	Low Recovery
¹³ C-d₃-Naproxen	List 3	Low Recovery
¹³ C ₃ -Ibuprofen	List 3	Low Recovery
¹³ C ₆ -Triclocarban	List 3	Low Recovery
d ₅ -Warfarin	List 3	Low Recovery
d ₆ -Bisphenol A	List 3	Low Recovery
d ₆ -Gemfibrozil	List 3	Low Recovery
d ₆ -Amitryptilline	List 5	Low Recovery
d ₃ -Benztropine	List 5	Low Recovery
d ₃ -Cocaine	List 5	Low Recovery
d ₅ -Norfluoxetine	List 5	Low Recovery
d ₆ -Paroxetine	List 5	Low Recovery
d ₅ -Propoxyphene	List 5	Low Recovery
d ₇ -Propranolol	List 5	Low Recovery

The following analytes show recoveries in the spiked matrix sample (SPM) not meeting existing method specifications. In addition, reporting of analytes in soil/sediment samples can require flagging due to surrogate recovery issues.

Analyte	List	Issue
Cefotaxime	List 1	High Recovery
Enrofloxacin	List 1	High Recovery/Not Reportable
Lomefloxacin	List 1	High Recovery/Not Reportable
Ofloxacin	List 1	High Recovery/Not Reportable
Oxolinic Acid	List 1	High Recovery
Penicillin V	List 1	High Recovery
Sarafloxacin	List 1	High Recovery/Not Reportable
Clinafloxacin	List 1	High Recovery/Not Reportable
Norfloxacin	List 1	High Recovery/Not Reportable
Ciprofloxacin	List 1	Not Reportable
Lincomycin	List 1	Low Recovery
Oxacillin	List 1	Low Recovery
Penicillin G	List 1	Low Recovery
Sulfamethizole	List 1	Low Recovery

2. 1,7-DIMETHYLXANTHINE, THEOPHYLLINE AND THEOBROMINE

1,7-Dimethylxanthine is an analyte in List 1, Theophylline or 1,3-dimethylxanthine is an analyte in List 5 of the same method. These analytes are isomers, and hence co-elute in both List 1 and List 5 instrumental runs, leading to a systematic over-reporting of each compound in the Spiked Matrix (SPM) samples. The recovery criteria for these compounds takes into account the effect of the cross interference on data accuracy. Any positive detection of either analyte is presumed to be a sum of the two analytes. Neither the HPLC, nor the mass spectrometer, can differentiate between the two compounds.

3. ROXITHROMYCIN, CLARITHROMYCIN AND TYLOSIN REQUANTIFICATIO

Roxithromycin, clarithromycin and tylosin are all quantified against ¹³C-sulfamethazine. This surrogate is chemically different from the analytes, and can sometimes show low recovery in samples even when the three analytes are not affected. If the recovery of ¹³C-sulfamethazine is less than 10%, upon request, roxithromycin, clarithromycin and tylosin are requantified against the recovery standard ¹³C-atrazine and flagged as estimated minimum concentrations if detected. The data is evaluated and flagged using procedures outlined in AXYS Document QDO-027 "Rules for the Application of Non-Quantifiable Flags (NQ) to MLA-075 Results".

4. CORRECTION PROCEDURE FOR HYDROCODONE AND CODEINE CROSS INTERFERENCE.

An examination of sample data and investigatory work reveals that there is significant analytical cross-interference between hydrocodone and codeine in the List 4 analysis. This interference arises from the chemical similarity of these compounds. The compounds have the same molecular weight and chemical formula, $C_{18}H_{21}NO_3$, and due to this structural similarity they are not separated on the HPLC column used in this analysis. In addition, full product ion scan data reveals that the quantitation transitions for each of these compounds show mass spectrometric interferences from the presence of the other compound. The extent of this interference is constant across the concentration range of the method, except close to the reporting limit where there is increased uncertainty.

The interference affects all analytical runs including the calibration. Impact on the spiked matrix (SPM/OPR) data is minimal because the effects from the calibration and sample data cancel each other out. Therefore, reported spike recovery data will not change significantly.

Correction

An algebraic correction of the results of hydrocodone and codeine is possible due to the constancy of the cross-interference. Using this algebraic correction enables Axys to report approximate concentrations of hydrocodone and codeine with the interferences taken into account. Use of this correction also enables Axys to detect and correct for false positive occurrence. In addition, the selection of a new quantitation transition for codeine (300.0 \rightarrow 215.0) has greatly reduced the cross interference of hydrocodone in codeine.

Algebraic Solution

Area Correction

$$H_{199} = \frac{Y - aX}{1 - ab}$$
, and

$$C_{215} = \frac{X - bY}{1 - ab}$$

where

X, Y = Observed areas of codeine and hydrocodone, respectively

C, H = Corrected areas for codeine and hydrocodone, respectively

a, b = Cross Interference constants, a = 0.564 (codeine in hydrocodone) and b = 0.022 (hydrocodone in codeine).

Correction of Linearity

Because the ratio of codeine:hydrocodone concentration is constant in the linearity calibration solutions, the linearity slope is reduced for each compound by a constant R = 0.737 for hydrocodone and 0.966 for codeine.

Concentration

$$C_{corr} = \frac{C_{uncorr} * A_{corr}}{R * A_{uncorr}},$$

where

A_{corr} is H or C

Auncorr is X or Y

R is the linearity correction.

Correction Limits

For hydrocodone, if $\frac{Y-H_{199}}{Y}$ > 0.5 , the concentration will be reported as ND < Y.

For codeine, if $\frac{X-C_{215}}{X}$ > 0.5 , the concentration will be reported as ND < X.

Application of the Correction

This correction is carried out in LIMS after data evaluation. The correction is applied to all samples except the calibration runs (calibration correction is already part of the correction), and the calibration verification runs.

Positive or Negative Bias

The sample correction and linearity corrections work in opposite directions. In a scenario where one analyte is present at relatively high levels and the other analyte is not present, or present at low levels, the effect from the linearity correction will dominate. If the relative amounts are comparable, the effect of the sample area correction will dominate.

Uncertainty and Impact on Sample Data

The correction approach takes into account the increased uncertainty due this cross-interference. If the measured area response for a compound is at least two times the correction required, data indicates that the correction can be carried out and the corrected concentration is reported. However, if the correction required is higher than this threshold, the compound is reported as not detected with a detection limit equal to the observed concentration. The effect will be to elevate the detection limit of the lower concentration analyte in the presence of relatively higher concentrations of the alternate analyte.

5. METHYL ESTER INTERFERENCE OF BETA-LACTAM ANTIBIOTICS

Cloxacillin, oxacillin and penicillin G are reported as 'Information Values' of estimated concentration. These compounds are determined by LC-MS/MS using ions from the methanol adduct of the compound (M+CH₃OH). There is indication that methyl esters of these compounds can also form in standard solutions over time. Ions from these methyl esters cannot be distinguished from methanol adduct ions formed from the parent compound. The consequence of this reaction could be a slow, but continuous increase of instrument response for these compounds in the calibration solutions. The rate of change in response is different for each compound. This behavior has not yet been observed/documented in client samples. The result of this standard transformation is to confer greater uncertainty on measured concentrations of these three compounds.

6. POTENTIAL AMPHETAMINE INTERFERENCE

The presence of an interfering compound with potential to obscure or cause false positive detection of amphetamine has been observed in some water and solids samples. Use of the secondary transition response, itself prone to interference, is not reliable in overcoming the interference problem. Partial or complete chromatographic resolution of the interfering compound has been observed - i.e. a shift of the native compound peak RT (retention time) relative to that of the d5-amphetamine surrogate is indicative of the interference. Where evidence of this interference is observed amphetamine results are flagged in reports as "estimated maximum possible values".

- 1. Positive identification of amphetamine requires an RT difference of 0.10 minutes or less between native and labeled amphetamine.
- 2. Where the RT differences between a candidate peak and labeled amphetamine is greater than +0.10 minutes, the result will be quantified as amphetamine but flagged as an "estimated maximum possible concentration" on reports. The flag must be edited by hand in LIMS; EMPC, K or NDR dependent on client flagging requirements.
- 3. Where the RT difference between the closest native peak and labeled amphetamine is sufficient to avoid "masking" of any amphetamine response (generally requires an RT difference of 0.25 minutes or greater) amphetamine will be reported as not detected.
- 4. Where multiple injection data for a sample are available (e.g. a neat and a diluted run), instrument analysts will report amphetamine from the chromatogram producing the most definitive result based on an evaluation of peak shape and peak resolution. The result will

be quantified as amphetamine but flagged as an "estimated maximum possible concentration" on reports. The flag must be edited by hand in LIMS; EMPC, K or NDR dependent on client flagging requirements.

- 5. Extracts will not be routinely diluted and reinjected for improvement of amphetamine interference alone as there is no evidence that this is systematically effective.
- 6. For amphetamine with a high peak area response above the SPM, the 1st channel should be confirmed by the 2nd channel. If no peak is present in the 2nd channel, the peak in the 1st channel is possibly not amphetamine and should be removed from the 1st channel.

7. POTENTIAL DEGRADATION OF RANITIDINE IN THE STANDARD SOLUTION

Degradation of ranitidine in the standard solution used to prepare OPR tests has been observed intermittently under the specific conditions of the storage. Where OPR test results indicate the possibility of spiking solution degradation, the ranitidine OPR assigned value is adjusted based on the results of a secondary QC test solution (SAR) prepared from the same ampoule that has been analyzed alongside samples. This problem has been demonstrated to have no impact on sample data accuracy

APPENDIX II: EXTRACTION OF TISSUE SAMPLES

The analysis requires extraction at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5).

Two separate tissue sub-samples (one for acidic extraction and the other for basic extraction) are spiked with surrogates, extracted by sonication with pure acetonitrile and then with aqueous buffer (separate extractions at pH 2 and at pH 10, respectively), concentrated by rotary evaporation, decanted, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The acidic and basic extracts are then separately cleaned up by solid phase extraction (SPE) and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs for the complete list of analytes.

QC Acceptance Limits, Tissues

List 1	OPR R	ecovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Acetaminophen	70	130		
Azithromycin	70	250		
Caffeine	70	130		
Carbadox	10	130		
Carbamazepine	70	150		
Cefotaxime	70	300		
Ciprofloxacin	70	130		
Clarithromycin	70	250		
Clinafloxacin	70	200		
Cloxacillin ²	70	250		
Dehydronifedipine	70	200		
Diphenhydramine	60	130		
Diltiazem	70	200		
Digoxin	70	250		
Digoxigenin	50	200		
Enrofloxacin	70	130		
Erythromycin-H ₂ O	70	130		
Flumequine	60	200		
Fluoxetine	70	130		
Lincomycin	70	300		
Lomefloxacin	70	150		
Miconazole	5	130		
Norfloxacin	70	150		
Norgestimate	5	130		
Ofloxacin	70	200		
Ormetoprim	70	130		
Oxacillin ²	70	200		
Oxolinic acid	70	130		
Penicillin G ²	20	130		
Penicillin V	70	250		
Roxithromycin	50	200		
Sarafloxacin	50	130		
Sulfachloropyridazine	70	200		

Sulfadiazine	70	300		
Sulfadimethoxine	70	130		
Sulfamerazine	70	200		
Sulfamethazine	70	130		
Sulfamethizole	60	130		
Sulfamethoxazole	70	130		
Sulfanilamide	50	300		
Sulfathiazole	70	130		
Thiabendazole	70	130		
Trimethoprim	70	130		
Tylosin	60	200		
Virginiamycin M1	30	200		
1,7-Dimethylxanthine	70	250		
¹³ C ₂ , ¹⁵ N-acetaminophen	30	150	30	250
¹³ C ₃ -Caffeine	30	150	20	250
d10-Carbamazepine	30	150	30	150
¹³ C ₃ ,N ¹⁵ -ciprofloxacin	30	150	30	200
¹³ C₂-Erythromycin-H₂O	30	206	5	200
d5-Fluoxetine	30	150	20	150
¹³ C ₆ -Sulfamethazine	30	150	30	150
¹³ C ₆ -Sulfamethoxazole	30	150	10	150
d6-Thiabendazole	30	150	30	150
¹³ C ₃ -Trimethoprim	30	150	30	200

OPR Recovery - List 2
This method has not been validated for List 2 compounds in tissue samples

List 3	OPR R	ecovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Bisphenol A	60	130		
Furosemide	70	150		
Gemfibrozil	70	130		
Glipizide	70	130		
Glyburide	70	130		
Hydrochlorothiazide	20	130		
2-Hydroxy-Ibuprofen	70	221		
Ibuprofen	70	130		
Naproxen	70	130		
Triclocarban	70	130		
Triclosan	70	146		
Warfarin	70	130		
d6-Bisphenol A	30	150	30	150
d6-Gemfibrozil	20	150	5	150
d11-Glipizide	30	150	30	150
d3-Glyburide	20	150	5	150
¹³ C ₃ -Ibuprofen	30	150	10	150

¹³ C-d3-Naproxen	30	150	30	150
¹³ C ₆ -Triclocarban ¹	NQ	150	NQ	150
¹³ C ₁₂ -Triclosan ¹	5	150	NQ	150
d5-Warfarin	30	150	10	150

List 4	OPR R	ecovery		Surrogate overy
	Low (%)	Low (%) High (%)		High (%)
Albuterol	60	130		
Amphetamine	70	130		
Atenolol	70	130		
Atorvastatin	70	150		
Cimetidine	30	130		
Clonidine	70	130		
Codeine	70	130		
Cotinine	70	130		
Enalapril	70	130		
Hydrocodone	70	130		
Metformin	70	130		
Oxycodone	70	150		
Ranitidine ¹	NQ	150		
Triamterene	70	130		
d3-Albuterol	20	150	5	150
d5-Amphetamine	30	150	5	150
d7-Atenolol	30	150	30	300
d3-Cimetidine 1	30	150	NQ	500
d4-Clonidine	30	150	30	300
d6-Codeine	10	150	5	150
d3-Cotinine	30	150	30	300
d5-Enalapril	30	150	10	150
d3-Hydrocodone	30	150	20	150
d6-Metformin	10	150	5	200
d6-Oxycodone	30	150	30	150

List 5	OPR R	ecovery	Sample Surrogat Recovery		
	Low (%)	High (%)	Low (%)	High (%)	
Alprazolam	70	130			
Amitriptyline	70	130			
Amlodipine	70	130			
Benzoylecgonine	70	130			
Benztropine	70	150			
Betamethasone	70	250			
Cocaine	70	130			
DEET	70	150			
Desmethyldiltiazem	70	200			
Diazepam	70	130			
Fluocinonide	70	130			
Fluticasone Propionate	20	130			
Hydrocortisone	70	150			

10-Hydroxy-Amitriptyline	70	130		
Meprobamate	70	130		
Methylprednisolone	50	150		
Metoprolol	70	130		
Norfluoxetine	70	130		
Norverapamil	60	130		
Paroxetine	70	130		
Prednisolone	70	150		
Prednisone	70	150		
Promethazine	70	130		
Propoxyphene	70	130		
Propranolol	70	130		
Sertraline	10	130		
Simvastatin	10	130		
Theophylline	70	273		
Trenbolone	70	130		
Trenbolone acetate	30	130		
Valsartan	20	130		
Verapamil	70	200		
d5-Alprazolam	30	150	30	150
d6-Amitriptyline	30	150	10	150
d8-Benzoylecgonine	30	150	20	150
d3-Benztropine	30	150	10	150
d3-Cocaine	30	150	30	150
d7-DEET	30	150	30	150
d5-Diazepam	30	150	10	150
d3-Methylprednisolone	30	200	30	150
d7-Metoprolol	30	150	30	200
d5-Norfluoxetine	30	150	5	300
d6-Paroxetine	20	150	5	150
d4-Promethazine	30	150	20	150
d5-propoxyphene	30	150	30	200
d7-Propranolol	30	150	30	200
¹³ C, ¹⁵ N ₂ -Theophylline	30	150	20	150
d4-Hydrocortisone	30	150	30	200

¹ NQ= Not Quantifiable. Low recovery rate may preclude quantification

 $^{^{\}rm 2}\,$ Analysis result classified as 'Information Value' of estimated concentration.

APPENDIX III: EFFECTS OF ADDING ASCORBIC ACID TO SAMPLES.

Ascorbic acid is added to quench free chlorine in aqueous samples that have been chlorinated. The presence of free chlorine has severe effects on the recovery of analytes and most surrogate compounds. 50 mg/L of ascorbic acid is usually added to samples. The vast majority of analytes and standards are not affected by ascorbic acid addition. It is possible that some analytes may show enhanced recovery. The effects of ascorbic acid on each analyte/standard is shown below.

Analyte	List	Effect	Surrogates	List	Effect
Acetaminophen	List 1	Normal	¹³ C ₂ , ¹⁵ N-Acetaminophen	List 1	Normal
Azithromycin	List 1	Normal	¹³ C ₃ -Caffeine	List 1	Normal
Caffeine	List 1	Normal	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	List 1	Normal
Carbadox	List 1	Normal	¹³ C ₂ -Erythromycin-H ₂ O	List 1	Normal
Carbamazepine	List 1	Normal	d5-Fluoxetine	List 1	Normal
Cefotaxime	List 1	Normal	¹³ C ₆ -Sulfamethazine	List 1	Normal
Ciprofloxacin	List 1	Normal	¹³ C ₆ -Sulfamethoxazole	List 1	Normal
Clarithromycin	List 1	Normal	d6-Thiabendazole	List 1	Normal
Clinafloxacin	List 1	Normal	¹³ C ₃ -Trimethoprim	List 1	Normal
Cloxacillin	List 1	Normal	d6-Thiabendazole	List 2	Normal
Dehydronifedipine	List 1	Normal	d6-Bisphenol	List 3	Normal
Diphenhydramine	List 1	Marginal low bias	d6-Gemfibrozil	List 3	Normal
Diltiazem	List 1	Marginal low bias	d11-Glipizide	List 3	Normal
Digoxin	List 1	Normal	d3-Glyburide	List 3	Normal
Digoxigenin	List 1	Normal	¹³ C ₃ -Ibuprofen	List 3	High bias
Enrofloxacin	List 1	Normal	¹³ C-d3-Naproxen	List 3	Normal
Erythromycin-H ₂ O	List 1	Normal	¹³ C ₆ -Triclocarban	List 3	Normal
Flumequine	List 1	Normal	¹³ C ₁₂ -Triclosan	List 3	Normal
Fluoxetine	List 1	Normal	d5-Warfarin	List 4	Normal
Lincomycin	List 1	Normal	d3-Albuterol	List 4	Normal
Lomefloxacin	List 1	Normal	d6-Metformin	List 4	Normal
Miconazole	List 1	Normal	d3-Cotinine	List 4	Normal
Norfloxacin	List 1	Normal	d3-Cimetidine	List 4	Normal
Norgestimate	List 1	Normal	d5-Enalapril	List 4	Normal
Ofloxacin	List 1	Normal	d6-Oxycodone	List 4	Normal
Ormetoprim	List 1	Normal	d4-Clonidine	List 4	Normal
Oxacillin	List 1	Normal	d5-Amphetamine	List 4	Normal
Oxolinic Acid	List 1	Normal	d6-Codeine	List 4	Normal
Penicillin G	List 1	Normal	d3-Hydrocodone	List 4	Normal
Penicillin V	List 1	Normal	d7-Atenolol	List 4	Normal
Roxithromycin	List 1	Normal	d5-Alprazolam	List 5	Normal
Sarafloxacin	List 1	Normal	d6-Amitriptyline	List 5	Normal
Sulfachloropyridazine	List 1	Normal	d8-Benzoylecgonine	List 5	Normal
Sulfadiazine	List 1	Normal	d3-Benztropine	List 5	
Sulfadimethoxine	List 1	Normal	d3-Cocaine	List 5	Normal
Sulfamerazine	List 1	Normal	d7-DEET	List 5	Normal
Sulfamethazine	List 1	Normal	d5-Diazepam	List 5	Normal
Sulfamethizole	List 1	Normal	d3-Methylprednisolone	List 5	Normal
Sulfamethoxazole	List 1	Normal	d7-Metoprolol	List 5	Normal
Sulfanilamide	List 1	Normal	d5-Norfluoxetine	List 5	Normal
-					

Page 38 of 51

Thiabendazole	Sulfathiazole	List 1	Normal	d6-Paroxetine	List 5	Normal
Trimethoprim						
Tylosin						
Virginiamycin M1						
1.7- Dimethylxanthine List 1 Normal d4-Hydrocortisone List 5 Normal ECTC List 2 Normal	Virginiamycin M1			¹³ C ¹⁵ N ₂ -Theophylline		
CTC List 2 Normal ACTC List 2 Normal EACTC List 2 Normal ICTC List 2 Normal Demeclocycline List 2 Normal Doxycycline List 2 Normal OTC List 2 Normal EOTC List 2 Normal ETC List 2 Normal ETC List 2 Normal EATC List 2 Normal ATC List 2 Normal Minocycline (458>441) List 2 Normal Bisphenol A List 3 Normal Gemfibrozil List 3 Normal Gipzizde List 3 Normal Glyburide List 3 Normal Hydrochlorothiazide List 3 Normal Hydrochlorothiazide List 3 Normal Pydroxy-ibuprofen List 3 Normal Ibuprofen List 3 Normal Naproxen List 3 Nor	1.7- Dimethylxanthine					
ECTC				u + Tryarecertisene	Liot	Homai
ACTC						
EACTC						
Demeclocycline						
Demeclocycline						
Doxycycline						
DTC					1	
EOTC List 2 Normal TC List 2 Normal ETC List 2 Normal EATC List 2 High Bias ATC List 2 Normal Minocycline (458>441) List 2 Normal Bisphenol A List 3 Normal Furosemide List 3 Normal Gemfibrozil List 3 Normal Gilpizide List 3 Normal Glyburide List 3 Normal Hydrochlorothiazide List 3 Normal Hydrochlorothiazide List 3 Normal 1buprofen List 3 Normal Naproxen List 3 Normal Naproxen List 3 Normal Triclocarban List 3 Normal Triclosan List 3 Normal Warfarin List 3 Normal Albuerol List 4 Normal Atenolol List 4 Normal Atenolol List 4						
TC						
ETC List 2 Normal ATC List 2 Normal Minocycline (458>441) List 2 Normal Bisphenol A List 3 Normal Furosemide List 3 Normal Gemfibrozil List 3 Normal Glipizide List 3 Normal Gliyburide List 3 Normal Hydrochlorothiazide List 3 Normal Hydrochlorothiazide List 3 Normal Hydroxy-ibuprofen List 3 Normal Ibuprofen List 3 Normal Naproxen List 3 Normal Triclocarban List 3 Normal Triclosan List 3 Normal Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Atrovastatin List 4 Normal Atrovastatin List 4 Normal Cionidine List 4 Normal Codein						
EATC List 2 Arc High Bias Minocycline (458>441) List 2 Normal Minocycline (458>441) List 3 Normal Isher Minocycline (458>441) Bisphenol A List 3 Normal Isher Minocycline (458>441) Furosemide List 3 Normal Isher Minocycline (458>441) Gemfibrozil List 3 Normal Isher Minocycline (458>441) Glipizide List 3 Normal Isher Minocycline (458>441) Glyburide List 3 Normal Isher Minocycline (458>441) Hydrochlorothiazide List 3 Normal Isher Minocycline (458>441) Hydrochlorothiazide List 3 Normal Isher Minocycline (458>441) Hydrochlorothiazide List 3 Normal Isher Minocycline (458) Iburofen List 3 Normal Isher Minocycline (458) Iburofen List 3 Normal Isher Minocycline (458) Triclosan List 3 Normal Isher Minocycline (458) Triclosan List 3 Normal Isher Minocycline (458) Albuerol List 4 Normal Isher Minocycline (458) Albuerol List 4 Normal Isher Minocycline (458) Alterolo Li					1	
ATC					1	
Minocycline (458>441)					1	
Bisphenol A List 3 Normal Furosemide List 3 Normal Gemfibrozil List 3 Normal Gilpizide List 3 Normal Gilpizide List 3 Normal Gilyburide List 3 Normal Hydrochlorothiazide List 3 Normal Bibuprofen List 3 Normal Ibuprofen List 3 Normal Ibuprofen List 3 Normal Naproxen List 3 Normal Triclocarban List 3 Normal Triclosan List 3 Normal Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Codinine List 4 Normal Cotinine List 4 Normal Metformin List 5 Normal Metformin List 5 Normal Amphetamine List 5 Normal Metformal Metformin List 5 Normal Metformin List 6 Normal Metformin List 6 Norma					1	
Furosemide					1	
Gemfibrozil					1	
Glipizide						
Glyburide List 3 Normal Hydrochlorothiazide List 3 Normal 2-hydroxy-ibuprofen List 3 Normal Ibuprofen List 3 Normal Naproxen List 3 Normal Triclocarban List 3 Normal Triclosan List 3 Normal Albuterol List 4 Normal Albuterol List 4 Normal Atenolol List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Codinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Hydrocodone List 4 Normal Ametidine List 4 Normal Enalapril List 4 Normal Ametidine List 4 Normal Coxycodone List 4 Normal Amitriptyline List 5 Normal Amitriptyline List 5 Normal Beatmethasone List 5 Normal Beatmethasone List 5 Normal DEET List 5 Normal DEET Normal						
Hydrochlorothiazide List 3 Normal 2-hydroxy-ibuprofen List 3 Normal Ibuprofen List 3 Normal Naproxen List 3 Normal Triclocarban List 3 Normal Triclosan List 3 Normal Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Aterolol List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Codinine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Coxycodone List 4 Normal Anteromin List 4 Normal Coxycodone List 4 Normal Coxycodone List 4 Normal Ranitidine List 4 Normal Coxycodone List 4 Normal Ranitidine List 4 Normal Coxycodone List 5 Normal Ranitidine List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Beatamethasone List 5 Normal Betamethasone List 5 Normal DEET List 5 Normal DEET List 5 Normal DEET List 5 Normal DEET List 5 Normal DEET List 5 Normal DEET List 5 Normal DEET List 5 Normal					1	
2-hydroxy-ibuprofen List 3 Normal lbuprofen List 3 Normal Naproxen List 3 Normal Triclocarban List 3 Normal Triclosan List 3 Normal Marfarin List 3 Normal Marfarin List 3 Normal Marfarin List 4 Normal Marfarin Marfari						
Ibuprofen						
Naproxen List 3 Normal Triclosan List 3 Normal Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Clonidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Metformin List 4 Normal Ranitidine List 4 Normal Ranitidine List 4 Normal Amitriptyline List 5 Normal Amitriptyline List 5 Normal Benzoyleogonine List 5 Normal Benztropine List 5 Normal Betamethasone <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Triclocarban List 3 Normal Triclosan List 3 Normal Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Codinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Metformin List 4 Normal Amitidine List 4 Normal Company Metformin List 4 Normal Metformin List 4 Normal Ranitidine List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Betamethasone List 5 Normal DEET List 5 Normal DEET						
Triclosan List 3 Normal Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Coxycodone List 4 Normal Ranitidine List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amlodipine List 5 Normal Benztropine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal DEET List 5 Normal DEET						
Warfarin List 3 Normal Albuterol List 4 Normal Amphetamine List 4 Normal Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Oxycodone List 4 Normal Coxycodone List 4 Normal Anitidine List 4 Normal Enalapril List 4 Normal Metformin List 4 Normal Coxycodone List 4 Normal Amitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Betamethasone List 5 Normal DEET List 5 Normal DEET List 5 Normal DEET						
Albuterol List 4 Normal Amphetamine List 4 Normal Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Colonidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal DEET List 5 Normal						
Amphetamine List 4 Normal Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Cotinine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal List 5 Normal Cocaine List 5 Normal						
Atenolol List 4 Normal Atorvastatin List 4 Normal Cimetidine List 4 Normal Clonidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal List 5 Normal Cocaine List 5 Normal						
Atorvastatin List 4 Normal Cimetidine List 4 Normal Clonidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Coxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Benzotropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal						
Cimetidine List 4 Normal Clonidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Coxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal						
Clonidine List 4 Normal Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal						
Codeine List 4 Normal Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal						
Cotinine List 4 Normal Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal						
Enalapril List 4 Normal Hydrocodone List 4 Normal Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Benzoylecgonine List 5 Normal Betamethasone List 5 Normal Cocaine DEET List 5 Normal						
HydrocodoneList 4NormalMetforminList 4NormalOxycodoneList 4NormalRanitidineList 4NormalTriamtereneList 4NormalAlprazolamList 5NormalAmitriptylineList 5NormalAmlodipineList 5NormalBenzoylecgonineList 5NormalBenztropineList 5NormalBetamethasoneList 5NormalCocaineList 5NormalDEETList 5Normal						
Metformin List 4 Normal Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					ļ	
Oxycodone List 4 Normal Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Ranitidine List 4 Normal Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Triamterene List 4 Normal Alprazolam List 5 Normal Amitriptyline List 5 Normal Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Alprazolam List 5 Normal Amitriptyline List 5 Normal Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Amitriptyline List 5 Normal Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Amlodipine List 5 Normal Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Benzoylecgonine List 5 Normal Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal						
Benztropine List 5 Normal Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal	•					
Betamethasone List 5 Normal Cocaine List 5 Normal DEET List 5 Normal					1	
Cocaine List 5 Normal DEET List 5 Normal						
DEET List 5 Normal					1	
Desmethyldiltiazem List 5 Normal						
	Desmethyldiltiazem	List 5	Normal			

Diazepam	List 5	Normal		
Fluocinonide	List 5	Normal		
Fluticasone Propionate	List 5	Normal		
Hydrocortisone	List 5	Normal		
10-hydroxy-amitriptyline	List 5	Normal		
Meprobamate	List 5	Normal		
Methylprednisolone	List 5	Normal		
Metoprolol	List 5	Normal		
Norfluoxetine	List 5	Normal		
Norverapamil	List 5	Normal		
Paroxetine	List 5	High Bias		
Prednisolone	List 5	Normal		
Prednisone	List 5	Normal		
Promethazine	List 5	Normal		
Propoxyphene	List 5	Normal		
Propranolol	List 5	Normal		
Sertraline	List 5	Normal		
Simvastatin	List 5	Normal		
Theophylline	List 5	Normal		
Trenbolone	List 5	Normal		
Trenbolone acetate	List 5	Normal		
Valsartan	List 5	Normal	 	
Verapamil	List 5	Normal		

APPENDIX IV: SUMMARY COMPARISON OF USEPA METHOD 1694 AND AXYS METHOD MLA-075.

Area	EPA 1694	MLA-075
Applicable Matrices	Aqueous, Solids	Aqueous, Solids, <i>Tissue</i>
Analytes Offered	73 compounds, 2 fractions, 4 instrumental runs	146 compounds, 2 fractions, 6 instrumental runs
Sample Containers	Amber glass	Amber glass or <i>HDPE</i>
Chlorine Quenching (water samples)	80 mg sodium thiosulfate per liter, ascorbic acid allowable alternative	50 mg ascorbic acid per liter
Sample Preservation	pH 5-9 if hold time >48hr or freeze	None
Sample Storage Temperature	< 6°C or frozen (aqueous, solids)	Aqueous: < 4 °C; Solids: <-20 °C
Sample Hold Time (guideline only)	Aqueous, 7 days at < 6°C, undefined for frozen storage Solids, 7 days at <-10 °C	Aqueous: 7days for < 4 °C storage Solids: 7 days for -20 °C storage
Extract Hold Time	40 days	40 days
Extraction (separate acid, base fractions)	Aqueous: adjust to pH 2 or pH 10, stabilize with EDTA	Aqueous: adjust to pH 2 or pH 10, stabilize with EDTA
	Solids: adjust to pH 2 or pH 10, stabilize with EDTA, ultrasonic extract into buffered acetonitrile, exchange to water solution	Solids: adjust to pH 2 or pH 10, stabilize with EDTA, ultrasonic extract into buffered acetonitrile, exchange to water solution
Clean-up (separate acid, base fractions)	SPE (HLB), elute in methanol	SPE (HLB), elute in methanol
Instrumental Acquisition	LC-MS/MS, 3 +ESI runs, 1 -ESI run	LC-MS/MS, 5 +ESI runs, 1 -ESI run
Calibration Range, ng/mL in standard	Minimum 5 points, range 0.25- 25000 mg/mL	Minimum 5 points, range 0.08- 30000 ng/mL
Calibration Model	Multi-level, constant RRF; alternative models allowable	Multi-level, 1/x weighted linear regression
Initial Calibration Limits	RSD of RRF >20% (isotope dilution) or <35% (internal standard)	Calculated points 70-130% of actual (allowable exception per compound 60-140%)

Area	EPA 1694	MLA-075
Calibration Verification Limits	70-130%	Calculated points 70-130% of actual (allowable exception one compound per list or 10% of compounds per list may be 60-140%)
Quantification Type	Isotope dilution or internal standard	Isotope dilution or internal standard
Quantification References	18 isotopically labeled compounds	67 isotopically labeled compounds
Initial Precision and Recovery (IPR) Limits, %	range 6-180 %	performance based, generally 3- 250 %
On-Going Precision and Recovery (OPR) Limits, %	range 5-200 %	performance based, generally 2- 300 %
Blank Limits, ng per sample	range 1-500 ng	performance based, generally 0.3 - 80 ng
Surrogate Recovery Limits, %	range 5- 200 %	performance based, generally 3-250 %
Lower Reporting Limit, ng per sample based on low calibration standard	range 1 – 500 ng	performance based, generally 0.3 – 500 ng

APPENDIX V: ANALYSIS OF LIST 6 COMPOUNDS IN AQUEOUS, SOLID AND TISSUE SAMPLES.

The aqueous, solid and tissue sample extraction and cleanup procedures for List 6 compounds are the same as for List 1, 2, 3 and 5 compounds, and List 6 compounds may be analyzed from the same extract.

QC Acceptance Limit Guidelines for List 6 Compounds

		Recovery rogate re-		IPR		Di d
	covery	in sample ecovery)		erage very (%)	RSD (%)	- Blank Level (ng)
	Low	High	Low	High		(1.9)
List 6 Native Compounds (APOS)						
Amsacrine, aqueous	50	130	60	130	30	
solid	2	130	3	130	100	≤ 0.8
tissue	20	130	20	130	30	
Azathioprine, all matrices	70	130	70	130	30	≤ 8
Busulfan, all matrices	70	130	70	130	30	≤ 24
Carmustine, aqueous	70	130	70	130	30	
solid	60	130	60	130	30	≤ 80
tissue	70	180	70	160	30	
Chloramphenicol, aqueous	70	150	70	150	30	
solid	70	150	70	150	30	≤ 900
tissue	70	250	70	250	30	
Citalopram, aqueous	70	130	70	130	30	
solid	40	160	50	160	30	≤ 0.4
tissue	50	130	60	130	30	
Clotrimazole, all matrices	70	130	70	130	30	≤ 2
Colchicine, aqueous	70	130	70	130	30	
solid	70	130	70	130	30	≤ 2
tissue	70	140	70	140	30	
Cyclophosphamide, aqueous,	70	130	70	130	30	
solid	70	130	70	130	30	≤ 1.6
tissue	70	140	70	130	30	
Daunorubicin, aqueous	60	140	60	130	30	
solid	25	260	30	240	70	≤ 16
tissue	70	130	70	130	30	
Diatrizoic acid, aqueous	70	130	70	130	30	
solid	60	140	70	130	30	≤ 40
tissue	70	130	70	130	30	
Doxorubicin, aqueous	30	180	30	160	45	
solid	15	200	15	180	70	≤ 24
tissue	70	130	70	130	30	
Drospirenone, aqueous	70	130	70	130	30	
solid	70	130	70	130	30	≤ 8
tissue	70	140	70	130	30	
Etoposide, aqueous	70	150	70	140	30	
solid	60	140	60	130	30	≤ 4
tissue	70	130	70	130	30	

Page 43 of 51

	OPR Recovery			IPR		
	covery	rogate re- in sample ecovery)		erage very (%)	RSD (%)	Blank Level
	Low	High	Low	High		(ng)
lopamidol, aqueous	70	140	70	140	30	
solid	70	130	70	130	30	≤ 80
tissue	70	130	70	130	30	
Lomustine, aqueous	40	130	50	130	30	
solid	20	140	30	140	40	≤ 50
tissue	40	130	40	130	30	
Medroxyprogesterone acetate, aqueous	60	130	60	130	30	
solid	70	130	70	130	30	≤ 4
tissue	70	130	70	130	30	
Melphalan, aqueous	50	130	50	130	30	
solid	60	130	60 50	130	30	≤ 64
tissue	50	130	50	130	30	
Metronidazole, all matrices	70	130	70	130	30	≤ 4
Moxifloxacin, aqueous	70	130	70	130	30	≤ 4
Solid ¹	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
tissue	50	130	50	130	30	≤ 4
Norethindrone, aqueous	60	180	60	170	30	
solid	50	140	50	140	30	≤ 64
tissue	60	200	70	180	30	
Oxazepam, aqueous solid	70 60	130 130	70 70	130 130	30 30	≤ 16
tissue	70	130	70 70	130	30	≥ 10
Rosuvastatin, all matrices	70	130	70	130	30	≤ 16
	70	130	70	130	30	2 10
Tamoxifen, aqueous solid	40	180	50	180	30	≤ 0.4
tissue	70	130	70	130	30	≥ 0.4
Teniposide, aqueous	15	130	15	130	30	
solid	15	130	20	130	40	≤ 8
tissue	40	130	50	130	30	
Venlafaxine, aqueous	70	130	70	130	30	
solid	70	130	70	130	30	≤ 1.2
tissue	25	200	30	180	60	
Zidovudine, all matrices	70	130	70	130	30	≤ 50
Surrogate Standards						
¹³ C ₄ -Azathioprine, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	20	150	20	150	40	<u> </u>
d ₈ -Busulfan, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	50	160	50	160	30	
d ₆ -Citalopram, aqueous	50	150	50	150	30	
solid	2	150	2	150	150	
tissue	50	150	50	150	30	
]		

	OPR R	Recovery		IPR		
		rogate re-	A			
	_	in sample covery)		erage very (%)	(%)	Level (ng)
	Low	High	Low	High		(119)
d ₅ -Clotrimazole, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	15	150	20	150	40	
d ₆ -Colchicine, all matrices	50	150	50	150	30	
d ₄ -Cyclophosphamide, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	40	150	30	
¹³ C,d ₃ -Daunorubicin, aqueous	10	150	10	150	80	
solid	1	150	1	150	250	
tissue	50	150	50	150	30	
d ₆ -Diatrizoic acid, aqueous	50	150	50	150	30	
solid	2	150	2	150	120	
tissue	15	150	15	150	30	
¹³ C ₃ -Drospirenone, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	30	150	40	150	30	
d ₃ -Etoposide, aqueous	10	150	10	150	80	
solid tissue	50 50	150 150	50 50	150 150	30 30	
d ₈ -lopamidol, aqueous	15	150	15	150	30	
solid	5	150	7	150	100	
tissue	50	150	50	150	30	
d ₆ -Medroxyprogesterone acetate, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	30	150	30	150	30	
d ₈ -Melphalan, aqueous	4	150	4	150	60	
solid	10	150	10	150	50	
tissue	2	150	2\3	150	100	
d₄-Metronidazole, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	50	180	50	160	30	
¹³ C,d ₃ -Moxifloxacin, aqueous	15	150	15	150	50	
Solid ¹	n.a.	n.a.	n.a.	n.a.	n.a.	
tissue	50	150	50	150	30	
d ₆ -Norethindrone, aqueous	50	150	50	150	30	
solid	50	180	50	160	30	
tissue	50	150	50	150	30	
d ₅ -Oxazepam, aqueous	50	150 150	50 50	150	30	
solid tissue	50 40	150 150	50 40	150 150	30 30	
d ₆ -Rosuvastatin, aqueous	50	150	50	150	30	
solid	50	150	50 50	150	30	
tissue	40	150	50	150	30	
d ₅ -Tamoxifen, aqueous	30	150	40	150	30	
solid	8	150	8	150	80	
tissue	5	150	5	150	60	

		OPR Recovery and surrogate re- covery in sample (% Recovery)			Blank		
					erage very (%)	RSD (%)	Level (ng)
		Low	High	Low	High		('9)
d ₆ -Venlafaxine,	aqueous	50	150	50	150	30	
	solid	35	150	40	150	30	
	tissue	30	150	40	150	30	
d ₃ -Zidovudine,	aqueous	50	150	50	150	30	
	solid	50	150	50	150	30	
	tissue	50	180	50	180	30	
Recovery Standa	ard						
¹³ C ₃ -Atrazine							

The acceptance limits in the table 21 above are guidelines based on initial estimate: recoveries outside of these limits do not invalidate results

Nominal Concentrations of Native Standard, Surrogate Standard and Recovery Standard Solutions for List 6 Compounds

Compound Name	Nominal concentration of Standard Solution	Typical amount spiked (ng)
Native Standard Solution for List 6 acid extracted analytes	(µg/mL)	ng spiked from 240 μL or 100 μL spike
Amsacrine	0.24	24
Azathioprine	2.4	240
Busulfan	7.2	720
Carmustine	24	2400
Chloramphenicol	240	24000
Citalopram	0.05	12
Clotrimazole	0.6	60
Colchicine	0.6	60
Cyclophosphamide	0.2	48
Daunorubicin	4.8	480
Diatrizoic acid	5	1200
Doxorubicin	7.2	720
Drospirenone	2.4	240
Etoposide	1.2	120
lopamidol	10	2400
Lomustine	14.4	1440
Medroxyprogesterone acetate	1.2	120
Melphalan	19.2	1920
Metronidazole	1.2	120
Moxifloxacin	1.2	120
Norethindrone	19.2	1920
Oxazepam	4.8	480

Rosuvastatin	4.8	480
Tamoxifen	0.05	12
Teniposide	2.4	240
Venlafaxine	0.05	12
Zidovudine	14.4	1440
Surrogate Standard Solution for List 6 acid extracted analytes	(µg/mL)	ng spiked from 25 µL spike
¹³ C ₄ -Azathioprine	9.6	240
d ₈ -Busulfan	28.8	720
d ₆ -Citalopram	0.4	10
d₅-Clotrimazole	2.4	60
d ₆ -Colchicine	2.4	60
d₄-Cyclophosphamide	1.6	40
¹³ C,d ₃ -Daunorubicin	19.2	480
d ₆ -Diatrizoic Acid	40	1000
¹³ C ₃ -Drospirenone	9.6	240
d ₃ -Etoposide	4.8	120
d ₈ -lopamidol	80	2000
d ₆ -Medroxyprogesterone acetate	4.8	120
d ₈ -Melphalan	76.8	1920
d₄-Metronidazole	4.8	120
¹³ C,d ₃ -Moxifloxacin	4.8	120
d ₆ -Norethindrone	76.8	1920
d ₅ -Oxazepam	19.2	480
d ₆ -Rosuvastatin	19.2	480
d ₅ -Tamoxifen	0.4	10
d ₆ -Venlafaxine	0.4	10
d ₃ -Zidovudine	57.6	1440
Recovery Standard Solution for List 6 acid extracted analytes	(µg/mL)	ng spiked from 100 µL spike
¹³ C ₃ -Atrazine	2.0	200
¹³ C ₆ -2,4,5-Trichlorophenoxyacetic acid	2.0	200

Nominal Concentrations of Calibration Solutions for List 6 Compounds (ng/mL)

Compound name	Calibration Standards List 6 (Acid extraction, positive ESI)								
	Level A	Level B	Level C	Level D	Level E	Level F	Level G		
Amsacrine	0.2	0.6	2	6	20	60	200		
Azathioprine	2	6	20	60	200	600	2000		
Busulfan	6	18	60	180	600	1800	6000		
Carmustine	20	60	200	600	2000	6000	20000		
Chloramphenicol	220	550	1100	2200	4400	8800	22000		
Citalopram	0.1	0.3	1	3	10	30	100		
Clotrimazole	0.5	1.5	5	15	50	150	500		
Colchicine	0.5	1.5	5	15	50	150	500		
Cyclophosphamide	0.4	1.2	4	12	40	120	400		

Daunorubicin	4	12	40	120	400	1200	4000
Diatrizoic acid	10	30	100	300	1000	3000	10000
Doxorubicin	6	18	60	180	600	1800	6000
Drospirenone	2	6	20	60	200	600	2000
Etoposide	1	3	10	30	100	300	1000
lopamidol	20	60	200	600	2000	6000	20000
Lomustine	12	36	120	360	1200	3600	12000
Medroxyprogesterone acetate	1	3	10	30	100	300	1000
Melphalan	16	48	160	480	1600	4800	16000
Metronidazole	1	3	10	30	100	300	1000
Moxifloxacin	1	3	10	30	100	300	1000
Norethindrone	16	48	160	480	1600	4800	16000
Oxazepam	4	12	40	120	400	1200	4000
Rosuvastatin	4	12	40	120	400	1200	4000
Tamoxifen	0.1	0.3	1	3	10	30	100
Teniposide	2	6	20	60	200	600	2000
Venlafaxine	0.1	0.3	1	3	10	30	100
Zidovudine	12	36	120	360	1200	3600	12000
Surrogate Standards							
¹³ C ₄ -Azathioprine	60	60	60	60	60	60	60
d ₈ -Busulfan	180	180	180	180	180	180	180
d ₆ -Citalopram	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₅ -Clotrimazole	15	15	15	15	15	15	15
d ₆ -Colchicine	15	15	15	15	15	15	15
d₄-Cyclophosphamide	10	10	10	10	10	10	10
¹³ C,d ₃ -Daunorubicin	120	120	120	120	120	120	120
d ₆ -Diatrizoic Acid	250	250	250	250	250	250	250
¹³ C ₃ -Drospirenone	60	60	60	60	60	60	60
d ₃ -Etoposide	30	30	30	30	30	30	30
d ₈ -lopamidol	500	500	500	500	500	500	500
d ₆ -Medroxyprogesterone acetate	30	30	30	30	30	30	30
d ₈ -Melphalan	480	480	480	480	480	480	480
d₄-Metronidazole	30	30	30	30	30	30	30
¹³ C,d ₃ -Moxifloxacin	30	30	30	30	30	30	30
d ₆ -Norethindrone	480	480	480	480	480	480	480
d ₅ -Oxazepam	120	120	120	120	120	120	120
d ₆ -Rosuvastatin	120	120	120	120	120	120	120
d ₅ -Tamoxifen	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₆ -Venlafaxine	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₃ -Zidovudine	360	360	360	360	360	360	360
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 6 – Acid Extraction, Positive Electrospray Ionization (+)ESI: Analytes, Ions and Quantification References (The acquisition ion masses in this table reflect the instrument settings. The actual MS/MS resolution is normally 1 amu.)

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Iopamidol	2.4	1.000	d ₈ -lopamidol	795.0	777.9 (558.8) *	d ₈ -lopamidol
Diatrizoic acid	4.3	1.000	d ₆ -Diatrizoic acid	631.9	360.9 (614.6) *	d ₆ -Diatrizoic acid
Metronidazole	6.5	1.032	d ₄ -Metronidazole	171.9	128 (82.1) *	d₄-Metronidazole
Carmustine	10.2	0.895	¹³ C₄-Azathioprine	185 ** (187) *	80 (82) *	¹³ C₄-Azathioprine
Azathioprine	11.3	0.991	¹³ C₄-Azathioprine	277.9	142.0 (232.0) *	¹³ C₄-Azathioprine
Busulfan	11.8	1.017	d ₈ -Busulfan	264	151 (247) *	d ₈ -Busulfan
Zidovudine	12.0	1.000	d ₃ -Zidovudine	268.0	127.0 (110.0) *	d ₃ -Zidovudine
Moxifloxacin	14.5	1.000	¹³ C,d ₃ -Moxifloxacin	402.1	384.2 (358.2) *	¹³ C,d ₃ -Moxifloxacin
Chloramphenicol	14.7	0.980	d ₄ -Cyclophosphamide	340	275 (323) *	d ₄ -Cyclophosphamide
Cyclophosphamide	15.1	1.007	d ₄ -Cyclophosphamide	260.9	140.0 (233.0) *	d ₄ -Cyclophosphamide
Venlafaxine	15.1	1.000	d ₆ -Venlafaxine	278.3	58.4 (260.2) *	d ₆ -Venlafaxine
Amsacrine	15.1	1.000	d ₆ -Venlafaxine	394.0	315.1 (179.1) *	d ₆ -Venlafaxine
Melphalan	15.6	1.006	d ₈ -Melphalan	305	288 (246) *	d ₈ -Melphalan
Colchicine	16.0	1.000	d ₆ -Colchicine	400.1	358.1 (341.1) *	d ₆ -Colchicine
Lomustine	16.1	1.066	d ₆ -Venlafaxine	205 **	123 (80.1) *	d ₆ -Venlafaxine
Etoposide	16.2	1.000	d ₃ -Etoposide	606.2	229.2 (589.2) *	d ₃ -Etoposide
Citalopram	16.2	1.000	d ₆ -Citalopram	325.1	109.1 (262.1) *	d ₆ -Citalopram
Doxorubicin	16.4	0.932	¹³ C,d ₃ -Daunorubicin	544.0	397.0 (361.0) *	¹³ C,d ₃ -Daunorubicin

Daunorubicin	17.7	1.006	¹³ C,d ₃ -Daunorubicin	528.1	321.1 (363.1) *	¹³ C,d ₃ -Daunorubicin
Oxazepam	17.8	1.006	d₅-Oxazepam	287.0	241.0 (269.0) *	d₅-Oxazepam
Teniposide	18.2	1.123	d ₃ -Etoposide	674.1	229.1 (383.2) *	d ₃ -Etoposide
Rosuvastatin	18.5	1.000	d ₆ -Rosuvastatin	482.1	258.1 (300.1) *	d ₆ -Rosuvastatin
Norethindrone	19.2	1.005	d ₆ -Norethindrone	299.0	109.1 (91.1) *	d ₆ -Norethindrone
Drospirenone	19.9	1.000	¹³ C ₃ -Drospirenone	367.2	97.1 (349.2) *	¹³ C ₃ -Drospirenone
Clotrimazole	20.1	1.000	d ₅ -Clotrimazole	277	165 (199) *	d ₅ -Clotrimazole
Tamoxifen	20.9	1.000	d₅-Tamoxifen	372.3	72.3 (129.2) *	d₅-Tamoxifen
Medroxyprogesterone acetate	21.6	1.000	d ₆ -Medroxyprogesterone acetate	387.2	327.2 (123.1) *	d ₆ -Medroxyprogesterone acetate
Surrogate Standard						
d ₈ -lopamidol	2.4	0.136	¹³ C ₃ -Atrazine	803.0	785.9 (562.9) *	¹³ C ₃ -Atrazine
d ₆ -Diatrizoic acid	4.3	0.244	¹³ C ₃ -Atrazine	637.9	367.0 (620.6) *	¹³ C₃-Atrazine
d ₄ -Metronidazole	6.3	0.358	¹³ C ₃ -Atrazine	176.0	128 (82.1) *	¹³ C₃-Atrazine
¹³ C ₄ -Azathioprine	11.4	0.648	¹³ C ₃ -Atrazine	281.9	146.0 (236.0) *	¹³ C₃-Atrazine
d ₈ -Busulfan	11.6	0.659	¹³ C₃-Atrazine	272	159.1 (255) *	¹³ C₃-Atrazine
d ₃ -Zidovudine	12.0	0.682	¹³ C₃-Atrazine	271.0	130.1 (113.0) *	¹³ C₃-Atrazine
¹³ C,d ₃ -Moxifloxacin	14.5	0.824	¹³ C₃-Atrazine	406.1	388.2 (362.2) *	¹³ C₃-Atrazine
d ₄ -Cyclophosphamide	15.0	0.852	¹³ C ₃ -Atrazine	265.2	140.0 (234.9) *	¹³ C₃-Atrazine
d ₆ -Venlafaxine	15.1	0.858	¹³ C ₃ -Atrazine	284.4	64.4 (266.3) *	¹³ C ₃ -Atrazine
d ₈ -Melphalan	15.5	0.881	¹³ C ₃ -Atrazine	313	296 (254.1) *	¹³ C₃-Atrazine
d ₆ -Colchicine	16.0	0.909	¹³ C ₃ -Atrazine	406.0	362.1 (344.1) *	¹³ C₃-Atrazine

d ₆ -Citalopram	16.2	0.920	¹³ C₃-Atrazine	331.2	109.1 (262.2) *	¹³ C ₃ -Atrazine
d ₃ -Etoposide	16.2	0.920	¹³ C₃-Atrazine	609.2	229.1 (592.2) *	¹³ C ₃ -Atrazine
¹³ C,d ₃ -Daunorubicin	17.6	1.000	¹³ C₃-Atrazine	532.1	325.1 (367.1) *	¹³ C ₃ -Atrazine
d ₅ -Oxazepam	17.7	1.006	¹³ C ₃ -Atrazine	292.0	246.1 (274.1) *	¹³ C ₃ -Atrazine
d ₆ -Rosuvastatin	18.5	1.051	¹³ C ₃ -Atrazine	488.1	264.2 (306.2) *	¹³ C ₃ -Atrazine
d ₆ -Norethindrone	19.1	1.085	¹³ C ₃ -Atrazine	305.1	237.2 (114.9, 91.1) *	¹³ C ₃ -Atrazine
¹³ C ₃ -Drospirenone	19.9	1.131	¹³ C ₃ -Atrazine	370.1	97.1 (352.2) *	¹³ C ₃ -Atrazine
d ₅ -Clotrimazole	20.1	1.142	¹³ C ₃ -Atrazine	282	170 (199) *	¹³ C ₃ -Atrazine
d ₅ -Tamoxifen	20.9	1.188	¹³ C ₃ -Atrazine	377.4	72.3	¹³ C ₃ -Atrazine
d ₆ -Medroxyprogesterone acetate	21.6	1.227	¹³ C ₃ -Atrazine	393.1	330.2 (126.1) *	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	17.6			219.1	176.9 (134.0) *	External Standard

^{* =} Confirmation ions in instances of interference

^{** =} Parent ion monitored from the breakdown product

MLA-075 Rev 02, List 1 analytes (Acidic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method:

MLA-075 Rev 02, List 1 analytes

Analysis Type:

PPCP (Pharmaceuticals and Personal Care Products), List 1 analytes

Instrument Type: Matrix Spiked:

LC-MS/MS SOLIDS

Axys Workgroup: Column Type:

WG32245 C18

MDL Protocol:

Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

INDL 1 Data Filename:	
MDL 2 Data Filename:	
MDL 3 Data Filename:	
MDL 4 Data Filename:	
MDL 5 Data Filename:	
MDL 6 Data Filename:	
MDL 7 Data Filename:	

Sample ID: WG32245-107 QA0J_064 S: 17 QA0J 064 S: 18 Sample ID: WG32245-108 QA0J_064 S: 19 Sample ID: WG32245-109 QA0J 064 S: 20 Sample ID: WG32245-110 **Sample ID:** WG32245-111 QA0J_064 S: 21

Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 6-Apr-2010 Instr. Analysis Date: 7-Apr-2010 Instr. Analysis Date: 7-Apr-2010

MDL 8 Data Filename:

QA0J 064 S: 22 **Sample ID:** WG32245-112 QA0J_064 S: 23 QA0J_064 S: 24

Method

Sample ID: WG32245-113 Sample ID: WG32245-114

Instr. Analysis Date: 7-Apr-2010 Instr. Analysis Date: 7-Apr-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

*	Method						
	Detection Limit,		Number of	Mean	Standard		
Native Analyte	ng/g	ng/g	Observations	ng/g	Devation	t-Value	
ACETAMINOPHEN	3.3	50	8	46.4	1.1	2.998	
AZITHROMYCIN	1.2	5	8	4.38	0.42	2.998	
CAFFEINE	11	50	8	50.2	3.73	2.998	
CARBADOX	1.4	5	8	3.83	0.46	2.998	
CARBAMAZEPINE	0.59	5	8	5.75	0.20	2.998	
CEFOTAXIME	7.8	20	8	19.9	2.59	2,998	
CIPROFLOXACIN	3.7	20	8	25.8	1.2	2.998	
CLARITHROMYCIN	1.1	5	8	4.31	0.37	2.998	
CLINAFLOXACIN	6.3	20	8	43.1	2.1	2.998	
CLOXACILLIN	1.8	10	8	10.5	0.59	2.998	
DEHYDRONIFEDIPINE	0.41	2	8	2.22	0.14	2.998	
DIPHENHYDRAMINE	0.27	. 2	8	1.94	0.09	2.998	
DILTIAZEM	0.15	1.	8	0.963	0.05	2.998	
DIGOXIN	16	20	8	27.7	5.49	2.998	
DIGOXIGENIN	7.5	20	8	24.5	2.51	2.998	
ENROFLOXACIN	2.9	10	8	15.4	0.96	2.998	
ERYTHROMYCIN-H2O	0.26	1	8	1.07	0.09	2.998	
FLUMEQUINE	1.1	5	8	5.36	0.38	2.998	
FLUOXETINE	0.78	5	8	5.24	0.26	2.998	
LINCOMYCIN	2.8	10	8	8.37	0.92	2.998	
LOMEFLOXACIN	5.9	10	8	20.7	1.97	2.998	
MICONAZOLE	0.38	. 5	8	3.86	0.13	2.998	
NORFLOXACIN	7.6	50	8	57.1	2.52	2.998	
NORGESTIMATE	1.7	10	8	8.70	0.57	2.998	
OFLOXACIN	1.9	5	8	8.98	0.63	2.998	
ORMETOPRIM	0.22	2	8	1.86	0.1	2.998	
OXACILLIN	1.4	10	8	9.77	0.48	2.998	
OXOLINIC ACID	0.46	2	8	2.25	0.15	2.998	
PENICILLIN G	0.56	10	8	1.43	0.19	2.998	
PENICILLIN V	1.9	10	8	10.6		2.998	
ROXITHROMYCIN	0.21	1.11	8	0.788	0.07	2.998	
SARAFLOXACIN	21	50	8	92.3	6.98	2.998	
SULFACHLOROPYRIDAZINE	1.6	5	8	4.81	0.5	2.998	
SULFADIAZINE	1.3	5	8	4.87	0.44	2.998	
SULFADIMETHOXINE	0.29		8	1.01	0.10	2.998	
SULFAMERAZINE	0.75	2	8	1.40	0.25	2.998	
SULFAMETHAZINE	1.5	2	8	2.14	0.52	2.998	
SULFAMETHIZOLE	0.43	2	8	1.79	0.14	2.998	

see below

see below

SULFAMETHOXAZOLE	0.75	2	8	1.95	0.25	2.998	Ī
SULFANILAMIDE	14.5	50	8	39.9	4.83	2.998	ı
SULFATHIAZOLE	0.94	5	8	4.34	0.31	2.998	
THIABENDAZOLE	1.0	5	8	4.64	0.35	2.998	
TRIMETHOPRIM	0.85	5	8	5,02	0.28	2.998	•
TYLOSIN	4.8	20	8	18.9	1.59	2.998	
VIRGINIAMYCIN	1.3	10	8	11.4	0.44	2.998	İ
1,7 DIMETHYLXANTHINE	37	200	8	341	12.31	2.998	
Assura Mathada	MLA-075 Rev 04 \	/or 02 List 1 and	alvitae				
Axys Method:	PPCP (Pharmace			:) iet 1	analytes		
Analysis Type:	LC-MS/MS	ilicais and i cisc	mar.care i roducto), LIST 1	analytoo		
Instrument Type: Matrix Spiked:	SOLIDS						
Axys Workgroup:	WG39040						
Column Type:	VVG39040 C18						i
MDL Protocol:	Federal Register 4	0 CER Part 136	Annendiy B rev	1 11 no	iteration		
MDE PIOLOCOI.	Pederal Negister 4	O OF ICT are 150,	Appendix B, Tov.	1.11,110	noranon		
MDL 1 Data Filename:	QA2J_015 S: 31		WG39040-107		Instr. Analy		12-Feb-2012
MDL 2 Data Filename:	QA2J_015 S: 32		WG39040-108		Instr. Analy		12-Feb-2012
MDL 3 Data Filename:	QA2J_015 S; 33		WG39040-109		Instr. Analy		12-Feb-2012
MDL 4 Data Filename:	QA2J_015 S: 34		WG39040-110		Instr. Analy		12-Feb-2012
MDL 5 Data Filename:	QA2J_015 S: 35		WG39040-111		Instr. Analy		12-Feb-2012
MDL 6 Data Filename:	QA2J_015 S: 36		WG39040-112		Instr. Analy		12-Feb-2012
MDL 7 Data Filename:	QA2J_015 S: 37		WG39040-113		Instr. Analy		12-Feb-2012
MDL 8 Data Filename:	QA2J_015 S: 38	Sample ID:	WG39040-114		Instr. Analy	sis Date:	12-Feb-2012
ALL CONCE	NTRATIONS REPO	RTED ON THIS I	FORM ARE CON	CENTRA	TIONS IN SA	AMPLES	
2.656.00			sed on 1 g of soli		199		
	Method						
	Detection Limit,	Sniking Lavel	Number of	Mean	Standard	Student's	
Nativa Analyta	•		Observations	ng/g	Devation	t-Value	
Native Analyte CARBAMAZEPINE	ng/g 0.29	ng/g 5	8	4.86	0.10	2.998	l
	0.29		8	3.37	0.10	2.998	
ERYTHROMYCIN-H2O	0.81			0.01	0.21	2.000	

⁼ Meets all 40 CFR MDL protocol requirements = MDL lower than ¹/₁₀ of the spiking level

MLA-075 Rev 02, List 2 analytes (Tetracyclines, Acidic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 2 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 2 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32245 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

QB0K 082 S: 28	Sample ID:	WG32245-107 I2	Instr. Analysis Date:	
			Instr. Analysis Date:	20/04/2010
W.W.	Sample ID:	WG32245-109 I2	Instr. Analysis Date:	20/04/2010
			Instr. Analysis Date:	20/04/2010
			Instr. Analysis Date:	
AMEN .			Instr. Analysis Date:	20/04/2010
. -			Instr. Analysis Date:	
	QB0K_082 S: 28 QB0K_082 S: 29 QB0K_082 S: 30 QB0K_082 S: 31 QB0K_082 S: 32 QB0K_082 S: 33 QB0K_082 S: 34 QB0K_082 S: 34	QBOK_082 S: 29 Sample ID: QBOK_082 S: 30 Sample ID: QBOK_082 S: 31 Sample ID: QBOK_082 S: 32 Sample ID: QBOK_082 S: 33 Sample ID: QBOK_082 S: 34 Sample ID:	QB0K_082 S: 29	QBOK_082 S: 29 Sample ID: WG32245-108 I2 Instr. Analysis Date: QBOK_082 S: 30 Sample ID: WG32245-109 I2 Instr. Analysis Date: QBOK_082 S: 31 Sample ID: WG32245-110 I2 Instr. Analysis Date: QBOK_082 S: 32 Sample ID: WG32245-111 I2 Instr. Analysis Date: QBOK_082 S: 33 Sample ID: WG32245-112 I2 Instr. Analysis Date: QBOK_082 S: 34 Sample ID: WG32245-113 I2 Instr. Analysis Date: Instr. Analysis Date: Instr. Analysis Date: Instr. Analysis Date:

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

Native Analyte	Method Detection Limit, ng/g	Spiking Level ng/g	Number of Observations	Mean ng/g	Standard Devation ng/g	Student's t-Value	Mean % recovery
Anhydrochlortetracycline (ACTC)	11	50.0	8	34.6	3.6	2.998	69
Anhydrotetracycline (ATC)	14	50.0	8	29.3	4.6	2.998	59
Chlortetracycline (CTC)	12	20.0	8	31.9	3.9	2.998	159
Demeclocycline	9.7	50.0	8	38.1	3.2	2.998	76
Doxycycline	5.7	20.0	8	19.6	1.9	2.998	98
4-Epianhydrochlortetracycline (EACTC)	23	200	8	62.8	7.5	2.998	31
4-Epianhydrotetracycline (EATC)	15	50.0	8	27.4	4.9	2.998	55
4-Epichlortetracycline (ECTC)	24	50.0	8	50.8	8.0	2.998	102
4-Epioxytetracycline (EOTC)	6.5	20.0	8	20.2	2.2	2,998	101
4-Epitetracycline (ETC)	9.5	20.0	8	26.8	3.2	2.998	134
Isochlortetracycline (ICTC)	3.8	20.0	8	14.9	1.3	2.998	74
Minocycline	14	200	7	57.1	4.4	3.143	29
Oxytetracycline (OTC)	7.5	20.0	8	22.8	2.5	2.998	114
Tetracycline (TC)	7.0	20.0	8	22.4	2.3	2.998	112

⁼ Meets all 40 CFR MDL protocol requirements

⁼ MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 3 analytes (Acidic extraction, negative ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 3 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 3 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32245 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QF0K 072 S: 28	Sample ID: V	NG32245-107	Instr. Analysis Date:	
MDL 2 Data Filename:	QF0K 072 S: 29	Sample ID: V	NG32245-108	Instr. Analysis Date:	1-Apr-2010
MDL 3 Data Filename:	QF0K 072 S: 30	Sample ID: V	NG32245-109	Instr. Analysis Date:	
MDL 4 Data Filename:		Sample ID: V	NG32245-110	Instr. Analysis Date:	1-Apr-2010
MDL 5 Data Filename:	QF0K 072 S: 32	Sample ID: V	NG32245-111	Instr. Analysis Date:	1-Apr-2010
MDL 6 Data Filename:	QF0K 072 S: 33	Sample ID: V	NG32245-112	Instr. Analysis Date:	1-Apr-2010
MDL 7 Data Filename:	QF0K 072 S: 34	Sample ID: V	NG32245-113	Instr. Analysis Date:	1-Apr-2010
MDL 8 Data Filename:	QF0K 072 S: 35	Sample ID: V	NG32245-114	Instr. Analysis Date:	1-Apr-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

Native Analyte	Method Detection Limit, ng/g	Spiking Level ng/g	Number of Observations	Mean ng/g	Standard Devation	Student's t-Value	Mean % recovery
Bisphenol A-1	255	1017	8	1055	85	2.998	104
Furosemide-1	52	133	8	131	17.4	2.998	99
Gemfibrozil	1.6	5.00	8	5.64	0.54	2.998	113
Glipizide-1	6.6	20.0	8	22.4	2.21	2.998	112
- Glyburide-1	7.8	10.0	8	11.1	2.60	2.998	111
Hydrochlorothiazide-1	11	66.7	8	23.7	3.60	2.998	36
2-hydroxy-ibuprofen	100	267	8	343	33.5	2.998	129
lbuprofen	. 20	50.0	8	60.8	6.54	2.998	122
Naproxen	12	10.0	8	12.9	3.90	2.998	129
Triclocarban	2.0	10.0	8	11.2	0.68	2.998	112
Triclosan	126	206	8	234	41.9	2.998	114
Warfarin	1.9	5.00	8	5.73	0.65	2.998	115

= Meets all 40 CFR MDL protocol requirements

= MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 4 analytes (Basic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 4 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 4 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32246 Column Type: HILIC

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename: QG0K 074 S: 25	Sample ID: WG32246-107 Instr. Analysis Date: 8-Apr-2010
MDL 2 Data Filename: QG0K 074 S: 26	Sample ID: WG32246-108 Instr. Analysis Date: 8-Apr-2010
MDL 3 Data Filename: QG0K_074 S: 27	Sample ID: WG32246-109 Instr. Analysis Date: 8-Apr-2010
MDL 4 Data Filename: QG0K_074 S: 28	Sample ID: WG32246-110 Instr. Analysis Date: 8-Apr-2010
MDL 5 Data Filename: QG0K_074 S: 29	Sample ID: WG32246-111 Instr. Analysis Date: 8-Apr-2010
MDL 6 Data Filename: QG0K_074 S: 30	Sample ID: WG32246-112 Instr. Analysis Date: 8-Apr-2010
MDL 7 Data Filename: QG0K_074 S: 31	Sample ID: WG32246-113 Instr. Analysis Date: 8-Apr-2010
MDL 8 Data Filename: QG0K 074 S: 32	Sample ID: WG32246-114 Instr. Analysis Date: 8-Apr-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

	Method Detection	Spiking Level	Number of	Mean	Standard	Student's	Mean
Native Analyte	Limit, ng/g	ng/g	Observations	ng/g	Devation	t-Value	% recovery
ALBUTEROL	0.81	1.00	8	1.10	0.269	2.998	110
AMPHETAMINE	6.11	5.00	8	6.41	2.039	2.998	128
ATENOLOL	0.84	2.00	8	1.90	0.280	2.998	95
ATORVASTATIN	0.71	5.00	8	3.70	0.237	2.998	74
CIMETIDINE	0.42	2.00	8	1.78	0.139	2.998	89
CLONIDINE	1.31	5.00	8	3.94	0.435	2.998	79
CODEINE	4.21	10.0	8	10.2	1.405	2.998	102
COTININE	0.46	5.00	8	3.96	0.152	2.998	79
ENALAPRIL	0.34	1.00	8	0.98	0.114	2.998	98
HYDROCODONE	2.23	5.00	8	6.37	0.744	2.998	127
METFORMIN	10.8	10	8	11.45	3.598	2.998	115
OXYCODONE	0.60	2.00	8	1.45	0.202	2.998	72
RANITIDINE	0.87	2.00	8	1.58	0.291	2.998	79
TRIAMTERENE	0.25	1.00	8	0.94	0.083	2.998	94

= Meets all 40 CFR MDL protocol requirements

= MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 5 analytes (Acidic extraction, positive ESI) Method Detection Limit for PPCP in Solids Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 5 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 5 analytes

Instrument Type: LC-MS/MS Matrix Spiked: SOLIDS Axys Workgroup: WG32245 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

Instr. Analysis Date: 17-Apr-2010 MDL 1 Data Filename: QE0J_071 S: 18 Sample ID: WG32245-107 | Sample ID: WG32245-108 I Instr. Analysis Date: 17-Apr-2010 MDL 2 Data Filename: QE0J_071 S: 19 Instr. Analysis Date: 17-Apr-2010 MDL 3 Data Filename: QE0J 071 S: 20 Sample ID: WG32245-109 | Sample ID: WG32245-110 I Instr. Analysis Date: 17-Apr-2010 MDL 4 Data Filename: QE0J_071 S: 21 Instr. Analysis Date: 17-Apr-2010 MDL 5 Data Filename: QE0J_071 S: 22 Sample ID: WG32245-111 I Instr. Analysis Date: 17-Apr-2010 Sample ID: WG32245-112 I MDL 6 Data Filename: QE0J_071 S: 23 Instr. Analysis Date: 17-Apr-2010 MDL 7 Data Filename: QE0J 071 S: 24 Sample ID: WG32245-113 | Sample ID: WG32245-114 I Instr. Analysis Date: 17-Apr-2010 MDL 8 Data Filename: QE0J_071 S: 25

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids

Native Analyte	Method Detection Limit, ng/g	Spiking Level ng/g	Number of Observations	Mean ng/g	Standard Devation ng/g	Student's t-Value	
Alprazolam-1	0.35	1.00	8	0.91	0.12	2.998	:
Amitriptyline-1	0.29	1.00	8	1.15	0.10	2.998	-
Amlodipine-1	2.1	5.00	8	5.09	0.70	2,998	
Benzoylecgonine-1	0.16	1.00	8	0.98	0.06	2.998	
Benztropine-1	0.27	1.00	8	1.15	0.09	2.998	see below
Betamethasone-1	11	5.00	8	5.79	3.67	2.998	
Cocaine-1	0.07	0.50	8	0.55	0.02	2.998	
DEET-1	0.32	0.50	8	0.69	0.11	2.998	
Desmethyldiltiazem-1	0.16	0.50	8	0.76	0.05	2.998	
Diazepam-1	0.38	1.00	8	0.96	0.13	2.998	
Fluocinonide-1	3.7	20.0	8	18.9	1.25	2.998	
Fluticasone Propionate-1	5.3	6.67	8	4.07	1.77	2.998	
Hydrocortisone-1	134	200	8	201	45	2.998	
10-hydroxy-amitriptyline-1	0.18	0.50	8	0.49	0.06	2.998	
Meprobamate-1	4.8	13.3	8	15.40	1.61	2.998	
Methylprednisolone-1	10	13.3	8	20.0	3.44	2.998	see below
Metoprolol-1	2.3	5.00	8	5.39	0.76	2.998	
Norfluoxetine	1.0	5.00	8	5.29	0.34	2.998	
Norverapamil-1	0.15	0.50	8	0.51	0.05	2.998	
Paroxetine-1	3.6	13.3	8	14.4	1,19	2.998	
Prednisolone-1	6.4	20.0	8	20.1	2.12	2.998	
Prednisone-1	33	66.7	8	61.9	11.2	2.998	×.
Promethazine-1	0.30	1.33	8	1.24	0.10	2.998	
Propoxyphene-1	0.60	1.00	8	1.04	0.20	2.998	
Propranolol-1	1.3	6.67	8	7.29	0.42	2.998	
Sertraline-1	0.23	1.33	8	1.14	0.08	2.998	
Simvastatin-1	24	66.7	8	57.4	7.90	2.998	
Theophylline-1	287	200	8	513	96	2.998	
Trenbolone-1	5.4	13.33	8	15.8	1.81	2.998	
Trenbolone acetate-1	1.5	1.00	8	1.05	0.49	2.998	
Valsartan-1	4.6	13.33	8	13.6	1.53	2.998	
Verapamil-1	0.16	0.50	8	0.45	0.05	2.998	

Axys Method: MLA-075 Rev 04 Ver 01, List 5 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 5 analytes

Instrument Type: LC-MS/MS
Matrix Spiked: SOLIDS

Axys Workgroup: WG39040 Column Type: C18 MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration Sample ID: WG39040-107 Instr. Analysis Date: 12-Feb-2012 MDL 1 Data Filename: QE2Q_037 S: 18 Instr. Analysis Date: 12-Feb-2012 MDL 2 Data Filename: QE2Q 037 S: 19 Sample ID: WG39040-108 Sample ID: WG39040-109 Instr. Analysis Date: 12-Feb-2012 MDL 3 Data Filename: QE2Q_037 S: 20 Instr. Analysis Date: 12-Feb-2012 MDL 4 Data Filename: QE2Q_037 S. 21 Sample ID: WG39040-110 Sample ID: WG39040-111 Instr. Analysis Date: 12-Feb-2012 MDL 5 Data Filename: QE2Q_037 S: 22 Instr. Analysis Date: 12-Feb-2012 MDL 6 Data Filename: QE2Q_037 S: 23 Sample ID: WG39040-112 Sample ID: WG39040-113 Instr. Analysis Date: 12-Feb-2012 MDL 7 Data Filename: QE2Q_037 S: 24 Instr. Analysis Date: 12-Feb-2012 MDL 8 Data Filename: QE2Q_037 S: 25 Sample ID: WG39040-114 ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1 g of solids Method Standard **Devation Student's** Detection Limit, Spiking Level Number of Mean ng/g t-Value Observations ng/g **Native Analyte** ng/g ng/g 1.00 1.82 0.06 2.998 0.19 Benztropine-1 2.998 13.33 13.6 1.35 Methylprednisolone-1 4.0

= Meets all 40 CFR MDL protocol requirements

= Meets all 40 Cr o mbc production and the spiking level

Washington State Department of Ecology

CORRELATION TABLE

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS							
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks						
Project: N/A	Contract No: 4499						
Project Name:Urban Waters - Elliott Bay	AXYS Method: MLA-075						
Data Package Identification: DPWG44305	Program: Solid Samples						
Client Sample No.	Lab Sample ID						
LAB BLANK	WG43881-101						
OPR	WG43881-102						
LAB BLANK	WG43882-101						
OPR	WG43882-102						
1306020-04	L19746-1						
1306020-12	L19746-2						
1306020-13	L19746-3						
1306020-14	L19746-4 WG43881-103 DUPLICATE						
1306020-15	L19746-4 WG43882-103 DUPLICATE						
1306020-25	L19746-5						
1306020-31	L19746-6						
1306020-32	L19746-7						
1306020-33	L19746-8						
1306020-38	L19746-9						
1306020-39	L19746-10						
1306020-18	L19746-11						
1306020-23	L19746-12						
1306020-26	L19746-13						
1306020-27	L19746-14						

Chain of Custody EAP, MMU, Marine Sediment Monitoring Team

Date	Project	Year	Month	Station	ParameterText		MEL Sample ID
6/7/2013	Urban Waters	2013	Jun	173	PPCP & PFC	1746-1	1306020-04
6/6/2013	Urban Waters	2013	Jun	181	PPCP & PFC	-2	1306020-12
6/6/2013	Urban Waters	2013	Jun	182	PPCP & PFC	-3	1306020-13
6/6/2013	Urban Waters	2013	Jun	183	PPCP & PFC	<u> </u>	1306020-14
6/7/2013	Urban Waters	2013	Jun	194	PPCP & PFC	- 5	1306020-25
6/6/2013	Urban Waters	2013	Jun	200	PPCP & PFC	- 6	1306020-31
6/7/2013	Urban Waters	2013	Jun	201	PPCP & PFC	- 7	1306020-32
6/7/2013	Urban Waters	2013	Jun	202	PPCP & PFC	-8	1306020-33
6/6/2013	Urban Waters	2013	Jun	U2	PPCP & PFC	-9	1306020-38
6/7/2013	Urban Waters	2013	Jun	U3	PPCP & PFC	-10	1306020-39

Relinquished By	Date/Time	Received By	Date/Time	Comments
Maggied July	6/10/2013	16th Mu	6/10/13 6:35	
-Her Mil	6/11/13 10:30			
	, ,			

AXYS Rec'd: M.W.M. M. 10:20.

Chain of Custody EAP, MMU, Marine Sediment Monitoring Team

Date	Project	Year	Month	Station	ParameterText	MEL Sample ID
6/10/2013	Urban Waters	2013	Jun	187	PPCP & PFC 19746-11	1306020-18
6/10/2013	Urban Waters	2013	Jun	192	PPCP & PFC -12	1306020-23
6/10/2013	Urban Waters	2013	Jun	195	PPCP & PFC -13	1306020-26
6/10/2013	Urban Waters	2013	Jun	196	PPCP & PFC - 14	- 1306020-27

Relinquished By	Date/Time	Rèceived By	Date/Time	Comments
Marile	4/10/2013 18:	15 tah Mila	4/0/13 635	
KL MID	6/11/13 10:3			
	·		,	

M. W. M. C. M. W. M. C. H. LINI-13 Page 1 of 1

Print Date 6/10/2013

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill:

Yes (No

Waybill #:

HAND DELIVERY 11-JUN-13 2/2

Date Shipped:

11-JUN-13

Date /Time Received:

11-JUN-13 10:20

4499-Washington State Dept of Ecology

Project Number:

WB14892

Login Number: Received By:

Receipt No:

Axys Sample ID's Matrix Type: 14 sediments

AXYS Client & Contract #

Condition of Shipping Container: Temperature upon Receipt:

samples arrived frozen on dry ice

Thermometer ID:

Signature: M.W.

3270

Corrected Temperature:

-17.2 Celcius

Custody Seals:

Shipping Containers Yes/No

Intact Yes /No

Seal Numbers Yes /No

Samples Yes (No

Intact Yes /No

Seal Numbers Yes /No

Chain of Custody or Documents:

Sample ID's Collection Location

Date & Time Collection Collector's Name

Yes No Yes)No

Yes No

Yes No

Tracking Report / Packing List: Yes (No

Sample Tag Numbers

Sample Type

Preservative Added

YesyNo Yes /No

Preservation Requested

Yes /No

Sample Tags

Sample Labels

Yes/No Yes No Yes No

Sample Labels Cross Referenced to COC

Sample Tags Cross Referenced to Sample Labels

Yes /No

Information Agrees

Information Agrees

Yes)/No Yes /No

Information Agrees Yes /No Sample Tags Cross Referenced to COC Yes /No Comments: Action Taken:

Axys Analytical Services Ltd 2045 Mills Road West SIDNEY, BRITISH COLUMBIA, CANADA V8L 5X2 TEL 250-655-5800 FAX 250-655-5811 www.axysanalytical.com

AXYS Client No.: 4499

Client Address: Washington State Dept. of Ecology

7411 Beach Drive East

Port Orchard, WA, US, 98366-8204

The AXYS contact for these data is Georgina Brooks.

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS

AQUEOUS SAMPLES

PROJECT NAME: URBAN WATERS - ELLIOTT BAY

Contract: 4499
Data Package Identification: DPWG44220

Analysis WG43901 & WG43902

16 July 2013

WASHINGTON STATE DEPT OF ECOLOGY

AQUEOUS SAMPLES

PHARMACEUTICALS AND PERSONAL CARE PRODUCT ANALYSIS AXYS METHOD: MLA-075

4499: L19748-1, -3, -4 and -5

Project Name: URBAN WATERS - ELLIOTT BAY

26 July 2013

NARRATIVE

This narrative describes the analysis of four aqueous samples for the determination of Pharmaceutical and Personal Care Products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (LC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 11th of June 2013. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this data package. The samples were stored at 4°C prior to extraction and analysis.

SAMPLE PREPARATION AND ANALYSIS

Samples and QC samples (a procedural blank, a lab-generated reference sample known as the Ongoing Precision and Recovery (OPR)) and a duplicate were analyzed in two analysis batches named WG37947 and WG37948. Composition of each analysis batch is shown on Correlation Table and the Batch List that accompanies the extraction workup sheets.

Extraction and analysis procedures were in accordance with AXYS Method MLA-075: *Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS*. A method summary (MSU-075) for the AXYS Method MLA-075 is included in this data package following this narrative.

Two aliquots of accurately weighed sub-sample for each sample (approximately 1 L) were spiked with labeled quantification standards and extracted with acetonitrile using sonication at pH 2 (in analysis batch WG43901) and pH 10 (in analysis batch WG43902), respectively. The resulting extracts were reduced in volume, reconstituted in water and cleaned up on Waters Oasis HLB SPE cartridges. The final extract was reduced in volume and spiked with labeled recovery (internal) standards prior to instrumental analysis. Analysis was performed on Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS using five instrument and LC conditions as shown in the table below.

Target Group	LC Column	lonization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using QuanLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

For all target compounds, linear equations were determined from a multi-point calibration series with 1/X weighting fit and expressed as below:

$$Y = slope \times X + intercept$$
Where:
$$Y = response ratio = \left(\frac{area \ of \ Target}{area \ of \ Surrogate} \times weight \ of \ Surrogate \ (ng)\right)$$

$$X = weight \ of \ target \ (ng)$$

The slope and intercept were used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =

$$\left(\frac{\text{area of Target}}{\text{area of Surrogate}} \times \text{weight of Surrogate (ng) - intercept} \right) \\ \\ x \left(\frac{1}{\text{slope}}\right) \\ x \left(\frac{1}{\text{sample size(L)}}\right)$$

Sample specific detection limits (SDLs) were calculated for each target analyte and used as the detection qualifier.

The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed, prorated for the extract volume and sample size, or the SDL, whichever is greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4499. The samples were assigned a unique laboratory identifier L19748-X, where X is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract is given an extra "test suffix" code. The single letter code (per extra work performed) is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

(A) = the parent sample for a duplicate pair
 i = instrumental re-analysis performed on the sample extract

The following laboratory qualifier flags were used in this data package:

U = identifies a compound that was not detected

H = analyte is reported for information only

N = authentic recovery is not within method/contract control limits

MAX = concentration is an estimated maximum

NQ = data not quantifiable

V = surrogate recovery is not within method/contract control limits

X = results reported separately.

Results are reported in concentration units of nanograms per liter (ng/L). Concentration and reporting limits are provided to three significant figures.

QA/QC NOTES

Samples and QC samples analyzed in an analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases
 where even a large peak was present. This has been visually inspected and would not affect the
 data.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met with the following exceptions:

WG43901

List 1 Compounds

In the opening calibration verification standard (filename: QA3Q_077 S: 44) the analytes Sulfachloropyridazine and Tylosin were observed above the method acceptance criteria. As these analytes were observed within specifications in the OPR (AXYS ID: WG43901-102) and were not detected in client samples, data are not considered affected.

In the initial calibration, Cefotaxime did not meet method criteria. This analyte is deemed not quantifiable (flagged 'NQ' on reports).

In the OPR (AXYS ID: WG43901-102) Cloxacillin, Dehydronifedipine and Oxolinic Acid were observed above the upper method control limit and are flagged with an 'N'. As these anlytes were not detected in client samples data are not considered affected by these variances.

List 2 Compounds

All method criteria were met.

List 3 Compounds

In the continuing calibration (filenames: QF3K_067 S: 47) Hydrocholorothiazide was observed above the method control limits. As this analyte was not detected in client samples; data is not considered significantly affected.

In the OPR (AXYS ID: WG43901-102) 2-Hydroxy-ibuprofen and Ibuprofen were observed above the upper method control limit. These analytes are flagged with an 'N'. These analytes were not detected in client samples; data is not considered significantly affected.

List 5 Compounds

Diazepam is detected in the Lab Blank (AXYS ID: WG43901-101). This analyte was not detected in client samples; data is not considered affected.

In the OPR (AXYS ID: WG43901-102), Trenbolone acetate was observed above the upper control limit of 130% at 149%; result is flagged with an 'N. As this target was not detected in client samples, data is not considered affected.

The recovery of d7-DEET in sample 1306020-25 (AXYS ID: L19748-1) did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the

quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

WG43902

List 4 Compounds

In the OPR (AXYS ID: WG43902-102) Atorvastatin was observed outside of method control limits and is flagged with an 'N'. Data may be considered similarly affected.

The recovery of D4-Clonidine, D3-Cotinine and D5-Enalapril in sample 1306020-24 (AXYS ID: L19748-5) did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Furthermore, a test dilution was performed and the data were comparable even while surrogate recoveries improved. Percent surrogate recoveries are used as general method performance indicator only.

ANALYTICAL DISCUSSION

List 1 Compounds

Cloxacillin, Oxacillin and Penicillin G are reported as 'Information values' of estimated concentrations. Results are flagged with an 'H'.

List 2 Compounds

The presence of ECTC will create positive interference with ICTC due to the use of a common transition. This result is reported as a maximum concentration.

List 3 and 4 Compounds

No analytical difficulties were met.

List 5 Compounds

During the initial run, data results did not meet method criteria and therefore samples were instrumentally reanalyzed. Data is reported from re-injections (indicated by an 'i' suffix on AXYS ID).

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG44220, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Laboratory extraction worksheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

30713

Date Signed

Summary of AXYS Method MLA-075 Rev 05 Ver 02:

AXYS Method MLA-075: ANALYTICAL PROCEDURES FOR THE ANALYSIS OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS IN SOLID, AQUEOUS AND TISSUE SAMPLES BY LC-MS/MS

This method is suitable for the determination of a suite of pharmaceutical and personal care compounds in solid and aqueous samples (Lists 1, 2, 3, 4, 5 and 6) and in tissue samples (Lists 1, 3, 4, 5 and 6) samples. The analysis requires extraction at two different pH conditions: basic extraction for analysis of List 4 analytes and acidic extraction for the analysis of List 1, 2, 3, 5 and 6 analytes.

Target Analytes

List 1 (Acid extraction, positive ESI)					
Acetaminophen	Norfloxacin				
Ampicillin ¹	Norgestimate				
Azithromycin	Ofloxacin				
Caffeine	Ormetoprim				
Carbadox	Oxacillin ¹				
Carbamazepine	Oxolinic acid				
Cefotaxime	Penicillin G ¹				
Ciprofloxacin ¹	Penicillin V				
Clarithromycin	Roxithromycin				
Clinafloxacin	Sarafloxacin				
Cloxacillin	Sulfachloropyridazine				
Dehydronifedipine	Sulfadiazine				
Digoxigenin	Sulfadimethoxine				
Digoxin	Sulfamerazine				
Diltiazem	Sulfamethazine				
1,7-Dimethylxanthine	Sulfamethizole				
Diphenhydramine	Sulfamethoxazole				
Enrofloxacin	Sulfanilamide				
Erythromycin	Sulfathiazole				
Flumequine	Thiabendazole				
Fluoxetine	Trimethoprim				
Lincomycin	Tylosin				
Lomefloxacin	Virginiamycin M1				
Miconazole					

List 2 (Tetracyclines, positive ESI)	
Anhydrochlortetracycline (ACTC)	4-Epichlortetracycline (ECTC)
Anhydrotetracycline (ATC)	4-Epioxytetracycline (EOTC)
Chlortetracycline (CTC)	4-Epitetracycline (ETC)
Demeclocycline	Isochlortetracycline (ICTC)
Doxycycline	Minocycline
4-Epianhydrochlortetracycline (EACTC)	Oxytetracycline (OTC)
4-Epianhydrotetracycline (EATC)	Tetracycline (TC)
List 3 (Acid extraction, negative ESI)	
Bisphenol A	2-hydroxy-ibuprofen
Furosemide	Ibuprofen
Gemfibrozil	Naproxen
Glipizide	Triclocarban
Glyburide	Triclosan
Hydrochlorothiazide	Warfarin
List 4 (Base extraction, positive ESI)	
Albuterol	Cotinine
Amphetamine	Enalapril
Atenolol	Hydrocodone
Atorvastatin	Metformin
Cimetidine	Oxycodone
Clonidine	Ranitidine
Codeine	Triamterene
List 5 (Acid Extraction, positive ESI)	
Alprazolam	Metoprolol
Amitriptyline	Norfluoxetine
Amlodipine	Norverapamil
Benzoylecgonine	Paroxetine
Benztropine	Prednisolone
Betamethasone	Prednisone
Cocaine	Promethazine
DEET (N,N-diethyl-m-toluamide)	Propoxyphene
Desmethyldiltiazem	Propranolol
Diazepam	Sertraline
Fluocinonide	Simvastatin
Fluticasone propionate	Theophylline

Hydrocortisone	Trenbolone
10-hydroxy-amitriptyline	Trenbolone acetate
Meprobamate	Valsartan
Methylprednisolone	Verapamil
List 6 (Acid Extraction, positive ESI)	
Amsacrine	lopamidol
Azathioprine	Lomustine
Busulfan	Medroxyprogesterone acetate
Carmustine	Melphalan
Chloramphenicol	Metronidazole
Citalopram	Moxifloxacin ²
Clotrimazole	Norethindrone
Colchicine	Oxazepam
Cyclophosphamide	Rosuvastatin
Daunorubicin	Tamoxifen
Diatrizoic acid	Teniposide
Doxorubicin	Venlafaxine
Drospirenone	Zidovudine
Etoposide	

¹ Analysis result is classified as 'information value' of estimated concentration.

EXTRACTION

The analysis requires extraction at two different pH conditions: at pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, 5 and 6). Prior to extraction and/or clean-up, samples are adjusted to the required pH and spiked with surrogates.

Solid samples are extracted by sonication with aqueous buffered acetonitrile and with pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to for the complete list of analytes.

All aqueous samples are filtered and the aqueous portion is cleaned up by solid phase extraction before analysis by LC/ESI-MS/MS.

Aqueous samples with no or limited visible particulate (e.g. surface water, ground water, wastewater treatment final effluent, typically with <100 mg/L TSS) normally can be processed with up to 1L samples sizes. The sample is filtered and routinely only the aqueous phase is analyzed. However, upon specific agreement a separate extraction may be performed on the solids phase. The solids extract may in this case either be carried through the analysis

² Moxifloxacin in solid samples is classified as 'information value' of estimated concentration.

individually as a separate sample that is reported separately, or the aqueous extract and the solids extract may be combined just prior to clean-up and reported as a combined aqueous/solids phase result.

For mixed phase aqueous/solids samples with significant solids and distinct aqueous and solids phases such as wastewater influent or process streams the sample may either be analyzed as an aqueous phase only or as two separate samples, one aqueous and one solid.

COLUMN CHROMATOGRAPHY CLEANUP

Extracts are cleaned up during the SPE extraction.

INSTRUMENTAL ANALYSIS

Analysis of the sample extract is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The LC/MS/MS is run in MRM (Multiple Reaction Monitoring) mode and quantification is performed by recording the peak areas of the applicable parent ion/daughter ion transitions. Some analytes are analyzed in the ESI positive mode and some are analyzed in the ESI negative mode.

Analytes, Ions and Quantification References

List 1 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Sulfanilamide	2.02	0.432	¹³ C ₂ , ¹⁵ N-Acetaminophen	190.0	155.8	¹³ C ₆ -Sulfamethazine
Acetaminophen	4.68	1.000	¹³ C ₂ , ¹⁵ N-Acetaminophen	152.2	110.0	¹³ C ₂ , ¹⁵ N-Acetaminophen
Sulfadiazine	5.32	1.137	¹³ C ₂ , ¹⁵ N-Acetaminophen	251.2	156.1	¹³ C ₆ -Sulfamethazine
1,7-Dimethylxanthine	7.02	0.753	¹³ C ₃ -Caffeine	181.2	124.0	¹³ C ₃ -Caffeine
Sulfathiazole	8.00	0.858	¹³ C ₃ -Caffeine	256.3	156.0	¹³ C ₆ -Sulfamethoxazole
Sulfamerazine	8.78	0.942	¹³ C ₃ -Caffeine	265.0	156.0	¹³ C ₆ -Sulfamethazine
Caffeine	9.32	1.000	¹³ C ₃ -Caffeine	195.0	138.0	¹³ C ₃ -Caffeine
Lincomycin	9.47	0.953	¹³ C ₃ -Trimethoprim	407.2	126.0	¹³ C ₃ -Trimethoprim
Trimethoprim	9.94	1.000	¹³ C ₃ -Trimethoprim	291.2	230.0	¹³ C ₃ -Trimethoprim
Sulfamethizole	10.09	0.983	¹³ C ₆ -Sulfamethazine	271.0	156.0	¹³ C ₆ -Sulfamethoxazole
Cefotaxime	10.09	1.015	¹³ C ₃ -Trimethoprim	456.4	396.1	¹³ C ₃ -Trimethoprim
Sulfamethazine	10.31	1.000	¹³ C ₆ -Sulfamethazine	279.0	156.0	¹³ C ₆ -Sulfamethazine
Ofloxacin	10.53	0.974	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	362.2	318.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Carbadox	10.53	1.005	d ₆ -Thiabendazole	263.2	231.2	¹³ C ₃ -Trimethoprim
Ormetoprim	10.53	1.059	¹³ C ₃ -Trimethoprim	275.3	259.1	¹³ C ₃ -Trimethoprim
Norfloxacin	10.59	0.980	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	320.0	302.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Thiabendazole	10.59	1.000	d ₆ -Thiabendazole	202.1	175.1	d ₆ -Thiabendazole
Ciprofloxacin	10.81	1.000	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	332.2	314.2	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Sulfachloropyridazine	10.97	1.069	¹³ C ₆ -Sulfamethazine	285.0	156.0	¹³ C ₆ -Sulfamethazine
Lomefloxacin	11.14	1.031	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	352.2	308.1	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Enrofloxacin	11.22	1.038	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	360.2	316.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Sulfamethoxazole	11.33	1.000	¹³ C ₆ -Sulfamethoxazole	254.0	156.0	¹³ C ₆ -Sulfamethoxazole
Sarafloxacin	11.84	1.095	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	386.1	299.0	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Clinafloxacin	12.04	1.059	¹³ C ₆ -Sulfamethoxazole	366.3	348.1	¹³ C ₃ , ¹⁵ N-Ciprofloxacin
Digoxigenin	12.68	1.115	¹³ C ₆ -Sulfamethoxazole	391.2	355.2	¹³ C ₃ -Trimethoprim
Oxolinic Acid	13.11	0.819	¹³ C ₃ -Atrazine	262.1	244.0	¹³ C ₃ -Trimethoprim
Sulfadimethoxine	13.33	1.172	¹³ C ₆ -Sulfamethoxazole	311.0	156.0	¹³ C ₆ -Sulfamethoxazole
Azithromycin	13.55	0.846	¹³ C ₃ -Atrazine	749.9	591.6	¹³ C ₃ -Trimethoprim
Penicillin G	14.46	0.903	¹³ C ₃ -Atrazine	367.1	159.9	¹³ C ₃ -Trimethoprim
Diphenhydramine	14.57	0.910	¹³ C ₃ -Atrazine	256.2	167.0	¹³ C ₃ -Trimethoprim
Ampicillin	14.68	0.917	¹³ C ₃ -Atrazine	350.3	160.2	¹³ C ₃ -Trimethoprim

[e	4=	0.0-0	1 130 44 .	0000	4===	130
Flumequine	15.25	0.953	¹³ C ₃ -Atrazine	262.0	173.7	¹³ C ₃ -Trimethoprim
Penicillin V	15.29	0.955	¹³ C₃-Atrazine	383.2	159.9	¹³ C ₃ -Trimethoprim
Diltiazem	15.34	0.958	¹³ C ₃ -Atrazine	415.5	178.0	¹³ C ₃ -Trimethoprim
Carbamazepine	15.38	1.007	d ₁₀ -Carbamazepine	237.4	194.2	d ₁₀ -Carbamazepine
Erythromycin ¹	15.94	1.000	¹³ C ₂ -Erythromycin	734.4	158	not quantified
Oxacillin	16.30	1.018	¹³ C ₃ -Atrazine	434.1	160.2	¹³ C ₃ -Trimethoprim
Tylosin	16.37	1.022	¹³ C ₃ -Atrazine	916.6	772.5	¹³ C ₆ -Sulfamethazine
Digoxin	16.58	1.036	¹³ C ₃ -Atrazine	798.5	651.3	¹³ C ₃ -Trimethoprim
Dehydronifedipine	16.65	0.981	d ₅ -Fluoxetine	345.1	284.1	¹³ C ₃ -Trimethoprim
Cloxacillin	16.82	0.991	d ₅ -Fluoxetine	468.1	160.1	¹³ C ₃ -Trimethoprim
Erythromycin anhydrate 1	16.90	1.000	¹³ C ₂ -Erythromycin anhydrate	716.4	158	¹³ C ₂ -Erythromycin anhydrate
Fluoxetine	16.97	1.000	d ₅ -Fluoxetine	310.1	148.0	d ₅ -Fluoxetine
Virginiamycin M1	17.40	1.025	d ₅ -Fluoxetine	526.3	508.3	¹³ C ₃ -Trimethoprim
Clarithromycin	17.61	1.038	d ₅ -Fluoxetine	748.9	158.2	¹³ C ₆ -Sulfamethazine
Roxithromycin	17.83	1.051	d ₅ -Fluoxetine	837.6	679.0	¹³ C ₆ -Sulfamethazine
Miconazole	20.93	1.233	d ₅ -Fluoxetine	417.0	161.0	¹³ C ₃ -Trimethoprim
Norgestimate	21.80	1.285	d ₅ -Fluoxetine	370.5	124.0	¹³ C ₃ -Trimethoprim
Surrogate Standard						
¹³ C ₂ , ¹⁵ N-Acetaminophen	4.68	0.292	¹³ C ₃ -Atrazine	155.2	111.0	¹³ C ₃ -Atrazine
¹³ C ₃ -Caffeine	9.32	0.582	¹³ C ₃ -Atrazine	198.0	140.0	¹³ C ₃ -Atrazine
¹³ C ₃ -Trimethoprim	9.94	0.621	¹³ C ₃ -Atrazine	294.2	233.0	¹³ C ₃ -Atrazine
¹³ C ₆ -Sulfamethazine	10.26	0.641	¹³ C ₃ -Atrazine	285.1	162.1	¹³ C ₃ -Atrazine
d ₆ -Thiabendazole	10.48	0.655	¹³ C ₃ -Atrazine	208.1	180.1	¹³ C ₃ -Atrazine
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	10.81	0.675	¹³ C ₃ -Atrazine	336.1	318.2	¹³ C ₃ -Atrazine
¹³ C ₆ -Sulfamethoxazole	11.37	0.710	¹³ C ₃ -Atrazine	260.0	162.0	¹³ C ₃ -Atrazine
d ₁₀ -Carbamazepine	15.28	0.954	¹³ C ₃ -Atrazine	247	204	¹³ C ₃ -Atrazine
¹³ C ₂ -Erythromycin ¹	15.86	0.991	¹³ C ₃ -Atrazine	736.4	160.0	monitor for less than 5%
¹³ C ₂ -Erythromycin anhydrate ¹	16.90	1.056	¹³ C ₃ -Atrazine	718.4	160.0	¹³ C ₃ -Atrazine
d ₅ -Fluoxetine	16.97	1.060	¹³ C₃-Atrazine	315.3	153.0	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	16.01	1.000		219.1	176.9	External Standard
			•			

Because of intramolecular dehydration during the analytical procedure erythromycin is quantified as the dehydration product "erythromycin – H₂O". The peak area of the ¹³C₂-Erythromycin is monitored and must be less than 5% of the ¹³C₂-Erythromycin - H₂O peak area. If it is greater, the Erythromycin - H₂O result is flagged as 'accuracy unknown'.

List 2 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Minocycline	3.45	0.739	d ₆ -Thiabendazole	458.0	441.0	d ₆ -Thiabendazole
Epitetracycline (ETC)	5.71	1.223	d ₆ -Thiabendazole	445.2	410.2	d ₆ -Thiabendazole
Epioxytetracycline (EOTC)	6.51	1.394	d ₆ -Thiabendazole	461.2	426.2	d ₆ -Thiabendazole
Oxytetracycline (OTC)	7.29	1.561	d ₆ -Thiabendazole	461.2	426.2	d ₆ -Thiabendazole
Tetracycline (TC)	7.74	1.657	d ₆ -Thiabendazole	445.2	410.2	d ₆ -Thiabendazole
Demeclocycline	9.63	0.470	¹³ C ₃ -Atrazine	465.0	430.0	d ₆ -Thiabendazole
Epichlortetracycline (ECTC)	9.92	0.485	¹³ C ₃ -Atrazine	479.0	444.0	d ₆ -Thiabendazole
Isochlortetracycline (ICTC) 1	9.95	0.486	¹³ C ₃ -Atrazine	479.0	462.0	d ₆ -Thiabendazole
Chlortetracycline (CTC)	11.90	0.581	¹³ C ₃ -Atrazine	479.0	444.0	d ₆ -Thiabendazole
Doxycycline	14.40	0.703	¹³ C ₃ -Atrazine	445.2	428.2	d ₆ -Thiabendazole
Epianhydrotetracycline (EATC)	15.08	0.737	¹³ C ₃ -Atrazine	427.2	409.8	d ₆ -Thiabendazole
Anhydrotetracycline (ATC)	16.45	0.804	¹³ C ₃ -Atrazine	427.2	409.8	d ₆ -Thiabendazole
Epianhydrochlortetracycline (EACTC)	18.90	0.923	¹³ C ₃ -Atrazine	461.2	444.0	d ₆ -Thiabendazole
Anhydrochlortetracycline (ACTC)	20.63	1.008	¹³ C ₃ -Atrazine	461.2	444.0	d ₆ -Thiabendazole
Surrogate Standard						
d ₆ -Thiabendazole	4.67	0.228	¹³ C ₃ -Atrazine	208.0	180.0	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	20.51	1.000		219.1	176.9	External Standard

¹ The presence of ECTC will create positive interference with ICTC due to use of a common transition ion.

List 3 - Acid Extraction, Negative Electrospray Ionization (-)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
Hydrochlorathiazide	2.24	0.440	¹³ C ₆ -2,4,5-T	296.0	268.8	¹³ C-d₃-Naproxen
Hydrochlorathiazide*	2.24	0.440	¹³ C ₆ -2,4,5-T	296.0	204.8	¹³ C-d ₃ -Naproxen
Furosemide	3.19	0.627	¹³ C ₆ -2,4,5-T	329.0	204.7	¹³ C-d₃-Naproxen
Furosemide*	3.19	0.627	¹³ C ₆ -2,4,5-T	³ C ₆ -2,4,5-T 329.0 284.8 ¹³ C-d ₃ :		¹³ C-d ₃ -Naproxen
2-hydroxy-ibuprofen	4.10	0.806	¹³ C ₆ -2,4,5-T	,5-T 221.1 176.8 ¹³ 0		¹³ C ₃ -Ibuprofen
Glipizide	6.68	1.008	d11-Glipizide	444.2	319.0	d11-Glipizide
Glipizide*	6.68	1.008	d11-Glipizide	444.2	169.8	d11-Glipizide
Naproxen	6.68	1.000	¹³ C-d₃-Naproxen	228.9	168.6	¹³ C-d₃-Naproxen
Bisphenol A	6.77	1.007	d6-Bisphenol A	227.0	211.9	d6-Bisphenol A
Bisphenol A*	6.77	1.007	d6-Bisphenol A	227.0	132.9	d6-Bisphenol A
Warfarin	7.00	1.007	d ₅ -Warfarin	307.0	161.0	d₅-Warfarin
Glyburide	8.40	1.010	d3-Glyburide	492.1	169.8	d3-Glyburide
Glyburide*	8.40	1.010	d3-Glyburide	492.1	367.0	d3-Glyburide
Ibuprofen	8.48	1.000	¹³ C ₃ -Ibuprofen	205.1	161.1	¹³ C ₃ -Ibuprofen
Gemfibrozil	9.35	1.000	d ₆ -Gemfibrozil	249.0	121.0	d ₆ -Gemfibrozil
Triclocarban	9.46	0.997	¹³ C ₆ -Triclocarban	312.9	159.7	¹³ C ₆ -Triclocarban
Triclosan	9.60	1.000	¹³ C ₁₂ -Triclosan	286.8	35.0	¹³ C ₁₂ -Triclosan
Surrogate Standard						
d ₁₁ -Glipizide	6.63	1.303	¹³ C ₆ -2,4,5-T	455.0	319.0	¹³ C ₆ -2,4,5-T
d ₁₁ -Glipizide*	6.63	1.303	¹³ C ₆ -2,4,5-T	455.0	169.8	¹³ C ₆ -2,4,5-T
¹³ C-d ₃ -Naproxen	6.68	1.312	¹³ C ₆ -2,4,5-T	232.9	168.6	¹³ C ₆ -2,4,5-T
d ₆ -Bisphenol A	6.72	1.320	¹³ C ₆ -2,4,5-T	233.0	214.8	¹³ C ₆ -2,4,5-T
d ₆ -Bisphenol A*	6.72	1.320	¹³ C ₆ -2,4,5-T	233.0	137.8	¹³ C ₆ -2,4,5-T
d ₅ -Warfarin	6.95	1.365	¹³ C ₆ -2,4,5-T	312	161.0	¹³ C ₆ -2,4,5-T
d ₃ -Glyburide	8.32	1.635	¹³ C ₆ -2,4,5-T	495.0	169.9	¹³ C ₆ -2,4,5-T
d ₃ -Glyburide*	8.32	1.635	¹³ C ₆ -2,4,5-T	495.0	370.1	¹³ C ₆ -2,4,5-T
¹³ C ₃ -Ibuprofen	8.48	1.666	¹³ C ₆ -2,4,5-T	208.2	163.1	¹³ C ₆ -2,4,5-T
d ₆ -Gemfibrozil	9.35	1.837	¹³ C ₆ -2,4,5-T	255	121	¹³ C ₆ -2,4,5-T
¹³ C ₆ -Triclocarban	9.49	1.864	¹³ C ₆ -2,4,5-T	318.9	159.7	¹³ C ₆ -2,4,5-T
¹³ C ₁₂ -Triclosan	9.60	1.886	¹³ C ₆ -2,4,5-T	298.8	35	¹³ C ₆ -2,4,5-T

Recovery Standard					
¹³ C ₆ -2,4,5-Trichlorophenoxy- acetic acid (¹³ C ₆ -2,4,5-T)	5.09	1.000	258.8	200.7	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

List 4 - Base Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against	
Atorvastatin	3.84	0.934	d3-Cotinine	559.3	440.0	d5-Enalapril	
Atorvastatin*	3.84	0.934	d3-Cotinine	559.3	466.0	d5-Enalapril	
Cotinine	4.11	1.000	d3-Cotinine	177.0	98.0	d3-Cotinine	
Cimetidine	4.84	0.994	d3-Cimetidine	253.1	159.0	d3-Cimetidine	
Triamterene	5.35	1.099	d3-Cimetidine	254.1	236.9	d4-Clonidine	
Triamterene*	5.35	1.099	d3-Cimetidine	254.1	103.7	d4-Clonidine	
Enalapril	6.52	1.000	d5-Enalapril	377.2	233.9	d5-Enalapril	
Enalapril*	6.52	1.000	d5-Enalapril 377.2 159.8 d5-E		d5-Enalapril		
Oxycodone	6.70	0.953	d6-Oxycodone	316.2	240.9	d6-Oxycodone	
Oxycodone*	6.70	0.953	,		d6-Oxycodone		
Clonidine	6.75	0.985	d4-Clonidine	230.0	43.9	d4-Clonidine	
Clonidine*	6.75	0.985	d4-Clonidine 230.0 212.		212.5	d4-Clonidine	
Amphetamine	8.12	1.000	d5-Amphetamine	136.1	90.8	d5-Amphetamine	
Amphetamine*	8.12	1.000	d5-Amphetamine	136.1	118.9	d5-Amphetamine	
Albuterol	8.31	0.989	d ₃ -Albuterol	240.0	148.0	d ₃ -Albuterol	
Codeine	8.56	0.985	d6-Codeine	300.2	214.9	d6-Codeine	
Hydrocodone	8.75	0.972	d3-Hydrocodone	300.2	198.8	d3-Hydrocodone	
Hydrocodone*	8.75	0.972	d3-Hydrocodone	300.2	170.6	d3-Hydrocodone	
Ranitidine	8.81	0.985	d7-Atenolol	315.0	175.9	d ₃ -Albuterol	
Atenolol	8.88	0.993	d7-Atenolol	267.2	144.7	d7-Atenolol	
Atenolol*	8.88	0.993	d7-Atenolol	267.2	189.7	d7-Atenolol	
Metformin	9.56	1.000	d ₆ -Metformin	130.1	60.1	d ₆ -Metformin	
Surrogate Standards							
d ₃ -Cotinine	4.11	0.530	d3-Amitriptyline	180.0	79.9	d3-Amitriptyline	
d ₃ -Cotinine*	4.11	0.530	d3-Amitriptyline	180.0	101.0	d3-Amitriptyline	
d ₃ -Cimetidine	4.87	0.628	d3-Amitriptyline	256.0	161.8	d3-Amitriptyline	
d ₃ -Cimetidine*	4.87	0.628	d3-Amitriptyline	256.0	94.8	d3-Amitriptyline	
d ₅ -Enalapril	6.52	0.841	41 d3-Amitriptyline 382.0 238.8		d3-Amitriptyline		
d ₅ -Enalapril*	6.52	0.841			d3-Amitriptyline		
d ₄ -Clonidine	6.85	0.884	d3-Amitriptyline	234.0	47.9	d3-Amitriptyline	
d ₄ -Clonidine*	6.85	0.884	d3-Amitriptyline	234.0	216.7	d3-Amitriptyline	

d ₆ -Oxycodone	7.03	0.907	d3-Amitriptyline	322.1	262.0	d3-Amitriptyline
d ₆ -Oxycodone*	7.03	0.907	d3-Amitriptyline	322.1	304.1	d3-Amitriptyline
d ₅ -Amphetamine	8.12	1.048	d3-Amitriptyline	141.1	92.9	d3-Amitriptyline
d ₅ -Amphetamine*	8.12	1.048	d3-Amitriptyline	141.1	123.9	d3-Amitriptyline
d ₃ -Albuterol	8.40	1.084	d3-Amitriptyline	243.0	151.0	d3-Amitriptyline
d ₆ -Codeine	8.69	1.121	d3-Amitriptyline	306.0	217.9	d3-Amitriptyline
d ₆ -Codeine*	8.69	1.121	d3-Amitriptyline	306.0	151.8	d3-Amitriptyline
d ₇ -Atenolol	8.94	1.154	d3-Amitriptyline	274.0	144.7	d3-Amitriptyline
d ₇ -Atenolol*	8.94	1.154	d3-Amitriptyline	274.0	189.7	d3-Amitriptyline
d ₃ -Hydrocodone	9.00	1.161	d3-Amitriptyline	303.1	198.9	d3-Amitriptyline
d ₃ -Hydrocodone*	9.00	1.161	d3-Amitriptyline	303.1	170.8	d3-Amitriptyline
d ₆ -Metformin	9.56	1.234	d3-Amitriptyline	136.1	60.1	d3-Amitriptyline
Recovery Standards						
d ₃ -Amitriptyline	7.75	1.000		281.0	232.7	External Standard
d ₃ -Amitriptyline*	7.75	1.000		281.0	90.7	External Standard
d ₉ -Albuterol	8.40	1.000		249	148.3	External Standard
d ₉ -Albuterol*	8.40	1.000		249	167	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

List 5 - Acid Extraction, Positive Electrospray Ionization (+)ESI

Target Analyte	Typical Retention Time (min)	Typical RRT		Parent Ion Mass	Daughter Ion Mass	Quantified against
Theophylline	2.52	1.000	¹³ C, ¹⁵ N ₂ -Theophylline	181.1	123.8	¹³ C, ¹⁵ N ₂ -Theophylline
Theophylline*	2.52	1.000	¹³ C, ¹⁵ N ₂ -Theophylline*	181.1	95.8	¹³ C, ¹⁵ N ₂ -Theophylline*
Benzoylecgonine	5.48	1.028	d8-Benzoylecgonine	290.1	167.8	d8-Benzoylecgonine
Benzoylecgonine*	5.48	1.028	d8-Benzoylecgonine	290.1	104.8	d8-Benzoylecgonine
Metoprolol	8.13	1.009	d7-Metoprolol	268.2	190.7	d7-Metoprolol
Metoprolol*	8.13	1.009	d7-Metoprolol	268.2	115.7	d7-Metoprolol
Cocaine	8.74	1.000	d3-Cocaine	304.1	181.8	d3-Cocaine
Cocaine*	8.74	1.000	d3-Cocaine	304.1	81.9	d3-Cocaine
Meprobamate	11.09	0.785	d7-Propranolol	219.0	157.8	d7-Metoprolol
Meprobamate*	11.09	0.785	d7-Propranolol	219.0	96.9	d7-Metoprolol
10-hydroxy-amitriptyline	11.70	0.829	d7-Propranolol	294.2	215.0	d7-Propranolol
10-hydroxy-amitriptyline*	11.70	0.829	d7-Propranolol	294.2	276.0	d7-Propranolol
Propranolol	14.35	1.016	d7-Propranolol	260.2	115.8	d7-Propranolol
Propranolol*	14.35	1.016	d7-Propranolol	260.2	182.7	d7-Propranolol
Prednisone	16.47	0.953	d4-Hydrocortisone	359.2	341.0	d7-Propranolol
Prednisone*	16.47	0.953	d4-Hydrocortisone	359.2	146.7	d7-Propranolol
Hydrocortisone	17.29	1.000	d4-Hydrocortisone	363.2	120.7	d4-Hydrocortisone
Hydrocortisone*	17.29	1.000	d4-Hydrocortisone	363.2	326.7	d4-Hydrocortisone
Prednisolone	17.29	1.000	d4-Hydrocortisone	361.2	343.0	d7-Propranolol
Prednisolone*	17.29	1.000	d4-Hydrocortisone	361.2	324.7	d7-Propranolol
Promethazine	18.39	1.008	d4-Promethazine	285.1	197.8	d4-Promethazine
Promethazine*	18.39	1.008	d4-Promethazine	285.1	85.7	d4-Promethazine
Desmethyldiltiazem	18.53	1.016	d4-Promethazine	401.2	177.8	d4-Promethazine
Desmethyldiltiazem*	18.53	1.016	d4-Promethazine	401.2	149.5	d4-Promethazine
Paroxetine	20.28	1.007	d6-Paroxetine	330.2	191.8	d6-Paroxetine
Paroxetine*	20.28	1.007	d6-Paroxetine	330.2	69.8	d6-Paroxetine
DEET	20.63	1.014	d7-DEET	192.0	118.6	d7-DEET
DEET	20.63	1.014	d7-DEET	192.0	90.7	d7-DEET
Norverapamil	20.63	1.014	d7-DEET	441.3	164.7	d7-Propranolol
Norverapamil*	20.63	1.014	d7-DEET	441.3	149.7	d7-Propranolol
Verapamil	21.16	0.994	d3-Methylprednisolone	455.3	164.8	d6-Amitriptyline
Verapamil*	21.16	0.994	d3-Methylprednisolone	455.3	149.8	d6-Amitriptyline
Betamethasone	21.29	0.967	d6-Amitriptyline	393.2	355.1	d6-Amitriptyline

Betamethasone*	21.29	0.967	d6-Amitriptyline	393.2	373.0	d6-Amitriptyline
Methylprednisolone	21.29	1.000	d3-Methylprednisolone	375.2	357.0	d3-Methylprednisolone
Methylprednisolone*	21.29	1.000	d3-Methylprednisolone	375.2	339.0	d3-Methylprednisolone
Propoxyphene	21.56	1.006	d5-Propoxyphene	340.2	57.9	d5-Propoxyphene
Propoxyphene*	21.56	1.006	d5-Propoxyphene	340.2	266.1	d5-Propoxyphene
Amitriptyline	22.02	1.000	d6-Amitriptyline	278.2	232.8	d6-Amitriptyline
Amitriptyline*	22.02	1.000	d6-Amitriptyline	278.2	90.7	d6-Amitriptyline
Trenbolone	22.02	1.000	d6-Amitriptyline	271.2	198.7	d5-Alprazolam
Trenbolone*	22.02	1.000	d6-Amitriptyline	271.2	252.8	d5-Alprazolam
Benztropine	22.55	1.000	d3-Benztropine	308.2	166.7	d3-Benztropine
Benztropine*	22.55	1.000	d3-Benztropine	308.2	151.7	d3-Benztropine
Alprazolam	23.08	1.011	d5-Alprazolam	309.1	280.9	d5-Alprazolam
Alprazolam*	23.08	1.011	d5-Alprazolam	309.1	204.9	d5-Alprazolam
Amlodipine	23.40	0.962	d5-Norfluoxetine	409.1	237.8	d5-Norfluoxetine
Amlodipine*	23.40	0.962	d5-Norfluoxetine	409.1	293.8	d5-Norfluoxetine
Norfluoxetine	24.39	1.002	d5-Norfluoxetine	296.1	133.7	d5-Norfluoxetine
Sertraline	25.87	0.897	d5-Diazepam	306.1	274.8	d7-Propranolol
Sertraline*	25.87	0.897	d5-Diazepam	306.1	158.7	d7-Propranolol
Diazepam	29.14	1.011	d5-Diazepam	285.1	192.8	d5-Diazepam
Diazepam*	29.14	1.011	d5-Diazepam	285.1	153.8	d5-Diazepam
Valsartan	31.92	1.107	d5-Diazepam	436.2	235.0	d5-Propoxyphene
Valsartan*	31.92	1.107	d5-Diazepam	436.2	291.0	d5-Propoxyphene
Fluocinonide	34.90	1.211	d5-Diazepam	495.2	337.0	d5-Alprazolam
Fluocinonide*	34.90	1.211	d5-Diazepam	495.2	475.0	d5-Alprazolam
Trenbolone acetate	37.27	1.293	d5-Diazepam	313.2	253.0	d5-Alprazolam
Trenbolone acetate*	37.27	1.293	d5-Diazepam	313.2	271.0	d5-Alprazolam
Fluticasone propionate	37.74	1.309	d5-Diazepam	501.2	293.0	d7-Metoprolol
Fluticasone propionate*	37.74	1.309	d5-Diazepam	501.2	313.0	d7-Metoprolol
Simvastatin	39.96	1.386	d5-Diazepam	419.3	285.0	d5-Propoxyphene
Simvastatin*	39.96	1.386	d5-Diazepam	419.3	198.9	d5-Propoxyphene
Surrogate Standards						
¹³ C, ¹⁵ N ₂ -Theophylline	2.52	0.136	¹³ C ₃ -Atrazine	184.0	124.7	¹³ C ₃ -Atrazine
¹³ C, ¹⁵ N ₂ -Theophylline*	2.52	0.136	¹³ C ₃ -Atrazine	184.0	96.8	¹³ C ₃ -Atrazine
d ₈ -Benzoylecgonine	5.33	0.288	¹³ C ₃ -Atrazine	298.1	170.9	¹³ C ₃ -Atrazine
d ₈ -Benzoylecgonine*	5.33	0.288	¹³ C ₃ -Atrazine	298.1	109.8	¹³ C ₃ -Atrazine
d ₇ -Metoprolol	8.06	0.435	¹³ C ₃ -Atrazine	275.0	190.8	¹³ C ₃ -Atrazine
d ₇ -Metoprolol*	8.06	0.435	¹³ C ₃ -Atrazine	275.0	122.7	¹³ C ₃ -Atrazine

d ₃ -Cocaine	8.74	0.472	¹³ C ₃ -Atrazine	307.1	184.9	¹³ C ₃ -Atrazine
d ₃ -Cocaine*	8.74	0.472	¹³ C ₃ -Atrazine	307.1	84.8	¹³ C ₃ -Atrazine
d ₇ -Propranolol	14.12	0.762	¹³ C ₃ -Atrazine	267.0	116.0	¹³ C ₃ -Atrazine
d ₇ -Propranolol*	14.12	0.762	¹³ C ₃ -Atrazine	267.0	188.7	¹³ C ₃ -Atrazine
d ₄ -Hydrocortisone	17.29	0.933	¹³ C₃-Atrazine	367.0	120.8	¹³ C ₃ -Atrazine
d ₄ -Hydrocortisone*	17.29	0.933	¹³ C₃-Atrazine	367.0	331.0	¹³ C ₃ -Atrazine
d ₄ -Promethazine	18.24	0.984	¹³ C₃-Atrazine	289.0	201.8	¹³ C ₃ -Atrazine
d ₄ -Promethazine*	18.24	0.984	¹³ C ₃ -Atrazine	289.0	86.0	¹³ C ₃ -Atrazine
d ₆ -Paroxetine	20.14	1.087	¹³ C₃-Atrazine	336.0	197.8	¹³ C ₃ -Atrazine
d ₆ -Paroxetine*	20.14	1.087	¹³ C₃-Atrazine	336.0	75.8	¹³ C ₃ -Atrazine
d ₇ -DEET	20.35	1.098	¹³ C₃-Atrazine	199.1	125.8	¹³ C ₃ -Atrazine
d ₇ -DEET*	20.35	1.098	¹³ C₃-Atrazine	199.1	97.8	¹³ C ₃ -Atrazine
d ₃ -Methylprednisolone	21.29	1.149	¹³ C ₃ -Atrazine	378.2	360	¹³ C ₃ -Atrazine
d ₃ -Methylprednisolone*	21.29	1.149	¹³ C ₃ -Atrazine	378.2	342	¹³ C ₃ -Atrazine
d ₅ -Propoxyphene	21.43	1.157	¹³ C₃-Atrazine	345.2	57.9	¹³ C ₃ -Atrazine
d ₅ -Propoxyphene*	21.43	1.157	¹³ C₃-Atrazine	345.2	266.1	¹³ C ₃ -Atrazine
d ₆ -Amitriptyline	22.02	1.188	¹³ C₃-Atrazine	284.0	233.0	¹³ C ₃ -Atrazine
d ₆ -Amitriptyline*	22.02	1.188	¹³ C₃-Atrazine	284.0	90.8	¹³ C ₃ -Atrazine
d ₃ -Benztropine	22.55	1.217	¹³ C₃-Atrazine	311.0	166.7	¹³ C ₃ -Atrazine
d ₃ -Benztropine*	22.55	1.217	¹³ C ₃ -Atrazine	311.0	151.7	¹³ C ₃ -Atrazine
d ₅ -Alprazolam	22.82	1.232	¹³ C₃-Atrazine	314.1	285.9	¹³ C ₃ -Atrazine
d ₅ -Alprazolam*	22.82	1.232	¹³ C₃-Atrazine	314.1	209.9	¹³ C ₃ -Atrazine
d ₅ -Norfluoxetine	24.33	1.313	¹³ C₃-Atrazine	301.0	138.7	¹³ C ₃ -Atrazine
d ₅ -Diazepam	28.83	1.556	¹³ C ₃ -Atrazine	290.1	197.9	¹³ C ₃ -Atrazine
d ₅ -Diazepam*	28.83	1.556	¹³ C ₃ -Atrazine	290.1	153.8	¹³ C ₃ -Atrazine
Recovery Standards						
¹³ C ₃ -Atrazine	18.53	1.000		219.1	176.9	External Standard
¹³ C ₃ -Atrazine *	18.53	1.000		219.1	134.0	External Standard

^{*} Indicates secondary transition for possible diagnostic use.

CALIBRATION

Initial calibration is performed using a series of seven calibration solutions that encompass the working concentration range. Initial calibration solutions contain the suite of labelled surrogate and recovery standards and authentic targets. The concentration of the native analytes in the solutions varies to encompass the working range of the instrument, while the concentrations of the surrogates and recovery standards remain constant. A mid-level solution is analyzed every 12 hours or every 20 samples, whichever occurs first. The List 1, List 3, List 4 and List 5 calibration standards are prepared in 75:25 methanol:0.1% formic acid buffer and the List 2 calibration standards in methanol.

Initial calibration for any native compound requires at least 5 consecutive calibration levels. All 7 calibration solutions in the table below may be analyzed, but in certain cases only 5 or 6 of the levels are used to establish the initial calibration. In the table below the calibration concentrations routinely included are printed in bold type. If the number of routinely included calibration points shown for a compound is less that five, concentrations below and/or above are added as necessary based on analyst judgement to achieve the minimum five consecutive concentration levels. Note that reporting limits are adjusted as necessary to reflect the lowest calibration concentration included in the initial calibration.

Nominal Concentrations of Calibration Solutions

List 1 (Acid extraction, positive ESI)

Compound name				on Standar			
-	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Acetaminophen	3.75	12.5	37.5	187	625	2500	12500
Ampicillin	0.375	1.25	3.75	18.7	62.5	250	1250
Azithromycin	0.375	1.25	3.75	18.7	62.5	250	1250
Caffeine	3.75	12.5	37.5	187	625	2500	12500
Carbadox	0.375	1.25	3.75	18.7	62.5	250	1250
Carbamazapine	0.375	1.25	3.75	18.7	62.5	250	1250
Cefotaxime	1.5	5	15	75	250	1000	5000
Ciprofloxacin	1.5	5	15	75	250	1000	5000
Clarithromycin	0.375	1.25	3.75	18.7	62.5	250	1250
Clinafloxacin	1.5	5	15	75	250	1000	5000
Cloxacillin	0.75	2.5	7.5	37.5	125	500	2500
Dehydronifedipine	0.15	0.5	1.5	7.5	25	100	500
Digoxigenin	1.5	5	15	75	250	1000	5000
Digoxin	1.5	5	15	75	250	1000	5000
Diltiazem	0.075	0.25	0.75	3.75	12.5	50	250
1,7-Dimethylxanthine	15	50	150	750	2500	10000	50000
Diphenhydramine	0.15	0.5	1.5	7.5	25	100	500
Enrofloxacin	0.75	2.5	7.5	37.5	125	500	2500
Erythromycin	0.075	0.25	0.75	3.75	12.5	50	250

Flumequine	0.375	1.25	3.75	18.7	62.5	250	1250
Fluoxetine	0.375	1.25	3.75	18.7	62.5	250	1250
Lincomycin	0.75	2.5	7.5	37.5	125	500	2500
Lomefloxacin	0.75	2.5	7.5	37.5	125	500	2500
Miconazole	0.375	1.25	3.75	18.7	62.5	250	1250
Norfloxacin	3.75	12.5	37.5	187	625	2500	12500
Norgestimate	0.75	2.5	7.5	37.5	125	500	2500
Ofloxacin	0.375	1.25	3.75	18.7	62.5	250	1250
Ormetoprim	0.15	0.5	1.5	7.5	25	100	500
Oxacillin	0.75	2.5	7.5	37.5	125	500	2500
Oxolinic acid	0.15	0.5	1.5	7.5	25	100	500
Penicillin G	0.75	2.5	7.5	37.5	125	500	2500
Penicillin V	0.75	2.5	7.5	37.5	125	500	2500
Roxithromycin	0.075	0.25	0.75	3.75	12.5	50	250
Sarafloxacin	3.75	12.5	37.5	187	625	2500	12500
Sulfachloropyridazine	0.375	1.25	3.75	18.7	62.5	250	1250
Sulfadiazine	0.375	1.25	3.75	18.7	62.5	250	1250
Sulfadimethoxine	0.075	0.25	0.75	3.75	12.5	50	250
Sulfamerazine	0.15	0.5	1.5	7.5	25	100	500
Sulfamethazine	0.15	0.5	1.5	7.5	25	100	500
Sulfamethizole	0.15	0.5	1.5	7.5	25	100	500
Sulfamethoxazole	0.15	0.5	1.5	7.5	25	100	500
Sulfanilamide	3.75	12.5	37.5	187.5	625	2500	12500
Sulfathiazole	0.375	1.25	3.75	18.7	62.5	250	1250
Thiabendazole	0.375	1.25	3.75	18.7	62.5	250	1250
Trimethoprim	0.375	1.25	3.75	18.7	62.5	250	1250
Tylosin	1.5	5	15	75	250	1000	5000
Virginiamycin M1	0.75	2.5	7.5	37.5	125	500	2500
Surrogate Standards							
¹³ C ₂ , ¹⁵ N-Acetaminophen	50	50	50	50	50	50	50
¹³ C ₃ -Caffeine	75	75	75	75	75	75	75
d ₁₀ -Carbamazepine	25	25	25	25	25	25	25
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	100	100	100	100	100	100	100
¹³ C ₂ -Erythromycin	25	25	25	25	25	25	25
d ₅ -Fluoxetine	25	25	25	25	25	25	25
¹³ C ₆ -Sulfamethazine	25	25	25	25	25	25	25
¹³ C ₆ -Sulfamethoxazole	25	25	25	25	25	25	25
d ₆ -Thiabendazole	25	25	25	25	25	25	25
¹³ C ₃ -Trimethoprim	25	25	25	25	25	25	25
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 2 (Tetracyclines)

Compound name	Calibration Standards List 2 (ng/mL) (Tetracyclines)									
p. i.e.	Level A	Level B	Level C	Level D	Level E	Level F	Level G			
Anhydrochlortetracycline (ACTC)	3.75	12.5	31.25	62.5	125	375	1000			
Anhydrotetracycline (ATC)	3.75	12.5	31.25	62.5	125	375	1000			
Chlortetracycline (CTC)	1.5	5	12.5	25	50	150	400			
Demeclocycline	3.75	12.5	31.2	62.5	125	375	1000			
Doxycycline	1.5	5	12.5	25	50	150	400			
4-Epianhydrochlortetracycline (EACTC)	15	50	125	250	500	1500	4000			
4-Epianhydrotetracycline (EATC)	3.75	12.5	31.2	62.5	125	375	1000			
4-Epichlortetracycline (ECTC)	3.75	12.5	31.2	62.5	125	375	1000			
4-Epioxytetracycline (EOTC)	1.5	5	12.5	25	50	150	400			
4-Epitetracycline (ETC)	1.5	5	12.5	25	50	150	400			
Isochlortetracycline (ICTC)	1.5	5	12.5	25	50	150	400			
Minocycline	15	50	125	250	500	1500	4000			
Oxytetracycline (OTC)	1.5	5	12.5	25	50	150	400			
Tetracycline (TC)	1.5	5	12.5	25	50	150	400			
Surrogate Standards										
d ₆ -Thiabendazole	25	25	25	25	25	25	25			
Recovery Standards										
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50			

List 3 (Acid extraction, negative ESI)

Compound name			Calibration S (Acid extr	Standards L action, neg	.ist 3 (ng/mL) jative ESI)		
•	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Bisphenol A	125	250	500	1000	2000	4000	8000
Furosemide	10	33	100	500	1665	6660	20000
Gemfibrozil	0.375	1.25	3.75	18.7	62.5	250	750
Glipizide	1.5	5.0	15	75	250	1000	3000
Glyburide	0.75	2.5	7.5	37.5	125	500	1500
Hydroclorothiazide	5.0	16.6	50	150	300	500	625
2-hydroxy-ibuprofen	20	66	200	1000	3330	13330	40000
Ibuprofen	3.75	12.5	37.5	187	625	2500	7500
Naproxen	0.75	2.50	7.50	37.5	125	500	1500
Triclocarban	0.75	2.5	7.5	37.5	125	500	1500
Triclosan	15	50	150	750	2500	10000	30000
Warfarin	0.375	1.25	3.75	18.7	62.5	250	750
Surrogate Standards							
d ₆ -Bisphenol A	5000	5000	5000	5000	5000	5000	5000
d ₆ -Gemfibrozil	25	25	25	25	25	25	25
d ₁₁ -Glipizide	100	100	100	100	100	100	100
d ₃ -Glyburide	100	100	100	100	100	100	100
¹³ C ₃ -Ibuprofen	100	100	100	100	100	100	100
¹³ C, d ₃ -Naproxen	75	75	75	75	75	75	75
¹³ C ₆ -Triclocarban	12.5	12.5	12.5	12.5	12.5	12.5	12.5
¹³ C ₁₂ -Triclosan	100	100	100	100	100	100	100
d₅-Warfarin	25	25	25	25	25	25	25
Recovery Standard							
¹³ C ₆ -2,4,5-Trichloropheno- xyacetic Acid(¹³ C ₆ -2,4,5-T)	50	50	50	50	50	50	50

List 4 (Base extraction, positive ESI)

Compound Name		Ca		tandards L		L)	
Compound Name	Level A	Level B	Level C	Level D	Level E	Level F	Level G
Albuterol	0.075	0.25	0.75	3.75	12.5	50	250
Amphetamine	0.375	1.25	3.75	18.7	62.5	250	1250
Atenolol	0.15	0.50	1.50	7.50	25	100	500
Atorvastatin	0.375	1.25	3.75	18.7	62.5	250	1250
Cimetidine	0.15	0.50	1.5	7.5	25	100	500
Clonidine	0.375	1.25	3.75	18.7	62.5	250	1250
Codeine	0.75	2.5	7.5	37.5	125	500	2500
Cotinine	0.375	1.25	3.75	18.7	62.5	250	1250
Enalapril	0.075	0.25	0.75	3.75	12.5	50	250
Hydrocodone	0.375	1.25	3.75	18.7	62.5	250	1250
Metformin	0.75	2.5	7.5	37.5	125	500	2500
Oxycodone	0.15	0.50	1.50	7.50	25	100	500
Ranitidine	0.15	0.50	1.50	7.50	25	100	500
Triamterene	0.075	0.25	0.75	3.75	12.5	50	250
Labeled Compounds							
d ₃ -Albuterol	25	25	25	25	25	25	25
d₅-Amphetamine	5.0	5.0	5.0	5.0	5.0	5.0	5.0
d ₇ -Atenolol	15	15	15	15	15	15	15
d ₃ -Cimetidine	7.5	7.5	7.5	7.5	7.5	7.5	7.5
d ₄ -Clonidine	100	100	100	100	100	100	100
d ₆ -Codeine	50	50	50	50	50	50	50
d ₃ -Cotinine	15	15	15	15	15	15	15
d₅-Enalapril	5.0	5.0	5.0	5.0	5.0	5.0	5.0
d ₃ -Hydrocodone	15	15	15	15	15	15	15
d ₆ -Metformin	100	100	100	100	100	100	100
d ₆ -Oxycodone	15	15	15	15	15	15	15
Labeled injection standards							
d ₃ -Amitriptyline	12.5	12.5	12.5	12.5	12.5	12.5	12.5
d ₉ -Albuterol	25	25	25	25	25	25	25

List 5 (Acid extraction, positive ESI)

Compound name	Calibration Standards List 5 (ng/mL) (Acid extraction, positive ESI)								
Compound name	Level A	Level B	Level C	Level D	Level E	Level F	Level G		
Alprazolam	0.075	0.25	0.75	3.75	12.5	50	150		
Amitriptyline	0.075	0.25	0.75	3.75	12.5	50	150		
Amlodipine	0.375	1.25	3.75	18.7	62.5	250	750		
Benzoylecgonine	0.075	0.25	0.75	3.75	12.5	50	150		
Benztropine	0.075	0.25	0.75	3.75	12.5	50	150		
Betamethasone	0.375	1.25	3.75	18.7	62.5	250	750		
Cocaine	0.0375	0.125	0.375	1.87	6.25	25	75		
DEET	0.15	0.5	1.5	7.5	25	100	300		
Desmethyldiltiazem	0.0375	0.125	0.375	1.87	6.2	25	75		
Diazepam	0.075	0.25	0.75	3.75	12.5	50	150		
Fluocinonide	1.50	5.0	15.0	75	250	1000	3000		
Fluticasone propionate	0.50	1.67	5.0	25	83.3	333	1000		
Hydrocortisone	15.0	50	150	750	2500	10000	30000		
10-hydroxy-amitriptyline	0.0375	0.125	0.375	1.87	6.25	25	75		
Meprobamate	1.00	3.33	10.0	50	167	667	2000		
Methylprednisolone	1.00	3.33	10.0	50	167	667	2000		
Metoprolol	0.375	1.25	3.75	18.7	62.5	250	750		
Norfluoxetine	0.375	1.25	3.75	18.7	62.5	250	750		
Norverapamil	0.0375	0.125	0.375	1.87	6.25	25	75		
Paroxetine	1.0	3.33	10.0	50	167	667	2000		
Prednisolone	1.5	5.0	15.0	75	250	1000	3000		
Prednisone	5.0	16.7	50.0	250	833	3330	10000		
Promethazine	0.10	0.33	1.0	5.0	16.7	66.7	200		
Propoxyphene	0.075	0.25	0.75	3.75	12.5	50	150		
Propranolol	0.50	1.67	5.0	25	83.3	333	1000		
Sertraline	0.10	0.33	1.0	5.0	16.6	67	200		
Simvastatin	5.0	16.7	50.0	250	833	3330	10000		
Theophylline	15	50	150	750	25000	10000	30000		
Trenbolone	1.0	3.33	10.0	50	167	667	2000		
Trenbolone acetate	0.075	0.25	0.75	3.75	12.5	50	150		
Valsartan	1.0	3.33	10.0	50	167	667	2000		
Verapamil	0.0375	0.125	0.375	1.87	6.25	25	75		
Labeled Compounds									
d ₅ -Alprazolam	10	10	10	10	10	10	10		
d ₆ -Amitriptyline	10	10	10	10	10	10	10		
d ₈ -Benzoylecgonine	10	10	10	10	10	10	10		
d₃-Benztropine	5.0	5.0	5.0	5.0	5.0	5.0	5.0		

AXYS Ana	vtical	Services	Ltd.
-----------------	--------	----------	------

d ₃ -Cocaine	10	10	10	10	10	10	10
d ₇ -DEET	10	10	10	10	10	10	10
d₅-Diazepam	10	10	10	10	10	10	10
d₄-Hydrocortisone	2000	2000	2000	2000	2000	2000	2000
d ₃ -Methylprednisolone	500	500	500	500	500	500	500
d ₇ -Metoprolol	100	100	100	100	100	100	100
d ₅ -Norfluoxetine	50	50	50	50	50	50	50
d ₆ -Paroxetine	25	25	25	25	25	25	25
d ₄ -Promethazine	25	25	25	25	25	25	25
d ₅ -Propoxyphene	15	15	15	15	15	15	15
d ₇ -Propranolol	100	100	100	100	100	100	100
¹³ C ₁ , ¹⁵ N ₂ -Theophylline	500	500	500	500	500	500	500
Labeled Injection Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

ANALYTE IDENTIFICATION

Positive identification of target PPCP compounds, surrogate standard and recovery standards require:

- ≥ 3:1 signal:noise for parent ion to daughter ion transition.
- Guideline (if there is evidence of peak shifting analyst judgement applies): Compound retention time should fall within 0.4 minutes of the predicted retention times from the daily calibration standard. Natives with labelled surrogate standards should elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION

Concentrations of the targets compounds are calculated either by isotope dilution quantification against the surrogate standard or by internal standard quantification against the recovery standard with linear regression calibration, using a 1/X weighting type, excluding origin.

General equation :
$$Y = slope \times X + intercept$$

Where:
$$Y = Response ratio = \left(\frac{area Target}{area SUR} \times weight SUR spiked (ng)\right)$$

 $X = weight of target (ng)$

SUR = the surrogate standard

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area SUR}} \times \text{weight SUR spiked (ng)-intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size}}\right)$$

The percent recovery of surrogate standards (% SUR) are calculated by internal standard quantification against the recovery standard. Surrogate recoveries are used only as a general QC indicator of overall data quality.

% SUR = 100 x
$$\left(\frac{\text{area SUR}}{\text{area REC}}\right)$$
x $\left(\frac{\text{weight of REC spiked}}{\text{RRF}}\right)$ x $\left(\frac{1}{\text{weight SUR spiked}}\right)$

Where:

REC = the recovery standard as listed in Tables 13,14,15,16

RRF is the average relative response factor from the Initial Calibration data:

$$RRF = \left(\frac{\text{area SUR}}{\text{area REC}}\right) \times \left(\frac{\text{weight of REC}}{\text{weight of SUR}}\right)$$

REPORTING LIMITS

Sample specific detection limits (SDLs) are calculated by QuanLynx software using 3 times the signal of the noise in the target channel converted to an equivalent sample concentration.

Concentrations and detection limits for the target analytes are reported. The lower reporting limit for each target compound is defined as the concentration equivalent to the lowest calibration standard analyzed or the SDL, whichever is greater. Typical reporting units for all data are ng/g or ng/L. Concentrations for solids are reported on a dry weight basis. Concentrations in aqueous samples are reported on a volume basis. Concentrations for tissues are reported on a wet weight basis.

The following are commonly requested reporting limits:

Method Detection Limit (MDL) - determined as specified by <u>EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option).</u> The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used. ((lowest level cal conc.) x (extract volume))/sample size. The typical extract volume for PPCP is 4 mL.

For the analysis of PPCP it is AXYS standard to report sample concentrations using the LMCL as the lower reporting limit. In cases where the SDL is higher than the LMCL, the SDL will be used as the lower reporting limit.

The SDL is defined as follows: Sample Specific Detection Limit or Sample Detection Limit (SDL) – determined individually for every sample analysis run by converting the area equivalent of 3.0

times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

QUALITY ASSURANCE/QUALITY CONTROL

All samples are analyzed in batches with the following composition:

- Batch Size Each batch consists of up to twenty test samples and additional QC samples.
- Blanks One procedural blank is analyzed for each batch. The procedural blank is prepared by spiking an aliquot of the surrogate standard solution into a clean matrix. The procedural blank is extracted and analyzed using the same procedures as the test samples in the analysis batch.
- On-going Precision and Recovery (OPR) Samples On-going Precision and Recovery
 (OPR) is demonstrated by the analysis of a spiked reference matrix (SPM) analyzed with
 each batch. The OPR sample is prepared by spiking an aliquot of the authentic spiking
 solution into an accurately weighed in-house reference matrix (known to contain low
 background levels of target analytes). The reference sample to be analyzed is assigned to
 the analyst when the batch is assigned. The matrix is spiked with an aliquot of surrogate
 standard solution and after an equilibration time of at least 30 minutes is extracted.
- Duplicates 5% of the test samples within a batch (containing 7 or more test samples) are analyzed in duplicate, or as required by contract, provided sufficient sample is available.
- Surrogate/Authentic/Recovery (SAR) solution is an optional diagnostic test that may be prepared and analyzed with a batch.

The batch composition may vary according to batch or quality control requirements specified by a client. Each batch is carried through the complete analytical process as a unit. For sample data to be reportable the batch QC data must meet the acceptance criteria.

QC Specification Table: Authentic and Surrogate Standard Recoveries in samples

	OPR Recovery and surrogate re- covery in sample (% Recovery)			Blank		
			Average Recovery (%)		RSD (%)	Level (ng)
	Low	High	Low	High		, 5,
List 1 Compounds (APOS)						
Acetaminophen	70	140	70	140	30	≤15
Ampicillin ²						
Azithromycin	10	130	10	130	130	≤1.5
Caffeine	25	160	35	150	60	≤15
Carbadox	25	180	35	180	40	≤1.5
Carbamazepine	25	200	35	200	40	≤1.5
Cefotaxime	10	300	10	300	60	≤6
Ciprofloxacin	25	180	35	180	40	≤6
Clarithromycin	50	160	50	160	30	≤1.5
Clinafloxacin	25	300	35	300	70	≤6
Cloxacillin ²	70	130	70	130	30	≤3
Dehydronifedipine	35	160	40	160	30	≤0.6

	OPR R	ecovery				
		rogate re-		Blank		
	covery in sample		Ave	erage	RSD (%)	Level
	(% Re	(% Recovery)		/ery (%)		(ng)
	Low	High	Low	High		
Digoxigenin	50	150	60	140	30	≤6
Digoxin	35	200	40	200	30	≤6
Diltiazem	20	160	25	160	50	≤0.3
1,7-Dimethylxanthine	30	300	40	300	60	≤60
Diphenhydramine	70	130	70	130	30	≤0.6
Enrofloxacin	30	220	40	220	40	≤3
Erythromycin - H ₂ O	70	130	70	130	30	≤0.3 ³
Flumequine	40	160	50	160	30	≤1.5
Fluoxetine	60	150	70	140	30	≤1.5
Lincomycin	10	300	10	300	70	≤3
Lomefloxacin, aqueous matrix	50	250	60	250	30	≤3
solid matrix	50	400	60	400	30	≤3
Miconazole	35	130	40	130	30	≤1.5
Norfloxacin	10	250	25	220	40	≤15
Norgestimate	35	130	40	130	30	≤3
Ofloxacin	60	250	70	250	30	≤1.5
Ormetoprim	70	150	70	150	30	≤0.6
Oxacillin ²	20	130	20	130	40	≤3
Oxolinic Acid	60	150	70	150	30	≤0.6
Penicillin G ²	10	130	10	130	40	≤3
Penicillin V	40	140	50	140	30	≤3
Roxithromycin	50	140	50	140	30	≤0.3
Sarafloxacin, aqueous matrix	50	200	60	180	30	≤15
solid matrix	50	300	60	300	30	≤15
Sulfachloropyridazine	60	160	70	160	30	≤1.5
Sulfadiazine	70	130	70	130	30	≤1.5
Sulfadimethoxine	35	160	40	160	30	≤0.3
Sulfamerazine	60	140	60	140	30	≤0.6
Sulfamethazine	70	130	70	130	30	≤0.6
Sulfamethizole	30	140	35	140	30	≤0.6
Sulfamethoxazole	70	130	70	130	30	≤0.6
Sulfanilamide	2	160	3	150	150	≤15
Sulfathiazole	30	180	30	160	50	≤1.5
Thiabendazole	60	150	60	150	30	≤1.5
Trimethoprim	50	150	60	150	30	≤1.5
Tylosin	70	130	70	130	30	≤6
Virginiamycin M1	15	300	15	250	90	≤3
Surrogate Standard						
¹³ C ₂ , ¹⁵ N-Acetaminophen	30	160	40	150	30	
¹³ C ₃ -Caffeine	40	140	50	140	30	
d ₁₀ -Carbamazepine	40	140	50	140	30	
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	7	150	9	140	70	
¹³ C ₂ -Erythromycin - H ₂ O	35	130	35	130	30	
d ₅ -Fluoxetine	10	160	10	150	70	
¹³ C ₆ -Sulfamethazine	30	160	35	150	40	
¹³ C ₆ -Sulfamethoxazole	30	140	40	130	30	
d ₆ -Thiabendazole	25	180	30	160	50	

	OPR Recovery					
		rogate re-		IPR		Blank Level (ng)
		in sample	Ave	erage	RSD	
	(% Re	covery)	Recov	/ery (%)	(%)	
	Low	High	Low	High		
¹³ C ₃ -Trimethoprim	30	140	40	130	30	
Recovery Standard						
¹³ C ₃ -Atrazine						
List 2 Compounds (TCYS)						
Anhydrochlortetracycline (ACTC)	15	200	20	180	70	≤15
Anhydrotetracycline (ATC)	20	160	20	150	50	≤15
Chlortetracycline (CTC)	30	250	35	250	60	≤6
Demeclocycline	35	180	35	160	50	≤15
Doxycycline	35	180	40	180	40	≤6
Epianhydrochlortetracycline (EACTC)	6	130	7	130	70	≤60
Epianhydrotetracycline (EATC)	15	200	20	200	60	≤15
Epichlortetracycline (ECTC)	25	180	30	160	50	≤15
Epioxytetracycline (EOTC)	25	180	35	160	40	≤6
Epitetracycline (ETC)	35	200	40	180	40	≤6
Isochlortetracycline (ICTC)	25	180	35	160	40	≤6
Minocycline	1	250	2	200	110	≤60
Oxytetracycline (OTC)	20	200	30	200	40	≤6
Tetracycline (TC)	20	200	30	180	40	≤6
Surrogate Standard		200		100		
d ₆ -Thiabendazole	25	140	25	130	50	
Recovery Standard	20	140		100	00	
¹³ C ₃ -Atrazine						
List 3 Compounds (ANEG)						
Bisphenol A	70	130	70	130	30	≤500
Furosemide	65	130	70	130	30	≤40
Gemfibrozil	60	140	70	130	30	≤1.5
Glipizide	55	170	60	160	30	≤6
Glyburide	50	180	55	170	30	≤3
Hydroxychlorothiazide	45	200	50	180	30	≤20
2-hydroxy-ibuprofen	70	130	70	130	30	≤80
Ibuprofen	70	130	70	130	30	≤15
Naproxen	50	150	60	150	30	≤3
Triclocarban	60	140	70	130	30	≤3
Triclosan	70	130	70	130	30	≤60
Warfarin	70	140	70	140	30	≤1.5
Surrogate Standards						
d ₆ -Bisphenol A	50	170	60	160	30	
d ₆ -Gemfibrozil	50	150	55	140	30	
d ₁₁ -Glipizide	30	180	35	170	50	
d ₃ -Glyburide	20	160	25	150	40	
¹³ C ₃ -Ibuprofen	50	140	55	140	30	
¹³ C-d₃-Naproxen	30	150	35	140	30	
¹³ C ₆ -Triclocarban	20	160	25	150	50	
¹³ C ₁₂ -Triclosan	20	160	30	150	40	
d ₅ -Warfarin	35	250	50	250	30	

	OPR Recovery		IPR				
		rogate re-		IPK		Blank	
	-	in sample		erage	RSD	Level	
	Low	covery) High	Low	/ery (%)	(%)	(ng)	
December Ctendend	LOW	nigii	LOW	High			
Recovery Standard							
¹³ C ₆ -2,4,5-Trichloro-phenoxyacetic acid							
List 4 Compounds (BPOS)							
Albuterol	50	160	50	160	30	≤0.3	
Amphetamine	50	160	60	150	30	≤1.5	
Atenolol	70	130	70	130	30	≤0.6	
Atorvastatin	20	130	25	130	40	≤1.5	
Cimetidine	15	130	20	130	50	≤0.6	
Clonidine	70	130	70	130	30	≤1.5	
Codeine	70	130	70	130	30	≤3	
Cotinine	70	130	70	130	30	≤1.5	
Enalapril	70	130	70	130	30	≤0.3	
Hydrocodone	70	130	70	130	30	≤1.5	
Metformin	70	160	70	160	30	≤3	
Oxycodone	65	130	70	130	30	≤0.6	
Ranitidine	25	140	30	140	50	≤0.6	
Triamterene	70	140	70	140	30	≤0.3	
Surrogate Standards							
d ₃ -Albuterol	20	140	30	130	30		
d₅-Amphetamine	20	130	25	130	40		
d ₇ -Atenolol	50	130	70	130	30		
d ₃ -Cimetidine	15	130	15	130	50		
d ₄ -Clonidine	50	130	70	130	30		
d ₆ -Codeine	50	130	70	130	30		
d ₃ -Cotinine	50	140	70	135	30		
d₅-Enalapril	50	130	70	130	30		
d ₃ -Hydrocodone	50	130	70	130	30		
d ₆ -Metformin	3	130	4	130	130		
d ₆ -Oxycodone	50	150	60	140	30		
Recovery Standards	30	130	- 00	140	30		
<u> </u>							
d ₃ -Amitriptyline							
List 5 Compounds (APOS)							
Alprazolam	70	130	70	130	30	≤0.3	
Amitriptyline	70	130	70	130	30	≤0.3	
Amlodipine	45	130	50	130	30	≤1.5	
Benzoylecgonine	70	130	70	130	30	≤0.3	
Benztropine	70	130	70	130	30	≤0.3	
Betamethasone	20	240	30	220	40	≤1.5	
Cocaine	70	130	70	130	30	≤0.15	
DEET	70	130	70	130	30	≤1	
Desmethyldiltiazem	3	350	5	320	80	≤0.15	
Diazepam	70	130	70	130	30	≤0.3	
Fluocinonide	7	230	9	220	70	<u>=6.5</u> ≤6	
** * **	1	ı			l	-	

Luticasone propionate lydrocortisone 0-hydroxy-amitriptyline leprobamate lethylprednisolone letoprolol lorfluoxetine lorverapamil aroxetine rednisolone rednisolone rednisone romethazine ropranolol ertraline imvastatin heophylline renbolone acetate, aqueous matrix solid matrix falsartan	20 15 70 65 35 70	rogate re- n sample covery) High 160 220 130 150 240		erage very (%) High 150 200	RSD (%)	Blank Level (ng)
luticasone propionate lydrocortisone 0-hydroxy-amitriptyline leprobamate lethylprednisolone letoprolol lorfluoxetine lorverapamil aroxetine rednisolone rednisolone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone acetate, aqueous matrix solid matrix falsartan ferapamil	(% Recovered 20 15 70 65 35 70 70	Covery) High 160 220 130 150	Low 25 20	rery (%) High 150	(%)	
luticasone propionate lydrocortisone 0-hydroxy-amitriptyline leprobamate lethylprednisolone letoprolol lorfluoxetine lorverapamil aroxetine rednisolone rednisolone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone acetate, aqueous matrix solid matrix falsartan ferapamil	20 15 70 65 35 70 70	High 160 220 130 150	25 20	High 150		(ng)
luticasone propionate lydrocortisone 0-hydroxy-amitriptyline leprobamate lethylprednisolone letoprolol lorfluoxetine lorverapamil aroxetine rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix lalsartan lerapamil	20 15 70 65 35 70	160 220 130 150	25 20	150		
lydrocortisone 0-hydroxy-amitriptyline leprobamate lethylprednisolone letoprolol orfluoxetine lorverapamil aroxetine rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix lerapamil	15 70 65 35 70 70	220 130 150	20			
O-hydroxy-amitriptyline Ileprobamate Ilethylprednisolone Iletoprolol Iorfluoxetine Iorverapamil Iaroxetine Irednisolone Irednisolone Irednisone Irednisone Iropoxyphene Iropoxyphene Iropoxyphene Iropoxyphene Invastatin Ineophylline Irenbolone Irenbolone Irenbolone Irenbolone Irenbolone Irenpamil	70 65 35 70 70	130 150		·2(1/1 -	50	≤2
leprobamate lethylprednisolone letoprolol lorfluoxetine lorverapamil aroxetine rednisolone rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix	65 35 70 70	150	70		80	≤60
lethylprednisolone letoprolol lorfluoxetine lorverapamil aroxetine rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix lalsartan lerapamil	35 70 70			130	30	≤0.15
letoprolol orfluoxetine lorverapamil aroxetine rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix lerapamil	70 70	240	70	140	30	≤4
lorfluoxetine lorverapamil laroxetine rednisolone rednisolone rednisone romethazine ropoxyphene ropranolol lertraline limvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix lalsartan lerapamil	70		40	220	50	≤10
lorverapamil aroxetine rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix lalsartan erapamil		130	70	130	30	≤1.5
aroxetine rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix alsartan erapamil		130	70	130	30	≤1.5
rednisolone rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix erapamil	55	130	60	130	30	≤0.15
rednisone romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix erapamil	70	130	70	130	30	≤4
romethazine ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix erapamil	35	240	40	220	50	≤6
ropoxyphene ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix falsartan ferapamil	50	180	60	170	30	≤20
ropranolol ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix alsartan erapamil	70	130	70	130	30	≤0.4
ertraline imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix alsartan erapamil	70	130	70	130	30	≤0.3
imvastatin heophylline renbolone renbolone acetate, aqueous matrix solid matrix alsartan erapamil	70	150	70	150	30	≤2
heophylline renbolone renbolone acetate, aqueous matrix solid matrix falsartan ferapamil	50	130	55	130	30	≤0.4
renbolone renbolone acetate, aqueous matrix solid matrix alsartan erapamil	1	150	1	140	100	≤20
renbolone acetate, aqueous matrix solid matrix alsartan erapamil	10	1000	70	900	50	≤60
solid matrix alsartan erapamil	70	140	70	135	30	≤4
alsartan erapamil	55	130	60	130	30	≤0.3
erapamil	55	250	60	250	30	≤0.3
5.4pa	70	130	70	130	30	≤4
urrogate Standards	70	145	70	140	30	≤0.15
					ı	
₅ -Alprazolam	45	130	45	130	30	
₆ -Amitriptyline	10	130	20	130	40	
8-Benzoylecgonine	10	170	20	160	40	
3-Benztropine	20	140	25	130	40	
3-Cocaine	25	140	30	130	50	
₇ -DEET	15	160	20	150	40	
₅ -Diazepam	15	160	25	150	40	
	40	240	45	230	50	
. ,	15	160	20	150	60	I
- 71	25	140	30	140	30	·
•	20	130	20	130	50	
6-Paroxetine	7	150	9	140	60	I
4-Promethazine	3	140	5	130	80	I
	30	130	40	130	30	·
1 31	25	140	30	130	30	<u> </u>
·	20	200	25	180	60	
ecovery Standards		-	-	· -	-	<u> </u>
C ₃ -Atrazine						

¹ OPR and IPR limits derived from actual method performance data according to EPA 821B98003, appendix D. ² Analysis result is classified as "Information Value" of estimated concentration.

Background level of Erythromycin - H₂O in the associated labeled surrogate may elevate the Erythromycin - H₂O blank value. Sample results may be blank corrected where acceptable by contract.

QC Specification Table: Instrumental Acceptance Specifications

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration point.
Initial Calibration (native compounds)	Initial, (1/X) weighted linear regression (followed by regular Cal/Ver procedures and repeated as necessary to maintain Cal/Ver results within established acceptance ranges. Calculated concentrations 70-130%, one point per compound may be 60-140% Internal guideline - correlation coefficient >0.985. Calibration curves with lower correlation coefficient values meeting all above criteria may be accepted based on batch specific QC results and professional judgement. For hydrocortisone, an increased frequency of Initial Calibration variance from method acceptance limits has been observed and is attributed to transient instrumental instability of response correctable by instrumental reanalysis. If the results are deemed to be fit for the intended purpose the hydrocortisone data may be flagged and reported with an explanation of the
	variance, otherwise instrumental re-analysis to correct the QC variance is required.
OPENING Calibration Verification	Every 20 samples. Determined concentrations within 70-130 % of actual. Allowable exception: A maximum of 1 compound per List or 10% of the compounds on a List, whichever is greater, may fall outside 70-130% provided they are in the range 60-140% of actual.
CLOSING Calibration Verification	Determined concentrations within 70-130 % of actual. Allowable exceptions: 1) Results for the greater of 1 compound or 10% of the compounds on a List may fall outside 60-140% provided the RPD between the CLOSING result and the OPENING result is <40%. 2) Closing calibration verification limits do not apply to Furosemide and Hydrochlorothiazide.
Instrumental Carryover And Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: < 0.3 % carryover and area response of analytes in instrument blank < 800 judged following two previous methanol blank injections.

APPENDIX I: LIMITATIONS TO PERFORMANCE

1. SOIL/SEDIMENT SAMPLES

The following surrogates can show recoveries in soil and sediment samples that do not meet method criteria. The exact reason is not known, as recoveries are in the normal range for other matrices including biosolids samples that undergo identical processing, and for aqueous samples as well. The interaction of dissolved inorganic components of the matrix with the analytes and the material in the Oasis HLB cartridge is the most likely cause for compounds in List 1 and List 5 showing low recovery.

Surrogate	List	Issue
¹³ C ₃ , ¹⁵ N-Ciprofloxacin	List 1	Low Recovery
¹³ C-d ₃ -Naproxen	List 3	Low Recovery
¹³ C ₃ -Ibuprofen	List 3	Low Recovery
¹³ C ₆ -Triclocarban	List 3	Low Recovery
d ₅ -Warfarin	List 3	Low Recovery
d ₆ -Bisphenol A	List 3	Low Recovery
d ₆ -Gemfibrozil	List 3	Low Recovery
d ₆ -Amitryptilline	List 5	Low Recovery
d ₃ -Benztropine	List 5	Low Recovery
d ₃ -Cocaine	List 5	Low Recovery
d ₅ -Norfluoxetine	List 5	Low Recovery
d ₆ -Paroxetine	List 5	Low Recovery
d ₅ -Propoxyphene	List 5	Low Recovery
d ₇ -Propranolol	List 5	Low Recovery

The following analytes show recoveries in the spiked matrix sample (SPM) not meeting existing method specifications. In addition, reporting of analytes in soil/sediment samples can require flagging due to surrogate recovery issues.

Analyte	List	Issue
Cefotaxime	List 1	High Recovery
Enrofloxacin	List 1	High Recovery/Not Reportable
Lomefloxacin	List 1	High Recovery/Not Reportable
Ofloxacin	List 1	High Recovery/Not Reportable
Oxolinic Acid	List 1	High Recovery
Penicillin V	List 1	High Recovery
Sarafloxacin	List 1	High Recovery/Not Reportable
Clinafloxacin	List 1	High Recovery/Not Reportable
Norfloxacin	List 1	High Recovery/Not Reportable
Ciprofloxacin	List 1	Not Reportable
Lincomycin	List 1	Low Recovery
Oxacillin	List 1	Low Recovery
Penicillin G	List 1	Low Recovery
Sulfamethizole	List 1	Low Recovery

2. 1,7-DIMETHYLXANTHINE, THEOPHYLLINE AND THEOBROMINE

1,7-Dimethylxanthine is an analyte in List 1, Theophylline or 1,3-dimethylxanthine is an analyte in List 5 of the same method. These analytes are isomers, and hence co-elute in both List 1 and List 5 instrumental runs, leading to a systematic over-reporting of each compound in the Spiked Matrix (SPM) samples. The recovery criteria for these compounds takes into account the effect of the cross interference on data accuracy. Any positive detection of either analyte is presumed to be a sum of the two analytes. Neither the HPLC, nor the mass spectrometer, can differentiate between the two compounds.

3. ROXITHROMYCIN, CLARITHROMYCIN AND TYLOSIN REQUANTIFICATIO

Roxithromycin, clarithromycin and tylosin are all quantified against ¹³C-sulfamethazine. This surrogate is chemically different from the analytes, and can sometimes show low recovery in samples even when the three analytes are not affected. If the recovery of ¹³C-sulfamethazine is less than 10%, upon request, roxithromycin, clarithromycin and tylosin are requantified against the recovery standard ¹³C-atrazine and flagged as estimated minimum concentrations if detected. The data is evaluated and flagged using procedures outlined in AXYS Document QDO-027 "Rules for the Application of Non-Quantifiable Flags (NQ) to MLA-075 Results".

4. CORRECTION PROCEDURE FOR HYDROCODONE AND CODEINE CROSS INTERFERENCE.

An examination of sample data and investigatory work reveals that there is significant analytical cross-interference between hydrocodone and codeine in the List 4 analysis. This interference arises from the chemical similarity of these compounds. The compounds have the same molecular weight and chemical formula, $C_{18}H_{21}NO_3$, and due to this structural similarity they are not separated on the HPLC column used in this analysis. In addition, full product ion scan data reveals that the quantitation transitions for each of these compounds show mass spectrometric interferences from the presence of the other compound. The extent of this interference is constant across the concentration range of the method, except close to the reporting limit where there is increased uncertainty.

The interference affects all analytical runs including the calibration. Impact on the spiked matrix (SPM/OPR) data is minimal because the effects from the calibration and sample data cancel each other out. Therefore, reported spike recovery data will not change significantly.

Correction

An algebraic correction of the results of hydrocodone and codeine is possible due to the constancy of the cross-interference. Using this algebraic correction enables Axys to report approximate concentrations of hydrocodone and codeine with the interferences taken into account. Use of this correction also enables Axys to detect and correct for false positive occurrence. In addition, the selection of a new quantitation transition for codeine (300.0 \rightarrow 215.0) has greatly reduced the cross interference of hydrocodone in codeine.

Algebraic Solution

Area Correction

$$H_{199} = \frac{Y - aX}{1 - ab}$$
, and

$$C_{215} = \frac{X - bY}{1 - ab}$$

where

X, Y = Observed areas of codeine and hydrocodone, respectively

C, H = Corrected areas for codeine and hydrocodone, respectively

a, b = Cross Interference constants, a = 0.564 (codeine in hydrocodone) and b = 0.022 (hydrocodone in codeine).

Correction of Linearity

Because the ratio of codeine:hydrocodone concentration is constant in the linearity calibration solutions, the linearity slope is reduced for each compound by a constant R = 0.737 for hydrocodone and 0.966 for codeine.

Concentration

$$C_{corr} = \frac{C_{uncorr} * A_{corr}}{R * A_{uncorr}},$$

where

A_{corr} is H or C

Auncorr is X or Y

R is the linearity correction.

Correction Limits

For hydrocodone, if $\frac{Y-H_{199}}{Y}$ > 0.5 , the concentration will be reported as ND < Y.

For codeine, if $\frac{X-C_{215}}{X}$ > 0.5 , the concentration will be reported as ND < X.

Application of the Correction

This correction is carried out in LIMS after data evaluation. The correction is applied to all samples except the calibration runs (calibration correction is already part of the correction), and the calibration verification runs.

Positive or Negative Bias

The sample correction and linearity corrections work in opposite directions. In a scenario where one analyte is present at relatively high levels and the other analyte is not present, or present at low levels, the effect from the linearity correction will dominate. If the relative amounts are comparable, the effect of the sample area correction will dominate.

Uncertainty and Impact on Sample Data

The correction approach takes into account the increased uncertainty due this cross-interference. If the measured area response for a compound is at least two times the correction required, data indicates that the correction can be carried out and the corrected concentration is reported. However, if the correction required is higher than this threshold, the compound is reported as not detected with a detection limit equal to the observed concentration. The effect will be to elevate the detection limit of the lower concentration analyte in the presence of relatively higher concentrations of the alternate analyte.

5. METHYL ESTER INTERFERENCE OF BETA-LACTAM ANTIBIOTICS

Cloxacillin, oxacillin and penicillin G are reported as 'Information Values' of estimated concentration. These compounds are determined by LC-MS/MS using ions from the methanol adduct of the compound (M+CH₃OH). There is indication that methyl esters of these compounds can also form in standard solutions over time. Ions from these methyl esters cannot be distinguished from methanol adduct ions formed from the parent compound. The consequence of this reaction could be a slow, but continuous increase of instrument response for these compounds in the calibration solutions. The rate of change in response is different for each compound. This behavior has not yet been observed/documented in client samples. The result of this standard transformation is to confer greater uncertainty on measured concentrations of these three compounds.

6. POTENTIAL AMPHETAMINE INTERFERENCE

The presence of an interfering compound with potential to obscure or cause false positive detection of amphetamine has been observed in some water and solids samples. Use of the secondary transition response, itself prone to interference, is not reliable in overcoming the interference problem. Partial or complete chromatographic resolution of the interfering compound has been observed - i.e. a shift of the native compound peak RT (retention time) relative to that of the d5-amphetamine surrogate is indicative of the interference. Where evidence of this interference is observed amphetamine results are flagged in reports as "estimated maximum possible values".

- 1. Positive identification of amphetamine requires an RT difference of 0.10 minutes or less between native and labeled amphetamine.
- 2. Where the RT differences between a candidate peak and labeled amphetamine is greater than +0.10 minutes, the result will be quantified as amphetamine but flagged as an "estimated maximum possible concentration" on reports. The flag must be edited by hand in LIMS; EMPC, K or NDR dependent on client flagging requirements.
- 3. Where the RT difference between the closest native peak and labeled amphetamine is sufficient to avoid "masking" of any amphetamine response (generally requires an RT difference of 0.25 minutes or greater) amphetamine will be reported as not detected.
- 4. Where multiple injection data for a sample are available (e.g. a neat and a diluted run), instrument analysts will report amphetamine from the chromatogram producing the most definitive result based on an evaluation of peak shape and peak resolution. The result will

be quantified as amphetamine but flagged as an "estimated maximum possible concentration" on reports. The flag must be edited by hand in LIMS; EMPC, K or NDR dependent on client flagging requirements.

- 5. Extracts will not be routinely diluted and reinjected for improvement of amphetamine interference alone as there is no evidence that this is systematically effective.
- 6. For amphetamine with a high peak area response above the SPM, the 1st channel should be confirmed by the 2nd channel. If no peak is present in the 2nd channel, the peak in the 1st channel is possibly not amphetamine and should be removed from the 1st channel.

7. POTENTIAL DEGRADATION OF RANITIDINE IN THE STANDARD SOLUTION

Degradation of ranitidine in the standard solution used to prepare OPR tests has been observed intermittently under the specific conditions of the storage. Where OPR test results indicate the possibility of spiking solution degradation, the ranitidine OPR assigned value is adjusted based on the results of a secondary QC test solution (SAR) prepared from the same ampoule that has been analyzed alongside samples. This problem has been demonstrated to have no impact on sample data accuracy

APPENDIX II: EXTRACTION OF TISSUE SAMPLES

The analysis requires extraction at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5).

Two separate tissue sub-samples (one for acidic extraction and the other for basic extraction) are spiked with surrogates, extracted by sonication with pure acetonitrile and then with aqueous buffer (separate extractions at pH 2 and at pH 10, respectively), concentrated by rotary evaporation, decanted, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The acidic and basic extracts are then separately cleaned up by solid phase extraction (SPE) and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs for the complete list of analytes.

QC Acceptance Limits, Tissues

List 1	OPR R	ecovery	Sample Surrogate Recovery	
	Low (%)	High (%)	Low (%)	High (%)
Acetaminophen	70	130		
Azithromycin	70	250		
Caffeine	70	130		
Carbadox	10	130		
Carbamazepine	70	150		
Cefotaxime	70	300		
Ciprofloxacin	70	130		
Clarithromycin	70	250		
Clinafloxacin	70	200		
Cloxacillin ²	70	250		
Dehydronifedipine	70	200		
Diphenhydramine	60	130		
Diltiazem	70	200		
Digoxin	70	250		
Digoxigenin	50	200		
Enrofloxacin	70	130		
Erythromycin-H ₂ O	70	130		
Flumequine	60	200		
Fluoxetine	70	130		
Lincomycin	70	300		
Lomefloxacin	70	150		
Miconazole	5	130		
Norfloxacin	70	150		
Norgestimate	5	130		
Ofloxacin	70	200		
Ormetoprim	70	130		
Oxacillin ²	70	200		
Oxolinic acid	70	130		
Penicillin G ²	20	130		
Penicillin V	70	250		
Roxithromycin	50	200		
Sarafloxacin	50	130		
Sulfachloropyridazine	70	200		

Sulfadiazine	70	300		
Sulfadimethoxine	70	130		
Sulfamerazine	70	200		
Sulfamethazine	70	130		
Sulfamethizole	60	130		
Sulfamethoxazole	70	130		
Sulfanilamide	50	300		
Sulfathiazole	70	130		
Thiabendazole	70	130		
Trimethoprim	70	130		
Tylosin	60	200		
Virginiamycin M1	30	200		
1,7-Dimethylxanthine	70	250		
¹³ C ₂ , ¹⁵ N-acetaminophen	30	150	30	250
¹³ C ₃ -Caffeine	30	150	20	250
d10-Carbamazepine	30	150	30	150
¹³ C ₃ ,N ¹⁵ -ciprofloxacin	30	150	30	200
¹³ C₂-Erythromycin-H₂O	30	206	5	200
d5-Fluoxetine	30	150	20	150
¹³ C ₆ -Sulfamethazine	30	150	30	150
¹³ C ₆ -Sulfamethoxazole	30	150	10	150
d6-Thiabendazole	30	150	30	150
¹³ C ₃ -Trimethoprim	30	150	30	200

OPR Recovery - List 2
This method has not been validated for List 2 compounds in tissue samples

List 3	OPR R	ecovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Bisphenol A	60	130		
Furosemide	70	150		
Gemfibrozil	70	130		
Glipizide	70	130		
Glyburide	70	130		
Hydrochlorothiazide	20	130		
2-Hydroxy-Ibuprofen	70	221		
Ibuprofen	70	130		
Naproxen	70	130		
Triclocarban	70	130		
Triclosan	70	146		
Warfarin	70	130		
d6-Bisphenol A	30	150	30	150
d6-Gemfibrozil	20	150	5	150
d11-Glipizide	30	150	30	150
d3-Glyburide	20	150	5	150
¹³ C ₃ -Ibuprofen	30	150	10	150

¹³ C-d3-Naproxen	30	150	30	150
¹³ C ₆ -Triclocarban ¹	NQ	150	NQ	150
¹³ C ₁₂ -Triclosan ¹	5	150	NQ	150
d5-Warfarin	30	150	10	150

List 4	OPR R	ecovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Albuterol	60	130		
Amphetamine	70	130		
Atenolol	70	130		
Atorvastatin	70	150		
Cimetidine	30	130		
Clonidine	70	130		
Codeine	70	130		
Cotinine	70	130		
Enalapril	70	130		
Hydrocodone	70	130		
Metformin	70	130		
Oxycodone	70	150		
Ranitidine 1	NQ	150		
Triamterene	70	130		
d3-Albuterol	20	150	5	150
d5-Amphetamine	30	150	5	150
d7-Atenolol	30	150	30	300
d3-Cimetidine 1	30	150	NQ	500
d4-Clonidine	30	150	30	300
d6-Codeine	10	150	5	150
d3-Cotinine	30	150	30	300
d5-Enalapril	30	150	10	150
d3-Hydrocodone	30	150	20	150
d6-Metformin	10	150	5	200
d6-Oxycodone	30	150	30	150

List 5	OPR R	ecovery		Surrogate overy
	Low (%)	High (%)	Low (%)	High (%)
Alprazolam	70	130		
Amitriptyline	70	130		
Amlodipine	70	130		
Benzoylecgonine	70	130		
Benztropine	70	150		
Betamethasone	70	250		
Cocaine	70	130		
DEET	70	150		
Desmethyldiltiazem	70	200		
Diazepam	70	130		
Fluocinonide	70	130		
Fluticasone Propionate	20	130		
Hydrocortisone	70	150		

10-Hydroxy-Amitriptyline	70	130		
Meprobamate	70	130		
Methylprednisolone	50	150		
Metoprolol	70	130		
Norfluoxetine	70	130		
Norverapamil	60	130		
Paroxetine	70	130		
Prednisolone	70	150		
Prednisone	70	150		
Promethazine	70	130		
Propoxyphene	70	130		
Propranolol	70	130		
Sertraline	10	130		
Simvastatin	10	130		
Theophylline	70	273		
Trenbolone	70	130		
Trenbolone acetate	30	130		
Valsartan	20	130		
Verapamil	70	200		
d5-Alprazolam	30	150	30	150
d6-Amitriptyline	30	150	10	150
d8-Benzoylecgonine	30	150	20	150
d3-Benztropine	30	150	10	150
d3-Cocaine	30	150	30	150
d7-DEET	30	150	30	150
d5-Diazepam	30	150	10	150
d3-Methylprednisolone	30	200	30	150
d7-Metoprolol	30	150	30	200
d5-Norfluoxetine	30	150	5	300
d6-Paroxetine	20	150	5	150
d4-Promethazine	30	150	20	150
d5-propoxyphene	30	150	30	200
d7-Propranolol	30	150	30	200
¹³ C, ¹⁵ N ₂ -Theophylline	30	150	20	150
d4-Hydrocortisone	30	150	30	200

¹ NQ= Not Quantifiable. Low recovery rate may preclude quantification

 $^{^{\}rm 2}\,$ Analysis result classified as 'Information Value' of estimated concentration.

APPENDIX III: EFFECTS OF ADDING ASCORBIC ACID TO SAMPLES.

Ascorbic acid is added to quench free chlorine in aqueous samples that have been chlorinated. The presence of free chlorine has severe effects on the recovery of analytes and most surrogate compounds. 50 mg/L of ascorbic acid is usually added to samples. The vast majority of analytes and standards are not affected by ascorbic acid addition. It is possible that some analytes may show enhanced recovery. The effects of ascorbic acid on each analyte/standard is shown below.

Analyte	List	Effect	Surrogates	List	Effect
Acetaminophen	List 1	Normal	¹³ C ₂ , ¹⁵ N-Acetaminophen	List 1	Normal
Azithromycin	List 1	Normal	¹³ C ₃ -Caffeine	List 1	Normal
Caffeine	List 1	Normal	¹³ C ₃ , ¹⁵ N-Ciprofloxacin	List 1	Normal
Carbadox	List 1	Normal	¹³ C ₂ -Erythromycin-H ₂ O	List 1	Normal
Carbamazepine	List 1	Normal	d5-Fluoxetine	List 1	Normal
Cefotaxime	List 1	Normal	¹³ C ₆ -Sulfamethazine	List 1	Normal
Ciprofloxacin	List 1	Normal	¹³ C ₆ -Sulfamethoxazole	List 1	Normal
Clarithromycin	List 1	Normal	d6-Thiabendazole	List 1	Normal
Clinafloxacin	List 1	Normal	¹³ C ₃ -Trimethoprim	List 1	Normal
Cloxacillin	List 1	Normal	d6-Thiabendazole	List 2	Normal
Dehydronifedipine	List 1	Normal	d6-Bisphenol	List 3	Normal
Diphenhydramine	List 1	Marginal low bias	d6-Gemfibrozil	List 3	Normal
		Marginal			
Diltiazem	List 1	low bias	d11-Glipizide	List 3	Normal
Digoxin	List 1	Normal	d3-Glyburide	List 3	Normal
Digoxigenin	List 1	Normal	¹³ C ₃ -Ibuprofen	List 3	High bias
Enrofloxacin	List 1	Normal	¹³ C-d3-Naproxen	List 3	Normal
Erythromycin-H ₂ O	List 1	Normal	¹³ C ₆ -Triclocarban	List 3	Normal
Flumequine	List 1	Normal	¹³ C ₁₂ -Triclosan	List 3	Normal
Fluoxetine	List 1	Normal	d5-Warfarin	List 4	Normal
Lincomycin	List 1	Normal	d3-Albuterol	List 4	Normal
Lomefloxacin	List 1	Normal	d6-Metformin	List 4	Normal
Miconazole	List 1	Normal	d3-Cotinine	List 4	Normal
Norfloxacin	List 1	Normal	d3-Cimetidine	List 4	Normal
Norgestimate	List 1	Normal	d5-Enalapril	List 4	Normal
Ofloxacin	List 1	Normal	d6-Oxycodone	List 4	Normal
Ormetoprim	List 1	Normal	d4-Clonidine	List 4	Normal
Oxacillin	List 1	Normal	d5-Amphetamine	List 4	Normal
Oxolinic Acid	List 1	Normal	d6-Codeine	List 4	Normal
Penicillin G	List 1	Normal	d3-Hydrocodone	List 4	Normal
Penicillin V	List 1	Normal	d7-Atenolol	List 4	Normal
Roxithromycin	List 1	Normal	d5-Alprazolam	List 5	Normal
Sarafloxacin	List 1	Normal	d6-Amitriptyline	List 5	Normal
Sulfachloropyridazine	List 1	Normal	d8-Benzoylecgonine	List 5	Normal
Sulfadiazine	List 1	Normal	d3-Benztropine	List 5	Normal
Sulfadimethoxine	List 1	Normal	d3-Cocaine	List 5	Normal
Sulfamerazine	List 1	Normal	d7-DEET	List 5	Normal
Sulfamethazine	List 1	Normal	d5-Diazepam	List 5	Normal
Sulfamethizole	List 1	Normal	d3-Methylprednisolone	List 5	Normal
Sulfamethoxazole	List 1	Normal	d7-Metoprolol	List 5	Normal
Sulfanilamide	List 1	Normal	d5-Norfluoxetine	List 5	Normal

Sulfathiazole	List 1	Normal	d6-Paroxetine	List 5	Normal
Thiabendazole	List 1	Normal	d4-Promethazine	List 5	Normal
Trimethoprim	List 1	Normal	d5-propoxyphene	List 5	Normal
Tylosin	List 1	Normal	d5-propoxyphene d7-Propranolol	List 5	Normal
Virginiamycin M1	List 1	Normal	¹³ C, ¹⁵ N ₂ -Theophylline	List 5	Normal
1,7- Dimethylxanthine	List 1	Normal	d4-Hydrocortisone	List 5	Normal
CTC	List 2	Normal	u4-Hydrocorusone	LISU	INUITIIAI
ECTC	List 2	Normal			
ACTC	List 2	Normal			
EACTC	List 2	Normal			
ICTC		Normal			
	List 2	Normal			
Demeclocycline	List 2				
Doxycycline	List 2	Normal			
OTC	List 2	Normal			
EOTC	List 2	Normal			
TC	List 2	Normal			
ETC	List 2	Normal			
EATC	List 2	High Bias			
ATC	List 2	Normal		-	
Minocycline (458>441)	List 2	Normal		1	
Bisphenol A	List 3	Normal		1	
Furosemide	List 3	Normal		1	
Gemfibrozil	List 3	Normal			
Glipizide	List 3	Normal			
Glyburide	List 3	Normal			
Hydrochlorothiazide	List 3	Normal			
2-hydroxy-ibuprofen	List 3	Normal			
Ibuprofen	List 3	Normal			
Naproxen	List 3	Normal			
Triclocarban	List 3	Normal			
Triclosan	List 3	Normal			
Warfarin	List 3	Normal			
Albuterol	List 4	Normal			
Amphetamine	List 4	Normal			
Atenolol	List 4	Normal			
Atorvastatin	List 4	Normal			
Cimetidine	List 4	Normal			
Clonidine	List 4	Normal			
Codeine	List 4	Normal			
Cotinine	List 4	Normal			
Enalapril	List 4	Normal			
Hydrocodone	List 4	Normal			
Metformin	List 4	Normal			
Oxycodone	List 4	Normal			
Ranitidine	List 4	Normal			
Triamterene	List 4	Normal			
Alprazolam	List 5	Normal			
Amitriptyline	List 5	Normal			
Amlodipine	List 5	Normal			
Benzoylecgonine	List 5	Normal			
Benztropine	List 5	Normal			
Betamethasone	List 5	Normal			
Cocaine	List 5	Normal			
DEET	List 5	Normal			
Desmethyldiltiazem	List 5	Normal			
, , , , , , , , , , , , , , , , , , ,			I .	1	1

Diazepam	List 5	Normal		
Fluocinonide	List 5	Normal		
Fluticasone Propionate	List 5	Normal		
Hydrocortisone	List 5	Normal		
10-hydroxy-amitriptyline	List 5	Normal		
Meprobamate	List 5	Normal		
Methylprednisolone	List 5	Normal		
Metoprolol	List 5	Normal		
Norfluoxetine	List 5	Normal		
Norverapamil	List 5	Normal		
Paroxetine	List 5	High Bias		
Prednisolone	List 5	Normal		
Prednisone	List 5	Normal		
Promethazine	List 5	Normal		
Propoxyphene	List 5	Normal		
Propranolol	List 5	Normal		
Sertraline	List 5	Normal		
Simvastatin	List 5	Normal		
Theophylline	List 5	Normal		
Trenbolone	List 5	Normal		
Trenbolone acetate	List 5	Normal		
Valsartan	List 5	Normal	 	
Verapamil	List 5	Normal		

APPENDIX IV: SUMMARY COMPARISON OF USEPA METHOD 1694 AND AXYS METHOD MLA-075.

Area	EPA 1694	MLA-075
Applicable Matrices	Aqueous, Solids	Aqueous, Solids, <i>Tissue</i>
Analytes Offered	73 compounds, 2 fractions, 4 instrumental runs	146 compounds, 2 fractions, 6 instrumental runs
Sample Containers	Amber glass	Amber glass or <i>HDPE</i>
Chlorine Quenching (water samples)	80 mg sodium thiosulfate per liter, ascorbic acid allowable alternative	50 mg ascorbic acid per liter
Sample Preservation	pH 5-9 if hold time >48hr or freeze	None
Sample Storage Temperature	< 6°C or frozen (aqueous, solids)	Aqueous: < 4 °C; Solids: <-20 °C
Sample Hold Time (guideline only)	Aqueous, 7 days at < 6°C, undefined for frozen storage Solids, 7 days at <-10 °C	Aqueous: 7days for < 4 °C storage Solids: 7 days for -20 °C storage
Extract Hold Time	40 days	40 days
Extraction (separate acid, base fractions)	Aqueous: adjust to pH 2 or pH 10, stabilize with EDTA	Aqueous: adjust to pH 2 or pH 10, stabilize with EDTA
	Solids: adjust to pH 2 or pH 10, stabilize with EDTA, ultrasonic extract into buffered acetonitrile, exchange to water solution	Solids: adjust to pH 2 or pH 10, stabilize with EDTA, ultrasonic extract into buffered acetonitrile, exchange to water solution
Clean-up (separate acid, base fractions)	SPE (HLB), elute in methanol	SPE (HLB), elute in methanol
Instrumental Acquisition	LC-MS/MS, 3 +ESI runs, 1 -ESI run	LC-MS/MS, 5 +ESI runs, 1 -ESI run
Calibration Range, ng/mL in standard	Minimum 5 points, range 0.25- 25000 mg/mL	Minimum 5 points, range 0.08- 30000 ng/mL
Calibration Model	Multi-level, constant RRF; alternative models allowable	Multi-level, 1/x weighted linear regression
Initial Calibration Limits	RSD of RRF >20% (isotope dilution) or <35% (internal standard)	Calculated points 70-130% of actual (allowable exception per compound 60-140%)

Area	EPA 1694	MLA-075
Calibration Verification Limits	70-130%	Calculated points 70-130% of actual (allowable exception one compound per list or 10% of compounds per list may be 60-140%)
Quantification Type	Isotope dilution or internal standard	Isotope dilution or internal standard
Quantification References	18 isotopically labeled compounds	67 isotopically labeled compounds
Initial Precision and Recovery (IPR) Limits, %	range 6-180 %	performance based, generally 3- 250 %
On-Going Precision and Recovery (OPR) Limits, %	range 5-200 %	performance based, generally 2- 300 %
Blank Limits, ng per sample	range 1-500 ng	performance based, generally 0.3 - 80 ng
Surrogate Recovery Limits, %	range 5- 200 %	performance based, generally 3-250 %
Lower Reporting Limit, ng per sample based on low calibration standard	range 1 – 500 ng	performance based, generally 0.3 – 500 ng

APPENDIX V: ANALYSIS OF LIST 6 COMPOUNDS IN AQUEOUS, SOLID AND TISSUE SAMPLES.

The aqueous, solid and tissue sample extraction and cleanup procedures for List 6 compounds are the same as for List 1, 2, 3 and 5 compounds, and List 6 compounds may be analyzed from the same extract.

QC Acceptance Limit Guidelines for List 6 Compounds

List 6 Native Compounds (APOS) Amsacrine, aqueous 5	very ir	n sample covery) High		rage ery (%) High	RSD (%)	Blank Level (ng)
List 6 Native Compounds (APOS) Amsacrine, aqueous 5	50 2		Low	High		(9)
Amsacrine, aqueous 5	2	130				
' '	2	130				
solid			60	130	30	
	.)()	130	3	130	100	≤ 0.8
		130	20	130	30	
Azathioprine, all matrices 7	70	130	70	130	30	≤ 8
Busulfan, all matrices 7	70	130	70	130	30	≤ 24
,	70	130	70	130	30	
	60	130	60	130	30	≤ 80
	70	180	70	160	30	
· · · · · · · · · · · · · · · · · · ·	70	150	70	150	30	
	70	150	70	150	30	≤ 900
	70	250	70	250	30	
	70	130	70	130	30	
	40	160	50	160	30	≤ 0.4
-	50	130	60	130	30	
Clotrimazole, all matrices 7	70	130	70	130	30	≤ 2
	70	130	70	130	30	
	70	130	70	130	30	≤ 2
	70	140	70	140	30	
	70	130	70	130	30	
	70	130	70	130	30	≤ 1.6
	70	140	70	130	30	
' '	60	140	60	130	30	
	25	260	30	240	70	≤ 16
	70	130	70	130	30	
, · · · · · · · · · · · · · · · · · · ·	70	130	70	130	30	. 40
	60	140	70	130	30	≤ 40
	70	130	70	130	30	
· ·	30 15	180	30	160	45 70	< 0.4
	70	200 130	15 70	180 130	70 30	≤ 24
	70	130	70	130	30	
' ' '	70	130	70	130	30	≤ 8
	70	140	70	130	30	_ 3
	70	150	70	140	30	
	60	140	60	130	30	≤ 4
	70	130	70	130	30	

	OPR Recovery			IPR		
	covery	rogate re- in sample ecovery)		erage very (%)	RSD (%)	Blank Level
	Low	High	Low	High		(ng)
lopamidol, aqueous	70	140	70	140	30	
solid	70	130	70	130	30	≤ 80
tissue	70	130	70	130	30	
Lomustine, aqueous	40	130	50	130	30	
solid	20	140	30	140	40	≤ 50
tissue	40	130	40	130	30	
Medroxyprogesterone acetate, aqueous	60	130	60	130	30	
solid	70	130	70	130	30	≤ 4
tissue	70	130	70	130	30	
Melphalan, aqueous	50	130	50	130	30	
solid	60	130	60 50	130	30	≤ 64
tissue	50	130	50	130	30	
Metronidazole, all matrices	70	130	70	130	30	≤ 4
Moxifloxacin, aqueous	70	130	70	130	30	≤ 4
Solid ¹	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
tissue	50	130	50	130	30	≤ 4
Norethindrone, aqueous	60	180	60	170	30	
solid	50	140	50	140	30	≤ 64
tissue	60	200	70	180	30	
Oxazepam, aqueous solid	70 60	130 130	70 70	130 130	30 30	≤ 16
tissue	70	130	70 70	130	30	≥ 10
Rosuvastatin, all matrices	70	130	70	130	30	≤ 16
	70	130	70	130	30	2 10
Tamoxifen, aqueous solid	40	180	50	180	30	≤ 0.4
tissue	70	130	70	130	30	≥ 0.4
Teniposide, aqueous	15	130	15	130	30	
solid	15	130	20	130	40	≤ 8
tissue	40	130	50	130	30	
Venlafaxine, aqueous	70	130	70	130	30	
solid	70	130	70	130	30	≤ 1.2
tissue	25	200	30	180	60	
Zidovudine, all matrices	70	130	70	130	30	≤ 50
Surrogate Standards						
¹³ C ₄ -Azathioprine, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	20	150	20	150	40	<u> </u>
d ₈ -Busulfan, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	50	160	50	160	30	
d ₆ -Citalopram, aqueous	50	150	50	150	30	
solid	2	150	2	150	150	
tissue	50	150	50	150	30	
]		

	OPR Recovery			IPR		
		rogate re-			DOD	Blank
		covery in sample (% Recovery)		erage very (%)	RSD (%)	Level (ng)
	Low	High	Low	High		(119)
d ₅ -Clotrimazole, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	15	150	20	150	40	
d ₆ -Colchicine, all matrices	50	150	50	150	30	
d ₄ -Cyclophosphamide, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	40	150	30	
¹³ C,d ₃ -Daunorubicin, aqueous	10	150	10	150	80	
solid	1	150	1	150	250	
tissue	50	150	50	150	30	
d ₆ -Diatrizoic acid, aqueous	50	150	50	150	30	
solid	2	150	2	150	120	
tissue	15	150	15	150	30	
¹³ C ₃ -Drospirenone, aqueous	50	150	50 50	150	30	
solid tissue	50 30	150 150	50 40	150 150	30 30	
d ₃ -Etoposide, aqueous	10	150	10	150	80	
solid	50	150	50	150	30	
tissue	50	150	50	150	30	
d ₈ -lopamidol, aqueous	15	150	15	150	30	
solid	5	150	7	150	100	
tissue	50	150	50	150	30	
d ₆ -Medroxyprogesterone acetate, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	30	150	30	150	30	
d ₈ -Melphalan, aqueous	4	150	4	150	60	
solid	10	150	10	150	50	
tissue	2	150	2\3	150	100	
d ₄ -Metronidazole, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	50	180	50	160	30	
¹³ C,d ₃ -Moxifloxacin, aqueous	15	150	15	150	50	
Solid ¹	n.a.	n.a.	n.a.	n.a.	n.a.	
tissue	50	150	50	150	30	
d ₆ -Norethindrone, aqueous	50 50	150	50 50	150	30	
solid tissue	50 50	180 150	50 50	160 150	30 30	
d ₅ -Oxazepam, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	40	150	30	
d ₆ -Rosuvastatin, aqueous	50	150	50	150	30	
solid	50	150	50	150	30	
tissue	40	150	50	150	30	
d ₅ -Tamoxifen, aqueous	30	150	40	150	30	
solid	8	150	8	150	80	
tissue	5	150	5	150	60	

		OPR Recovery and surrogate re- covery in sample (% Recovery)		IPR			Blank
				Average Recovery (%)			
		Low	High	Low	High		(ng)
d ₆ -Venlafaxine,	aqueous	50	150	50	150	30	
	solid	35	150	40	150	30	
	tissue	30	150	40	150	30	
d ₃ -Zidovudine,	aqueous	50	150	50	150	30	
	solid	50	150	50	150	30	
	tissue	50	180	50	180	30	
Recovery Standa	ard						
¹³ C ₃ -Atrazine							

The acceptance limits in the table 21 above are guidelines based on initial estimate: recoveries outside of these limits do not invalidate results

Nominal Concentrations of Native Standard, Surrogate Standard and Recovery Standard Solutions for List 6 Compounds

Compound Name	Nominal concentration of Standard Solution	Typical amount spiked (ng)
Native Standard Solution for List 6 acid extracted analytes	(μg/mL)	ng spiked from 240 μL or 100 μL spike
Amsacrine	0.24	24
Azathioprine	2.4	240
Busulfan	7.2	720
Carmustine	24	2400
Chloramphenicol	240	24000
Citalopram	0.05	12
Clotrimazole	0.6	60
Colchicine	0.6	60
Cyclophosphamide	0.2	48
Daunorubicin	4.8	480
Diatrizoic acid	5	1200
Doxorubicin	7.2	720
Drospirenone	2.4	240
Etoposide	1.2	120
lopamidol	10	2400
Lomustine	14.4	1440
Medroxyprogesterone acetate	1.2	120
Melphalan	19.2	1920
Metronidazole	1.2	120
Moxifloxacin	1.2	120
Norethindrone	19.2	1920
Oxazepam	4.8	480

Rosuvastatin	4.8	480
Tamoxifen	0.05	12
Teniposide	2.4	240
Venlafaxine	0.05	12
Zidovudine	14.4	1440
Surrogate Standard Solution for List 6 acid extracted analytes	(μg/mL)	ng spiked from 25 μL spike
¹³ C ₄ -Azathioprine	9.6	240
d ₈ -Busulfan	28.8	720
d ₆ -Citalopram	0.4	10
d ₅ -Clotrimazole	2.4	60
d ₆ -Colchicine	2.4	60
d₄-Cyclophosphamide	1.6	40
¹³ C,d ₃ -Daunorubicin	19.2	480
d ₆ -Diatrizoic Acid	40	1000
¹³ C ₃ -Drospirenone	9.6	240
d ₃ -Etoposide	4.8	120
d ₈ -lopamidol	80	2000
d ₆ -Medroxyprogesterone acetate	4.8	120
d ₈ -Melphalan	76.8	1920
d₄-Metronidazole	4.8	120
¹³ C,d ₃ -Moxifloxacin	4.8	120
d ₆ -Norethindrone	76.8	1920
d ₅ -Oxazepam	19.2	480
d ₆ -Rosuvastatin	19.2	480
d ₅ -Tamoxifen	0.4	10
d ₆ -Venlafaxine	0.4	10
d ₃ -Zidovudine	57.6	1440
Recovery Standard Solution for List 6 acid extracted analytes	(µg/mL)	ng spiked from 100 µL spike
¹³ C ₃ -Atrazine	2.0	200
¹³ C ₆ -2,4,5-Trichlorophenoxyacetic acid	2.0	200
-		•

Nominal Concentrations of Calibration Solutions for List 6 Compounds (ng/mL)

Compound name	Calibration Standards List 6 (Acid extraction, positive ESI)								
·	Level A	Level B	Level C	Level D	Level E	Level F	Level G		
Amsacrine	0.2	0.6	2	6	20	60	200		
Azathioprine	2	6	20	60	200	600	2000		
Busulfan	6	18	60	180	600	1800	6000		
Carmustine	20	60	200	600	2000	6000	20000		
Chloramphenicol	220	550	1100	2200	4400	8800	22000		
Citalopram	0.1	0.3	1	3	10	30	100		
Clotrimazole	0.5	1.5	5	15	50	150	500		
Colchicine	0.5	1.5	5	15	50	150	500		
Cyclophosphamide	0.4	1.2	4	12	40	120	400		

Daunorubicin	4	12	40	120	400	1200	4000
Diatrizoic acid	10	30	100	300	1000	3000	10000
Doxorubicin	6	18	60	180	600	1800	6000
Drospirenone	2	6	20	60	200	600	2000
Etoposide	1	3	10	30	100	300	1000
lopamidol	20	60	200	600	2000	6000	20000
Lomustine	12	36	120	360	1200	3600	12000
Medroxyprogesterone acetate	1	3	10	30	100	300	1000
Melphalan	16	48	160	480	1600	4800	16000
Metronidazole	1	3	10	30	100	300	1000
Moxifloxacin	1	3	10	30	100	300	1000
Norethindrone	16	48	160	480	1600	4800	16000
Oxazepam	4	12	40	120	400	1200	4000
Rosuvastatin	4	12	40	120	400	1200	4000
Tamoxifen	0.1	0.3	1	3	10	30	100
Teniposide	2	6	20	60	200	600	2000
Venlafaxine	0.1	0.3	1	3	10	30	100
Zidovudine	12	36	120	360	1200	3600	12000
Surrogate Standards							
¹³ C ₄ -Azathioprine	60	60	60	60	60	60	60
d ₈ -Busulfan	180	180	180	180	180	180	180
d ₆ -Citalopram	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₅ -Clotrimazole	15	15	15	15	15	15	15
d ₆ -Colchicine	15	15	15	15	15	15	15
d₄-Cyclophosphamide	10	10	10	10	10	10	10
¹³ C,d ₃ -Daunorubicin	120	120	120	120	120	120	120
d ₆ -Diatrizoic Acid	250	250	250	250	250	250	250
¹³ C ₃ -Drospirenone	60	60	60	60	60	60	60
d ₃ -Etoposide	30	30	30	30	30	30	30
d ₈ -lopamidol	500	500	500	500	500	500	500
d ₆ -Medroxyprogesterone acetate	30	30	30	30	30	30	30
d ₈ -Melphalan	480	480	480	480	480	480	480
d₄-Metronidazole	30	30	30	30	30	30	30
¹³ C,d ₃ -Moxifloxacin	30	30	30	30	30	30	30
d ₆ -Norethindrone	480	480	480	480	480	480	480
d ₅ -Oxazepam	120	120	120	120	120	120	120
d ₆ -Rosuvastatin	120	120	120	120	120	120	120
d ₅ -Tamoxifen	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₆ -Venlafaxine	2.5	2.5	2.5	2.5	2.5	2.5	2.5
d ₃ -Zidovudine	360	360	360	360	360	360	360
Recovery Standards							
¹³ C ₃ -Atrazine	50	50	50	50	50	50	50

List 6 – Acid Extraction, Positive Electrospray Ionization (+)ESI: Analytes, Ions and Quantification References (The acquisition ion masses in this table reflect the instrument settings. The actual MS/MS resolution is normally 1 amu.)

Target Analyte	Typical Retention Time (min)	Typical RRT	RRT Reference	Parent Ion Mass	Daughter Ion Mass	Quantified against
lopamidol	2.4	1.000	d ₈ -lopamidol	795.0	777.9 (558.8) *	d ₈ -lopamidol
Diatrizoic acid	4.3	1.000	d ₆ -Diatrizoic acid	631.9	360.9 (614.6) *	d ₆ -Diatrizoic acid
Metronidazole	6.5	1.032	d ₄ -Metronidazole	171.9	128 (82.1) *	d ₄ -Metronidazole
Carmustine	10.2	0.895	¹³ C₄-Azathioprine	185 ** (187) *	80 (82) *	¹³ C ₄ -Azathioprine
Azathioprine	11.3	0.991	¹³ C₄-Azathioprine	277.9	142.0 (232.0) *	¹³ C ₄ -Azathioprine
Busulfan	11.8	1.017	d ₈ -Busulfan	264	151 (247) *	d ₈ -Busulfan
Zidovudine	12.0	1.000	d ₃ -Zidovudine	268.0	127.0 (110.0) *	d ₃ -Zidovudine
Moxifloxacin	14.5	1.000	¹³ C,d ₃ -Moxifloxacin	402.1	384.2 (358.2) *	¹³ C,d ₃ -Moxifloxacin
Chloramphenicol	14.7	0.980	d ₄ -Cyclophosphamide	340	275 (323) *	d ₄ -Cyclophosphamide
Cyclophosphamide	15.1	1.007	d ₄ -Cyclophosphamide	260.9	140.0 (233.0) *	d ₄ -Cyclophosphamide
Venlafaxine	15.1	1.000	d ₆ -Venlafaxine	278.3	58.4 (260.2) *	d ₆ -Venlafaxine
Amsacrine	15.1	1.000	d ₆ -Venlafaxine	394.0	315.1 (179.1) *	d ₆ -Venlafaxine
Melphalan	15.6	1.006	d ₈ -Melphalan	305	288 (246) *	d ₈ -Melphalan
Colchicine	16.0	1.000	d ₆ -Colchicine	400.1	358.1 (341.1) *	d ₆ -Colchicine
Lomustine	16.1	1.066	d ₆ -Venlafaxine	205 **	123 (80.1) *	d ₆ -Venlafaxine
Etoposide	16.2	1.000	d ₃ -Etoposide	606.2	229.2 (589.2) *	d₃-Etoposide
Citalopram	16.2	1.000	d ₆ -Citalopram	325.1	109.1 (262.1) *	d ₆ -Citalopram
Doxorubicin	16.4	0.932	¹³ C,d ₃ -Daunorubicin	544.0	397.0 (361.0) *	¹³ C,d ₃ -Daunorubicin

Daunorubicin	17.7	1.006	¹³ C,d ₃ -Daunorubicin	528.1	321.1 (363.1) *	¹³ C,d ₃ -Daunorubicin
Oxazepam	17.8	1.006	d ₅ -Oxazepam	287.0	241.0 (269.0) *	d ₅ -Oxazepam
Teniposide	18.2	1.123	d ₃ -Etoposide	674.1	229.1 (383.2) *	d ₃ -Etoposide
Rosuvastatin	18.5	1.000	d ₆ -Rosuvastatin	482.1	258.1 (300.1) *	d ₆ -Rosuvastatin
Norethindrone	19.2	1.005	d ₆ -Norethindrone	299.0	109.1 (91.1) *	d ₆ -Norethindrone
Drospirenone	19.9	1.000	¹³ C ₃ -Drospirenone	367.2	97.1 (349.2) *	¹³ C ₃ -Drospirenone
Clotrimazole	20.1	1.000	d₅-Clotrimazole	277	165 (199) *	d₅-Clotrimazole
Tamoxifen	20.9	1.000	d₅-Tamoxifen	372.3	72.3 (129.2) *	d₅-Tamoxifen
Medroxyprogesterone acetate	21.6	1.000	d _e -Medroxyprogesterone acetate	387.2	327.2 (123.1) *	d ₆ -Medroxyprogesterone acetate
Surrogate Standard						
d ₈ -lopamidol	2.4	0.136	¹³ C ₃ -Atrazine	803.0	785.9 (562.9) *	¹³ C ₃ -Atrazine
d ₆ -Diatrizoic acid	4.3	0.244	¹³ C ₃ -Atrazine	637.9	367.0 (620.6) *	¹³ C ₃ -Atrazine
d ₄ -Metronidazole	6.3	0.358	¹³ C ₃ -Atrazine	176.0	128 (82.1) *	¹³ C₃-Atrazine
¹³ C ₄ -Azathioprine	11.4	0.648	¹³ C ₃ -Atrazine	281.9	146.0 (236.0) *	¹³ C₃-Atrazine
d ₈ -Busulfan	11.6	0.659	¹³ C ₃ -Atrazine	272	159.1 (255) *	¹³ C₃-Atrazine
d ₃ -Zidovudine	12.0	0.682	¹³ C ₃ -Atrazine	271.0	130.1 (113.0) *	¹³ C₃-Atrazine
¹³ C,d ₃ -Moxifloxacin	14.5	0.824	¹³ C ₃ -Atrazine	406.1	388.2 (362.2) *	¹³ C₃-Atrazine
d ₄ -Cyclophosphamide	15.0	0.852	¹³ C ₃ -Atrazine	265.2	140.0 (234.9) *	¹³ C₃-Atrazine
d ₆ -Venlafaxine	15.1	0.858	¹³ C ₃ -Atrazine	284.4	64.4 (266.3) *	¹³ C₃-Atrazine
d ₈ -Melphalan	15.5	0.881	¹³ C ₃ -Atrazine	313	296 (254.1) *	¹³ C₃-Atrazine
d ₆ -Colchicine	16.0	0.909	¹³ C₃-Atrazine	406.0	362.1 (344.1) *	¹³ C₃-Atrazine

d ₆ -Citalopram	16.2	0.920	¹³ C₃-Atrazine	331.2	109.1 (262.2) *	¹³ C ₃ -Atrazine
d ₃ -Etoposide	16.2	0.920	¹³ C ₃ -Atrazine	609.2	229.1 (592.2) *	¹³ C ₃ -Atrazine
¹³ C,d ₃ -Daunorubicin	17.6	1.000	¹³ C ₃ -Atrazine	532.1	325.1 (367.1) *	¹³ C ₃ -Atrazine
d ₅ -Oxazepam	17.7	1.006	¹³ C ₃ -Atrazine	292.0	246.1 (274.1) *	¹³ C ₃ -Atrazine
d ₆ -Rosuvastatin	18.5	1.051	¹³ C ₃ -Atrazine	488.1	264.2 (306.2) *	¹³ C ₃ -Atrazine
d ₆ -Norethindrone	19.1	1.085	¹³ C ₃ -Atrazine	305.1	237.2 (114.9, 91.1) *	¹³ C ₃ -Atrazine
¹³ C ₃ -Drospirenone	19.9	1.131	¹³ C ₃ -Atrazine	370.1	97.1 (352.2) *	¹³ C₃-Atrazine
d ₅ -Clotrimazole	20.1	1.142	¹³ C₃-Atrazine	282	170 (199) *	¹³ C ₃ -Atrazine
d ₅ -Tamoxifen	20.9	1.188	¹³ C₃-Atrazine	377.4	72.3	¹³ C₃-Atrazine
d ₆ -Medroxyprogesterone acetate	21.6	1.227	¹³ C ₃ -Atrazine	393.1	330.2 (126.1) *	¹³ C ₃ -Atrazine
Recovery Standard						
¹³ C ₃ -Atrazine	17.6			219.1	176.9 (134.0) *	External Standard

^{* =} Confirmation ions in instances of interference

^{** =} Parent ion monitored from the breakdown product

MLA-075 Rev 02, List 1 analytes (Acidic extraction, positive ESI) Method Detection Limit for PPCP in Aqueous Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 1 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 1 analytes

Instrument Type: LC-MS/MS
Matrix Spiked: Water
Axys Workgroup: WG32199
Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, April 29, 2002, no iteration

MDL 1 Data Filename: QA0J 059 S: 18 Sample ID: WG32199-102 Instr. Analysis Date: 29-Mar-2010 Instr. Analysis Date: 29-Mar-2010 MDL 2 Data Filename: QA0J 059 S: 19 Sample ID: WG32199-103 Instr. Analysis Date: 29-Mar-2010 MDL 3 Data Filename: QA0J_059 S: 20 Sample ID: WG32199-104 MDL 4 Data Filename: QA0J_059 S: 21 Sample ID: WG32199-105 Instr. Analysis Date: 29-Mar-2010 MDL 5 Data Filename: QA0J_059 S: 22 Sample ID: WG32199-106 Instr. Analysis Date: 29-Mar-2010 Instr. Analysis Date: 29-Mar-2010 MDL 6 Data Filename: QA0J_059 S: 23 Sample ID: WG32199-107 Sample ID: WG32199-108 Instr. Analysis Date: 29-Mar-2010 MDL 7 Data Filename: QA0J_059 S: 24 Sample ID: WG32199-109 Instr. Analysis Date: 29-Mar-2010 MDL 8 Data Filename: QA0J_059 S: 25

	Method Detection	Spiking Level	Number of	Mean		Student's	
Native Analyte	Limit, ng/L	ng/L	Observations	ng/L	Devation	t-Value	
ACETAMINOPHEN	15	50.0	8	58.4	5.0	2.998	
AZITHROMYCIN	1.8	5.0	8	3.9	0.6	2.998	
CAFFEINE	48	50.0	8	62.0	15.9	2.998	
CARBADOX	1.9	5.0	8	4.8	0.6	2.998	ana halaw
CARBAMAZEPINE	1.8	5.0	8	6.3	0.6	2.998	see below
CEFOTAXIME	6.2	20.0	8	20.1	2.1	2.998	
CIPROFLOXACIN	17	20.0	8	34.4 6.9	5.5 1.5	2.998 2.998	
CLARITHROMYCIN	4.3	5.0	8				
CLINAFLOXACIN	27	20.0	8	35.3	9.1	2,998	
CLOXACILLIN	3.2	10.0	8	9.9	1.1	2.998	
DEHYDRONIFEDIPINE	0.67	2.0	8	2.5	0.2	2.998	
DIPHENHYDRAMINE	0.67	2.0	8	2.4	0.2	2.998	
DILTIAZEM	0.23	1.0	8	1.1	0.1	2.998	•
DIGOXIN	15	20.0	8	27.5	5.0	2.998	
DIGOXIGENIN	7.7	20.0	8	24.5	2.6	2.998	
ENROFLOXACIN	9.0	10.0	8	15.0	3.0	2.998	
ERYTHROMYCIN-H2O	0.52	1.0	8	1.1	0.2	2.998	see below
FLUMEQUINE	1.3	5.0	8	6.3	0.4	2.998	
FLUOXETINE	2.3	5.0	8	6.0	0.8	2.998	
LINCOMYCIN	3.2	10.0	8	4.5	1.1	2.998	
LOMEFLOXACIN	15	10.0	8	18.1	4.9	2.998	
MICONAZOLE	1.3	5.0	8	5.2	0.4	2.998	
NORFLOXACIN	51	50.0	8	97.4	16.9	2.998	
NORGESTIMATE	2.4	10.0	8	7.9	0.8	2.998	
OFLOXACIN	3.6	5.0	8	7.9	1.2	2.998	
ORMETOPRIM	0.42	2.0	8	2.3	0.1	2.998	
OXACILLIN	3.1	10.0	8	9.8	1.0	2.998	
OXOLINIC ACID	0.73	2.0	8	3.0	0.2	2.998	
PÉNICILLIN G	0.90	10.0	8	0.5	0.3	2.998	
PENICILLIN V	2.0	10.0	8	9.8	0.7	2.998	
ROXITHROMYCIN	0.87	1.0	8	1.2	0.3	2.998	
SARAFLOXACIN	61	50.0	8	87.0	20.5	2.998	
SULFACHLOROPYRIDAZINE	3.2	5.0	8	6.9	1.1	2.998	
SULFADIAZINE	2.0	5.0	8	5.9	0.7	2.998	

SULFADIMETHOXINE	0.39	1.0	8	1.1	0.1	2.998		
SULFAMERAZINE	1.1	2.0	8	2.1	0.4	2.998		
SULFAMETHAZINE	1.5	2.0	8	2.6	0.5	2.998		
SULFAMETHIZOLE	0.66	2.0	8	2.1	0.2	2.998		
SULFAMETHOXAZOLE	1.3	2.0	8	2.3	0.4	2.998		:
SULFANILAMIDE	8.3	50.0	8	15.6	2.8	2.998		
SULFATHIAZOLE	1.6	5.0	8	5.2	0.5	2.998		
THIABENDAZOLE	1.6	5.0	. 8	5.7	0.5	2.998		
TRIMETHOPRIM	2.0	5.0	8	5.9	0.7	2.998		
TYLOSIN	15	20.0	8	19.1	5.0	2.998		
VIRGINIAMYCIN	2.9	10.0	8	8.5	1.0	2.998	•	
1,7 DIMETHYLXANTHINE	245	200	8	425.1	81.6	2.998		

Axys Method: MLA-075 Rev 04 Ver 02, List 1 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 1 analytes

Instrument Type: LC-MS/MS
Matrix Spiked: Water
Axys Workgroup: WG39039
Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, April 29, 2002, no iteration

MDL 1 Data Filename:	QA2J 014 S: 35	Sample ID:	WG39039-107	Instr. Analysis Date: 11-Feb-2012
MDL 2 Data Filename:		Sample ID:	WG39039-108	Instr. Analysis Date: 11-Feb-2012
MDL 3 Data Filename:	QA2J_014 S: 37	Sample ID:	WG39039-109	Instr. Analysis Date: 11-Feb-2012
MDL 4 Data Filename:	QA2J_014 S: 38	Sample ID:	WG39039-110	Instr. Analysis Date: 11-Feb-2012
MDL 5 Data Filename:	QA2J_014 S: 39	Sample ID:	WG39039-111	Instr. Analysis Date: 11-Feb-2012
MDL 6 Data Filename:	QA2J_014 S: 40	Sample ID:	WG39039-112	Instr. Analysis Date: 11-Feb-2012
MDL 7 Data Filename:	QA2J_014 S: 41	Sample ID:	WG39039-113	Instr. Analysis Date: 11-Feb-2012
MDL 8 Data Filename:	QA2J_014 S: 42	Sample ID:	WG39039-114	Instr. Analysis Date: 11-Feb-2012

	Method					
	Detection	Spiking Level	Number of	Mean	Standard	Student's
Native Analyte	Limit, ng/L	ng/L	Observations	ng/L	Devation	t-Value
CARBAMAZEPINE	0.55	5.0	8	3.9	0.2	2.998
ERYTHROMYCIN-H2O	0.61	1.0	8	3.1	0.2	2.998

⁼ Meets all 40 CFR MDL protocol requirements

⁼ MDL lower than $\frac{1}{10}$ of the spiking level

⁼ MDL higher than the spiking level

MLA-075 Rev 02, List 2 analytes (Tetracyclines, Acidic extraction, positive ESI) Method Detection Limit for PPCP in Aqueous Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 2 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 2 analytes

Instrument Type: LC-MS/MS Matrix Spiked: AQUEOUS Axys Workgroup: WG32199 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QB0K_083 S: 24	Sample ID:	WG32199-102 I2	Instr. Analysis Date:	21-Apr-2010
MDL 2 Data Filename:	QB0K_083 S: 25	Sample ID:	WG32199-103 I2	Instr. Analysis Date:	21-Apr-2010
MDL 3 Data Filename:	QB0K_083 S: 26	Sample ID:	WG32199-104 I2	Instr. Analysis Date:	21-Apr-2010
MDL 4 Data Filename:	QB0K_083 S: 27	Sample ID:	WG32199-105 I2	Instr. Analysis Date:	21-Apr-2010
MDL 5 Data Filename:	QB0K_083 S: 28	Sample ID:	WG32199-106 I2	Instr. Analysis Date:	21-Apr-2010
MDL 6 Data Filename:	QB0K_083 S: 29	Sample ID:	WG32199-107 I2	Instr. Analysis Date:	21-Apr-2010
MDL 7 Data Filename:	QB0K_083 S: 30	Sample ID:	WG32199-108 I2	Instr. Analysis Date:	21-Apr-2010
MDL 8 Data Filename:	QB0K_083 S: 31	Sample ID:	WG32199-109 I2	Instr. Analysis Date:	21-Apr-2010

			•		Standard		
Native Analyte	Method Detection Limit, ng/L	Spiking Level ng/L	Number of Observations	Mean ng/L	Devation ng/L	Student's t-Value	Mean % recovery
Anhydrochlortetracycline (ACTC)	77	50	8	57.7	25.8	2.998	115
Anhydrotetracycline (ATC)	27	50	8	43.5	8.85	2.998	87
Chlortetracycline (CTC)	6.7	20	8	28.7	2.23	2.998	143
Demeclocycline	13	50	8	42.9	4.31	2.998	86
Doxycycline	7.2	20	8	23.8	2.39	2.998	119
4-Epianhydrochlortetracycline (EACTC)	103	200	8	68.5	34.3	2.998	34
4-Epianhydrotetracycline (EATC)	32	50	8	48.5	10.8	2.998	97
4-Epichlortetracycline (ECTC)	22	50	8	58.6	7.39	2.998	117
4-Epioxytetracycline (EOTC)	10	20	8	28.9	3.47	2.998	144
4-Epitetracycline (ETC)	12	20	8	29.8	3.90	2.998	149
Isochlortetracycline (ICTC)	4.5	20	8	14.9	1.51	2.998	75
Minocycline	92	200	8	144	30.8	2.998	72
Oxytetracycline (OTC)	6.0	20	8	22.9	2.01	2.998	115
Tetracycline (TC)	6.6	20	8	20.2	2.20	2.998	101

⁼ Meets all 40 CFR MDL protocol requirements

⁼ MDL outside 0.1 to 1.0 times the spiking level

MLA-075 Rev 02, List 3 analytes (Acidic extraction, negative ESI) Method Detection Limit for PPCP in Aqueous Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 3 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 3 analytes

Instrument Type: LC-MS/MS Matrix Spiked: AQUEOUS Axys Workgroup: WG32199 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QF0K_069 S: 28	Sample ID:	WG32199-102	Instr. Analysis Date: 29-Mar-2010
MDL 2 Data Filename:	QF0K_069 S: 29	Sample ID:	WG32199-103	Instr. Analysis Date: 29-Mar-2010
MDL 3 Data Filename:	QF0K_069 S: 30	Sample ID:	WG32199-104	Instr. Analysis Date: 29-Mar-2010
MDL 4 Data Filename:	QF0K 069 S: 31	Sample ID:	WG32199-105	Instr. Analysis Date: 30-Mar-2010
MDL 5 Data Filename:	QF0K_069 S: 32	Sample ID:	WG32199-106	Instr. Analysis Date: 30-Mar-2010
MDL 6 Data Filename:	QF0K 069 S: 33	Sample ID:	WG32199-107	Instr. Analysis Date: 30-Mar-2010
MDL 7 Data Filename:	QF0K 069 S: 34	Sample ID:	WG32199-108	Instr. Analysis Date: 30-Mar-2010
MDL 8 Data Filename:	QF0K 069 S: 35	Sample ID:	WG32199-109	Instr. Analysis Date: 30-Mar-2010

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1000 mL of water

Native Analyte	Method Detection Limit, ng/L	Spiking Level ng/L	Number of Observations	Mean ng/L	Standard Devation	Student's t-Value	Mean % recovery
Bisphenol A	318	1017	8	1077	105.94	2.998	106
Furosemide	42	133	8	154	14.05	2.998	116
Gemfibrozil	2.1	5.0	8	5.7	0.71	2.998	115
Glipizide	6.5	20.0	8	25.1	2.18	2.998	125
Glyburide	7.6	10.0	8	12.5	2.54	2:998	125
Hydrochlorothiazide	42	66.7	8	95.7	13.85	2.998	144
2-hydroxy-ibuprofen	95	267	8	342	31.58	2.998	128
Ibuprofen	10	50.0	8	67.2	3.37	2.998	134
Naproxen	3.4	10.0	8	11.4	1.12	2.998	114
Triclocarban	3.3	10.0	8	12.7	1.11	2.998	127
Triclosan	33	206	8	250	11.04	2.998	121
Warfarin	0.67	5.0	8	5.8	0.22	2.998	116

Results meet 40 CFR MDL protocol requirements

MLA-075 Rev 02, List 4 analytes (Basic extraction, positive ESI) Method Detection Limit for PPCP in Aqueous Samples March 2010

MDL Data

Axys Method: MLA-075 Rev 02, list 4 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), list 4 analytes

Instrument Type: LC-MS/MS Matrix Spiked: AQUEOUS Axys Workgroup: WG32200 Column Type: HILIC

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename	QG0K_079 S: 28	Sample ID WG32200-102 I	Instr. Analysis Date:	15-Apr-2010
MDL 2 Data Filename	QG0K_079 S: 29	Sample ID WG32200-103 I	Instr. Analysis Date:	16-Apr-2011
MDL 3 Data Filename	QG0K_079 S: 30	Sample ID WG32200-104 I	Instr. Analysis Date:	16-Apr-2011
MDL 4 Data Filename	QG0K_079 S: 31	Sample ID WG32200-105 I	Instr. Analysis Date:	16-Apr-2011
MDL 5 Data Filename	QG0K_079 S: 32	Sample ID WG32200-106 I	Instr. Analysis Date:	16-Apr-2011
MDL 6 Data Filename	QG0K_079 S: 33	Sample ID WG32200-107 I	Instr. Analysis Date:	16-Apr-2011
MDL 7 Data Filename	QG0K_079 S: 34	Sample ID WG32200-108 I	Instr. Analysis Date:	16-Apr-2011
MDL 8 Data Filename	QG0K_079 S: 35	Sample ID WG32200-109 I	Instr. Analysis Date:	16-Apr-2011

										Standard
Native Analyte	MDL 1	MDL 2	MDL 3	MDL 4	MDL 5	MDL 6	MDL 7	MDL 8	Mean	Deviation
ALBUTEROL	0.881	1.001	0.922	1.243	0.797	0.707	1.176	0.6	0.92	0.22
AMPHETAMINE-1	3.592	4.314	6.493	5.743	6.192	4.599	4.537	5.627	5.14	1.02
ATENOLOL-1	2.466	1.721	1.594	1.854	1.791	2.558	2.196	1.788	2.00	0.36
ATORVASTATIN-1	3.536	4.126	4.647	3.914	3.219	3.93	3.24	3.824	3.80	0.47
CIMETIDINE	2.056	1.971	2.189	2.052	1.702	1.662	2.147	1.969	1.97	0.19
CLONIDINE-1	4.862	6.495	6.119	5.283	4.898	6.921	5.608	5.391	5.70	0.75
CODEINE	8.98	14.882	11.893	9.394	9.724	12.47	7.322	9.531	10.52	2.40
COTININE	4.973	5.199	5.809	5.389	4.98	4.736	4.671	4.221	5.00	0.48
ENALAPRIL-1	1.21	1.123	1.353	1.302	1.164	1.023	0.926	1.22	1.17	0.14
HYDROCODONE-1	5.044	4.921	4.627	5.261	4.749	4.444	4.69	4.666	4.80	0.26
METFORMIN	10.761	12.658	13.5	8.176	8.074	10.881	9.819	11.828	10.71	1.96
OXYCODONE-1	2.163	1.852	2.13	1.452	2.147	2.323	1.979	1.2	1.91	0.39
RANITIDINE	1.224	1.405	1.131	1.278	1.443	1.412	1.508	1.463	1.36	0.13
TRIAMTERENE-1	1.009	0.93	1.203	0.904	0.981	1.075	0.827	0.981	0.99	0.11

MLA-075 Rev 02, List 5 analytes (Acidic extraction, positive ESI) Method Detection Limit for PPCP in Aqueous Samples March 2010

MDL Results

Axys Method: MLA-075 Rev 02, List 5 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 5 analytes

Instrument Type: LC-MS/MS Matrix Spiked: AQUEOUS Axys Workgroup: WG32199 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QE0J_060 S: 52	Sample ID: WG32199-102	Instr. Analysis Date: 31-Mar-2010
MDL 2 Data Filename:	QE0J_060 S: 53	Sample ID: WG32199-103	Instr. Analysis Date: 31-Mar-2010
MDL 3 Data Filename:	QE0J_060 S: 54	Sample ID: WG32199-104	Instr. Analysis Date: 31-Mar-2010
MDL 4 Data Filename:	QE0J_060 S: 55	Sample ID: WG32199-105	Instr. Analysis Date: 31-Mar-2010
MDL 5 Data Filename:	QE0J_060 S: 56	Sample ID: WG32199-106 I	Instr. Analysis Date: 31-Mar-2010
MDL 6 Data Filename:	QE0J_060 S: 57	Sample ID: WG32199-107 I	Instr. Analysis Date: 31-Mar-2010
MDL 7 Data Filename:	QE0J_060 S: 58	Sample ID: WG32199-108 I	Instr. Analysis Date: 31-Mar-2010
MDL 8 Data Filename:	QE0J 060 S: 59	Sample ID: WG32199-1091	Instr. Analysis Date: 31-Mar-2010

Native Analyte	Method Detection Limit, ng/L	Spiking Level ng/L	Number of Observations	Mean ng/L	Standard Devation ng/L	Student's t-Value	
Alprazolam-1	0.57	1.00	8	1.17	0.19	2.998	
Amitriptyline-1	0.49	1.00	8	1.20	0.16	2.998	
Amlodipine-1	3.4	5.00	8	8.54	1.12	2.998	
Benzoylecgonine-1	0.47	1.00	8	1.19	0.16	2.998	
Benztropine-1	0.42	1.00	8	1.25	0.14	2.998	see below
Betamethasone-1	7.3	5.00	8	6.44	2.45	2.998	
Cocaine-1	0.12	0.50	8	0.58	0.04	2.998	
DEET-1	0.35	0.50	8	0.50	0.12	2.998	
Desmethyldiltiazem-1	0.25	0.50	8	0.63	0.08	2.998	
Diazepam-1	0.25	1.00	8	0.99	0.08	2.998	
Fluocinonide-1	9.8	20.0	8	23.1	3.29	2.998	
Fluticasone Propionate-1	7.4	6.67	8	11.6	2.47	2.998	,
Hydrocortisone-1	340	200	8	239	113	2.998	
10-hydroxy-amitriptyline-1	0.17	0.50	8	0.57	0.06	2.998	
Meprobamate-1	9.8	13.3	8	17.6	3.28	2.998	
Methylprednisolone-1	13	13.33	8	11.37	4.21	2.998	see below
Metoprolol-1	3.5	5.00	8	6.34	1.16	2.998	
Norfluoxetine	2.8	5.00	8	5.76	0.92	2.998	
Norverapamil-1	0.15	0.50	8	0.49	0.05	2.998	
Paroxetine-1	5.3	13.3	8	17.4	1.77	2.998	
Prednisolone-1	11	20.0	8	21.0	3.73	2.998	
Prednisone-1	39	66.7	8	59.6	13.03	2.998	
Promethazine-1	1.00	1.33	8	1.43	0.33	2.998	
Propoxyphene-1	0.84	1.00	8	1.42	0.28	2.998	
Propranolol-1	3.1	6.67	8	8.16	1.02	2.998	
Sertraline-1	0.61	1.33	8	1.42	0.20	2.998	•
Simvastatin-1	17	66.7	8	19.2	5.55	2.998	
Theophylline-1	327	200	8	489	109	2.998	•
Trenbolone-1	8.1	13.3	8	18.1	2.72	2.998	
Trenbolone acetate-1	0.67	1.00	8	1.99	0.22	2.998	
Valsartan-1	4.5	13.3	8	13.7	1.51	2.998	
Verapamil-1	0.13	0.50	8	0.52	0.04	2.998	

Axys Method: MLA-075 Rev 04 Ver 02, List 5 analytes

Analysis Type: PPCP (Pharmaceuticals and Personal Care Products), List 5 analytes

Instrument Type: LC-MS/MS Matrix Spiked: AQUEOUS Axys Workgroup: WG39039 Column Type: C18

MDL Protocol: Federal Register 40 CFR Part 136, Appendix B, rev. 1.11, no iteration

MDL 1 Data Filename:	QE2Q_036 S: 18	Sample ID: WG39039-107	Instr. Analysis Date: 11-Feb-2012
MDL 2 Data Filename:	QE2Q_036 S: 19	Sample ID: WG39039-108	Instr. Analysis Date: 11-Feb-2012
MDL 3 Data Filename:	QE2Q_036 S: 20	Sample ID: WG39039-109	Instr. Analysis Date: 11-Feb-2012
MDL 4 Data Filename:	QE2Q_036 S: 21	Sample ID: WG39039-110	Instr. Analysis Date: 11-Feb-2012
MDL 5 Data Filename:	QE2Q_036 S: 22	Sample ID: WG39039-111	Instr. Analysis Date: 11-Feb-2012
MDL 6 Data Filename:	QE2Q_036 S: 23	Sample ID: WG39039-112	Instr. Analysis Date: 11-Feb-2012
MDL 7 Data Filename:	QE2Q_036 S: 24	Sample ID: WG39039-113	Instr. Analysis Date: 11-Feb-2012
MDL 8 Data Filename:		Sample ID: WG39039-114	Instr. Analysis Date: 11-Feb-2012

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN SAMPLES Based on 1000 mL of water

Native Analyte	Method Detection Limit, ng/L	Spiking Level	Number of Observations	Mean ng/L	Standard Devation ng/L	Student's t-Value	
BENZTROPINE-1	0.28	1.00	8	1.84	0.09	2.998	

= Meets all 40 CFR MDL protocol requirements

= MDL lower than $\frac{1}{10}$ of the spiking level

= MDL higher than the spiking level

Washington State Department of Ecology

CORRELATION TABLE

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS

PHARMACEUTICAL AND PERSONAL CARE PRODUCT CARE ANALYSIS						
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks					
Project: N/A	Contract No: 4499					
Project Name:Urban Waters - Elliott Bay	AXYS Method: MLA-075					
Data Package Identification: DPWG44220	Program: Aqueous Samples					
Client Sample No.	Lab Sample ID					
LAB BLANK	WG43901-101					
OPR	WG43901-102					
1306020-25	L19748-1					
1306020-26	L19748-4					
LAB BLANK	WG43902-101					
OPR	WG43902-102					
1306020-23	L19748-3					
1306020-24	L19748-5					

CHAIN OF CUSTODY

2045 Mills Road West TEL: (250) 655-5800

Sidney, British Columbia, Canada V8L 5X2 FAX: (250) 655-5811

AXYS CLIENT #: 4499

REPORT TO: INVOICE TO: ANALYSIS F	
	REQUESTED
Company WA Dept of Ecology Company Address Address 300 Decomond Dest Address PORBOX 47600	
Address 300 Des mond Dest Address	
Contact Phone Olympia w 198504-760 Contact Phone Phone Phone	
Contact Madaid Detch	
Phone 3697-407-6001 Phone	
FAX 360-407-6884 FAX	
E-mail Margaret. dutch Decy. E-mail	
1100-00 6 1:0:00 1:10 001:	
Project Name/Number: June 1900 Sampler's Name: Margaret Dieth Signature: Margaret Dieth	
FILEH OF DICVIDEAS (Dea)	
Client Sample Identification Matrix Date Time Sampling Sontainer Preservative AXYS Lab ID Type/No. Y / N Lab use only	
	oubbles seenin rinse,
sta 201 (1306020-32). 1142 AM -3 1	
sta 202 (1306020-33) V V /3:25pm V V -4 1 (600 pb	subbles secrinvinse
Relinquished by (Signature) Date Time Received by (Signature) Courier	Waybill No.
Relinquished by (Signature) Date Time Received by (Signature) Time Group Courier Time Group Courier	-
Received by (Signature) Date Time Received by (Signature) Sample Received Sample Received Sample Received Received by (Signature)	
Sample Recei	eipt
Remarks / Type Of Preservative	Cooler
Temp °C	OTHER PROPERTY OF THE PROPERTY
Custody Seal #	
Seal Intact Y / N	
Sample Tags Y / N	.,.,

CHAIN OF CUSTODY

2045 Mills Road West TEL: (250) 655-5800 Sidney, British Columbia, Canada V8L 5X2 FAX: (250) 655-5811 AXYS CLIENT #: 44 99

Sidney, British Columbia, Canada	VOL JAZ TAA.	(230) 033-	3011				AX10 C)LILIY	ιπ. [-{ !	/		
REPORT TO:			INVOICE TO);				1	ANALYS	SIS REQU	JESTED		
Company WA Dept	- of Ecol	1001	Compan	y sa	Ne			3-	57				
Address 300 Desm	and Dica	5501	Addres					- Q-	₹				
DO BOY U	7600	/		***************************************				S.	Ŕ.	-			
	WA 9850	4-76a						- X	73				
Contact A	+ 10	7100) Conta	ct				l Ğ	b			į	
Phone 22 0 40 7	= 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Phon	e] ~ .	ā				
FAX 2/0-4/07-/	COL		FA					Rinsaked	49				}
	2539							i	R)				
E-mail Margaret du	mangea	1. wa.9		ame: Masc	SEE DO	Ach		PRE	h				
Project Name/Number: Jurban Inhahve-Elliott Bay	LONE ST	Lelocy		, , , , , , ,				R- \	+=				
THIT CALVE - ELLIOTT BOLY				Margar		1		1 mgm				ļ	
Client Sample Identification	1 1	Sampling	Sampling	Container	Preservative		Lab ID						
1	Matrix	Date	Time	Type/No.	Y/N		se only	_	<u> </u>				
sta 194 (1306020-25)	water 6	17/13	1Lphstic	1406pm	N	L1974	8-1		(500	Dbub	bles.		in
Sta187 (1306020-18)	6	10/13		0904			2_	L			sax		
3ta 192 (1306020-23				1092			3	1		10	we ?	.09.1	ctron)
sta 195 (1306020-26)			l'	1127			-y	1					
sta 193(1306020-24				1311			-5	1					
sta196/1306020-271	1	1	4	1406			-60						
				(
				-									ı

	<u> </u>		· · · · · · · · · · · · · · · · · · ·	×									
Relinquished by (Signature)	Date Ti	ime	Received by	(Signature)		100	Courier	L		l	ill No.		i
1/1/2 1 2 4 4		39m	7 7 V	1. 1	Time 6 - 10	-13 (00)	Joaner			wayı	m ivo.		
Magace Dutch 6		V	Date Date Date Date Date Date Date Date	(Signature)	Time G								I
Relinquisted by (Signature)	' /	ime /	I I I I I	(Signature) N	$(\cdot, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	<u>~~</u>		S	Sample R	eceipt			
Harry Man	11/15 10.	30	Date \ \ \ \ \ \ \ \ \ \	INIS	Time U.20)				-	Ozzlan		
Remarks / Type Of Preservative	,						Temp °C				Cooler		
							Custody Sea	al #					
							Seal Intact		Y/N				
j.							<u> </u>						
1		ŀ					Sample Tag	S	Y/N			ji	

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill : Date Shipped:	(Yes)No 10-JUN-13		Waybill #: Date /Time Received		_IVERED 11 JUN 13 #	¥1
AXYS Client & Contract #	# 4499-Washi	ngton State	Dept of Ecology			
Project Number:			Receipt No:	WB14891	/	1 /
Login Number:			***************************************			
Received By: MGIERDEN Axys Sample ID's: L197+	7-1104 4	- L1974	8-166	jerde	Signature:	
Matrix Type: 10 Water	1 0				,	
Condition of Shipping Container: \ Temperature upon Receipt: .5 0		ped on wet ice,	temp blank present		Thermometer ID Corrected Temperature:	: 3270 .5 Celcius
Custody Seals: Shipping Col	ntainers Yes(No)	Intact Yes /No	Seal Numbers Ye	s /No		
s	Samples Yes (No)	Intact Yes /No	Seal Numbers Ye	s /No		
Chain of Custody or Documents: Sample ID's Collection Location Date & Time Collection Collector's Name	Yes /No Yes /No Yes /No Yes /No Yes /No		Tracking Report /Packing List Sample Tag Numbers Sample Type Preservative Added Preservation Requested	t: Yes No Yes No Yes No Yes No Yes No		
Sample Tags		Yes (No				
Sample Labels		(Yes)/No				
Sample Labels Cross Referenced	to COC	Yes/No	Information	on Agrees	(Yes/No	
Sample Tags Cross Referenced to	Sample Labels	Yes /No		on Agrees	Yes /No	
Sample Tags Cross Referenced to	COC	Yes /No	Information	on Agrees	Yes /No	
for each. The Client 1D's the	x is writ	ch bottle pels only ten out on coc	listed Separenty had part of on the COC.		- Unique ide mation Show e:	<u> </u>
Action Taken: Contact Shown in bracke analysis prod	ed project ts, this is uct informa	Manager Consiste Jion For	, the Sample ID int with previous each bottle	s logged us sub logged	in are the missions. In as instru	numbers

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

October 29, 2013

Subject: PSEMP Urban Waters: Elliot Bay

MEL LIMS ID: Sediments:

1306020-01, 1306020-02, 1306020-03, 1306020-07, 1306020-08, 1306020-09, 1306020-11, 1306020-15, 1306020-16, 1306020-17, 1306020-19, 1306020-20, 1306020-21, 1306020-28, 1306020-30,

1306020-34, 1306020-35, 1306020-36, 1306020-37

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: DPWG44301; samples L19741-1 through -19

Project Officer: Maggie Dutch

By: Karin Feddersen

Data Review for Pharmaceuticals and Personal Care Products (PPCP) AXYS Method MLA-075 Rev. 05 Ver. 02

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and bias.

Samples were prepared and analyzed according to AXYS method MLA-075 Revision 05, version 02 for Pharmaceuticals and Personal Care Products (PPCP) by LC-MS/MS. Procedures are described in the method summary of the accompanying AXYS report.

The analysis requires two separate extractions at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5). Prior to extraction and/or clean-up, samples are adjusted to the required pH and spiked with surrogates. Solid samples are repeatedly extracted by sonication with aqueous buffered acetonitrile and pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to analyze the complete list of analytes.

Results for the sediments have been reported in units of nanograms per gram (ng/g); parts per billion (ppb).

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and data qualifiers. These amended results should be used instead of the original results provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the reporting limit value was below AXYS' instrument "Sample Detection Limit" (SDL; aka EDL). In these cases, the reporting limit was amended to the EDL value,

Preservation and Holding Times

No holding times have been established for PPCPs in water. EPA has not yet conducted a formal holding time study. Anecdotal evidence suggests that some may degrade rapidly. The default holding times are 48 hours if stored in the dark at 0-4°C, or 7 days (-10°C) if frozen from the date of collection until extraction, and 40 days from extraction to analysis. Extraction and analysis took place within these time frames; with one exception. The samples required re-extraction and reanalysis for the List 1 compounds. All results from this list - except Clinafloxacin, Oxolinic Acid, and Penicillin V - were extracted more than one month after collection. The re-extracts were analyzed 3 days after extraction. All results have been qualified as estimates in the EDD for the re-extraction of List 1 analytes.

The sample coolers were verified to be at -3.6°C upon receipt at the contract lab, and were subsequently stored at -20°C.

Calibration

The initial calibration (ICAL), Calibration Verifications (CV), and back calculations were within AXYS quality control limits described in the method summary of the accompanying AXYS report; with the following exceptions.

The results for the initial analysis of List 1 compounds (under analysis batch WG43863) did not meet method specifications for some target analytes and surrogate compounds. As remedial action, the entire analysis batch was repeated for this analysis (analysis batch WG44109).

With the exception of the target analytes Clinafloxacin, Oxolinic Acid, and Penicillin V, the reanalysis of the extracts exhibited overall improvement in data quality. All other results were reported from this data.

The initial calibration data from the reanalysis did not meet method criteria for Clinafloxacin, Oxolinic Acid, and Penicillin V. These three analytes were reported from the original analysis. However, there are method limitations for surrogate recovery of these analytes from sediment, and all results are qualified as detailed in the section on internal standards.

Apparently there were analytical difficulties that prevent ampicillin quantification, but AXYS neglected to delete the compound from the method. This analyte is not reported in the EDDs, and AXYS will revise the method summary to remove it.

In other cases, where some calibration points failed criteria, these have been excluded from the initial calibration curve. No data is affected in these cases.

Method Blanks

The blanks are labeled WG43863-101, WG43864-101 (List 4), and WG44109-101 (re-extract).

The target analytes for the blank were mistakenly reported with units of ng instead of ng/g in the original EDD. These units have been corrected in the amended EDD.

Where analytes were detected in the blank and in the sample, AXYS flagged results with a "B". This flag has been amended to a U qualifier in the EDDs.

List	Compound	Sample IDs	Qualifier
2	ACTC	1306020-01	U
		1306020-02	${f U}$
		1306020-03	\mathbf{U}
		1306020-07	U
		1306020-08	U
		1306020-08 Duplicate)	U
		1306020-09	\mathbf{U}
		1306020-11	\mathbf{U}
		1306020-15	U
		1306020-19	U
		1306020-20	U
		1306020-21	U
		1306020-28	U
		1306020-30	U
		1306020-34	U
		1306020-36 1306020-37	U U
4	C1: 1:		
4	Clonidine	1306020-01	U
		1306020-03	U
		1306020-07	\mathbf{U}
		1306020-08	\mathbf{U}
		1306020-08 (Duplicate)	\mathbf{U}
		1306020-09	\mathbf{U}
		1306020-11	\mathbf{U}
		1306020-15	\mathbf{U}
		1306020-16	\mathbf{U}
		1306020-17	${f U}$
		1306020-19	\mathbf{U}
		1306020-20	\mathbf{U}
		1306020-21	U
		1306020-28	\mathbf{U}
		1306020-30	\mathbf{U}
		1306020-34	U
		1306020-34	U
		1306020-36	
		1306020-36	U U
5	DEET	1306020-37 1306020-08 (Duplicate)	U
3		1306020-08 (Duplicate)	U
		1300040-17	U

In addition, a few compounds detected in the blank were not flagged by AXYS because they were below the quantitation limit. Where these blank detections appeared to be valid, greater than half the quantitation limit, and greater than 1/10th the sample result, the sample values have been amended to non-detects.

List	Compound	Sample IDs	Qualifier
1 (redo	Erythromycin-H2O	1306020-08	UJ
batch		1306020-17	UJ
WG44109)		1306020-34	UJ
4	Albuterol	1306020-07	\mathbf{U}
		1306020-08	\mathbf{U}
		1306020-16	\mathbf{U}
		1306020-36	U
4	Amphetamine	1306020-07	\mathbf{U}
		1306020-08	\mathbf{U}
		1306020-08 (Duplicate)	\mathbf{U}
		1306020-11	\mathbf{U}
		1306020-16	\mathbf{U}
		1306020-17	\mathbf{U}
		1306020-19	\mathbf{U}
		1306020-20	\mathbf{U}
		1306020-21	\mathbf{U}
		1306020-30	\mathbf{U}
		1306020-35	\mathbf{U}
		1306020-36	\mathbf{U}
		1306020-37	U
5	Benztropine	1306020-20	\mathbf{UJ}
		1306020-21	UJ

Internal Standard (labeled surrogate compounds) Recoveries

Recoveries for internal standards (IS) in these samples were within AXYS quality control limits described in the method summary of the accompanying AXYS report; with several exceptions. A low biased internal standard may indicate less certainty in recovering a native compound that was not detected, and may contribute to a high bias for a detected compound. Analytes that use the affected labeled compounds for quantification have been qualified as estimates in the corresponding samples.

AXYS flagged the exact target analyte associated with a labeled compound recovery of less than 10% (or the lower QC limit) as "H"; estimates. Result qualifiers are amended to "J" if detected.

If the analyte is not an exact target of the labeled compound, or the labeled compound is less than 1% recovery; AXYS flagged those analytes as "NQ"; not quantifiable.

However, Manchester Laboratory's policy is to reject all associated non-detect results for recoveries less than 10%. All results for analytes associated with labeled surrogate compounds of <10% recovery have therefore been amended to REJ if not detected.

Analytes and surrogates that AXYS flagged NQ have been determined by the analyst's judgment to be invalid. These results should *not* have been reported with a value. They have therefore been amended to REJ.

Where the internal standard was biased high, corresponding sample results have not been qualified if not detected.

List	Compound	Affected Compound	Sample IDs	Qualifier
1 (original	¹³ C ₃ -Trimethoprim	Oxolinic Acid	1306020-07	REJ
batch	•	and	1306020-08	REJ
WG43863)		Penicillin V	1306020-08 (Duplicate)	REJ
			1306020-09	REJ
			1306020-11	UJ
			1306020-15	UJ
			1306020-16	UJ
			1306020-20	UJ
			1306020-21	REJ
			1306020-28	REJ
			1306020-30	UJ
			1306020-37	UJ
			Lab Blank	UJ
1 (original	¹³ C ₃ -N15-	Clinafloxacin	\mathbf{ALL}	REJ
batch	Ciprofloxacin			
WG43863)	•			
1 (redo batch	¹³ C ₃ -N15-	Ciprofloxacin,	1306020-01	UJ
WG44109)	Ciprofloxacin	Enrofloxacin,	1306020-02	REJ
	.	Lomefloxacin,	1306020-07	REJ
		Norfloxacin, Oflaxacin,	1306020-08	REJ
		and	1306020-09	REJ
		Sarafloxacin	1306020-11	REJ
			1306020-15	REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-17 (Duplicate)	REJ
			1306020-19	REJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-28	REJ
			1306020-30	REJ
			1306020-34	REJ
			1306020-35	REJ
			1306020-36	REJ
			1306020-37	REJ
			Lab Blank	REJ
1 (redo batch	¹³ C ₂ -Erythromycin-	Erythromycin-H ₂ O	1306020-07	UJ
WG44109)	H ₂ O (anhydrate)	(aka Erythromycin-H ₂ O)	1306020-08	UJ
			1306020-09	UJ
			1306020-15	REJ
			1306020-17 (Duplicate)	UJ
			1306020-21	REJ

			120/020 20	TIT
			1306020-30 1306020-37	UJ REJ
1 (1 1 , 1	13C. Trimathannim	Tuim oth on vim	1306020-37	UJ
1 (redo batch	¹³ C ₃ -Trimethoprim	Trimethoprim,		
WG44109)		Azithromycin,	1306020-17 (Duplicate)	UJ
		Carbadox, Cefotaxime,	1306020-21	UJ
		Cloxacillin,	1306020-30	REJ
		Dehydronifedipine,	1306020-37	REJ
		Digoxin, Diltiazem,		
		Diphenhydramine,		
		Digoxigenin, Flumequine,		
		Lincomycin, Miconazole,		
		Norgestimate,		
		Ormetoprim, Oxacillin,		
		Penicillin G,		
		and		
		Virginiamycin M1	100 100 1 =	
1 (redo batch	d5-Fluoxetine	Fluoxetine	1306020-07	REJ
WG44109)			1306020-08	REJ
			1306020-09	REJ
			1306020-15	REJ
			1306020-30	REJ
			1306020-37	REJ
3	d6-Bisphenol A	Bisphenol A	1306020-08	UJ
			1306020-36	UJ
_		C 691 11	Lab Blank	UJ
3	d6-Gemfibrozil	Gemfibrozil	1306020-36	J
2	13 C TD 1 1	Triclocarban	Lab Blank 1306020-34	UJ
3	¹³ C ₆ -Triclocarban	Triciocardan	1306020-34	$egin{array}{c} \mathbf{J} \\ \mathbf{J} \end{array}$
4	d3-Cimetidine	Cimetidine	1306020-01	REJ
4	as-Cimetiaine	Cinietidille	1306020-01	REJ
			1306020-02	UJ
			1306020-03	UJ
			1306020-07	UJ
			1306020-08	REJ
			1306020-11	REJ
			1306020-15	UJ
			1306020-17	UJ
			1306020-17	REJ
			1306020-36	REJ
4	d3-Hydrocodone	Hydrocodone	1306020-36	UJ
,	as iljui ocouone	J-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1306020-37	UJ
4	d6-Oxycodone	Oxycodone	1306020-37	UJ
5	d3-Benztropine	Benztropine	1306020-01	REJ
		•	1306020-07	REJ
			1306020-08	REJ
			1306020-08 (Duplicate)	REJ
			1306020-09	REJ
			1306020-11	REJ

			1306020-15	REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-19	UJ
			1306020-20	UJ
			1306020-21	UJ
			1306020-28	REJ
			1306020-30	REJ
			1306020-34	REJ
			1306020-35	REJ
			1306020-36	REJ
			1306020-37	REJ
5	d3-Cocaine	Cocaine	1306020-01	UJ
3	ue cocume		1306020-07	REJ
			1306020-08	REJ
			1306020-08 (Duplicate)	REJ
			1306020-09	REJ
			1306020-11	REJ
			1306020-15	REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-19	UJ
			1306020-19	REJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-20	REJ
			1306020-35	UJ
			1306020-36	J
			1306020-37	REJ
5	d4-Promethazine	Promethazine	1306020-37	REJ
3	04-Prometnazine	and	1306020-07	REJ
			1306020-08 (Duplicate)	REJ
		Desmethyldiltiazem	1306020-08 (Duplicate)	REJ
			1306020-09	
			1306020-11	REJ
				REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-28	REJ
			1306020-30	REJ
			1306020-36	REJ
			1306020-37	REJ
		NT OIL	Lab Blank	REJ
5	d5-Norfluoxetine	Norfluoxetine	1306020-07	REJ
		and	1306020-08	REJ
		Amlodipine	1306020-08 (Duplicate)	REJ
			1306020-09	REJ
			1306020-11	REJ

			1306020-15	UJ
			1306020-16	UJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-28	REJ
			1306020-30	UJ
			1306020-37	REJ
5	d5-Propoxyphene	Propoxyphene	1306020-01	UJ
	T JI	Simvastatin,	1306020-07	REJ
		and	1306020-08	REJ
		Valsartan	1306020-08 (Duplicate)	REJ
			1306020-09	REJ
			1306020-11	REJ
			1306020-15	REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-17	UJ
			1306020-19	REJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-28	
				REJ
			1306020-35	UJ
			1306020-36	REJ
_		A *4 * 4 T*	1306020-37	REJ
5	d6-Amitriptyline	Amitriptyline,	1306020-07	REJ
		Betamethasone,	1306020-08	REJ
		and	1306020-08 (Duplicate)	REJ
		Verapamil	1306020-09	REJ
			1306020-11	REJ
			1306020-15	REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-28	REJ
			1306020-30	REJ
			1306020-37	REJ
5	d6-Paroxetine	Paroxetine	1306020-07	J
			1306020-08	REJ
			1306020-08 (Duplicate)	REJ
			1306020-09	REJ
			1306020-11	REJ
			1306020-15	REJ
			1306020-16	REJ
			1306020-17	REJ
			1306020-20	REJ
			1306020-21	REJ
			1306020-21	REJ
			1306020-28	REJ
			1300020-30	KEJ

			1306020-36	REJ
			1306020-37	REJ
5	d7-Metoprolol	Metoprolol,	1306020-07	REJ
	•	Meprobamate,	1306020-08	\mathbf{UJ}
		and	1306020-08 (Duplicate)	REJ
		Fluticasone propionate	1306020-09	REJ
			1306020-20	UJ
			1306020-28	REJ
5	d7-Propranolol	Propranolol,	1306020-07	REJ
		Norverapamil,	1306020-08	UJ
		Prednisone, Sertraline,	1306020-08 (Duplicate)	REJ
		Prednisolone,	1306020-09	REJ
		and	1306020-20	UJ
		10-hydroxy-amitriptyline	1306020-28	REJ

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPR are labeled WG43863-102 (original analysis), WG43864-102 (List 4 only), and WG44109-102 (re-extract only).

Minocycline was mistakenly flagged "U" in the OPR. This flag has been removed from the amended EDD field.

Target analyte and labeled compound recoveries were within quality control limits as described in the method summary of the accompanying AXYS report; with several exceptions that have been qualified as estimates in the samples. Congeners that may have been biased high have not been qualified if the affected congener was not detected in the samples.

List	Compound	Sample IDs	Qualifier
1 (redo batch WG44109)	Azithromycin	1306020-01	UJ
· ·	·	1306020-02	UJ
		1306020-03	J
		1306020-07	UJ
		1306020-08	UJ
		1306020-09	UJ
		1306020-11	UJ
		1306020-15	UJ
		1306020-16	J
		1306020-17	UJ
		1306020-17 (Duplicate)	UJ
		1306020-19	UJ
		1306020-20	UJ
		1306020-21	UJ
		1306020-28	UJ
		1306020-30	REJ
		1306020-34	UJ
		1306020-35	UJ
		1306020-36	\mathbf{UJ}
		1306020-37	REJ
		Lab Blank	UJ

1 (redo batch WG44109)	Lincomycin	1306020-01	UJ
1 (1000 000011104103)	Emcomycm	1306020-02	$\mathbf{U}\mathbf{J}$
		1306020-03	UJ
		1306020-07	UJ
		1306020-08	$\mathbf{U}\mathbf{J}$
		1306020-09	$\mathbf{U}\mathbf{J}$
		1306020-11	$\mathbf{U}\mathbf{J}$
		1306020-15	\mathbf{UJ}
		1306020-16	\mathbf{UJ}
		1306020-17	\mathbf{UJ}
		1306020-17 (Duplicate)	UJ
		1306020-19	UJ
		1306020-20	UJ
		1306020-21	UJ
		1306020-28	UJ
		1306020-34	UJ
		1306020-35	UJ
		1306020-36	UJ
		Lab Blank	UJ
1 (redo batch WG44109)	Ofloxacin	1306020-03	J

Duplicate

Duplicates were performed on 1306020-08 in the original batch and 1306020-17 in the re-extraction and reanalysis of the List 1 compounds. RPDs were less than 40% for analytes greater than 10 times the reporting limit.

Quantitation Uncertainty

Several compounds cannot be accurately quantified due to method limitations.

The presence of ECTC will create positive interference with ICTC. Where both analytes were detected in the samples, AXYS flagged ICTC results "MAX". This flag is amended to "J" except for % recoveries. In accordance with MEL procedures, results expressed as % recovery are not qualified.

Because of uncertainty in the method, AXYS flags Cloxacillin, Oxacillin, and Penicillin G as 'Information Values' of estimated concentrations. Where results were not already flagged "NQ", AXYS flagged analyte results in the samples with an "H". "H" has been amended to "J" in the samples. The only detections of these compounds were found in the OPR. In accordance with MEL procedures, results expressed as % recovery are not qualified. All "NQ" flagged results are rejected; as noted previously.

Data Qualifier Codes

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.
- REJ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

October 29, 2013

Subject: PSEMP Urban Waters: Elliot Bay

MEL LIMS ID: Sediments:

1306020-04, 1306020-12, 1306020-13, 1306020-14, 1306020-15, 1306020-25, 1306020-31, 1306020-32, 1306020-33, 1306020-38, 1306020-39, 1306020-18, 1306020-23, 1306020-26, 1306020-27

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: DPWG44305; samples L19746-1 through -14

Project Officer: Maggie Dutch

By: Karin Feddersen

Data Review for Pharmaceuticals and Personal Care Products (PPCP) AXYS Method MLA-075 Rev. 05 Ver. 02

Summary

Data from these analyses were reviewed for qualitative and quantitative precision and bias.

Samples were prepared and analyzed according to AXYS method MLA-075 Revision 05, version 02 for Pharmaceuticals and Personal Care Products (PPCP) by LC-MS/MS. Procedures are described in the method summary of the accompanying AXYS report.

The analysis requires two separate extractions at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5). Prior to extraction and/or clean-up, samples are adjusted to the required pH and spiked with surrogates. Solid samples are repeatedly extracted by sonication with aqueous buffered acetonitrile and pure acetonitrile, concentrated by rotary evaporation, and diluted with ultra pure water to 200 mL. The acidic extract is treated with EDTA. The extracts are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to analyze the complete list of analytes.

Results for the sediments have been reported in units of nanograms per gram (ng/g); parts per billion (ppb).

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and data qualifiers. These amended results should be used instead of the original results provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the reporting limit value was below AXYS' instrument "Sample Detection Limit" (SDL; aka EDL). In these cases, the reporting limit was amended to the EDL value.

Preservation and Holding Times

No holding times have been established for PPCPs in water. EPA has not yet conducted a formal holding time study. Anecdotal evidence suggests that some may degrade rapidly. The default holding times are 48 hours if stored in the dark at 0-4°C, or 7 days (-10°C) if frozen from the date of collection until extraction, and 40 days from extraction to analysis,. Extraction and analysis took place within these time frames. (All samples were extracted within 7 days of collection and analyzed within a few days of extraction.)

The sample coolers were verified to be at -17.2°C upon receipt at the contract lab, and were subsequently stored at -20°C.

Calibration

The initial calibration (ICAL), Calibration Verifications (CV), and back calculations were within AXYS quality control limits described in the method summary of the accompanying AXYS report; with the exception of the List 4 analysis. As described in AXYS' narrative, the entire analysis batch was re-injected following a new initial instrument calibration. The initial calibration data for the re-injections met method criteria and was deemed acceptable for reporting. The results for all samples were reported from the re-injections.

Apparently there were analytical difficulties that prevent ampicillin quantification, but AXYS neglected to delete the compound from the method. This analyte is not reported in the EDDs, and AXYS will revise the method summary to remove it.

In other cases, where some calibration points failed criteria, these have been excluded from the initial calibration curve. No data is affected in these cases.

Method Blanks

The blanks are labeled WG43881-101, WG43882-101 (List 4).

Where analytes were detected in the blank and in the sample, AXYS flagged results sample results with a "B". This flag has been amended to a U qualifier in the EDDs.

List	Compound	Sample IDs	Qualifier
5	DEET	1306020-26	U

Internal Standard (labeled surrogate compound) Recoveries

Recoveries for internal standards in these samples were within AXYS quality control limits described in the method summary of the accompanying AXYS report; with several exceptions. A low biased internal standard may indicate less certainty in recovering a native compound that was not detected,

and may contribute to a high bias for a detected compound. Analytes that use the affected labeled compounds for quantification have been qualified as estimates in the corresponding samples.

AXYS flagged the exact target analyte associated with a labeled compound recovery of less than 10% (or the lower QC limit) as "H"; estimates. Result qualifiers are amended to "J" if detected.

If the analyte is not an exact target of the labeled compound, or the labeled compound is less than 1% recovery; AXYS flagged those analytes as "NQ"; not quantifiable.

However, Manchester Laboratory's policy is to reject all associated non-detect results for recoveries less than 10%. All results for analytes associated with labeled surrogate compounds of <10% recovery have therefore been amended to REJ if not detected.

Analytes and surrogates that AXYS flagged NQ have been determined by the analyst's judgment to be invalid. These results should *not* have been reported with a value. They have therefore been amended to REJ.

Where the internal standard was biased high, corresponding sample results have not been qualified if not detected.

List	Compound	Affected Compound	Sample IDs	Qualifier
1	D6-Thiabendazole	Thiabendazole	1306020-39	UJ
1	¹³ C ₃ -Caffeine	Caffeine	1306020-23	UJ
		1,7-Dimethylxanthine	1306020-23	UJ
1	¹³ C ₂ -Erythromycin-	Erythromycin anhydrate	1306020-04	UJ
	H_2O	(aka Erythromycin-H ₂ O)	1306020-12	REJ
			1306020-13	REJ
			1306020-14	REJ
			1306020-14 (Duplicate)	REJ
			1306020-18	REJ
			1306020-23	REJ
			1306020-25	REJ
			1306020-26	REJ
			1306020-27	UJ
			1306020-32	UJ
			1306020-33	REJ
			1306020-38	REJ
			1306020-39	REJ
1	¹³ C ₃ -N15-	Ciprofloxacin,	1306020-04	REJ
	Ciprofloxacin	Clinafloxacin,	1306020-12	REJ
		Enrofloxacin,	1306020-13	REJ
		Lomefloxacin,	1306020-14	REJ
		Norfloxacin, Oflaxacin,	1306020-14 (Duplicate)	REJ
		Sarafloxacin	1306020-18	REJ
			1306020-23 1306020-25	REJ REJ
			1306020-26	REJ REJ
			1306020-27	REJ
			1306020-27	REJ

			1306020-32	REJ
			1306020-33	REJ
			1306020-38	REJ
			1306020-39	REJ
			Lab Blank	REJ
1	D5-Fluoxetine	Fluoxetine	1306020-14 (Duplicate)	REJ
			1306020-18	REJ
			1306020-39	REJ
1	13C3-Trimethoprim	Trimethoprim,	1306020-12	REJ
	10 00 111110VII0 P 11111	Azithromycin, Carbadox,	1306020-13	UJ
		Cefotaxime, Cloxacillin,	1306020-14	REJ
		Dehydronifedipine,	1306020-14 (Duplicate)	REJ
		Digoxigenin, Digoxin,	1306020-18	REJ
		Diltiazem,	1306020-23	REJ
		Diphenhydramine,	1306020-25	J, UJ
		Flumequine,	1306020-25	REJ
		Lincomycin, Miconazole,	1306020-20	
		• /	1306020-27	J, UJ REJ
		Norgestimate, Ormetoprim, Oxacillin,	1306020-38	
		1 /		REJ
		Oxolinic Acid, Penicillin G, Penicillin V	1306020-39	REJ
		and		
		Virginiamycin M1		
2	D6-Thiabendazole	All	All	UJ
3	D6-Bisphenol A	Bisphenol A	Lab blank	UJ
3	¹³ C ₃ -Ibuprofen	Ibuprofen	1306020-14 (Duplicate)	UJ
3	¹³ C ₆ -Triclocarban	Triclocarban	1306020-14 (Duplicate)	J
			` _ /	
4	D3-Cimetidine	Cimetidine	1306020-04	REJ
				TIT
			1306020-12	UJ
			1306020-14	REJ
			1306020-14 1306020-14 (Duplicate)	REJ UJ
			1306020-14 1306020-14 (Duplicate) 1306020-18	REJ UJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25	REJ UJ REJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26	REJ UJ REJ REJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27	REJ UJ REJ REJ REJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31	REJ UJ REJ REJ REJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32	REJ UJ REJ REJ REJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31	REJ UJ REJ REJ REJ REJ
			1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32	REJ UJ REJ REJ REJ REJ UJ
4	D3-Hydrocodone	Hydrocodone	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-33	REJ UJ REJ REJ REJ REJ UJ
4	D3-Hydrocodone	Hydrocodone	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-33 1306020-39	REJ UJ REJ REJ REJ REJ UJ UJ REJ
4	D3-Hydrocodone	Hydrocodone	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-33 1306020-39 1306020-14	REJ UJ REJ REJ REJ REJ UJ UJ REJ UJ
4	D3-Hydrocodone	Hydrocodone	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-33 1306020-39 1306020-14 1306020-14 (Duplicate) 1306020-26	REJ UJ REJ REJ REJ UJ UJ UJ UJ UJ UJ
4	D3-Hydrocodone	Hydrocodone	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-33 1306020-39 1306020-14 1306020-14 (Duplicate) 1306020-26 1306020-33	REJ UJ REJ REJ REJ UJ UJ REJ UJ UJ UJ UJ UJ
	·	·	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-39 1306020-14 1306020-14 (Duplicate) 1306020-26 1306020-33 1306020-33	REJ UJ REJ REJ REJ UJ UJ UJ UJ UJ UJ UJ
4 5	D3-Hydrocodone d5-Alprazolam	Hydrocodone Alprazolam	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-39 1306020-14 1306020-14 (Duplicate) 1306020-26 1306020-39 1306020-39 1306020-39 1306020-04	REJ UJ REJ REJ REJ REJ UJ UJ UJ UJ UJ UJ UJ UJ
	·	·	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-39 1306020-14 1306020-14 1306020-14 1306020-26 1306020-33 1306020-39 1306020-39 1306020-04 1306020-04	REJ UJ REJ REJ REJ UJ
	·	·	1306020-14 1306020-14 (Duplicate) 1306020-18 1306020-25 1306020-26 1306020-27 1306020-31 1306020-32 1306020-39 1306020-14 1306020-14 (Duplicate) 1306020-26 1306020-39 1306020-39 1306020-39 1306020-04	REJ UJ REJ REJ REJ REJ UJ UJ UJ UJ UJ UJ UJ UJ

1306020-25 UJ				120,000 25	TIT
S d6-Amitriptyline					
1306020-13 REJ	_				
1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-38 REJ 1306020-39 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-26 REJ 1306020-39 REJ 1306020-18 REJ 1306020-18 REJ 1306020-18 REJ 1306020-18 REJ 1306020-18 REJ 1306020-25 REJ 1306020-26 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-14 REJ 1306020-33 REJ 1306020-33 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-39 REJ 1306020-39 REJ 1306020-18 REJ 1306020-18 REJ 1306020-18 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-15 REJ 1306020-16 REJ 1306020-26 REJ 1306020-26 REJ 1306020-27 REJ 1306020-27 REJ 1306020-27 REJ 1306020-27 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-27 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-38 REJ 1306020-39 REJ	5	d6-Amitriptyline	Amitriptyline		
1306020-14 (Duplicate) REJ 1306020-23 REJ 1306020-23 REJ 1306020-25 REJ 1306020-25 REJ 1306020-26 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-39 REJ 1306020-12 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-25 REJ 1306020-25 REJ 1306020-26 REJ 1306020-39 REJ 1306020-39 REJ 1306020-39 REJ 1306020-39 REJ 1306020-39 REJ 1306020-39 REJ 1306020-14 REJ 1306020-15 REJ 1306020-16 REJ 1306020-18 REJ 1306020-19 REJ 1306020-19 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-15 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-18 REJ 1306020-18 REJ 1306020-26 REJ 1306020-27 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-18 REJ					
1306020-23 REJ				· •	
1306020-25 REJ					
1306020-26 REJ 1306020-37 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-04 REJ 1306020-14 REJ 1306020-15 REJ 1306020-23 REJ 1306020-25 REJ 1306020-38 REJ 1306020-39 REJ 1306020-30 REJ 1306020-30 REJ 1306020-31 REJ 1306020-32 UJ 1306020-33 REJ 1306020-34 REJ 1306020-35 REJ 1306020-36 REJ 1306020-37 REJ 1306020-38 REJ 1306020-39 REJ 1306020-39 REJ 1306020-14 REJ 1306020-15 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-19 REJ 1306020-19 REJ 1306020-19 REJ 1306020-20 REJ 1306020-21 REJ 1306020-22 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-28 REJ 1306020-38 REJ 1306020-39 REJ 1306020-39 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-39 REJ 1306020-12 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-18 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-33 REJ 1306020-38 REJ 1306020-38 REJ 1306020-38 REJ 1306020-19 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-27 REJ 1306020-23 REJ 1306020-25 REJ 1306020-25 REJ 1306020-27 REJ 1306020-27 REJ 1306020-27 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-39			1306020-25	REJ	
1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-39 REJ 1306020-19 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-18 REJ 1306020-23 REJ 1306020-23 REJ 1306020-25 REJ 1306020-32 UJ 1306020-33 REJ 1306020-39 REJ 1306020-39 REJ 1306020-12 REJ 1306020-12 REJ 1306020-12 REJ 1306020-14 REJ 1306020-15 REJ 1306020-25 REJ 1306020-25 REJ 1306020-25 REJ 1306020-25 REJ 1306020-25 REJ 1306020-27 REJ 1306020-26 REJ 1306020-27 REJ 1306020-27 REJ 1306020-27 REJ 1306020-33				1306020-26	REJ
1306020-33 REJ				1306020-27	REJ
1306020-38 REJ				1306020-32	REJ
1306020-39 REJ				1306020-33	REJ
1306020-39 REJ				1306020-38	REJ
5 d3-Benztropine Benztropine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-27 REJ 1306020-32 UJ 1306020-33 REJ 1306020-39 REJ 1306020-14 (REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-15 REJ 1306020-16 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-14 (Duplicate) REJ 1306020-14 (Duplicate) REJ 1306020-15 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-27 REJ 1306020-28 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-38 REJ 1306020-39 REJ				1306020-39	REJ
1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-12 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-19 REJ 1306020-20 REJ 1306020-20 REJ 1306020-20 REJ 1306020-21 REJ 1306020-22 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ	5	d3-Renztronine	Renztronine	1306020-04	
1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 UJ 1306020-38 REJ 1306020-39 REJ 1306020-39 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-20 REJ 1306020-20 REJ 1306020-21 REJ 1306020-22 REJ 1306020-23 REJ 1306020-24 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-38 REJ 1306020-39 REJ		as zenzu opine	- construction of the cons		
1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-14 REJ 1306020-18 REJ 1306020-18 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-29 REJ 1306020-29 REJ 1306020-20 REJ 1306020-20 REJ 1306020-21 REJ 1306020-21 REJ 1306020-22 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-27 REJ 1306020-38 REJ 1306020-38 REJ 1306020-38 REJ					
1306020-14 (Duplicate) 1306020-18 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-18 REJ 1306020-28 REJ 1306020-28 REJ 1306020-28 REJ 1306020-27 REJ 1306020-27 REJ 1306020-38 REJ					
1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-12 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-25 REJ 1306020-25 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ					
1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-16 REJ 1306020-17 REJ 1306020-18 REJ 1306020-28 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ				· · · · · · · · · · · · · · · · · · ·	
1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-14 REJ 1306020-15 REJ 1306020-17 REJ 1306020-18 REJ 1306020-18 REJ 1306020-20 REJ 1306020-20 REJ 1306020-21 REJ 1306020-21 REJ 1306020-22 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-26 REJ 1306020-27 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-12 REJ 1306020-14 REJ 1306020-14 REJ 1306020-18 REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-25 REJ 1306020-27 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-27 REJ 1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-32 UJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-33 REJ					
1306020-33 REJ 1306020-38 REJ 1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-25 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-38 REJ 1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-39 REJ 5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
5 d3-Cocaine Cocaine 1306020-04 REJ 1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-25 REJ 1306020-25 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-12 REJ 1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ	_	12.0			
1306020-13 REJ 1306020-14 REJ 1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ	5	d3-Cocaine	Cocaine		
1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-14 (Duplicate) REJ 1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-18 REJ 1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-23 REJ 1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ				, <u> </u>	
1306020-25 REJ 1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-26 REJ 1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-27 REJ 1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-32 REJ 1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-33 REJ 1306020-38 REJ 1306020-39 REJ					
1306020-38 REJ 1306020-39 REJ					
1306020-39 REJ					
7 14 TT 1 (1 TT 1 (1 120/000 14/D P 4) TT					
julius in j	5	d4-Hydrocortisone	Hydrocortisone	1306020-14 (Duplicate)	UJ
5 d7-Metoprolol Metoprolol, 1306020-12 UJ	5	d7-Metoprolol	Metoprolol,		
Amlodipine, 1306020-14 REJ		_	Amlodipine,		
Meprobamate, 1306020-14 (Duplicate) REJ					
Fluticasone propionate 1306020-18 REJ					REJ
1306020-23 REJ			I .I	1306020 23	DEI

			120 100 0	
			1306020-26	REJ
			1306020-38	REJ
			1306020-39	UJ
5	d5-Norfluoxetine	Norfluoxetine	1306020-04	UJ
			1306020-12	REJ
			1306020-13	REJ
			1306020-14	REJ
			1306020-14 (Duplicate)	REJ
			1306020-18	REJ
			1306020-23	REJ
			1306020-25	UJ
			1306020-26	REJ
			1306020-27	UJ
			1306020-33	REJ
			1306020-38	REJ
			1306020-39	REJ
5	d6-Paroxetine	Paroxetine	1306020-04	REJ
			1306020-12	REJ
			1306020-13	REJ
			1306020-14	REJ
			1306020-14 (Duplicate)	REJ
			1306020-18	REJ
			1306020-23	REJ
			1306020-25	REJ
			1306020-26	REJ
			1306020-27	REJ
			1306020-32	REJ
			1306020-33	REJ
			1306020-38	REJ
			1306020-39	REJ
5	d4-Promethazine	Promethazine,	1306020-12	REJ
3	u+-110mcmazmc	Desmethyldiltiazem	1306020-13	REJ
		Desmethyluntiazem	1306020-14	REJ
			1306020-14 (Duplicate)	REJ
			1306020-18	REJ
			1306020-23	REJ
			1306020-25	REJ
			1306020-26	REJ
			1306020-20	REJ
			1306020-27	REJ
			1306020-32	REJ
			1306020-38	REJ
			1306020-39	REJ REJ
_	J.F. Duo	Duram ar k	1306020-04	REJ
5	d5-Propoxyphene	Propoxyphene,	1306020-12	REJ
		Valsartan,		
		and	1306020-13	REJ
		Simvastatin	1306020-14	REJ
			1306020-14 (Duplicate)	REJ
			1306020-18	REJ

			1306020-23	REJ	
			1306020-25	REJ	
			1306020-26	REJ	
			1306020-27	REJ	
			1306020-32	REJ	
			1306020-33	REJ	
			1306020-38	REJ	
			1306020-39		
5	d7-Propranolol	Propranolol,	1306020-12	UJ	
	Norverapami	Norverapamil, Prednisone, Prednisolone,	-	1306020-14	REJ
			1306020-14 (Duplicate)	REJ	
			1306020-18	UJ	
		and	1306020-23	REJ	
	Sertraline		1306020-26	REJ	
		Sertraiine	1306020-33	UJ	
			1306020-38	REJ	
			1306020-39	UJ	

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPR are labeled WG43881-102 and WG43882-102 (List 4).

Target analyte and labeled compound recoveries were within quality control limits as described in the method summary of the accompanying AXYS report; with several exceptions that have been qualified as estimates in the samples.

Congeners that may have been biased high have not been qualified if the affected congener was not detected in the samples.

List	Compound	Sample IDs	Qualifier
3	Furosemide	All	UJ
3	Hydrochlorothiazide	All	UJ

Duplicate

A duplicate was performed on 1306020-14. RPDs were less than 40% for analytes greater than 10 times the reporting limit.

Quantitation Uncertainty

Several compounds cannot be accurately quantified due to method limitations.

The presence of ECTC will create positive interference with ICTC. Where both analytes were detected in the samples, AXYS flagged ICTC results "MAX". This flag is amended to "J" except for % recoveries. In accordance with MEL procedures, results expressed as % recovery are not qualified.

Because of uncertainty in the method, AXYS reported Cloxacillin, Oxacillin, and Penicillin G as 'Information Values' of estimated concentrations. Where results were not already flagged "NQ", AXYS flagged analyte results in the samples with an "H". "H" has been amended to "J" in the samples. The only detections of these compounds were found in the OPR. In accordance with MEL procedures, results expressed as % recovery are not qualified. All "NQ" flagged results are rejected; as noted previously.

Data Qualifier Codes

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard Washington 98366

October 29, 2013

Subject: PSEMP Urban Waters: Elliot Bay

MEL LIMS ID: Rinse Blanks; 1306020-23 through 1306020-26;

re-assigned: 1306020-96 through 1306020-99

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: DPWG44220; samples L19748-1 through -4

Project Officer: Maggie Dutch

By: Karin Feddersen

Data Review for Pharmaceuticals and Personal Care Products (PPCP) AXYS Method MLA-075 Rev. 05 Ver. 02

Summary

Note: The water samples were originally given the same Ecology sample IDs as four sediment

samples from the same project. The sample numbers have been amended to new unique

identifiers.

Data from these analyses were reviewed for qualitative and quantitative precision and bias.

Samples were prepared and analyzed according to AXYS method MLA-075 Revision 05, version 02 for Pharmaceuticals and Personal Care Products (PPCP) by LC-MS/MS. Procedures are described in the method summary of the accompanying AXYS report.

The water samples contained no solid phase and were not filtered prior to extraction.

The analysis requires two separate extractions at two different pH conditions: At pH 10 for analysis of fourteen analytes (List 4); and at pH 2.0 for the analysis of the other analytes (Lists 1, 2, 3, and 5). Prior to extraction and/or clean-up, samples are adjusted to the required pH and spiked with surrogates. Aqueous samples are filtered, cleaned up by solid phase extraction (SPE), and analyzed by LC/ESI-MS/MS in positive and negative ionization modes requiring a total of five runs to analyze the complete list of analytes.

Results for the rinse blanks (water) have been reported in units of nanograms per Liter (ng/L); parts per trillion (ppt).

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and data qualifiers. These amended results should be used instead of the original results provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the reporting limit value was below AXYS' instrument "Sample Detection Limit" (SDL; aka EDL). In these cases, the reporting limit was amended to non-detects at the EDL; which is an estimated value.

Analytes and surrogates that AXYS flagged NQ have been determined by the analyst's judgment to be invalid. These results should *not* have been reported with a value. They have therefore been amended to REJ.

Preservation and Holding Times

No holding times have been established for PPCPs in water. EPA has not yet conducted a formal holding time study. Anecdotal evidence suggests that some may degrade rapidly. The default holding times are 48 hours if stored in the dark at 0-4°C, or 7 days (-10°C) if frozen from the date of collection until extraction, and 40 days from extraction to analysis,. Extraction and analysis took place within these time frames. (All samples were extracted within 7 days of collection and analyzed within a few days of extraction.)

The sample coolers were verified to be at 0.5°C upon receipt at the contract lab, and were subsequently stored at 4°C.

Calibration

The initial calibration (ICAL), Calibration Verifications (CV), and back calculations were within AXYS quality control limits described in the method summary of the accompanying AXYS report; with the following exceptions.

Cefotaxime was not detected in the low standard of the curve and the recoveries of the two highest standards far exceeded the criteria; resulting in only 4 usable points. AXYS flagged the results as "NQ", not quantifiable. AXYS' policy is a minimum of 5 calibration points - as required by the method - for an analyte to be considered quantifiable. Cefotaxime was not detected in any of the samples. The "NQ" flag has been amended to "REJ". Please note that the EQLs and reporting limits in the "Result Reported Value" field are not actual calculated values for this analyte; and should *not* have been reported. They have been deleted from the amended EDD.

Hydrocholorothiazide was high in one of the CVs. Since this analyte was not detected in the samples, no qualification was warranted.

Apparently there were analytical difficulties that prevent ampicillin quantification, but AXYS neglected to delete the compound from the method. This analyte is not reported in the EDDs, and AXYS will revise the method summary to remove it.

In other cases, where some calibration points failed criteria, these have been excluded from the initial calibration curve. No data is affected in these cases.

Method Blanks

The blanks are labeled WG43901-101 and WG43902-101 (List 4 only).

Diazepam was detected in WG43901-101, but not in any of the samples. No qualification is needed.

Internal Standard (labeled compound surrogate) Recoveries

Recoveries for internal standards in these samples were within AXYS quality control limits described in the method summary of the accompanying AXYS report; with several exceptions. A low biased internal standard may indicate less certainty in recovering a native compound that was not detected, and may contribute to a high bias for a detected compound. Analytes that use the affected labeled compounds for quantification have been qualified as estimates in the corresponding samples.

Where the internal standard was biased high, corresponding sample results have not been qualified if not detected.

List	Internal Standard	Affected Compound	Sample IDs	Qualifier
5	D7-DEET	DEET	1306020-98	J
4	D5-Enalapril	Enalapril, Atorvastatin	1306020-97	

On-going Precision and Recovery (OPR) or Laboratory Control Sample (LCS)

The OPRs are labeled WG43901-102 and WG43902-102 (List 4).

Target analyte and labeled compound recoveries were within quality control limits as described in the method summary of the accompanying AXYS report; with several exceptions that have been qualified as estimates in the samples. Congeners that may have been biased high have not been qualified if the affected congener was not detected in the samples.

WG43901-102

List	Compound	Sample IDs	Qualifier
4	Atorvastatin	1306020-96	UJ
		1306020-97	UJ

Duplicate

No duplicates were analyzed on the water samples.

Quantitation Uncertainty

Several compounds cannot be accurately quantified due to method limitations.

The presence of ECTC will create positive interference with ICTC. Where both analytes were detected in the samples, AXYS flagged ICTC results "MAX". This happened only in the OPR. In accordance with MEL procedures, results expressed as % recovery are not qualified.

Because of uncertainty in the method, AXYS flags Cloxacillin, Oxacillin, and Penicillin G as 'Information Values' of estimated concentrations. Where results were not already flagged "NQ", AXYS flagged analyte results in the samples with an "H". "H" has been amended to "J" in the samples. The only detections of these compounds were found in the OPR. In accordance with MEL procedures, results expressed as % recovery are not qualified. "NQ" flagged results are rejected; as noted previously.

Data Qualifier Codes

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.
- REJ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Axys Analytical Services Ltd 2045 Mills Road West SIDNEY, BRITISH COLUMBIA, CANADA V8L 5X2 TEL 250-655-5800 FAX 250-655-5811 www.axysanalytical.com

AXYS Client No.: 4793

Client Address: Washington State Dept. of Ecology

7411 Beach Drive East

Port Orchard, WA, US, 98366-8204

The AXYS contact for these data is Georgina Brooks.

PERFLUORINATED ORGANIC ANALYSIS

SOLID & AQUEOUS SAMPLES

PROJECT NAME: 2014MELCX-1 PSEMP

Contract: 4793

Data Package Identification: DPWG48085

Analysis WG47696, WG47702 and WG47717

21 July 2014

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID AND AQUEOUS SAMPLES

Project Name: 2014MELCX-1 PSEMP

PERFLUORINATED ORGANIC ANALYSIS
AXYS METHODS: MLA-041 and -060

4793: L21533-2, -7 L21534-1 to -21 L21547-1 to -12

21 July 2014

NARRATIVE

This narrative describes the analysis of two aqueous samples and thirty three solid samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 5th and 9th of June 2014. Details of sample conditions upon receipt are provided on the Sample Receiving forms included in the Sample Documentation section of this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The samples and associated QC samples (a procedural blank, an Ongoing Precision and Recovery (OPR), and a sample duplicate) were analyzed in three batches named WG47696, WG47702 and WG47717 the composition of which is shown on the Correlation Table and on the Batch List accompanying the extraction workup sheets.

WG47696 and WG47702

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-041: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS*. A method summary (MSU-041) of AXYS Method MLA-041 is included in the data package.

The solid samples were homogenized. Details of the sample preparation are provided in Sample Preparation Record forms included in this data package.

The procedural blank was prepared using Canadian Springs water and the OPR was prepared using cleaned sand.

An accurately weighed sample (approximately 5.0 g dry weight) was spiked with ¹³C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

Samples 1406034-04 and 1406034-23 (AXYS IDs: L21534-11 and L21547-4) was analyzed in duplicate and the duplicates assigned AXYS IDs WG47696-103 and WG47702-103, respectively.

WG47717

Sample extraction, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-060: *Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Aqueous Samples by LC-MS/MS*. A method summary (MSU-060) of AXYS Method MLA-060 is included in the data package.

The procedural blank and the OPR were prepared using Canadian Springs water.

An accurately weighed sample (approximately 1L) was spiked with ¹³C-labelled quantification standards, and extracted and cleaned up using SPE cartridges. The cartridges were eluted with methanolic 0.3% NH₄OH. The resulted extract was instrumentally analyzed using HPLC/MS-MS.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. The formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of the data package.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data validation chemists made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard (CS0) or the sample specific detection limit, whichever was greater.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown, data is not reported beyond the measured calibration range.

REPORTING CONVENTIONS

For internal tracking, Axys assigned the Washington State Dept of Ecology a contract number 4793. Samples were logged under unique laboratory identifiers L21533-,L21534-, and L21547-X, where X is a numeral. All data reports reference both the Axys ID and the client sample identifier. To assist in locating data, a table correlating AXYS ID with the client sample number is also included in this Data Package. The report forms were generated using Laboratory Information Management Software (LIMS).

Any extra work required and performed after the initial instrumental analysis of the sample extract is given an extra "test suffix" code. The single letter code per extra work performed is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

- N = a large dilution of the sample extract or extract transferred to a new microvial followed by instrumental re-analysis
- i = instrumental re-analysis performed on the sample extract
- (A) = the parent sample for a duplicate pair

The following laboratory qualifier flags were used for this data package:

- U = identifies a compound that was not detected.
- V = surrogate recovery not within method control limits
- NQ = data not quantifiable

The results were reported with concentration units of nanograms per gram (ng/g) on a dry weight basis with concentrations and detection limits provided to three significant figures. The analysis results for each sample are provided on Analysis Report forms 1A and 2.

QA/QC NOTES

Samples and QC samples were analyzed in one analysis batch and were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR, sample duplicate and labeled compound recovery specifications were met with the following exceptions:

WG47696

The recovery of multiple surrogates in the client samples did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

Where results for 13C2-PFDoA in the Duplicate sample (AXYS ID: WG47704-103) fell below 10%, the target and the surrogate are deemed not quantifiable. Data is flagged 'NQ'.

WG47702

The recovery of 13C2-PFDoA in samples 1406034-25 and 1406034-28 (AXYS ID: L21547-6, -9) did not meet the method criteria; this compound is flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

WG47717

All method criteria were met.

ANALYTICAL DISCUSSION

WG47696

Initial instrumental analysis results for the initial calibration did not meet method criteria and a set of fresh calibration standards was prepared for analysis. All samples were therefore re-microvialled and instrumentally re-analyzed (indicated by an 'N' suffix following the AXYS ID). Please note that sample 1406034-06 (L21534-17) has been mis-labelled as 'N2'. The sample was only once transferred to a new microvial and instrumentally re-analyzed. The sample should be considered to have the suffix 'N'.

Samples 1406034-03, 1406034-14, 1406034-31, 1406034-04, 1406034-29 and the Duplicate sample (AXYS IDs: L21534-3, -5, -6, -11, -16 and WG47696-103) were diluted in an effort to improve surrogate recoveries (these samples are indicated by the suffix 'N2' following the AXYS ID).

For samples 1406034-31 and 1406034-04 (AXYS IDs: L21534—6 and -11) were reinjected as the noise was not properly acquired on the instrument; these samples were instrumentally re-analyzed. Data is reported from the reinjections (indicated by an 'i' suffix following the AXYS ID).

WG47702

Initial instrumental analysis results for the initial calibration did not meet method criteria and a set of fresh calibration standards was prepared for analysis. All samples which were therefore re-microvialled and instrumentally re-analyzed (indicated by an 'N' suffix following the AXYS ID).

For sample 1406034-20 (AXYS IDs: L21547-1) was reinjected as the noise was not properly acquired on the instrument; this sample were instrumentally re-analyzed. Data is reported from the reinjections (indicated by an 'i' suffix following the AXYS ID).

DATA PACKAGE

This data package is assigned a unique identifier, DPWG48085, shown on the title page of this data package. Includes the following documentation after this narrative:

- Method Summary
- Method Detection Limit Study
- Sample Correlation Table
- Sample Receiving Documentation
- RFQQ Request for Qualifications and Quote
- Standard Solution Preparation Records
- Sample Preparation & Extraction work sheets
- Sample Data Reports (in order of AXYS Sample ID)
- Laboratory QC Data Reports
- Instrumental QC Data Reports (organized by analysis date)
- Sample Raw Data (in order of AXYS ID)
- Laboratory QC Sample Raw Data
- Instrument Run (injection) Log
- Instrument QC Raw Data
- Supplemental Unvalidated data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Kristina Coleman, Data Validation Chemist

Date Signed

21/11/14.

Summary of AXYS Method MLA-041 Rev. 09 Ver. 03:

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS

AXYS Method MLA-041 describes the analysis of perfluorinated organic compounds (PFC) in solid (sediment, soil) and biosolids samples. Typical detection limits are in the range of 0.1 - 0.2 ng/g for a 5 g sample.

Target Analytes

Perfluorobutanoate (PFBA)	Perfluorobutanesulfonate (PFBS)
Perfluoropentanoate (PFPeA)	Perfluorohexanesulfonate (PFHxS)
Perfluorohexanoate (PFHxA)	Perfluorooctanesulfonate (PFOS)
Perfluoroheptanoate (PFHpA)	Perfluorooctane sulfonamide (PFOSA) ¹
Perfluorooctanoate (PFOA)	
Perfluorononanoate (PFNA)	
Perfluorodecanoate (PFDA)	
Perfluoroundecanoate (PFUnA)	
Perfluorododecanoate (PFDoA)	

EXTRACTION

Sample size may be up to 5 g dry weight for solid samples or up to 5 g wet weight (max. 0.5 g dry weight) for biosolid samples. After addition of isotopically labelled surrogate standards the sample is extracted by shaking one time with dilute acetic acid solution and then two times with methanolic ammonium hydroxide solution, each time collecting the supernatants.

COLUMN CHROMATOGRAPHY CLEANUP

The supernatants are combined and treated with ultra pure carbon powder. The resulting solution is diluted with water and cleaned up by solid phase extraction (SPE) using disposable cartridges containing a weak anion exchange sorbent. The eluate is spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through the same SPE cleanup procedure.

The final extract volume is 4 mL.

INSTRUMENTAL ANALYSIS

Analysis of the sample extract is performed on a high performance liquid chromatography reversed phase C18 column using a solvent gradient. The column is coupled to a triple quadrupole mass spectrometer run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Analytes, Ions and Quantification References

Target Analyte	Typical Retention Time (minutes)	Parent Ion Mass	Daughter Ion Mass	Quantified Against
Perfluorobutanoate (PFBA)	5.0	213	169	¹³ C ₄ -PFBA
Perfluoropentanoate (PFPeA)	5.8	263	219	¹³ C ₂ -PFHxA
Perfluorohexanoate (PFHxA)	6.2	313	269	¹³ C ₂ -PFHxA
Perfluoroheptanoate (PFHpA)	6.6	363	319	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)	7.0	413	369 (169) ¹	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutane sulfonate (PFBS)	6.3	299	80 (99) ¹	¹⁸ O ₂ -PFHxS
Perfluorohexane sulphonate (PFHxS)	7.2	399	80 (99/119) ¹	¹⁸ O ₂ -PFHxS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 (99) ¹	¹³ C₄-PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₈ -PFOSA
Surrogate Standard				
¹³ C ₄ -Perfluorobutanoic acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorohexanoic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C₄-PFOA
¹³ C ₅ -Perfluorononanoic acid (¹³ C ₅ -PFNA)	7.4	468	423	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C ₂ -PFOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ -PFOUEA
¹⁸ O ₂ –Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	7.2	403	84 (103) ¹	¹³ C ₂ -PFOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 (99) ¹	¹³ C ₂ -PFOUEA
¹³ C ₈ –Perfluorooctanesulfonamide (¹³ C ₈ -PFOSA)	9.9	506	78	¹³ C ₂ -PFOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -PFOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Alternate transition within brackets, may be used if necessary to avoid interference.

CALIBRATION

A series of at least five calibration solutions prepared in an aqueous matrix similar in composition to the sample extract is used to establish initial multi-level calibration. The calibration solutions contain the analytes of interest covering the working range of the instrument together with labelled surrogate and recovery standards. A mid-level calibration solution is analyzed at least after every 12 hours to demonstrate calibration stability. All calibration solutions are processed through SPE cleanup.

Nominal Concentrations of Calibration Solutions

			C	oncentrat	ion (ng/m	L)			Authentic Standard	
	CAL A	CAL B	CAL C	CAL D	CAL E	CAL F	CAL G	CAL H	Amount Added to sample (ng)	
Native Compound										
PFBA	0.125	0.312	1.25	5	25	50	125	312	20	
PFPeA	0.125	0.312	1.25	5	25	50	125	312	20	
PFHxA	0.125	0.312	1.25	5	25	50	125	312	20	
PFHpA	0.125	0.312	1.25	5	25	50	125	312	20	
PFOA	0.125	0.312	1.25	5	25	50	125	312	20	
PFNA	0.125	0.312	1.25	5	25	50	125	312	20	
PFDA	0.125	0.312	1.25	5	25	50	125	312	20	
PFUnA	0.125	0.312	1.25	5	25	50	125	312	20	
PFDoA	0.125	0.312	1.25	5	25	50	125	312	20	
PFBS	0.25	0.625	2.5	10	50	100	250	625	40	
PFHxS	0.25	0.625	2.5	10	50	100	250	625	40	
PFOS	0.25	0.625	2.5	10	50	100	250	625	40	
PFOSA	0.125	0.312	1.25	5	25	50	125	312	20	
Surrogate Standards									Surrogate Standard Amount Added to sample (ng)	
¹³ C ₄ -PFBA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFHxA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFOA	9	9	9	9	9	9	9	9	36	
¹³ C ₅ -PFNA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFDA	3	3	3	3	3	3	3	3	12	
¹³ C ₂ -PFDoA	3	3	3	3	3	3	3	3	12	
¹⁸ O ₂ -PFHxS	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	18	
¹³ C ₄ -PFOS	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	18	
¹³ C ₈ -PFOSA	3	3	3	3	3	3	3	3	12	
Recovery Standards										
¹³ C ₂ -PFOUEA	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	10	
¹³ C ₄ -PFOA	3	3	3	3	3	3	3	3	12	

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 signal:noise for parent ion to daughter ion transition.
- Compound retention time must fall within 0.4 minutes of the predicted retention times from the daily Calibration Verification. Native compounds with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors. Linear quantification equations are determined from a multi-point calibration series with 1/X² weighting fit and expressed as below:

$$Y = slope \times X + intercept$$

where:
$$Y = response ratio = \left(\frac{area of Target}{area of Surr} \times weight of Surr (ng)\right)$$
, and $X = weight of target (ng)$

The slope and intercept are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

Sample Conc. =
$$\left(\frac{\text{area of Target}}{\text{area of Surr}} \times \text{weight of Surr (ng) - intercept}\right) x \left(\frac{1}{\text{slope}}\right) x \left(\frac{1}{\text{sample size (g)}}\right)$$

where Surr is the surrogate standard

The recovery of the surrogate standard is calculated (by internal standard quantification against the recovery standard using an average RRF) and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

REPORTING LIMITS

Concentrations and detection limits for the target analytes are reported. Typical reporting units for all data are ng/g on a dry weight basis.

The following are commonly requested reporting limits:

Method Detection Limit (MDL) - determined as specified by EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option). The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used:

LMCL = ((lowest level cal conc.) x (extract volume))/sample size. Typical extract volume for PFCs in solids is 4 mL.

For the analysis of PFCs it is AXYS standard to report sample concentrations using the LMCL as the lower reporting limit. In cases where the SDL is higher than the LMCL, the SDL will be used as the lower reporting limit.

The SDL is defined as follows: Sample Specific Detection Limit or Sample Detection Limit (SDL) - determined individually for every sample analysis run by converting the area equivalent of 3.0 times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches of the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks Blanks are analyzed with a minimum frequency of 5% of client samples (i.e. each batch of up to 20 client samples contains a procedural blank.) 20 mL of reagent water is used as the blank sample matrix.
- Duplicates Where sufficient sample is available a duplicate sample is normally analyzed with each analysis batch containing greater than six (6) test samples, or as required by contract.
- OPR (Spiked Reference Sample) OPRs are analyzed with a minimum frequency of 5% of client samples (i.e. each batch of up to 20 client samples contains an OPR.) An aliquot of native standard (typically 20 µL equivalent to 10 ng per analyte) is added to 5 g of an approved clean solid matrix to prepare the spiked reference sample.
- Matrix Spike/Matrix Spike Duplicate may be analyzed upon client request.
- Surrogate/Authentic/Recovery (SAR) solution is an optional diagnostic test that may be prepared and analyzed with a batch.

QC Specification Table: Procedural Blank Levels and OPR Recoveries

Analyte		Procedural Blank Level ng/sample ¹	Acceptable Matrix Spike in OPR (% Recovery)
Perfluorobutanoate	(PFBA)	< 0.25	70 – 130
Perfluoropentanoate	(PFPeA)	< 0.25	60 – 130
Perfluorohexanoate	(PFHxA)	< 0.25	70 – 130
Perfluoroheptanoate	(PFHpA)	< 0.25	70 – 130
Perfluorooctanoate	(PFOA)	< 0.25	70 – 130
Perfluorononanoate	(PFNA)	< 0.25	70 – 130
Perfluorodecanoate	(PFDA)	< 0.25	70 – 130
Perfluoroundecanoate	(PFUnA)	< 0.25	40 – 130
Perfluorododecanoate	(PFDoA)	< 0.25	70 – 130

Analyte		Procedural Blank Level ng/sample ¹	Acceptable Matrix Spike in OPR (% Recovery)
Perfluorobutanesulfonate	(PFBS)	< 0.25	60 – 130
Perfluorohexanesulfonate	(PFHxS)	< 0.25	60 – 130
Perfluorooctanesulfonate	(PFOS)	< 0.25	70 – 130
Perfluorooctane sulfonamide	(PFOSA)	< 0.25	60 – 130

Reporting limits (based on the lowest calibration standard - CAL A in Table 3 - and routine final extract volume of 4 mL) may exceed the stated blank criteria.

QC Specification Table: Surrogate Standard Recoveries, Calibration and Samples

Surrogate Standard		Recovery Range ¹
¹³ C₄-Perfluorobutyric acid	(¹³ C ₄ -PFBA)	20 - 150%
¹³ C ₂ -Perfluorocaproic acid	(¹³ C ₂ -PFHxA)	40 - 150%
¹³ C ₂ -Perfluorooctanoic acid	(¹³ C ₂ -PFOA)	40 - 150%
¹³ C ₅ -Perfluorononanoic acid	(¹³ C ₅ -PFNA)	40 - 150%
¹³ C ₂ -Perfluorodecanoic acid	(¹³ C ₂ -PFDA)	40 - 150%
¹³ C ₂ -Perfluorododecanoic acid	(¹³ C ₂ -PFDoA)	40 - 150%
¹⁸ O ₂ -Perfluorohexanesulfonate	(¹⁸ O ₂ -PFHxS)	40 - 150%
¹³ C ₄ -Perfluorooctanesulfonate	(¹³ C ₄ -PFOS)	40 - 150%
¹³ C ₈ -Perfluorooctanesulfonamide	(¹³ C ₈ -PFOSA)	20 - 130%

¹ Lower surrogate recoveries may be reported for individual samples where dilution analysis or spiked sample results demonstrate acceptable accuracy.

QC Specification Table: Other Parameters

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard.
Initial Calibration (native compounds)	Daily, (1/x²) weighed linear regression. Calculated concentrations must be within 30% of actual concentration. Surrogate recoveries must fall within the same limits as for the samples in the table above.
Continuing Calibration Verification (native compounds)	Every 12 hours or more frequently; determined concentrations must be within 30% of actual concentrations. Surrogate recoveries must fall within the same limits as for the samples in the table above.
Instrumental Carryover and Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: \leq 0.3% carryover and area response of analytes in instrument blank \leq 800.
Duplicate Samples or MS/MSD	If conc. > 5 times R.L., RPD < 40% If conc. < 5 times R.L., difference between pairs < R.L.

AXYS Analytical Services Ltd.

Method Summary

Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Aqueous Samples by LC-MS/MS by AXYS Method MLA-060 Rev. 10 Ver. 05

Method MLA-060 describes the analysis of perfluorinated organic compounds (PFC) in aqueous samples. Typical quantification limits are in the range of 1 - 2 ng/L for a 0.5 L sample size and 0.5-1 ng/L for a 1 L sample size.

ANALYTES OF INTEREST

Perfluorobutanoate (PFBA)	Perfluorobutanesulfonate (PFBS)
Perfluoropentanoate (PFPeA)	Perfluorohexanesulfonate (PFHxS)
Perfluorohexanoate (PFHxA)	Perfluorooctanesulfonate (PFOS)
Perfluoroheptanoate (PFHpA)	Perfluorooctane sulfonamide (PFOSA) 1
Perfluorooctanoate (PFOA)	
Perfluorononanoate (PFNA)	
Perfluorodecanoate (PFDA)	
Perfluoroundecanoate (PFUnA)	
Perfluorododecanoate (PFDoA)	

EXTRACTION AND CLEANUP

Sample size may be up to 1000 mL. Samples are stored in HDPE (high density polyethylene) containers. Samples are filtered, adjusted to pH 6.5, spiked with surrogate standards and extracted by solid phase extraction (SPE) using weak anion exchange cartridges. Wash and elution procedures are chosen to meet various analysis requirements. The eluates are spiked with recovery standards and analyzed by LC-MS/MS. Calibration solutions are processed through SPE in the same way as the samples.

QUALITY ASSURANCE / QUALITY CONTROL

All samples are analyzed in batches. The composition of a batch is detailed on a batch sheet. Each batch has the following composition:

- Batch Size Each batch consists of test samples and additional QC samples.
- Blanks Blanks are analyzed with a minimum frequency of 5% of client samples.
- Duplicates With each analysis batch containing greater than six (6) test samples, or as required by contract, a duplicate sample is analyzed, provided there is sufficient sample.
- Matrix Spike/Matrix Spike Duplicate analyzed upon client request.
- OPR (Spiked Reference Sample) OPRs are analyzed with a minimum frequency of 5% of client samples.
- Surrogate/Authentic/Recovery (SAR) solution is an optional diagnostic test that may be prepared and analyzed with a batch.

QC Specification: Procedural Blank Levels and OPR Recoveries

Analyte		Procedural Blank Level ng/sample ²	OPR Recovery Range (%) ¹
Perfluorobutanoate	(PFBA)	<0.25	80 – 120 ¹
Perfluoropentanoate	(PFPeA)	<0.25	80 – 120 ¹
Perfluorohexanoate	(PFHxA)	<0.25	80 – 120 ¹
Perfluoroheptanoate	(PFHpA)	<0.25	80 – 120 ¹
Perfluorooctanoate	(PFOA)	<0.25	80 – 120 ¹
Perfluorononanoate	(PFNA)	<0.25	80 – 120 ¹
Perfluorodecanoate	(PFDA)	<0.25	80 – 120 ¹
Perfluoroundecanoate	(PFUnA)	<0.25	80 – 120 ¹
Perfluorododecanoate	(PFDoA)	<0.25	80 – 120 ¹
Perfluorobutanesulfonate	(PFBS)	<0.25	70 - 130
Perfluorohexanesulfonate	(PFHxS)	<0.25	70 – 130
Perfluorooctanesulfonate	(PFOS)	<0.25	70 – 130
Perfluorooctane sulfonamide	(PFOSA)	<0.25	70 – 130

¹ Marginal exceedance allowance – recovery for 2 compounds may be 75-125% and for one compound 70-130%.

QC Specification: Surrogate Standard Recoveries (Calibration Solutions and Samples)

Surrogate Standard	Recovery Range ¹
¹³ C ₄ -Heptafluorobutyric acid (¹³ C ₄ -PFBA)	20 - 150%
¹³ C ₂ -Perfluorocaproic acid (¹³ C ₂ -PFHxA)	40 - 150%
¹³ C ₂ - Perfluorooctanoic acid (¹³ C ₂ -PFOA)	40 - 150%
¹³ C ₅ -Heptadecafluorononanoic acid (¹³ C ₅ -PFNA)	40 - 150%
¹³ C ₂ - Perfluorodecanoic acid (¹³ C ₂ -PFDA)	40 - 150%
¹³ C ₂ -Perfluoro-n-(1,2)dodecanoic acid (¹³ C ₂ -PFDoA)	40 - 150%
¹⁸ O ₂ -Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	40 - 150%
¹³ C ₄ -Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	40 - 150%
¹³ C ₈ -Perfluoro-1-octanesulfonamide (¹³ C ₈ -PFOSA)	40 - 150%

¹ Lower recoveries may be accepted based on application and professional judgment

Reporting limits (based on the lowest calibration standard and routine final extract volume of 4 mL) may exceed the stated blank criteria.

QC Specification Table: Other Parameters

QC Parameter	Specification
Instrument Sensitivity	Daily, S:N ≥ 3:1 for all analytes for lowest calibration standard.
Initial Calibration (native compounds)	Run initially, and as required to maintain calibration verification and instrument sensitivity.
	(1/x) weighted quadratic, exclude origin.
	Calculated conc. 75-125 % of actual (lowest cal may be 70-130%), R ² > 0.990.
	Surrogate recoveries must fall within the same limits as for the samples in the table above.
Continuing Calibration	Run every 20 samples or more frequently, quantify against I-CAL.
Verification (native compounds)	Calculated conc. 70-130% actual for a maximum of three compounds with the remainder 80–120 % of actual.
	Surrogate recoveries must fall within the same limits as for the samples in the table above.
Instrumental Carryover and Instrument Background	Every Initial Calibration, Cal/Ver, or SPM: \leq 0.3 % carryover and area response of analytes in instrument blank \leq 800.
Duplicate Samples or	If conc. > 5 times R.L., RPD < 40%
MS/MSD	If conc. < 5 times R.L., difference between pairs < R.L.

ANALYSIS BY LC-MS/MS

Analysis of sample extracts for perfluorinated organics by HPLC-MS/MS is performed on a high performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. The mass spectrometer is run at unit mass resolution in the Multiple Reaction Monitoring (MRM) mode.

Instrument specifications:

Instrument	Waters 2690 or Waters 2795 HPLC, Micromass Quattro Ultima MS/MS
LC Column	Waters Xterra MS C_{18} Reverse Phase C18, 10.0 cm, 2.1 mm i.d., 3.5 μ m particle size (or equivalent)
Ionization	Negative Ion Electrospray
Acquisition	MRM mode, unit resolution
Injection Volume	15 μL

LC-MS/MS Operating Conditions:

LC Gradient Program			General LC Co	nditions	
Time (min)	Flow mixture ¹	LC Flow Rate Program	Gradient Curve	Column Temp (°C)	40
0.0	15% eluent A 85% eluent B	0.15 mL/min	1	Max Pressure (bar)	300
1.0	15% eluent A 85% eluent B	0.15 mL/min	1	MS Conditions	
5.0	70% eluent A 30% eluent B	0.20 mL/min	4	Source Temp (°C)	120
8.5	100% eluent A	0.20 mL/min	4	Desolvation Temp (°C)	300
11	100% eluent A	0.20 mL/min	4	Capillary Voltage	2.75
11.3 - 14.5	15% eluent A 85% eluent B	0.20 mL/min	2	Gases	~70L/hr cone ~300L/hr desolvation

¹ Eluent A = 90% CH₃CN (aqueous)

Eluent B = 13 mM ammonium acetate in 0.1% acetic acid (aqueous)

Initial calibration of the LC-MS/MS instrument is performed by the analysis of six or more calibration solutions. A mid-level calibration standard is analyzed to verify the initial calibration after every 12 hours injected at a minimum. All calibration solutions go through the same SPE extraction/cleanup procedures as the samples.

ANALYTE IDENTIFICATION

Positive identification of target PFC, surrogate standard and recovery standards require:

- ≥ 3:1 S:N for parent ion to daughter ion transition.
- Compound retention time must fall within 0.4 minutes of the predicted retention times from the daily Calibration Verification. Natives with labelled surrogate standards must elute within 0.1 minutes of the associated labelled surrogates.

QUANTIFICATION AND DATA REPORTING PROCEDURES

Target compounds are quantified using the internal standard method, comparing the area of the quantification ion to that of the ¹³C-labelled standard and correcting for response factors.

Quadratic calibration equations are determined from a multi-point calibration series with 1/X weighing fit as described by the following general equation:

Concentrations in samples are determined as:

$$Sample\ Conc = \frac{-b \pm \sqrt{b^2 - 4c \left(a - \left(\frac{area\ of\ t\ arg\ et}{area\ of\ sur}\ x\ weight\ sur\right)\right)}}{2c\ x\ sample\ size}$$

The recovery of the surrogate standard is calculated **(by internal standard quantification against the recovery standard using an average RRF)** and monitored as an indication of overall data quality. Final target concentrations are recovery corrected by this method of quantification.

Sample Specific Detection Limits (SDL) are determined .by converting the area equivalent of 3.0 times the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up.

Results are reported to the greater of the SDL or the concentration equivalent to the lowest calibration standard analyzed.

Analytes, Ions and Quantification References

Target Analytes Perfluorobutanoate (PFBA) Perfluoropentanoate (PFPeA) Perfluorohexanoate (PFHxA) Perfluoroheptanoate (PFHpA) Perfluorooctanoate (PFOA)	5.0 5.8 6.2 6.6	213 263	169	130 5-54
Perfluoropentanoate (PFPeA) Perfluorohexanoate (PFHxA) Perfluoroheptanoate (PFHpA)	5.8 6.2	263		130 5=5 4
Perfluorohexanoate (PFHxA) Perfluoroheptanoate (PFHpA)	6.2			¹³ C₄-PFBA
Perfluoroheptanoate (PFHpA)		040	219	¹³ C ₂ -PFHxA
	6.6	313	269	¹³ C ₂ -PFHxA
Perfluorooctanoate (PFOA)		363	319	¹³ C ₂ -PFHxA
()	7.0	413	369 (169) ¹	¹³ C ₂ -PFOA
Perfluorononanoate (PFNA)	7.4	463	419	¹³ C ₅ -PFNA
Perfluorodecanoate (PFDA)	7.9	513	469	¹³ C ₂ -PFDA
Perfluoroundecanoate (PFUnA)	8.5	563	519	¹³ C ₂ -PFDA
Perfluorododecanoate (PFDoA)	9.0	613	569	¹³ C ₂ -PFDoA
Perfluorobutanesulfonate (PFBS)	6.3	299	80 (99) ¹	¹⁸ O ₂ -PFHxS
Perfluorohexanesulfonate (PFHxS)	7.2	399	80 (99/119) ¹	¹⁸ O ₂ -PFHxS
Perfluorooctane sulfonate (PFOS)	8.2	499	80 (99) ¹	¹³ C ₄ -PFOS
Perfluorooctane sulfonamide (PFOSA)	9.9	498	78	¹³ C ₈ -PFOSA
Surrogate Standard				
¹³ C ₄ -Heptafluorobutyric acid (¹³ C ₄ -PFBA)	5.0	217	172	¹³ C₂- PFOUEA
¹³ C ₂ -Perfluorocaproic acid (¹³ C ₂ -PFHxA)	6.2	315	270	¹³ C₂- PFOUEA
¹³ C ₂ -Perfluorooctanoic acid (¹³ C ₂ -PFOA)	7.0	415	370	¹³ C₄-PFOA
¹³ C ₅ -Heptadecafluorononanoic acid (¹³ C ₅ -PFNA)	7.4	468	423	¹³ C ₂ - PFOUEA
¹³ C ₂ -Perfluorodecanoic acid (¹³ C ₂ -PFDA)	7.9	515	470	¹³ C₂- PFOUEA
¹³ C ₂ -Perfluorododecanoic acid (¹³ C ₂ -PFDoA)	9.0	615	570	¹³ C ₂ - PFOUEA
¹⁸ O ₂ –Perfluorohexanesulfonate (¹⁸ O ₂ -PFHxS)	7.2	403	84 (103) ¹	¹³ C ₂ - PFOUEA
¹³ C ₄ –Perfluorooctanesulfonate (¹³ C ₄ -PFOS)	8.2	503	80 (99) ¹	¹³ C₂- PFOUEA
¹³ C ₈ -Perfluorooctane sulfonamide (¹³ C ₈ -PFOSA)	9.9	506	78	¹³ C₂- PFOUEA
Recovery Standard				
¹³ C ₂ -2H-Perfluoro-2-decenoic acid (¹³ C ₂ -PFOUEA)	7.3	459	394	-
¹³ C ₄ -Perfluorooctanoic acid (¹³ C ₄ -PFOA)	6.9	417	372	-

¹ Alternate transition within brackets, may be used if necessary to avoid interference.

Washington State DOE

CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS		
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks	
Project: N/A	Contract No: 4793	
Project Name: 2014MELCX-1 PSEMP	AXYS Method: MLA-041 & MLA-060	
Data Package Identification: DPWG48085	Program: Solid & Aqueous Samples	
Client Sample No.	Lab Sample ID	
LAB BLANK	WG47696-101	
OPR	WG47696-102	
1406034-11	L21534-1	
1406034-13	L21534-2	
1406034-03	L21534-3	
1406034-10	L21534-4	
1406034-14	L21534-5	
1406034-31	L21534-6	
1406034-07	L21534-7	
1406034-17	L21534-8	
1406034-08	L21534-9	
1406034-15	L21534-10	
1406034-04	L21534-11 WG47696-103 DUPLICATE	
1406034-09	L21534-12	
1406034-18	L21534-13	
1406034-19	L21534-14	
1406034-30	L21534-15	
1406034-29	L21534-16	
1406034-06	L21534-17	

Washington State DOE

CORRELATION TABLE

PERFLUORINATED ORGANIC ANALYSIS		
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks	
Project: N/A	Contract No: 4793	
Project Name: 2014MELCX-1 PSEMP	AXYS Method: MLA-041 & MLA-060	
Data Package Identification: DPWG48085	Program: Solid & Aqueous Samples	
Client Sample No.	Lab Sample ID	
LAB BLANK	WG47702-101	
OPR	WG47702-102	
1406034-16	L21534-18	
1406034-05	L21534-19	
1406034-02	L21534-20	
1406034-12	L21534-21	
1406034-20	L21547-1	
1406034-21	L21547-2	
1406034-22	L21547-3	
1406034-23	L21547-4 WG47702-103 DUPLICATE	
1406034-24	L21547-5	
1406034-25	L21547-6	
1406034-26	L21547-7	
1406034-27	L21547-8	
1406034-28	L21547-9	
1406034-01	L21547-10	
1406034-32	L21547-11	
1406034-33	L21547-12	
	1404=4=404	
LAB BLANK	WG47717-101	
OPR	WG47717-102	
1406034-41	L21533-2	
1406034-35	L21533-7	

PSEMP Urban Bays 2014 PPCPs and PFASs

Work Order: 1406034 Project Officer: M. Dutch PIC Code: DWM11

Sampling Date	Station/Fig	eld ID	Parameter		MEL Samp	le ID].
06/04/2014	281	ОК	PPCP/PFAS Archive	#N/A	1406034-04	ок	L21534-
06/04/2014	288	ОК	PPCP/PFAS	ок	1406034-11	ОК	1-1
06/04/2014	290	OK	PPCP/PFAS Archive	#N/A	1406034-13	OK	1-2
06/04/2014	222	OK.	PPCP/PFAS Archive	#N/A	1406034-03	ок	-2 -3
06/04/2014	287	ОК	PPCP/PFAS Archive	#N/A	1406034-10	ОК	-4
06/04/2014	291	OK	PPCP/PFAS	OK	1406034-14	OK	1-5
06/04/2014	U1	ОК	PPCP/PFAS	OK	1406034-31	ок	-6
06/04/2014	284	OK	PPCP/PFAS Archive	#N/A	1406034-07	ОК	1-7
06/04/2014	294	ОК	PPCP/PFAS Archive	#N/A	1406034-17	ОК	-8 -3 -1
06/04/2014	222	ОК	PPCP/PFAS	ок	1406034-03	OK	-3
06/04/2014	284	ОК	PPCP/PFAS	ОК	1406034-07	OK	
06/04/2014	285	- OK	PPCP/PFAS Archive	#N/A	1406034-08	OK]-9
06/04/2014	287	ОК	PPCP/PFAS	OK	1406034-10	ОК	1-4
06/04/2014	291	ОК	PPCP/PFAS Archive	#N/A	1406034-14	OK]-5
06/04/2014	292	ОК	PPCP/PFAS	OK.	1406034-15	ок]-10
06/04/2014	281	ОК	PPCP/PFAS	ок	1406034-04	OK	1-11
06/04/2014	294	ОК	PPCP/PFAS	ОК	1406034-17	OK	-8
06/04/2014	292	ОК	PPCP/PFAS Archive	#N/A	1406034-15	ОК	-10
06/04/2014	286	ОК	PPCP/PFAS Archive	#N/A	1406034-09	OK]-12
06/04/2014	295	ОК	PPCP/PFAS Archive	#N/A	1406034-18	ок]-13
06/04/2014	318	ОК	PPCP/PFAS	OK	1406034-29	OK	1-16
06/04/2014	285	ОК	PPCP/PFAS	OK	1406034-08	OK	-9
06/04/2014	296	ОК	PPCP/PFAS	OK	1406034-19	ок	- 14
06/04/2014	289	ОК	PPCP/PFAS Archive	#N/A	1406034-12	OK	1-21
06/04/2014	380	ОК	PPCP/PFAS	ОК	1406034-30	OK	175
06/04/2014	296	ОК	PPCP/PFAS Archive	#N/A	1406034-19	OK]-14
06/04/2014	283	ОК	PPCP/PFAS Archive	#N/A	1406034-06	OK	7-17
06/04/2014	290	ОК	PPCP/PFAS	ОК	1406034-13	OK:	1-2
06/04/2014	318	ОК	PPCP/PFAS Archive	#N/A	1406034-29	ОК	7-16
06/04/2014	283	ОК	PPCP/PFAS	OK	1406034-06	OK	1-17
06/04/2014	286	ОК	PPCP/PFAS	ок	1406034-09	ОК	1-12
06/04/2014	293	ОК	PPCP/PFAS	ок	1406034-16	ок	1-18
06/04/2014	380	ОК	PPCP/PFAS Archive	#N/A	1406034-30	ок	1-15
06/04/2014	293	ОК	PPCP/PFAS Archive	#N/A	1406034-16	OK]-18
06/04/2014	282	ОК	PPCP/PFAS Archive	#N/A	1406034-05	OK]-19
06/04/2014	88	ОК	PPCP/PFAS Archive	#N/A	1406034-02	ОК	-20

PSEMP Urban Bays 2014 PPCPs and PFASs

Work Order: 1406034 Project Officer: M. Dutch PIC Code: DWM11

06/04/2014	88	OK	PPCP/PFAS	OK	1406034-02	ОК	L21534-20
06/04/2014	282	OK	PPCP/PFAS	OK	1406034-05	OK	1-19
06/04/2014	288	ОК	PPCP/PFAS Archive	#N/A .	1406034-11	OK	Restriction.
06/04/2014-	295	ОК	PPCP/PFAS	ОК	1406034-18	ОК	-13
06/04/2014	289	ОК	PPCP/PFAS	OK	1406034-12	OK	1-ZÍ
06/04/2014	291	OK	Rinsate Blank 21533-1	#N/A	1406034-39	#N/A	
06/04/2014	293	ОК	Rinsate Blank -2	#N/A	1406034-41	#N/A	
06/04/2014	292	ОК	Rinsate Blank –3	#N/A	1406034-40	#N/A	
06/04/2014	295	ОК	Rinsate Blank -4	#N/A	1406034-43	#N/A	
06/04/2014	289	ОК	Rinsate Blank	#N/A	1406034-38	#N/A	
06/04/2014	294	ОК	Rinsate Blank -6	#N/A	1406034-42	#N/A	
06/04/2014	222	ОК	Rinsate Blank —)	#N/A	1406034-35	#N/A	
06/04/2014	296	ОК	Rinsate Blank	#N/A	1406034-44	#N/A	
06/04/2014	282	ОК	Rinsate Blank -9	#N/A	1406034-36	#N/A	
06/04/2014	287	ОК	Rinsate Blank - LO	#N/A	1406034-37	#N/A	
06/04/2014	318	ОК	PPCP/PFAS Archive	#N/A	1406034-29	ОК	1-21534-16
06/04/2014	283	ок	PPCP/PFAS	OK	1406034-06	ОК]-17

Relinquished By	, Date	Received By	Date	Comments
Wagain Dutch	61412014	IPM	10-4-14	
+ KINUTERS	6/4/14	M. Willman	155 JUNH-10	D: 150
V		'		
		·		

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill: Date Shipped:		Waybill #: Date /Time Received	Waybill #: HAND DELIVERY 05-JUN-14 2/3 Date /Time Received: 05-JUN-14 10:50				
AXYS Client & Contract #	4793-WSDES	6					
Project Number:			Receipt No:	WB16492	· ·		
Login Number:							
Received By: MWILMAN	, commence , grantering	1	Log in by: M.W	MMM	N Signature: W. W. W. Signature:		
Axys Sample ID's:		to 10		***************************************			
Matrix Type: water	,		,				
Condition of Shipping Container: \int_V Temperature upon Receipt: .3 Celc	ius te pa	acks frozen			Thermometer ID: 3360 Corrected Temperature: .3 Celcius		
Custody Seals: Shipping Contain	ers Yes/No	Intact Yes /No	Seal Numbers Yes	/No			
Samp	oles Yes No	Intact Yes /No	Seal Numbers Yes	/No			
Chain of Custody or Documents: (Sample ID's (Collection Location Date & Time Collection Collector's Name	Yes No Yes No Yes No Yes No Yes No		Tracking Report /Packing List: Sample Tag Numbers Sample Type Preservative Added Preservation Requested	Yes No Yes No Yes No Yes No Yes No			
Sample Tags		Yes (No					
Sample Labels		(Yes)No					
Sample Labels Cross Referenced to	coc	Yes/No	Information	Agrees ·	Yes No		
Sample Tags Cross Referenced to S	ample Labels	Yes /No	Information	Agrees .	Yes /No		
Sample Tags Cross Referenced to C	oc	Yes /No	Information	n Agrees	Yes /No		
Comments:							
					*		
		terretario de la constitució d					
	-						

	,						
Action Tokon							
Action Taken:							
WARRANGE WARRANGE AND ADMINISTRATION OF THE PARTY OF THE		·					
			•				

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill: Yes No Date Shipped: 05-JUN-14			Waybill #: Date /Time Received		ND DELIVERY 05-JUN-14 1/3 JUN-14 10:50		
AXYS Client & Contract #	4793-WSDE	ES					
Project Number:			Receipt No:	WB16491			
Login Number:							
Received By: MWILMAN			Log in by: M. W	MMA	\mathcal{J} Signature: $\mathcal{M} \cdot \mathcal{L}$	Vilmo	
Axys Sample ID's: 25	34-1	to 10.	21		and the second s		
Matrix Type: solids							
Condition of Shipping Container:	tort						
Temperature upon Receipt: 1.7 Cel	cius Ice	packs frozen			Thermometer ID:		
	_		t		Corrected Temperature:	1.9 Celcius	
Custody Seals: Shipping Contain	ers Yes No	Intact Yes /No	Seal Numbers Yes	/No			
Samp	oles Yes (No	intact Yes /No	Seal Numbers Yes	/No			
Sample ID's Collection Location Date & Time Collection	Yes/No Yes/No Yes/No Yes/No		Tracking Report /Packing List: Sample Tag Numbers Sample Type Preservative Added	Yes No Yes /No Yes /No			
Collector's Name	Yes (No)		Preservation Requested	Yes 710			
Sample Tags		Yes(No					
Sample Labels		Yes /No					
Sample Labels Cross Referenced to	COC	Yes)/No	Information	Agrees (Yes)/No		
Sample Tags Cross Referenced to Sample Tags Referenced	ample Labels	Yes /No	Information	Agrees	Yes /No		
Sample Tags Cross Referenced to C	OC	Yes /No	Information	Agrees	Yes /No		
Comments:							
	· · · · · · · · · · · · · · · · · · ·						
					,		
		····		······································	 		
Action Taken:							
				······································			
·							
	, , , , , , , , , , , , , , , , , , , ,			The state of the s		And the second s	
						A10P11111111111111111111111111111111111	

AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

Waybill : Date Shipped:	Yes (No) 05-JUN-14	Waybill #: Date /Time Receive		LIVERY 05-JUN-14 3/3	
AXYS Client & Contract #	4793-WSDES	Date / Time (1000/10	··· 03-3014-1-	+ 10.30	
Project Number:		Receipt No:	WB16493		
Login Number:				10	
Received By: MWILMAN Axys Sample ID's: 5	34-11-6-20	Log in by: M.M.	ILMAN	Signature: MU	Jilma
Matrix Type: solids				,	
Condition of Shipping Container: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	lce packs frozen			Thermometer ID: Corrected Temperature:	
Custody Seals: Shipping Contained	ers Yes No Intact Yes /N	o Seal Numbers Ye	s /No		
Sampl	les Yes (No Intact Yes /N	o Seal Numbers Ye	s /No		
Sample ID's Collection Location Date & Time Collection	Yes/No Yes/No Yes/No Yes/No Yes/No	Tracking Report /Packing Lis Sample Tag Numbers Sample Type Preservative Added Preservation Requested	yes No Yes No Yes No Yes No Yes No	· ·	
Sample Tags	Yes (No	}			
Sample Labels	Yes)/No			-	
Sample Labels Cross Referenced to C	COC (Yes)/No	Informati	on Agrees	Yes/No	
Sample Tags Cross Referenced to Sa	· ·		on Agrees	Yes /No	
Sample Tags Cross Referenced to CC	OC Yes /No	Information	on Agrees	Yes /No	
Comments:					
			·		

		· · · · · · · · · · · · · · · · · · ·			
Action Taken:					
		· · · · · · · · · · · · · · · · · · ·			

Washington State Department of Ecology Manchester Environmental Laboratory

7411 Beach Dr E, Port Orchard, Washington 98366

October 7, 2014

Project: PSEMP Urban Waters: Elliot Bay; Batch 1

LIMS Work Order #: 1406034-03, 1406034-04, 1406034-06 through 1406034-11, 1406034-13,

1406034-14, 1406034-15, 1406034-17, 1406034-18, 1406034-19,

1406034-29, 1406034-30, 1406034-31

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: L21534-1 through L21534-17

Project Officer: Maggie Dutch

Perfluorinated Compounds (PFC), AXYS method MLA-041

Enclosed are results for the samples collected in June, 2014. If you have any questions concerning this report, please feel free to contact me.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the noise exceeded the reporting limit value. In these cases, Axys qualified the results as non-detect "U", and raised the reporting limit to the EDL or to the calculated level of the noise, whichever is greater. These qualifiers have been amended to "UJ" in the EDD.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karin Feddersen

Washington State Department of Ecology Manchester Environmental Laboratory Data Review Checklist

Project: PSEMP Urban Waters: Elliot Bay

Analysis: PFC

Work Order: 1406034; Batch 1 Project Officer: Maggie Dutch

Question	Y	N	NA	Exceptions and action taken
Were all the samples analyzed for the requested parameters?	X			
Did sample arrive in a state of proper preservation at contract lab (< 6 °C)? Were they stored properly?	X			
Are the holding times within acceptable limits for preparation and analysis?	X			All samples were extracted and analyzed within one year of collection.
Is all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X			
Are all of the analytes within QC limits for the Initial Calibration (ICAL)?	X			Calculated results fall within 70% to 130% for target analytes. Refer to table in AXYS' method summary for all labeled compounds (EIS).
Are all of the analytes within QC limits for the Initial Calibration Verifications (ICV)?	X			
Are all of the analytes for the Continuing Calibration Verification (CCV) within QC limits?	X			70% to 130% for target analytes. Refer to table in AXYS' method summary for EIS.
Was a CCV analyzed all every 20 samples?	X			
Is the recovery internal standard (RIS) recovery within quality control (QC) limits in all samples?	X			¹³ C ₂ -PFOUEA: 50-200%
Are all labeled compound surrogate recoveries (Internal Standard - IS) within acceptable QC limits? (Refer to table in AXYS' method summary)		X		Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects. When the surrogate recovery was below 10%, the associated results have been rejected, "REJ", when not detected. In accordance with MEL procedures, results expressed as % recovery are not qualified, so flags have been removed from IS recovery results.
Is the method blank free of any positive results, and if not, is the data properly qualified?	X			Blank is labeled: WG47696-101 No target analytes were detected above the MDL.
Was the LCS (OPR) spiked with all target analytes and are % recoveries within QC limits?	X			LCS is labeled: WG47696-102 70% to 130% for target analytes. Refer to AXYS' method summary for IS limits.
If analyzed, is the Sample Duplicate RPD within QC limits?	X			1406034-04 was prepared and analyzed in duplicate; labeled WG47696-103 N2 (DUP L21534-11)
Does the chromatography of the samples match the reported data, and are retention times (RT) within QC limits for accurate identification?	X			Native RT within 0.4 minutes of the predicted RT from the daily CV. Native analytes with labeled surrogates must elute

		within 0.1 minutes of the associated labeled surrogate.
Are the results correctly calculated, reported with proper units and within the linear range of the calibration?	X	Note: Axys will not report any results below the quantitation limits for LCMS analyses. All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as an estimated value. Results are reported in the "MEL Amended" fields when they met the following conditions: • A carbon13-labeled surrogate standard specific for the analyte is present and used for identification and quantification; e.g.: PFNA and 13C5-PFNA. • Retention time within 0.1 minute of the labeled surrogate. • Greater than 5 times the method blank level. • Greater than the Method Detection Limit (MDL). • Signal to noise ratio of 3 or greater. Results are to be considered tentatively identified, "N", as no daughter ion could be confirmed, and estimated, "J", as results are below the quantitation limits. In addition, the potential exists for interfering compounds that cannot be resolved from the analyte; and suppression and /or enhancement effects may be present at concentrations below the reporting limit due to interference.
Is all of the data properly entered into the EDD?	X	Each EDD has been amended to include the MDL for each analyte.

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	-	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected at or above the reported sample quantitation limit.
UJ	-	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Washington State Department of Ecology Manchester Environmental Laboratory

7411 Beach Dr E, Port Orchard, Washington 98366

October 7, 2014

Project: PSEMP Urban Waters: Elliot Bay; Batch 2

LIMS Work Order #: 1406034-01, 1406034-02, 1406034-05, 1406034-12, 1406034-16,

1406034-20 through 1406034-28, 1406034-32, 1406034-33

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: L21547-1 through L21547-12, and L21534-18 through L21534-21

Project Officer: Maggie Dutch

Perfluorinated Compounds (PFC), AXYS method MLA-041

Enclosed are results for the samples collected in June, 2014. If you have any questions concerning this report, please feel free to contact me.

Results have been reported in nanograms per gram (ng/g), parts per billion, dry weight.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL OA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karin Feddersen

Washington State Department of Ecology Manchester Environmental Laboratory Data Review Checklist

Project: PSEMP Urban Waters: Elliot Bay

Analysis: PFC

Work Order: 1406034; Batch 2 Project Officer: Maggie Dutch

Question	Y	N	NA	Exceptions and action taken
Were all the samples analyzed for the requested parameters?	X			
Did sample arrive in a state of proper preservation at contract lab (< 6 °C)? Were they stored properly?	X			
Are the holding times within acceptable limits for preparation and analysis?	X			All samples were extracted and analyzed within one year of collection.
Is all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X			
Are all of the analytes within QC limits for the Initial Calibration (ICAL)?	X			Calculated results fall within 70% to 130% for target analytes. Refer to table in AXYS' method summary for all labeled compounds.
Are all of the analytes for the Calibration Verification (CV) within QC limits?	X			70% to 130% for target analytes. Refer to table in AXYS' method summary for IS limits.
Was a CV analyzed all every 20 samples?	X			
Is the recovery internal standard (RIS) recovery within quality control (QC) limits of 50-200% in all samples?		X		¹³ C ₂ -PFOUEA was high in 1406034-33 (206%) and 1406034-28 (212%). No analytes were detected above the EQL in either of these samples.
Are all labeled compound surrogate recoveries (Internal Standard - IS) within acceptable QC limits? (Refer to table in AXYS' method summary)		X		Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects. When the surrogate recovery was below 10%, the associated results have been rejected, "REJ", when not detected. In accordance with MEL procedures, results expressed as % recovery are not qualified, so flags have been removed from IS recovery results.
Is the method blank free of any positive results, and if not, is the data properly qualified?	X			Blank is labeled: WG47702-101 No target analytes were detected above the MDL.
Was the LCS (OPR) spiked with all target analytes and are % recoveries within QC limits?	X			LCS is labeled: WG47702-102 70% to 130% for target analytes. Refer to AXYS' method summary for IS limits.
If analyzed, is the Sample Duplicate RPD within QC limits?	X			1406034-23 was prepared and analyzed in duplicate; labeled WG47702-103 N (DUP L21547-4)
Does the chromatography of the samples match the reported data, and are retention times (RT) within QC limits for accurate identification?	X			Native RT within 0.4 minutes of the predicted RT from the daily CV. Native analytes with labeled surrogates must elute within 0.1 minutes of the associated labeled surrogate.

Are the results correctly calculated, reported with proper units and within the linear range of the calibration?	X	Note: Axys will not report any results below the quantitation limits for LCMS analyses. All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as an estimated value. Results are reported in the "MEL Amended" fields when they met the following conditions: • A carbon13-labeled surrogate standard specific for the analyte is present and used for identification and quantification; e.g.: PFNA and 13C5-PFNA. • Retention time within 0.1 minute of the labeled surrogate. • Greater than 5 times the method blank level. • Greater than the Method Detection Limit (MDL). • Signal to noise ratio of 3 or greater. Results are to be considered tentatively identified, "N", as no daughter ion could be confirmed, and estimated, "J", as results are below the quantitation limits. In addition, the potential exists for interfering compounds that cannot be resolved from the analyte; and suppression and /or enhancement effects may be present at concentrations below the reporting limit due to interference.
Is all of the data properly entered into the EDD?	X	Each EDD has been amended to include the MDL for each analyte.

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	-	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected at or above the reported sample quantitation limit.
UJ	-	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Washington State Department of Ecology Manchester Environmental Laboratory

7411 Beach Dr E, Port Orchard, Washington 98366

October 7, 2014

Project: PSEMP Urban Waters: Elliot Bay; equipment blanks

LIMS Work Order #: 1406034-35, 1406034-41

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: L21533-2, L21533-7

Project Officer: Maggie Dutch

Perfluorinated Compounds (PFC), AXYS method MLA-041

Enclosed are results for the samples collected in June, 2014. If you have any questions concerning this report, please feel free to contact me.

Results have been reported in nanograms per gram (ng/g), parts per billion, dry weight.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karin Feddersen

Washington State Department of Ecology Manchester Environmental Laboratory Data Review Checklist

Project: PSEMP Urban Waters: Elliot Bay

Analysis: PFC

Work Order: 1406034; equipment blanks Project Officer: Maggie Dutch

Work Order: 1406034; equipment blanks Project Officer: Maggie Dutch							
Question		N NA Exceptions and ac		Exceptions and action taken			
Were all the samples analyzed for the requested parameters?	X						
Did sample arrive in a state of proper preservation at contract lab (< 6 °C)? Were they stored properly?	X						
Are the holding times within acceptable limits for preparation and analysis?	X			All samples were extracted and analyzed within one year of collection.			
Is all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X						
Are all of the analytes within QC limits for the Initial Calibration (ICAL)?	X			Calculated results fall within 70% to 130% for target analytes. Refer to table in AXYS' method summary for all labeled compounds.			
Are all of the analytes for the Calibration Verification (CV) within QC limits?	X			70% to 130% for target analytes. Refer to table in AXYS' method summary for IS limits.			
Was a CV analyzed all every 20 samples?	X						
Is the recovery internal standard (RIS) recovery within quality control (QC) limits in all samples?	X			¹³ C ₂ -PFOUEA: 50-200%			
Are all labeled compound surrogate recoveries (Internal Standard - IS) within acceptable QC limits?	X			(Refer to table in AXYS' method summary)			
Is the method blank free of any positive results, and if not, is the data properly qualified?	X			Blank is labeled: WG47717-101 No target analytes were detected above the MDL.			
Was the LCS (OPR) spiked with all target analytes and are % recoveries within QC limits?	X			LCS is labeled: WG47717-102 70% to 130% for target analytes. Refer to AXYS' method summary for IS limits.			
If analyzed, is the Sample Duplicate RPD within QC limits?			X	No duplicate was performed with these samples.			
Does the chromatography of the samples match the reported data, and are retention times (RT) within QC limits for accurate identification?	X			Native RT within 0.4 minutes of the predicted RT from the daily CV. Native analytes with labeled surrogates must elute within 0.1 minutes of the associated labeled surrogate.			
Are the results correctly calculated, reported with proper units and within the linear range of the calibration?	X			Note: Axys will not report any results below the quantitation limits for LCMS analyses. All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as an estimated value. No analytes were detected above the MDL.			
Is all of the data properly entered into the EDD?	X			Each EDD has been amended to include the MDL for each analyte.			

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	-	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected at or above the reported sample quantitation limit.
UJ	-	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS AXYS METHOD: MLA-075

4793: L21534-1 to -17

Project Name: 2014MELCX-1 PSEMP

21 July, 2014

NARRATIVE

This narrative describes the analysis of seventeen solid (marine sediment) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 5th of June 2014. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank, a laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample and a duplicate sample were analyzed in two analysis batches as WG47697 and WG47698. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: *Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS*. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed dried sub-sample of each marine sediment sample (1 gram) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The resulting extract was instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in the Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4793. The samples were assigned a unique laboratory identifier L21534-XX, where X is a numeral. All data reports reference the unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract is given an extra "test suffix" code. The single letter code (per extra work performed) is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

(A) = the parent sample for a duplicate pair

= instrumental re-analysis performed on the sample extract

The following laboratory qualifier flags were used in this data package:

B = analyte found in the sample and the associated blank

H = result provided as information only; concentration is estimated

MAX = result reported as maximum value due to structural cross interference for compounds

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limits

The analytical results were reported to three significant figures on a dry mass basis with concentration units of nanograms per gram (ng/g).

QA/QC NOTES

The client samples and QC samples were analyzed in two separate analysis batches (as WG47697 and WG47698) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration
 of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.

- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This has been visually inspected and does not affect the data.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met with the following exceptions:

Note: Soils/sediments are documented as achieving poorer recoveries than other matrices, however the cause(s) for this is unknown.

List 1 Compounds (WG47697)

At least 5 calibration points were used in quantification of the initial calibration (Data filename; QA4Q 074 S; 4 to S: 10) for all the analytes except for Clinafloxacin, Digoxigenin, and Roxithromycin which was quantified using 4 calibration points. A new linearity was attempted and still only had 4 points that met the linearity criteria, data are reported. However, since the target analytes Digoxigenin and Roxithromycin are not detected the only impact on the data are to the detection limit.

Percent recoveries for several target analytes in the OPR (AXYS ID: WG47697-102) did not meet method criteria and have been flagged with an 'N' on the report form. In the case where samples were detected for Erythromycin-H2O, Miconazole, and Norgestimate sample data may be similarly over-reported.

Where the percent recovery for a surrogate fell below 10% and 50% of the method lower control limits but above 1%: (1) the surrogate was flagged with a 'V'; (2) the native analyte with the surrogate being its exact labeled analogue was reported in a 'concentration is estimated' capacity and was flagged with an 'H'; (3) the analyte with the surrogate not being its exact labeled analogue was considered to be not quantifiable and was flagged as 'NQ'. Where the surrogate percent recovery was observed to be below 1% or the surrogate response did not meet the signal to noise method criteria, all target analytes and the surrogate compound was deemed to be not quantifiable and was flagged as 'NQ'.

List 2 Compounds (WG47697)

For the continuing calibration verification standard injection (data filename: QB4J_071 S: 46), the percent recovery for the target analyte Minocycline did not meet the upper method criteria. A visual inspection of the chromatography indicated there were no observable peaks detected in any of the samples at the expected retention times for this analyte.

List 3 Compounds (WG47697)

The recovery of labeled D₆-Bisphenol A in the 1406034-13 and OPR (AXYS IDs: L21534-2 and WG47697-102) and the recovery of ¹³C₃-Ibuprofen in 1406034-13 and 1406034-17 (AXYS IDs: L21534-2 and -8) did not meet the method criteria; these compounds were flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of the analytes. Percent surrogate recoveries are used as a general method performance indicator only.

The recovery of Hydrochlorothiazide in the Ongoing Precision and Recovery (OPR) sample (AXYS ID: WG47697-102) was below method acceptance criteria. This compound was flagged with an 'N' and sample data may be similarly slightly under-reported.

The recovery of Bisphenol A in the Ongoing Precision and Recovery (OPR) sample (AXYS ID: WG47697-102) was slightly above method acceptance criteria; this compound was flagged with an 'N'. As these compound is not detected in the client samples, data are not considered affected.

List 4 Compounds (WG47698)

The recovery of Ranitidine in the Ongoing Precision and Recovery (OPR) sample (AXYS ID: WG47698-102) was observed below method acceptance criteria; this target was flagged with an "N". Sample data may be similarly under-reported.

The recovery of multiple surrogates in different samples did not meet the method criteria; these compounds were flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of the analytes. Where the percent recovery for a surrogate fell below 10% and 50% of the method lower control limits but above 1%: (1) the surrogate was flagged with a 'V'; (2) the native analyte with the surrogate being its exact labeled analogue was reported in a 'concentration is estimated' capacity and was flagged with an 'H'.

Elevated concentration of Albuterol was observed in the Lab Blank (AXYS ID: WG47698-101). Sample results should be interpreted with the consideration of the Lab Blank.

The percent recovery value for D₃-Albuterol in the continuing calibration verification (data filename: QG4K_081 S: 12) was noticed outside method specifications. Corresponding native Albuterol recovery was within method specifications and data are not considered affected by this variance.

List 5 Compounds (WG47697)

For the laboratory procedural blank sample (AXYS ID: WG47697-101), Benztropine was detected marginally above the reporting limit. The same compound was detected in the 1406034-09 and -19 samples (AXYS IDs: L21534-12 and -14 respectively) at similar concentrations with the results flagged with a 'B' on the report forms. Data are not blank corrected and should be considered carefully during data review and interpretation.

For the OPR sample (AXYS ID: WG47697-102), the percent recovery for some target analytes did not meet the upper method criteria limits and were flagged with an 'N' on the report form. The recoveries were biased by the low recovery of a non-exact labeled surrogate used for target analyte quantification with the same compound not detected in the field samples (in most cases). Where the same compound was detected, data may be similarly affected.

Where the percent recovery of a surrogate compound was below 10% and less than half of the lower method criteria limit, the native target analyte was reported in an "information only" capacity and flagged with an 'H' and the surrogate compound recovery was flagged with a 'V' on the report forms. Where the surrogate recovery was less than 1%, all target analytes and the surrogate compound were deemed not quantifiable and flagged as 'NQ' on the report forms.

ANALYTICAL DISCUSSION

List 1, 3, and 5 Compounds (WG47697)

No analytical difficulties were encountered.

List 2 Compounds (WG47697)

The initial instrumental analysis results of the samples and QC did not meet method specifications for the continuing calibration. The samples and QC were instrumentally re-analyzed and method specifications were met. Sample concentrations are reported from the re-injection data (indicated by suffix 'i' on the AXYS ID).

List 4 Compounds (WG47698)

The samples and QC were instrumentally re-analyzed due to a possible inaccurate injection volume. The samples and QC are reported from the re-injection data (indicated by suffix 'i' on the AXYS ID).

The analyst noted that for sample 1406034-17 (AXYS ID: L21534-8), they may have added twice the routine quantity of the labeled recovery standard used for labeled surrogate quantification. The determined values for the surrogates do not confirm the analyst's note and data are not considered affected.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG48096, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unreported raw data

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Bryan Alonzo, Data Validation Chemist

Date Signed

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS **AXYS METHOD: MLA-075**

4793: L21534-18 to -21 and L21547-1 and -12

Project Name: 2014MELCX-1 PSEMP

06 August, 2014

NARRATIVE

This narrative describes the analysis of sixteen solid (marine sediment) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC-MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 5th and 9th of June 2014. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were all stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank, a laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample and duplicate (DUP) of one field sample) were analyzed in two analysis batches as WG47699 and WG47700. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed portion of each sample (approximately 1g on a dry mass basis) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The duplicate sample (AXYS IDs: WG47699-103 and WG47700-103 respectively) were prepared from the sample 140634-16 (AXYS ID: L21534-18) as the parent material. The resulting extracts were instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1.
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in the Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4793. The samples were assigned a unique laboratory identifier as L21534-XX and L21548-XX where X is a numeral. All data reports reference these unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract was given an extra "test suffix" code. The single letter code (per extra work performed) was added to the AXYS sample ID as a suffix, and was combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

i2 = the 2nd instrumental re-analysis performed on the sample extract

N = a large dilution of the sample extract followed by instrumental re-analysis

(A) = parent sample for a duplicate pair

The following laboratory qualifier flags were used for this data package:

B = analyte found in the sample and the associated laboratory procedural blank

H = result provided as information only; concentration is estimated

MAX = result reported as maximum value due to structural cross interference for compounds

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

U = identifies a compound that was not detected

surrogate recovery is not within method/contract control limits

The analytical results were reported to three significant figures with concentration units of nanograms per g (dry).

QA/QC NOTES

The field and QC samples were analyzed in two separate analysis batches (as WG47699 and WG47700) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the laboratory procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.

- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This was visually inspected and deemed to not affect the data.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds (WG47699)

For the initial calibration (data filename QA4Q 077 S: 4 to S: 10), at least 5 calibration points were used for the quantification of all target analytes except Roxithromycin which was quantified using 4 calibration points. As the linearity met criteria, and Roxithromycin was not detected in any of the field samples, the results were reported. The only influence for the analytical data was the higher detection limit reported.

For the continuing calibration verification standard solution injection (QA4Q 077 S:69), the percent recovery for the target analyte Sulfanilamide (59.7%) was marginally below the lower method criteria limit (60%), Other data may be similarly affected.

Where the percent recovery of a surrogate compound was below 10% and less than half of the lower method criteria limit, the exact native analyte was reported in an "information only" capacity and flagged with an 'H' and the surrogate compound recovery was flagged with a 'V' on the report forms. Where the surrogate recovery was less than 1% or did not meet the minimum signal to noise requirement, all target analytes and the surrogate compound were deemed to be not quantifiable and flagged as 'NQ' on the report forms.

List 2 Compounds (WG47699)

The analyte ACTC was detected in the laboratory procedural blank (AXYS ID: WG47699-101). Sample data are not blank corrected and the results were flagged with a 'B' on the report forms. The concentrations reported in the field samples should be compared to that of the laboratory procedural blank during data review.

List 3 Compounds (WG47699)

The recovery of D6-Bisphenol A in the field sample 1406034-22 (AXYS ID: L21547-3) did not meet the method criteria; this compound was flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that is recovery corrected, this variance from method criteria was deemed to not affect the quantification of the target analyte. Percent surrogate recoveries are used as general method performance indicator only.

The recovery of Hydrochlorothiazide in the Ongoing Precision and Recovery (OPR) sample (AXYS ID: WG47699-102) was noticed below the method criteria limit and was flagged with an 'N' on the report form. Other sample data may be similarly under-reported.

List 4 Compounds (WG47700)

For the laboratory procedural blank sample (AXYS ID: WG47700-101), Amphetamine, Atenolol and Albuterol were all detected. Albuterol was detected in some field samples at concentrations below that measured in the laboratory blank sample. These results were flagged with a 'B' on the report forms. Data are not blank corrected and should be considered during review and data interpretation.

For the OPR sample (AXYS ID: WG47700-102), the percent recovery for Ranitidine (2.2%) did not meet the lower method criteria limit (25%) and was flagged with an 'N' on the report form. Other data may be similarly under-reported.

The percent recoveries for many surrogate compounds in several samples did not meet the method criteria requirements and were flagged with a 'V' on the report forms. Where the percent recovery was below 10% and less than half the lower method criteria limit, the native target analyte was reported in an "information only" capacity and flagged with an 'H' on the report form. Where the recovery was below 1% or did not meet the minimum signal to noise requirement, both the target analyte and surrogate compound were deemed to be not quantifiable and flagged as 'NQ' on the report forms. For all other cases, because the isotope dilution/internal standard method of quantification produces data that is recovery corrected, the variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

List 5 Compounds (WG47699)

Cocaine was detected in the laboratory procedural blank sample (AXYS ID: WG47699-101). Where the same compound was detected in field samples, the results were flagged with a 'B' on the report forms. The concentrations reported for field samples should be compared to the laboratory procedural blank during data review and interpretation.

For the OPR sample (AXYS ID: WG47699-102) the percent recovery for Valsartan was above the upper method control limit flagged with an 'N' on the report form. Other data may be similarly affected.

The percent recoveries of several surrogate compounds in many field samples and the laboratory procedural blank did not meet the method criteria limits and were flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that is recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

Where the percent recovery of a surrogate compound was below 10% and less than half of the lower method criteria limit, the exact native analyte was reported in an "information only" capacity and flagged with an 'H' and the surrogate compound recovery was flagged with a 'V' on the report forms. Where the surrogate recovery was less than 1% or did not meet the minimum signal to noise requirement, all target analytes and the surrogate compound were deemed to be not quantifiable and flagged as 'NQ' on the report forms.

ANALYTICAL DISCUSSION

Lists 1, 2, 3 and 5 Compounds (WG47699)

No analytical difficulties were encountered.

List 4 Compounds (WG47700)

The results from the initial analysis and subsequent reanalysis (re-injection) of the sample extracts did not meet all method criteria requirements. This data was not reported but has been provided as an appendix (Unreported Data section) at the request of the client. This data has been provided raw (as acquired and processed electronically by the instrument and related software) and was not taken through the formal and comprehensive data quality evaluation protocol followed by AXYS Analytical Services for all final data reported to the client.

Following investigation and remedial action, the extracts for all samples were instrumentally reanalyzed (reinjected) an additional time and reported. These results were reported as the final concentrations and are identified with the suffix 'i2; following the AXYS ID on the report forms.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG48209, shown on the cover page. Included with this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- **Unreported Files**

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Andrew Porat, Data Validation Chemist

06 - A06 - 2034.
Date Signed

WASHINGTON STATE DEPARTMENT OF ECOLOGY **AQUEOUS (EQUIPMENT RINSATE) SAMPLES**

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS **AXYS METHOD: MLA-075**

4793: L21533-3, -10 and L21548-2 and -4

Project Name: 2014MELCX-1 PSEMP

28 July, 2014

NARRATIVE

This narrative describes the analysis of four aqueous (equipment rinsate) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 5th and 9th of June 2014. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were all stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank and laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample) were analyzed in two analysis batches as WG47714 and WG47715. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed sample of each sample (approximately 1 L volume) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The resulting extract was instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2.
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in the Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4793. The samples were assigned a unique laboratory identifier as L21534-XX and L21548-XX where X is a numeral. All data reports reference these unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract was given an extra "test suffix" code. The single letter code (per extra work performed) was added to the AXYS sample ID as a suffix, and was combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

= instrumental re-analysis performed on the sample extract

N = a large dilution of the sample extract followed by instrumental re-analysis

The following laboratory qualifier flags were used for this data package:

D = dilution data

H = result provided as information only; concentration is estimated

MAX = result reported as maximum value due to structural cross interference for compounds

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limits

X = results reported separtely

The analytical results were reported to three significant figures with concentration units of nanograms per litre (ng/L).

QA/QC NOTES

The client samples and QC samples were analyzed in two separate analysis batches (as WG47714 and WG47715) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the laboratory procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.

- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This was visually inspected and deemed to not affect the data.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds (WG47714)

At least 5 calibration points were used in quantification of the initial calibration (Data filename: QA4Q_073 S: 4 to S: 10) for all the analytes except for Roxithromycin which was quantified using 4 calibration points. Roxithromycin did not meet method criteria in the continuing calibration and was deemed to be not quantifiable. This analyte was flagged with an 'NQ' on the sample report forms.

The analyte Carbadox was above the method nominal limit in the continuing calibration (data filename: QA4Q_073 S: 32) and the analyte Caffeine was above the method nominal limit in the continuing calibration (data filename: QA4Q_073 S: 42). Given that these analytes were not detected in the samples, sample data were not considered affected.

The percent recovery of the target analytes Erythromycin- H_2O and Tylosin were beyond the method control limits for the OPR sample (AXYS ID: WG47714-102), which was flagged with an 'N' on the report form. Given that Erythromycin- H_2O was not detected in the client samples, sample data were not considered to be affected. For Tylosin, the sample data may be similarly affected.

List 3 Compounds (WG47714)

For the OPR sample (AXYS ID: WG47714-102), the percent recovery of the target analyte Furosemide (60.3%) was slightly below the lower method criteria limit (65%) and was flagged with an 'N' on the report form.

For the laboratory procedural blank and 1406034-40 samples (AXYS IDs: WG47714-101 and L21533-3), the percent recoveries of some surrogate compounds did not meet the method criteria limits and were flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that is recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as a general method performance indicator only.

List 4 Compounds (WG47715)

For the laboratory procedural blank sample (AXYS ID: WG47715-101), Albuterol and Atenoloi were detected. The same compounds were not detected in either field sample.

For the OPR sample (AXYS ID: WG47715-102), the percent recovery for Ranitidine (9.3%) did not meet the lower method criteria limit (25%) and was flagged with an 'N on the report form. The same compound was not detected in either field sample.

For the OPR and both field samples, the percent recoveries of some surrogate compounds did not meet method criteria and were flagged with a 'V' on the report forms. As the isotope dilution/internal standard method of quantification produces data that is recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

List 5 Compounds (WG47714)

For the OPR sample (AXYS ID: WG47714-102), the percent recovery for the target analyte Trenbolone Acetate (149.6%) was above the upper method criteria limit (130%) and was flagged with an 'N' on the report form. The same compound was not detected in either field sample.

ANALYTICAL DISCUSSION

List 1, 2, and 3 Compounds (WG47714)

No analytical difficulties were encountered.

List 4 Compounds (WG47715)

The results from the initial analysis did not meet all method criteria requirements. Following investigation and remedial actions taken, the extracts for all samples were instrumentally reanalyzed and reported from the reinjection data. The results are identified with the suffix 'i; following the AXYS ID on the report forms.

List 5 Compounds (WG47714)

For the 1406034-40 sample (AXYS ID: L21533-3), an interference was suggested by the chromatography shown for several compounds (Benztropine, d6-Amitriptyline, d3-Benztropine, d5-Norfluoxetine, d6-Paroxetine, d4-Promethazine and d5-Propoxyphene. As remedial action, the extract for this sample was diluted and instrumentally analyzed with improved chromatography. The results for these compounds and the related target analytes were reported from the dilution data and are indicated with the suffix 'N' following the AXYS ID on the report form.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG48169, shown on the cover page. Included in this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unreported raw data

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Andrew Porat, Data Validation Chemist

29-302-14.

Washington State Department of Ecology Manchester Environmental Laboratory (MEL)

7411 Beach Dr E, Port Orchard, Washington 98366

September 25, 2014

Project: PSEMP/Urban Waters 2014

LIMS Work Order #: 1406034-03, 1406034-04, 1406034-06 through 1406034-11,

1406034-13, 1406034-14, 1406034-15, 1406034-17, 1406034-19,

1406034-29, 1406034-30, 1406034-32

Contract Laboratory: Axys Analytical Services Ltd. (Axys)

Contract Laboratory Work ID #: L21534-1 through 17

Project Officer: Maggie Dutch

Data Review for Pharmaceuticals and Personal Care Products (PPCP)

Enclosed are results for the samples collected in June, 2014.

Samples were prepared and analyzed according to AXYS method MLA-075, Rev. 05, ver. 03. Data from these analyses were reviewed for qualitative and quantitative precision and bias following EPA method 1694 and the Axys method.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

Analytes and surrogates that Axys flagged "NQ" have been determined by the analyst's judgment to be invalid. These results should not have been reported with a result value. They have therefore been amended to REJ with a blank cell for the "Result Reported Value" field.

Because of uncertainty in the method, Axys flags Cloxacillin, Oxacillin, and Penicillin G as 'Information Values' of estimated concentrations. The only detections of these compounds were found in the OPR. These analytes have already been flagged by Axys as estimated values in all samples.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the reporting limit value was below Axys' instrument "Sample specific Detection Limit" (SDL; based on the signal to noise ratio). In these cases, Axys amended the reporting limit to the SDL value.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karin Feddersen

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected at or above the reported sample quantitation limit.
UJ	-	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Washington State Department of Ecology Manchester Environmental Laboratory Data Review Checklist

Project: PSEMP Urban Waters: Elliot Bay

Analysis: PPCP

Project Officer: Maggie Dutch

Work Order Sample Numbers

 $1406034-03,\,1406034-04,\,1406034-06\,\,through\,\,1406034-11,\\1406034-13,\,1406034-14,\,1406034-15,\,1406034-17,\,1406034-19,$

1406034-29, 1406034-30, 1406034-32

Question	Y	N	NA	Exceptions and action taken
Were all the samples analyzed for the requested parameters?	X			
Did sample arrive in a state of proper preservation at contract lab (< 6°C)? Were they stored properly? Storage criteria: -10°C sediment.	X			Sediment: The sample coolers were verified to be at -0.3°C, 1.7°C, and 0.7°C upon receipt at the contract lab. Samples were subsequently stored at -20°C.
Are the holding times within method limits for preparation and analysis?		X		EPA has not conducted formal holding time studies for these analytes to date. Anecdotal evidence suggests that some may degrade rapidly. The default holding times are 48 hours if stored in the dark at 0-4°C, or 7 days (-10°C) if frozen from the date of collection until extraction, and 40 days from extraction to analysis. The collection date was erroneously recorded on the chain of custody as June 4, 2014, for all samples. Samples were received by Axys on June 5, 2014. Sample results have been qualified as estimates for those samples that were not extracted within 7 days of the actual sample collection date. All samples were analyzed within 40 days of extraction.
Are all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X			
Are all of the analytes within method limits for the Initial Calibration (ICAL)?		X		There were several exceptions where the curve was modified to eliminate the outlying points. The calibration for 3 analytes could not be improved for using 5 points (described in Axys' narrative). However, as these analytes were either non-detect, (Digoxigenin, and Roxithromycin), or already flagged as non-quantifiable for other reasons, (Clinafloxacin), sample results were not affected.
Are all of the analytes for the Continuing Calibration Verification (CCV) within method limits?		X		Exceptions did not affect the results.
Were all samples analyzed within 12 hours of tuning and calibration verification?	X			
Is the method blank free of any positive results?		X		Where the sample concentration was less than ten times the blank concentration; the sample result was flagged with a "B" by the contract laboratory. The affected corresponding results have been qualified with a "U" as non-detects at the EQL; or at the level of detection, if that is above the EQL. In addition, Axys did not flag some compounds

On-going Precision and Recovery (OPR); aka Laboratory Control Sample (LCS): Was the OPR spiked with all target analytes and were all recoveries within quality control (QC) limits? If analyzed, is the Sample Duplicate Relative Percent Difference (RPD) within QC limits?		X	X	apparently detected in the blank because they were below the EQL. Where these blank detections appeared to be valid, greater than half the quantitation limit, and greater than 1/10th the sample result, the sample values have been amended to non-detects. Several analyte results were rejected in the blank. However these analytes were not detected in any of the samples, indicating no background contamination of these analytes could have affected the samples. Affected analytes have been qualified in the samples with "J" where detected. Analytes that may have been biased high have not been qualified if not detected. Azithromycin and Ranitidine recovery were below 10%. Neither analyte was detected in any of the samples. All results for this analyte have been rejected in the samples. In accordance with MEL procedures, results expressed as % recovery are not qualified, so flags have been removed from the OPR results. Sample 1406034-16 (Axys ID L21534-18) was analyzed in duplicate. It is labeled as WG47699-103 (DUP L21534-18) in the EDD. No QC limits have been established for this method. 13C3-N15-Ciprofloxacin could not be calculated and
Are the internal standard (IS) recoveries within acceptable method QC limits?		X		was flagged "NQ" by Axys. This qualifier has been changed to "NC". Associated analyte results in the sample have been rejected, "REJ", when not detected. Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects. When the surrogate recovery was below 10%, the associated results have been rejected, "REJ", when not detected. There was some interference contributing to the result for Isochlortetracycline [ICTC] in the OPR. Axys flagged the result "MAX". All sample results were already qualified as estimates. D3-Cimetidine recovery was below 10%, however, the native recovery for Cimetidine was still able to be calculated, and was within method QC limits at 79.9%. In accordance with MEL procedures, results expressed as % recovery are not qualified, so flags have been removed from IS recovery results.
Does the chromatography of the samples match the reported data?	X			
Are the results correctly calculated, with proper units and within the linear range of the calibrations?	X			
Is all of the data properly entered into the EDD?		X		Analytes and surrogates that Axys flagged NQ have been determined by the analyst's judgment to be invalid. Therefore, these results should not have been reported with a value, and they have been amended to REJ.

Washington State Department of Ecology Manchester Environmental Laboratory (MEL)

7411 Beach Dr E, Port Orchard, Washington 98366

September 25, 2014

Project: PSEMP/Urban Waters 2014

LIMS Work Order #: 1406034-01, 1406034-02, 1406034-05, 1406034-12, 1406034-16,

1406034-20 through 1406034-28, 1406034-32, 1406034-33

Contract Laboratory: Axys Analytical Services Ltd. (Axys)

Contract Laboratory Work ID #: L21534-18 through 21, and L21547-1 through 12

Project Officer: Maggie Dutch

Data Review for Pharmaceuticals and Personal Care Products (PPCP)

Enclosed are results for the samples collected in June, 2014.

Samples were prepared and analyzed according to AXYS method MLA-075, Rev. 05, ver. 03. Data from these analyses were reviewed for qualitative and quantitative precision and bias following EPA method 1694 and the Axys method.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

Analytes and surrogates that Axys flagged "NQ" have been determined by the analyst's judgment to be invalid. These results should not have been reported with a result value. They have therefore been amended to REJ with a blank cell for the "Result Reported Value" field.

Because of uncertainty in the method, Axys flags Cloxacillin, Oxacillin, and Penicillin G as 'Information Values' of estimated concentrations. The only detections of these compounds were found in the OPR. These analytes have already been flagged by Axys as estimated values in all samples.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the reporting limit value was below Axys' instrument "Sample specific Detection Limit" (SDL; based on the signal to noise ratio). In these cases, Axys amended the reporting limit to the SDL value.

All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as an estimated value. No results were amended for these samples.

If you have any questions concerning this report, please feel free to contact me. Sincerely,

Karin Feddersen

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected at or above the reported sample quantitation limit.
UJ	-	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Washington State Department of Ecology Manchester Environmental Laboratory Data Review Checklist

Project: PSEMP Urban Waters: Elliot Bay

Analysis: PPCP

Work Order Sample Numbers

1406034-01, 1406034-02, 1406034-05, 1406034-12, 1406034-16, 1406034-20 through 1406034-28, 1406034-32, 1406034-33

Project Officer: Maggie Dutch

Question	Y	N	NA	Exceptions and action taken
Were all the samples analyzed for the requested parameters?	X			
Did sample arrive in a state of proper preservation at contract lab (< 6°C)? Were they stored properly? Storage criteria: -10°C sediment.	X			Sediment: The sample coolers were verified to be at -0.3°C, 1.7°C, and 0.7°C upon receipt at the contract lab. Samples were subsequently stored at -20°C.
Are the holding times within method limits for preparation and analysis?		X		EPA has not conducted formal holding time studies for these analytes to date. Anecdotal evidence suggests that some may degrade rapidly. The default holding times are 48 hours if stored in the dark at 0-4°C, or 7 days (-10°C) if frozen from the date of collection until extraction, and 40 days from extraction to analysis. The collection date was erroneously recorded on the chain of custody as June 4, 2014, for all samples. Samples were received by Axys on June 5, 2014. Sample results have been qualified as estimates for those samples that were not extracted within 7 days of the actual sample collection date. All samples were analyzed within 40 days of extraction.
Are all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X			
Are all of the analytes within method limits for the Initial Calibration (ICAL)?		X		There were several exceptions where the curve was modified to eliminate the outlying points. The calibration for 3 analytes could not be improved for using 5 points (described in Axys' narrative). However, as these analytes were either non-detect, (Digoxigenin, and Roxithromycin), or already flagged as non-quantifiable for other reasons, (Clinafloxacin), sample results were not affected.
Are all of the analytes for the Continuing Calibration Verification (CCV) within method limits?		X		Exceptions did not affect the results.
Were all samples analyzed within 12 hours of tuning and calibration verification?	X			
Is the method blank free of any positive results?		X		Where the sample concentration was less than ten times the blank concentration; the sample result was flagged with a "B" by the contract laboratory. The affected corresponding results have been qualified with a "U" as non-detects at the EQL; or at the level of detection, if that is above the EQL. In addition, Axys did not flag some compounds

				apparently detected in the blank because they were below the EQL. Where these blank detections appeared to be valid, greater than half the EQL, and greater than 1/10th the sample result, the sample values have been amended to non-detects. Several analyte results were rejected in the blank. However these analytes were not detected in any of the samples, indicating no background contamination of these analytes could have affected the samples. Affected analytes have been qualified in the samples with "J" where detected.
On-going Precision and Recovery (OPR); aka Laboratory Control Sample (LCS): Was the OPR spiked with all target analytes and were all recoveries within quality control (QC) limits?		X		Analytes that may have been biased high have not been qualified if not detected. Where recoveries were below 10%, results have been rejected in the samples "REJ", when not detected. In accordance with MEL procedures, results expressed as % recovery are not qualified, so flags have been removed from the OPR results.
If analyzed, is the Sample Duplicate Relative Percent Difference (RPD) within QC limits?			X	Sample 1406034-04 (Axys ID L21534-11) was analyzed in duplicate. It is labeled as WG47697-103 (DUP L21534-11) in the EDD. No QC limits have been established for this method.
Are the internal standard (IS) recoveries within acceptable method QC limits?		X		13C3-N15-Ciprofloxacin could not be calculated and was flagged "NQ" by Axys. This qualifier has been changed to "NC". Associated analyte results in the sample have been rejected, "REJ", when not detected. Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects. When the surrogate recovery was below 10%, the associated results have been rejected, "REJ", when not detected. In accordance with MEL procedures, results expressed as % recovery are not qualified, so flags have been removed from IS recovery results.
Does the chromatography of the samples match the reported data?	X			
Are the results correctly calculated, with proper units and within the linear range of the calibrations?	X			
Is all of the data properly entered into the EDD?		X		Analytes and surrogates that Axys flagged NQ have been determined by the analyst's judgment to be invalid. Therefore, these results should not have been reported with a value, and have been amended to REJ.

Washington State Department of Ecology Manchester Environmental Laboratory (MEL)

7411 Beach Dr E, Port Orchard, Washington 98366

September 25, 2014

Project: PSEMP/Urban Waters 2014

LIMS Work Order #: 1406034-40, 1406034-46, 1406034-34, 1406034-37

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory Work ID #: L21533-3, L21548-2, L21533-10, L21548-4

Project Officer: Maggie Dutch

Data Review for Pharmaceuticals and Personal Care Products (PPCP)

Enclosed are results for the samples collected in June, 2014.

Samples were prepared and analyzed according to AXYS method MLA-075, Rev. 05, ver. 03. Data from these analyses were reviewed for qualitative and quantitative precision and bias following EPA method 1694 and the AXYS method.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

Analytes and surrogates that AXYS flagged "NQ" have been determined by the analyst's judgment to be invalid. These results should not have been reported with a result value. They have therefore been amended to REJ with a blank cell for the "Result Reported Value" field.

Because of uncertainty in the method, AXYS flags Cloxacillin, Oxacillin, and Penicillin G as 'Information Values' of estimated concentrations. The only detections of these compounds were found in the OPR. These analytes have already been flagged by Axys as estimated value in all samples.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

In certain cases, the reporting limit value was below AXYS' instrument "Sample specific Detection Limit" (SDL; based on the signal to noise ratio). In these cases, the reporting limit was amended to the SDL value.

If you have any questions concerning this report, please feel free to contact me. Sincerely,

Karin Feddersen

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected at or above the reported sample quantitation limit.
UJ	-	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Washington State Department of Ecology Manchester Environmental Laboratory Data Review Checklist

Project: PSEMP Urban Waters: Elliot Bay

Analysis: PPCP

Work Order: 1406034-40, 1406034-46, Project Officer: Maggie Dutch

1406034-34, 1406034-37

1406034-34, 1406034-37									
Question	Y	N	NA	Exceptions and action taken					
Were all the samples analyzed for the requested parameters?	X			Samples 1406034-40 and 1406034-46 were analyzed for PPCP lists 1, 2, 4, and 5 Samples 1406034-34 and 1406034-37 were analyzed for PPCP list 3.					
Did sample arrive in a state of proper preservation at contract lab (< 6°C)? Were they stored properly? Storage criteria: -10°C sediment.	X			Sediment: The sample coolers were verified to be at -0.3°C, 1.7°C, and 0.7°C upon receipt at the contract lab. Samples were subsequently stored at -20°C.					
Are the holding times within method limits for preparation and analysis?		X		EPA has not conducted formal holding time studies for these analytes to date. Anecdotal evidence suggests that some may degrade rapidly. The default holding times are 48 hours if stored in the dark at 0-4°C, or 7 days (-10°C) if frozen from the date of collection until extraction, and 40 days from extraction to analysis. The collection date was erroneously recorded on the chain of custody as June 4, 2014, for all samples. Samples were received on June 5, 2014. Samples extracted June 12, 2014, 7 days after receipt, but not within 7 days of sample collection. All samples were analyzed within 40 days of extraction. All sample results have been qualified as estimates.					
Are all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X								
Are all of the analytes within method limits for the Initial Calibration (ICAL)?		X		There were several exceptions where the curve was modified to eliminate the outlying points. The calibration for 3 analytes could not be improved for using 5 points (described in Axys' narrative). However, as these analytes were either non-detect, (Digoxigenin, and Roxithromycin), or was already flagged as non-quantifiable for other reasons, (Clinafloxacin), sample results were not affected.					
Are all of the analytes for the Continuing Calibration Verification (CCV) within method limits?		X		Exceptions did not affect the results.					
Were all samples analyzed within 12 hours of tuning and calibration verification?	X								
Is the method blank free of any positive results?		X		Several analytes were detected in the method blank, but not I either of the samples. In addition, metformin was detected in the blank, but not reported, because it was just below the EQL, and ~ 5times higher in the samples. Since these were trip blanks, they were not adjusted for the method blank values.					

On-going Precision and Recovery (OPR); aka Laboratory Control Sample (LCS): Was the OPR spiked with all target analytes and were all recoveries within quality control (QC) limits?		X		Affected analytes have been qualified in the samples with "J" where detected. Analytes that may have been biased high have not been qualified if not detected.
If analyzed, is the Sample Duplicate Relative Percent Difference (RPD) within QC limits?			X	
Are the internal standard (IS) recoveries within acceptable method QC limits?		X		Analytes that use the affected labeled compounds for quantification have been qualified with "J" for detected analytes and "UJ" for non-detects. Analytes that may have been biased high have not been flagged if not detected.
Does the chromatography of the samples match the reported data?	X			
Are the results correctly calculated, with proper units and within the linear range of the calibrations?	X			
Is all of the data properly entered into the EDD?	X			Axys did not report some compounds that were apparently detected because they were below the EQL. These samples are trip blanks that will presumably be evaluated in the context of the field samples. Therefore, these detections were evaluated. Those detections that appeared valid, greater than half the EQL, and greater than 1/10th the sample results were added to the MEL Amended field of the EDD.

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

Project Name: 1504041 PSEMP Urban Bay Sediment

PERFLUORINATED ORGANIC ANALYSIS
AXYS METHODS: MLA-041

4793: L23210-1 to -15

29 May 2015

NARRATIVE

This narrative describes the analysis of fifteen solid samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 14th of May, 2015. Details of sample conditions upon receipt are provided on the Sample Receiving forms included in the Sample Documentation section of this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The samples and associated QC samples (a procedural blank, an Ongoing Precision and Recovery (OPR), and a sample duplicate) were analyzed in one analysis batch named WG51275 the composition of which is shown on the Correlation Table and on the Batch List accompanying the extraction workup sheets.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with AXYS Method MLA-041: Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS. A method summary (MSU-041) of AXYS Method MLA-041 is included in the data package.

The solid samples were homogenized. Details of the sample preparation are provided in Sample Preparation Record forms included in this data package. The procedural blank was prepared using Canadian Springs water and the OPR was prepared using cleaned sand. Sample 1505061-11 (AXYS ID: L23210-2) was analyzed in duplicate and assigned AXYS ID WG51275-103.

An accurately weighed sample (approximately 5.0 g dry weight) was spiked with ¹³C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

CALCULATION

Target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. The formula used to calculate analyte concentrations are provided in the method summary. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of the data package.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data validation chemists made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard (CS0) or the sample specific detection limit, whichever was greater.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown, data is not reported beyond the measured calibration range.

REPORTING CONVENTIONS

For internal tracking, AXYS assigned the Washington State Dept of Ecology a contract number 4793. Samples were logged under unique laboratory identifiers L23210-XX, where X is a numeral. All data reports reference both the AXYS ID and the client sample identifier. To assist in locating data, a table correlating AXYS ID with the client sample number is also included in this Data Package. The report forms were generated using Laboratory Information Management Software (LIMS).

Any extra work required and performed after the initial instrumental analysis of the sample extract is given an extra "test suffix" code. The single letter code per extra work performed is added to the AXYS sample ID as a suffix, and is combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

- i = instrumental re-analysis performed on the sample extract
- (A) = the parent sample for a duplicate pair

The following laboratory qualifier flags were used for this data package:

U = identifies a compound that was not detected.

The results were reported with concentration units of nanograms per gram (ng/g) on a dry weight basis with concentrations and detection limits provided to three significant figures. The analysis results for each sample are provided on Analysis Report forms 1A and 2.

QA/QC NOTES

Samples and QC samples were analyzed in one analysis batch and were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration
 of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and would not affect the data.
- All linearity, CAL/VER, OPR, sample duplicate and labeled compound recovery specifications were met

ANALYTICAL DISCUSSION

The Lab Blank (AXYS ID: WG51275-101) was reinjected as the noise was not properly acquired on the instrument; the sample was instrumentally re-analyzed. Data is reported from the reinjection (indicated by an 'i' suffix following the AXYS ID).

DATA PACKAGE

This data package is assigned a unique identifier, DPWG51381, shown on the title page of this data package. Includes the following documentation after this narrative:

- Method Summary
- Method Detection Limit Study
- Sample Correlation Table
- Sample Receiving Documentation
- Standard Solution Preparation Records
- Sample Preparation & Extraction work sheets
- Sample Data Reports (in order of AXYS Sample ID)
- Laboratory QC Data Reports
- Instrumental QC Data Reports (organized by analysis date)
- Sample Raw Data (in order of AXYS ID)
- Laboratory QC Sample Raw Data
- Instrument Run (injection) Log
- Instrument QC Raw Data
- Supplemental Unvalidated data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed Bryan Alonzo, B. Sc., Data Validation Chemist

Date Signed

WASHINGTON STATE DEPARTMENT OF ECOLOGY MARINE SEDIMENT SAMPLES

Project Name: 1504041 PSEMP Urban Bay Sediment

PERFLUORINATED ORGANIC ANALYSIS
AXYS METHODS: MLA-041

4793: L23239-1 to -14 and L23248-1 to -4

23 June 2015

NARRATIVE

This narrative describes the analysis of eighteen marine sediment samples for the determination of perfluorinated organic compounds using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 19th of May, 2015. Details of sample conditions upon receipt are provided on the Sample Receiving forms included in the Sample Documentation section of this data package. The samples were stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE EXTRACTION AND ANALYSIS

The field samples and associated QC samples (laboratory procedural blank, Ongoing Precision and Recovery (OPR), sample and field sample duplicate) were analyzed in one analysis batch as WG51319. The composition of the batch is shown on the Correlation Table and on the Batch List accompanying the extraction workup sheets within the data package.

The sample preparation, instrumental analysis and analyte quantification procedures followed were in accordance with AXYS Method MLA-041: Analytical Procedure for the Analysis of Perfluorinated Organic Compounds in Solid Samples by LC-MS/MS. A method summary (MSU-041) of AXYS Method MLA-041 is included with the data package.

The solid samples were homogenized. Details of the sample preparation are provided in Sample Preparation Record forms included with this data package. The laboratory procedural blank was prepared using Canadian Springs water and the OPR sample was prepared using cleaned sand. Sample 1505061-23 (AXYS ID: L23239-2) was analyzed in duplicate and assigned as AXYS ID WG51319-103.

An accurately weighed portion of each sample (approximately 5.0 g dry weight) was spiked with ¹³C-labelled quantification standards and extracted in acetic acid and basic methanol. The resulting extract was collected, cleaned up using Waters Oasis WAX SPE cartridges and eluted with methanolic 0.3% NH₄OH. The final extract was spiked with labeled recovery (internal) standard prior to instrumental analysis.

CALCULATIONS

The target analyte concentrations were determined by isotope dilution/internal standard quantification procedures using MassLynx 4.1 software. Quantification was conducted by comparing the area of the quantification ion to that of the ¹³C-labelled quantification standards (surrogate) and correcting for response factors. Linear regression quantification equations with 1/X² weighting fit were determined from a multi-point calibration series prepared alongside the samples. The formula used to calculate analyte concentrations are provided in the method summary document contained within the data package. Quantification equations for each target analyte are provided in Quantify Compound Summary Report in the Analysis Chromatography section of the data package.

Sample specific detection limit (SDL) was calculated for each target analyte and used as the detection qualifier. If the software selected an unrepresentative area for the detection limit calculation, the data validation chemists made corrections. These corrections are hand noted on the quantification report pages attached to the chromatograms.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard (CS0) or the sample specific detection limit, whichever was greater.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. As the uncertainty outside this range is unknown, data is not reported beyond the measured calibration range.

REPORTING CONVENTIONS

For internal tracking, AXYS assigned the Washington State Dept of Ecology a contract number 4793. Samples were logged under unique laboratory identifiers L23239-XX and L23248-XX, where X is a numeral. All data reports reference both the AXYS ID and the client sample identifier. To assist in locating data, a table correlating AXYS ID with the client sample number is also included with the Data Package. The report forms were generated using Laboratory Information Management Software (LIMS).

Any extra work required and performed after the initial instrumental analysis of the sample extract was given an extra "test suffix" code. The single letter code per extra work performed was added to the AXYS sample ID as a suffix, and combined with any other applicable test suffix codes. The extra work codes used to report data for this package were:

- i = instrumental re-analysis performed on the sample extract
- (A) = the parent sample for a duplicate pair

The following laboratory qualifier flags were used for this data package:

- U = identifies a compound that was not detected.
- V = surrogate recovery not within method control limits
- X = result reported separately

The results were reported with concentration units of nanograms per gram (ng/g) on a dry mass basis with concentrations and detection limits provided to three significant figures. The analysis results for each sample are provided on Analysis Report forms 1A and 2.

QA/QC NOTES

Samples and QC samples were analyzed in one analysis batch and were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration
 of the laboratory procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- The Signal/Noise (S/N) ratios were measured as '0' for some compounds in the QC samples and sample data. This has been determined to be a limitation of the software and does not affect the data.
- All linearity, CAL/VER, OPR, laboratory procedural blank, sample duplicate and labeled compound recovery specifications were met with the following exceptions:

For some samples, the percent recovery of the surrogate compound 13C2-PFDoA did not meet the minimum method criteria requirement (40%) and was flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that is recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

ANALYTICAL DISCUSSION

The extracts for the field samples 1505061-34 and -19 (AXYS IDs: L23239-8 and -9) were re-injected to confirm the results for the target analyte PFBS. The results for this compound were reported from the reinjection data and are indicated with the suffix 'i' following the AXYS IDs on the report forms.

DATA PACKAGE

This data package was assigned a unique identifier, DPWG51651, shown on the title page of this data package. The following documents are included after with this data package:

- Method Summary
- Method Detection Limit Study
- Sample Correlation Table
- Sample Receiving Documentation
- Standard Solution Preparation Records
- Sample Preparation & Extraction work sheets
- Sample Data Reports (in order of AXYS Sample ID)
- Laboratory QC Data Reports
- Instrumental QC Data Reports (organized by analysis date)
- Sample Raw Data (in order of AXYS ID)
- Laboratory QC Sample Raw Data
- Instrument Run (injection) Log
- Instrument QC Raw Data
- · Supplemental Unvalidated data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Andrew Porat, Data Validation Chemist

 $\frac{23-20\,\text{ME}-15}{\text{Date Signed}}$

Washington State Department of Ecology Manchester Environmental Laboratory

7411 Beach Drive East, Port Orchard, Washington 98366

September 2, 2015

Project: PSEMP Urban Waters Sediment Monitoring

LIMS Work Order #: 1505061-01 through 1505061-25, 1505061-27, 1505061-29,

1505061-31, 1505061-32, 1505061-33 through 1505061-36

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory ID: L23210-1 through L23210-15;

L23239-1 through L23239-14; L23248-1 through L23248-4

Project Officer: Maggie Dutch

Perfluorinated Compounds (PFC), AXYS method MLA-041

Enclosed are results for the samples collected May 11, 12, and 13, 2015. If you have any questions concerning this report, please feel free to contact me.

Samples were prepared and analyzed according to AXYS method MLA-041, Rev. 09, ver. 03. Data from these analyses were reviewed for qualitative and quantitative precision and bias following the AXYS method.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

Analytes and surrogates that AXYS flagged NQ have been determined by the analyst's judgment to be invalid. They have therefore been amended to REJ with a blank cell for the "Result Reported Value" field.

The "Estimated Detection Limit" (EDL) values reflect levels that are approximately 2.5 times the signal-to-noise ratio. This is the same criterion as is used for the Method Detection Limit (MDL), described by 40CFR.

In some cases, interference caused the EDL to be greater than the EQL. These EDL values have been reported in the "Result Value EDL" column. When no peak was identified for the analyte, the associated result has been reported as a non-detect at the EDL; an estimated limit. Where interference was present above the EDL and the EQL, the reporting limit was raised to the level of the interference and qualified as an estimate.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. In addition, the potential exists for interfering compounds that cannot be resolved from the analyte; and suppression and /or enhancement effects may be present at concentrations below the reporting limit due to interference.

As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the reporting limit).

All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported below the reporting limit as a tentative identification and an estimated value. No results were amended for these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karin Feddersen

Data Qualifiers Definition Code J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. NC Not calculated. REJ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. U The analyte was not detected at or above the reported sample quantitation limit. UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Data Review Checklist									
Question	Y	N	NA	Exceptions and action taken					
Were all the samples analyzed for the requested parameters?	X								
Did sample arrive in a state of proper preservation at contract lab (< 6 °C)? Were they stored properly?	X								
Are the holding times within acceptable limits for preparation and analysis?	X			All samples were extracted and analyzed within one year of collection.					
Is all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X								
Are all of the analytes within QC limits for the Initial Calibration (ICAL)?	X			Calculated results fall within 70% to 130% for target analytes. Refer to table in AXYS' method summary for all labeled compounds.					
Are all of the analytes for the Calibration Verification (CV) within QC limits?	X			70% to 130% for target analytes. Refer to table in AXYS' method summary for IS limits.					
Was a CV analyzed all every 20 samples?	X								
Is the recovery internal standard (RIS) recovery within quality control (QC) limits in all samples?	X			¹³ C ₂ -PFOUEA: 50-200%					
Are all labeled compound surrogate recoveries (Internal Standard - IS) within acceptable QC limits?		X		(Refer to table in AXYS' method summary) 13C2-PFDoA was similarly low in sample 1505061-24, the blank, and the OPR. Native analyte PFDoA was not detected in the affected sample and blank. These results have been qualified "UJ".					
Is the method blank free of any positive results, and if not, is the data properly qualified?	X			Blanks are labeled: WG51319-101 and WG51275-101 No target analytes were detected above the MDL.					
Was the LCS (OPR) spiked with all target analytes and are % recoveries within QC limits?	X			LCS are labeled: WG51319-102 and WG51275-102 70% to 130% for target analytes. Refer to AXYS' method summary for IS limits.					
If analyzed, is the Sample Duplicate RPD within laboratory QC limits?			X	A duplicate was performed on sample 1505061-11 (AXYS ID WG51275-103), and on sample 1505061-08 (AXYS ID WG51319-10). No RPDs could be calculated, as all results in all duplicated samples were non-detect.					
Does the chromatography of the samples match the reported data, and are retention times (RT) within QC limits for accurate identification?	X			Native RT within 0.4 minutes of the predicted RT from the daily CV. Native analytes with labeled surrogates must elute within 0.1 minutes of the associated labeled surrogate.					
Are the results correctly calculated, reported with proper units and within the linear range of the calibration?	X			Each EDD has been amended to include a column for the MDL of each analyte. However, the values have not been adjusted for sample volume.					
Is all of the data properly entered into the EDD?		X		Certain analyte results were missing for some samples. AXYS responded that this can happen whenever a reanalysis or dilution is performed. The results form one or the other analysis may not be transferred correctly into the EDD. The error was caused by a human error. They do use reports to indicate to the chemists checking the results when a result is reported (or not), which is critical when trying to report long target lists such as pharmaceuticals however in this case the individual reviewing the data missed this information. Results have been added or amended where necessary.					

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS **AXYS METHOD: MLA-075**

4793: L23239-1 to -14

L23248-1 to -4

Project Name: 1504041 PSEMP Urban Bay Sediment

25 June 2015

NARRATIVE

This narrative describes the analysis of eighteen solid (marine sediment) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 19th and 21st of May, 2015. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were all stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank, a laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample and duplicate (DUP) of one field sample) were analyzed in two analysis batches as WG51341 and WG51342. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed portion of each sample (approximately 1g on a dry mass basis) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The duplicate sample (AXYS IDs: WG51341-103 and WG51342-103, respectively) were prepared from the sample 1505061-19 (AXYS ID: L23239-9) as the parent material. The resulting extracts were instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in the Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4793. The samples were assigned a unique laboratory identifier as L23239-XX and L23248-X where X is a numeral. All data reports reference these unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract was given an extra "test suffix" code. The single letter code (per extra work performed) was added to the AXYS sample ID as a suffix, and was combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

instrumental re-analysis performed on the sample extract

parent sample for a duplicate pair (A)

The following laboratory qualifier flags were used for this data package:

analyte found in the sample and the associated laboratory procedural blank В

result provided as information only; concentration is estimated Н

MAX = result reported as maximum value due to structural cross interference for compounds

authentic recovery is not within method/contract control limits Ν

data not quantifiable NQ

identifies a compound that was not detected U

surrogate recovery is not within method/contract control limits

The analytical results were reported to three significant figures with concentration units of nanograms per gram (dry).

QA/QC NOTES

The field and QC samples were analyzed in two separate analysis batches (as WG51341 and WG51342) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the laboratory procedural blank results.

- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This was visually inspected and deemed to not affect the data.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds (WG51341)

The analyte Cefotaxime did not meet method criteria in the intial calibration. As a result Cefotaxime is flagged 'NQ' on the report forms.

Percent recovery of several native analytes in the OPR (AXYS ID: WG51341-102) were outside the method nominal limit and have been flagged with an 'N' on the report form. Sample data may be similarly affected.

Percent recovery of labeled compound 13 C₃-N₁₅-Ciprofloxacin in the Lab Blank and OPR (AXYS ID: WG51341-101, and -102, respectively) was below the range required for accurate quantification and was deemed not quantifiable. The surrogate and all analytes quantified against the surrogate are flagged as 'NQ'. The interaction of dissolved inorganic components of the matrix with the analytes and the material in the Oasis HLB cartridge is the most likely cause for the low recovery.

Percent recovery of several labeled compounds in the client samples were outside the method nominal limit and have been flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only. Where the percent recovery for the surrogate fell below 10% and half of the method lower control limits but above 1%: (1) the native analyte with the surrogate being its exact labeled analogue was reported in a 'concentration is estimated' capacity and flagged with an 'H'; (2) the analyte with the surrogate not being its exact labeled analogue was considered not quantifiable and flagged as 'NQ'. Where the surrogate percent recovery was observed below 1% or the surrogate response did not meet the signal to noise method criteria, all target analytes and the surrogate compound was deemed not quantifiable and flagged as 'NQ'.

List 3 Compounds (WG51341)

Percent recovery of analyte Hydrochlorothiazide in the continuing calibration (data filename: QF5K_040 S: 33 and S: 49) was above the method nominal limit.

Percent recovery of analyte Furosemide and Hydrochlorothiazide in the OPR (AXYS ID: WG51341-102) was outside the method nominal limit and has been flagged with an 'N' on the report form. Sample data may be similarly affected.

Percent recovery of labeled compound ¹³C₃-Ibuprofen in several client samples were outside the method nominal limit and has been flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

List 4 Compounds (WG51342)

For the laboratory procedural blank sample (AXYS ID: WG51342-101), Albuterol, Atenolol, Cimetidine and Ranitidine were detected. Albuterol and Cimetidine were also detected in some field samples at concentrations above and below the level for blank sample and were flagged with a 'B' on the report forms. Data are not blank corrected and should be considered carefully during data review and interpretation.

For the OPR sample (AXYS ID: WG51342-102), the percent recovery for Oxycodone (168%) did not meet the upper method criteria limit (130%) and was flagged with an 'N' on the report form. The same compound was not detected in the field samples.

For some client samples, the percent recoveries of some surrogate compounds were beyond the method criteria limits and were flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that is recovery corrected, such variances were deemed to not affect the quantification of the target analytes. Percent recoveries are used as a general method performance indicator only. Where the percent recovery for a surrogate was below 10% and half the lower method criteria limit but above 1%: (1) the native analyte with the surrogate being its exact labeled analogue was reported in a 'concentration is estimated' capacity and flagged with an 'H'; (2) the analyte with the surrogate not being its exact labeled analogue was considered not quantifiable and flagged as 'NQ'. Where the surrogate percent recovery was observed to be below 1% or the surrogate response did not meet the signal to noise method criteria, all target analytes and the surrogate compound was deemed not quantifiable and flagged as 'NQ'.

List 5 Compounds (WG51341)

The analyte DEET was detected in the Lab Blank (AXYS ID: WG51341-101). Data are not blank corrected and should be considered during sample data review.

Percent recovery of several native analytes in the OPR (AXYS ID: WG51431-102) were outside the method nominal limits and flagged with an 'N' on the report form. Sample data may be similarly affected.

Percent recovery of several labeled surrogates in several client samples were outside the method nominal limits and have been flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only. Where the percent recovery for a surrogate fell below 10% and half of the method lower control limits but above 1%: (1) the native analyte with the surrogate being its exact labeled analogue was reported in a 'concentration is estimated' capacity and flagged with an 'H'; (2) the analyte with the surrogate not being its exact labeled analogue was considered not quantifiable and flagged as 'NQ'. Where the surrogate percent recovery was observed to be below 1% or the surrogate response did not meet the signal to noise method criteria, all target analytes and the surrogate compound was deemed not quantifiable and flagged as 'NQ'.

ANALYTICAL DISCUSSION

Lists 1 and 2 Compounds (WG51341)

No analytical difficulties were encountered.

List 3 Compounds (WG51341)

The results from the initial analysis of the sample extracts did not meet all method criteria requirements. This data was not reported but has been provided as an appendix (Unreported Data section) at the request of the client. This data has been provided raw (as acquired and processed electronically by the instrument and related software) and was not taken through the formal and comprehensive data quality evaluation protocol followed by AXYS Analytical Services for all final data reported to the client.

Following investigation and remedial action, the extracts for all samples were instrumentally reanalyzed (reinjected) and reported. These results were reported as the final concentrations and are identified with the suffix 'i' following the AXYS ID on the report forms.

List 4 Compounds (WG51342)

The samples 1505061-36, 1505061-34 and the duplicate sample (AXYS ID: L23239-4, -6 and WG51342-103. respectively) were diluted and instrumentally re-analyzed to confirm labeled compound recoveries. Dilution analysis showed no improvement and raised the detection limits. This data was not reported but has been provided as an appendix (Unreported Data section) at the request of the client. Sample data are reported from the initial analysis.

List 5 Compounds (WG51341)

The samples 1505061-01 and 1505061-02 (AXYS ID: L23239-11 and -13, respectively) were diluted and instrumentally re-analyzed to confirm labeled compound recoveries. Dilution analysis showed no improvement and raised the detection limits. This data was not reported but has been provided as an appendix (Unreported Data section) at the request of the client. Sample data are reported from the initial analysis.

DATA PACKAGE

This data package has been assigned a unique identifier, DPWG51619 shown on the cover page. Included with this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unreported Files

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Bryan Alonzo, B. Sc., Data Validation Chemist

Z5-Jun-15 Date Signed

Washington State DOE

CORRELATION TABLE

PHARMACEUTICAL AND PERSONAL CARE PRODUCT ANALYSIS

PHARMACEUTICAL AND PERSONAL CARE PRODUCT ANALYSIS				
Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks			
Project Name: 1504041 PSEMP Urban Bay	Contract No:4793			
Sediment	AXYS Method: MLA-075			
Data Package Identification: DPWG51619	Program: Solid Samples			
Client Sample No.	Lab Sample ID			
LAB BLANK	WG51341-101			
OPR	WG51341-102			
LAB BLANK	WG51342-101			
OPR	WG51342-102			
1505061-23	L23239-1			
1505061-20	L23239-2			
1505061-21	L23239-3			
1505061-36	L23239-4			
1505061-29	L23239-5			
1505061-35	L23239-6			
1505061-24	L23239-7			
1505061-34	L23239-8			
1505061-19	L23239-9 WG51341 & WG51342-103 DUPLICATE			
1505061-09	L23239-10			
1505061-01	L23239-11			
1505061-07	L23239-12			
1505061-02	L23239-13			
1505061-03	L23239-14			
1505061-04	L23248-1			
1505061-05	L23248-2			
1505061-06	L23248-3			
1505061-08	L23248-4			

WASHINGTON STATE DEPARTMENT OF ECOLOGY SOLID SAMPLES

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS ANALYSIS AXYS METHOD: MLA-075

4793: L23210-1 to -15

Project Name: 1504041 PSEMP Urban Bay Sediment

25 June 2015

NARRATIVE

This narrative describes the analysis of fifteen solid (marine sediment) samples for the determination of pharmaceutical and personal care products using High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (HPLC- MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 14th of May, 2015. Details of sample conditions upon receipt are provided on the Sample Receiving forms included with this data package. The samples were all stored at -20°C prior to sample preparation, extraction and analysis.

SAMPLE PREPARATION, EXTRACTION AND ANALYSIS

The client samples and QC samples (consisting of a laboratory procedural blank, a laboratory generated reference sample referred to as an 'Ongoing Precision and Recovery' (OPR)) sample and duplicate (DUP) of one field sample) were analyzed in two analysis batches as WG51269 and WG51270. The composition of each analysis batch is shown on the Correlation Table and Batch List forms that accompany the extraction workup sheets included with this data package.

The sample preparation, extraction, instrumental analysis and quantification procedures followed were in accordance with AXYS Method MLA-075: *Analytical Procedure for the Analysis of Pharmaceutical and Personal Care Products in Solid and Aqueous Samples by LC-MS/MS*. A method summary (MSU-075) for this method is included with this data package.

An accurately weighed portion of each sample (approximately 1g on a dry mass basis) was spiked with surrogate compounds used for target analyte quantification, extracted under acid or alkaline conditions and cleaned up for sample matrix interferences using individual SPE cartridges. The duplicate sample (AXYS IDs: WG51269-103 and WG51270-103, respectively) were prepared from the sample 1505061-11 (AXYS ID: L23210-2) as the parent material. The resulting extracts were instrumentally analyzed using a Waters 2690 or 2795 HPLC equipped with Micromass Quattro Ultima MS/MS. The instrument and LC conditions used are summarized in the table below.

Target Group	LC Column	Ionization	Acquisition	LC Conditions
List 1	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	1
List 2	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	2
List 3	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Negative Ion Electrospray	MRM mode, unit resolution	3
List 4	Waters Atlantis HILIC (10.0 cm, 2.1 mm i.d., 3.0 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	4
List 5	Waters Xtera C18MS (10.0 cm, 2.1 mm i.d., 3.5 µm particle size)	Positive Ion Electrospray	MRM mode, unit resolution	5

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using MassLynx 4 software. Quantification was conducted by comparing the area of the quantification ion to that of the quantification standard (surrogate) and correcting for response factors.

Linear regression equations with a 1/x weighting fit were determined from a multi-point calibration series prepared alongside the samples. Formulae used to calculate the analyte concentrations are provided in the method summary (MSU-075) included with this data package. Quantification equations for each target analyte are provided in the Quantify Compound Summary Report in the Analysis Chromatography section of this data package.

The sample specific detection limit (SDL) was calculated for each target analyte and used as one of the detection qualifiers for the reporting limit (RL). If the software selected an unrepresentative area for the detection limit calculation, the data interpretation chemist or the QA chemist made corrections. If applicable, these corrections were hand noted on the quantification report pages included with the chromatograms. The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard or the SDL, whichever was greater.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4793. The samples were assigned a unique laboratory identifier as L23210-XX where X is a numeral. All data reports reference these unique AXYS IDs plus the client sample identifiers.

Any extra work required and performed after the initial instrumental analysis of a sample extract was given an extra "test suffix" code. The single letter code (per extra work performed) was added to the AXYS sample ID as a suffix, and was combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

i = instrumental re-analysis performed on the sample extract

(A) = parent sample for a duplicate pair

The following laboratory qualifier flags were used for this data package:

B = analyte found in the sample and the associated laboratory procedural blank

H = result provided as information only; concentration is estimated

MAX = result reported as maximum value due to structural cross interference for compounds

N = authentic recovery is not within method/contract control limits

NQ = data not quantifiable

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limits

The analytical results were reported to three significant figures with concentration units of nanograms per gram on a dry mass basis.

QA/QC NOTES

The field and QC samples were analyzed in two separate analysis batches (as WG51269 and WG51270) with each analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. The data should be evaluated with consideration of the laboratory procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.

- Due to the limitation of the software, signal to noise ratio (S/N) was measured as '0' in some cases where even a large peak was present. This was visually inspected and deemed to not affect the data.
- All linearity, calibration verification, OPR, duplicate and labeled compound recovery specifications were met with the following exceptions:

List 1 Compounds (WG51269)

The initial calibration for Cefotaxime did not meet the minimum method criteria for quantification. This analyte was deemed not quantifiable with all results flagged as 'NQ' on the report forms.

Flumequine was detected in the laboratory procedural blank sample (AXYS ID: WG51269-101). The same analyte was not detected in the field samples. Data are not blank corrected.

For the OPR sample (AXYS ID: WG51269-102), the percent recoveries of some analytes did not meet the upper method criteria limits and were flagged with an 'N' on the report forms.

For the laboratory procedural blank and OPR samples (AXYS IDs: WG51269-101 and -102) the percent recovery of the surrogate 13C3-N15-Ciprofloxacin was below the lower method criteria limit (7%). The interaction of dissolved inorganic components of the matrix with the analytes and the material in the Oasis HLB cartridge is the most likely cause. Where the percent recovery for the surrogate fell below 10% and half of the method lower control limit but above 1%: (1) the surrogate was flagged with a 'V'; (2) the native analyte with the surrogate being its exact labeled analogue was reported with a 'concentration is estimated' capacity and flagged with an 'H'; (3) the analyte with the surrogate not being its exact labeled analogue was considered to be not quantifiable and flagged as 'NQ'.

The percent recoveries of some surrogate compounds in the client samples were outside the method criteria limits and flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that is recovery corrected, such variances were deemed to not affect the quantification of the target analytes. Percent recoveries are used as a general method performance indicator only. Where the percent recovery for the surrogate was below 10% and half the lower method criteria limit but above 1%: (1) the surrogate was flagged with a 'V': (2) the native analyte with the surrogate being its exact labeled analogue was reported with a 'concentration is estimated' capacity and flagged with an 'H'; (3) all other analytes were considered not quantifiable and flagged as 'NQ'. Where the percent recovery was observed below 1% or the surrogate response did not meet the minimum signal to noise method criteria, all target analytes and the surrogate compounds were flagged as 'NQ' on the report forms.

List 2 Compounds (WG51269)

The analyte ACTC was detected in the laboratory procedural blank sample (AXYS ID: WG51269-101). The same compound was detected in some field samples. Data are not blank corrected and should be considered during data review and interpretation.

List 3 Compounds (WG51269)

The percent recovery of Hydrochlorothiazide in the OPR sample (AXYS ID: WG51269-102) was below the method nominal limit and was flagged with an 'N' on the report form. Other samples may be similarly affected.

List 4 Compounds (WG51270)

The percent recovery of the surrogate compounds D6-Codeine in the sample 1505061-10 (AXYS ID: L23210-1) and D4-Clonidine in the samples 1505061-22 and 1505061-32 (AXYS ID: L23210-10 and -14, respectively) were outside the method criteria limits and flagged with a 'V' on the report forms. As the isotope dilution method of quantification produces data that is recovery corrected, these variances from the method acceptance criteria were deemed to not affect the quantification of the target analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

List 5 Compounds (WG51269)

For the laboratory procedural blank sample (AXYS ID: WG51269-101), DEET was detected above the reporting limit. The same compound was detected in all field samples at similar levels. The results were flagged with a 'B' on the report forms. Data are not corrected and should be considered carefully during data review and interpretation.

For the OPR sample (AXYS ID: WG51269-102), the percent recovery for Alprazolam (65%) was marginally below the lower method criteria limit (70%) and flagged with an 'N' on the report form. The same compound was detected in the sample 1505061-11 (AXYS ID: L23210-2).

For most field samples, the percent recovery of some surrogate compounds did not meet the method criteria limits and were flagged with a 'V' on the report forms. Where the percent recovery for a surrogate was less than half the lower method criteria limit or below the 10:1 signal to noise ratio requirement, the results for the target anlaytes and surrogate were deemed to be not quantifiable and flagged as 'NQ' on the report forms.

ANALYTICAL DISCUSSION

Lists 3, 4 and 5 Compounds (WG51269 and WG51270)

No analytical difficulties were encountered.

List 1 Compounds (WG51269)

For the initial analysis of the samples 1505061-18, -22, -25, -27, -31, -32 and -33 (AXYS IDs: L23210-9 to -15), the on-going calibration verification injection data did not meet the minimum method criteria requirements for some target analytes. As remedial action, the extracts for these samples were instrumentally re-analyzed. The results were reported from the re-injection data and are indicated with the suffix "i' following the AXYS ID on the report forms.

For the laboratory procedural blank sample (AXYS ID: WG51269-101), the data quality for the compounds Sulfamethazine and Sulfmerazine did not the meet minimum method criteria requirements for accurate identification and quantification. The extract for this sample was subsequently re-analyzed to confirm the concentrations of these compounds were not above the detection limit. The results were reported from the original data with the additional extra work raw data provided for reference only. This supplemental data has not been validated and was not used to report the final results for this sample and these compounds.

List 2 Compounds (WG51269)

The data quality for both the initial calibration and injection of extracts for the field samples 1505061-10 to -18, -22 and -25 (AXYS IDs: L23210-1 to -11) did not meet the minimum method criteria requirements. As remedial action, instrument maintenance and recalibration was completed followed by re-injection of the field sample extracts. The results for these samples were reported from the re-injection data and are indicated with the suffix "i' following the AXYS ID on the report forms.

To confirm the presence of ACTC in the laboratory procedural blank and field samples 1505061-10, -25 and -27 (AXYS IDs; WG51269-101, L23210-1, -11 and -12), these samples were instrumentally re-analyzed following instrument recalibration. The lowest level calibration standard was excluded from the linearity raising the detection limit reported for the compound. For these samples, the results for this compound were reported from the original data for the lower detection limits and observation of data quality from the extra work which showing no improvement. The additional raw data was provided with this data package for reference but has not been validated and was not reported as the final results.

DATA PACKAGE

This data package was assigned a unique identifier, DPWG51657 shown on the cover page. Included with this data package following the narrative is the following documentation:

- Method summary
- Sample 'Cover Page' and 'Correlation Table'
- Sample Receiving Documentation
- Laboratory extraction workup sheets
- Sample data reports (in order of AXYS Sample ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Sample raw data (in order of AXYS Sample ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unreported Files

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Andrew Porat, Data Validation Chemist

 $\frac{25-20\%-15}{\text{Date Signed}}$

Washington State DOE

CORRELATION TABLE

PHARMACEUTICAL AND PERSONAL CARE PRODUCT ANALYSIS

Lab Name: AXYS Analytical Services Ltd. Project Name: 1504041 PSEMP Urban Bay Sediment Contract No:4793 Data Package Identification: DPWG51657 Program: Solid Samples Client Sample No. LAB BLANK WG51269-101 OPR WG51269-102 LAB BLANK WG51270-101 OPR WG51270-102 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-12 1505061-32 L23210-14 1505061-33 L23210-15	PHARMACEUTICAL AND PERSONAL CARE PRODUCT ANALYSIS						
AXYS Method: MLA-075	Lab Name: AXYS Analytical Services Ltd.	Project Manager: Georgina Brooks					
Data Package Identification: DPWG51657 Program: Solid Samples Client Sample No. Lab Sample ID LAB BLANK WG51269-101 OPR WG51270-102 LAB BLANK WG51270-101 OPR WG51270-102 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-31 L23210-13 1505061-32 L23210-14							
Client Sample No. Lab Sample ID LAB BLANK WG51269-101 WG51269-102 LAB BLANK WG51270-101 OPR WG51270-101 1505061-10 L23210-1 L23210-1 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 L23210-4 1505061-13 L23210-4 L23210-5 L505061-14 L23210-6 L23210-6 L23210-7 L23210-8 L23210-8 L23210-9 L505061-18 L23210-9 L505061-22 L23210-10 L505061-25 L23210-12 L505061-31 L23210-12 L505061-31 L23210-12	Sediment	AXYS Method: MLA-075					
LAB BLANK OPR WG51269-101 UG51269-102 LAB BLANK WG51270-101 DPR WG51270-102 1505061-10 L23210-1 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 L23210-4 L23210-5 L23210-6 L505061-15 L23210-6 L505061-16 L23210-7 L505061-17 L23210-8 L505061-18 L23210-9 L505061-22 L23210-10 L505061-27 L23210-12 L505061-31 L23210-13 L505061-32 L23210-13	Data Package Identification: DPWG51657	Program: Solid Samples					
LAB BLANK OPR WG51269-101 UG51269-102 LAB BLANK WG51270-101 DPR WG51270-102 1505061-10 L23210-1 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 L23210-4 L23210-5 L23210-6 L505061-15 L23210-6 L505061-16 L23210-7 L505061-17 L23210-8 L505061-18 L23210-9 L505061-22 L23210-10 L505061-27 L23210-12 L505061-31 L23210-13 L505061-32 L23210-13							
OPR WG51269-102 LAB BLANK WG51270-101 OPR WG51270-102 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	Client Sample No.	Lab Sample ID					
OPR WG51269-102 LAB BLANK WG51270-101 OPR WG51270-102 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14							
LAB BLANK OPR WG51270-101 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 L23210-4 L23210-5 L23210-5 L23210-6 L505061-15 L23210-6 L23210-7 L505061-16 L23210-8 L23210-9 L505061-18 L23210-9 L505061-22 L23210-10 L505061-25 L23210-11 L505061-27 L23210-12 L505061-31 L23210-12 L23210-13 L505061-32	LAB BLANK	WG51269-101					
OPR WG51270-102 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-31 L23210-13 1505061-32 L23210-14	OPR	WG51269-102					
OPR WG51270-102 1505061-10 L23210-1 1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-31 L23210-13 1505061-32 L23210-14							
1505061-10		WG51270-101					
1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	OPR	WG51270-102					
1505061-11 L23210-2 WG51269 & WG51270-103 DUPLICATE 1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14							
1505061-12 L23210-3 1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-10	L23210-1					
1505061-13 L23210-4 1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-11	L23210-2 WG51269 & WG51270-103 DUPLICATE					
1505061-14 L23210-5 1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-12	L23210-3					
1505061-15 L23210-6 1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-13	L23210-4					
1505061-16 L23210-7 1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-14	L23210-5					
1505061-17 L23210-8 1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-15	L23210-6					
1505061-18 L23210-9 1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-16	L23210-7					
1505061-22 L23210-10 1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-17	L23210-8					
1505061-25 L23210-11 1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-18	L23210-9					
1505061-27 L23210-12 1505061-31 L23210-13 1505061-32 L23210-14	1505061-22	L23210-10					
1505061-31 L23210-13 1505061-32 L23210-14	1505061-25	L23210-11					
1505061-32 L23210-14	1505061-27	L23210-12					
	1505061-31	L23210-13					
1505061-33 L23210-15	1505061-32	L23210-14					
	1505061-33	L23210-15					
l .							

Washington State Department of Ecology Manchester Environmental Laboratory (MEL)

7411 Beach Drive E, Port Orchard, Washington 98366

September 2, 2015

Project: PSEMP Urban Waters Sediment Monitoring

LIMS Work Order #: 1505061-10 through 1505061-18, 1505061-22, 1505061-25, 1505061-27,

1505061-31, 1505061-32, 1505061-33

Contract Laboratory: AXYS Analytical Services Ltd. (AXYS)

Contract Laboratory Work ID #: L23210-1 through L23210-15

Project Officer: Maggie Dutch

Data Review for Pharmaceuticals and Personal Care Products (PPCP)

Enclosed are results for the samples collected May 11, 12, and 13, 2015.

Samples were prepared and analyzed according to AXYS method MLA-075, Rev. 06, ver. 01. Data from these analyses were reviewed for qualitative and quantitative precision and bias following EPA method 1694 and the AXYS method.

Flags are added by the contract laboratory to draw attention to QC conditions that may affect the data. Manchester Environmental Laboratory (MEL) interprets the effect on the quality of the data and adds qualifiers, as appropriate, that are consistent with MEL and Ecology Information Management (EIM) guidelines.

The EDD includes some MEL-amended result values and qualifiers. These amended values should be used instead of the original values provided by the contract lab.

In addition, where the flags are unchanged from the contract laboratory, they have been copied over to the MEL Amended field. In effect these MEL QA review qualifiers become the final qualifiers.

Analytes and surrogates that AXYS flagged NQ have been determined by the analyst's judgment to be invalid. They have therefore been amended to REJ with a blank cell for the "Result Reported Value" field.

ANALYTICAL NOTES:

1,7-Dimethylxanthine (List 1) is an isomer of Theophylline (1,3-dimethylxanthine; List 5). Hence they co-elute in both List 1 and List 5 instrumental runs, leading to a systematic over-reporting of each compound in the On-going Precision and Recovery (OPR) samples. The recovery criteria for these compounds take into account the effect of the cross interference on data accuracy. Any positive detection of either analyte is presumed to be a sum of the two analytes.

Because of uncertainty in the method for Cloxacillin, Oxacillin, and Penicillin G, AXYS flags these results as 'Information Values' of estimated concentrations. The only detections of these compounds were found in the OPR. These analytes have already been flagged by Axys as estimated values in all samples.

The "Estimated Detection Limit" (EDL) values reflect levels that are approximately 2.5 times the signal-to-noise ratio. This is the same criterion as is used for the Method Detection Limit (MDL), described by 40CFR.

In some cases, interference caused the EDL to be greater than the EQL. These EDL values have been reported in the "Result Value EDL" column. When no peak was identified for the analyte, the associated result has been reported as a non-detect at the EDL; an estimated limit. Where interference was present above the EDL and the EQL, the reporting limit was raised to the level of the interference and qualified as an estimate.

It is AXYS protocol to deem the regression to be valid only within the measured calibration range. In addition, the potential exists for interfering compounds that cannot be resolved from the analyte; and suppression and /or enhancement effects may be present at concentrations below the reporting limit due to interference.

As the uncertainty outside this range is unknown and can be quite variable, AXYS will not report any results detected below the lowest calibration point, adjusted for sample parameters (the EQL).

All of the instrument printouts were closely reviewed to determine if any additional compounds could be reported. Results below the EQL are reported in the "MEL Amended" fields when they meet the following conditions:

- •A carbon13-labeled surrogate standard specific for the analyte is present and used for identification and quantification; e.g.: Acetaminophen and 13C2-15N-Acetaminophen.
- •Retention time within 0.1 minute of the labeled surrogate.
- •Not detected in the method blank.
- •Greater than the EDL.
- •Signal to noise ratio of 3 or greater.

Results are to be considered tentatively identified, "N", as no daughter ion could be confirmed; and estimated, "J", as results are below the quantitation limits. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karin Feddersen

Data Qualifiers

Code		Definition
J	-	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NC	-	Not calculated.
REJ	-	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	-	The analyte was not detected above the reported sample quantitation limit.
UJ	-	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.

Data	Re	vie	w C	hecklist
Question	Y	N	NA	Exceptions and action taken
Were all the samples analyzed for the requested parameters?	X			
Did sample arrive in a state of proper preservation at contract lab (< 6 °C)? Were they stored properly?	X			Storage criteria: -10 °C sediment and tissue The sample coolers were verified to be at -2 °C upon receipt at the contract lab. Samples were subsequently stored at -20 °C.
Are the holding times within method limits for preparation and analysis? 7 days to extraction when frozen	X			EPA has not conducted formal holding time studies for these analytes to date. Anecdotal evidence suggests that some may degrade rapidly. Sample results have been qualified as estimates for those samples that were not extracted within 7 days of the actual sample collection date. All results have therefore been qualified as estimates.
Are all of the calibration and sample raw data present, including documentation (e.g. standards, run log, and instrument logs) complete?	X			
Are all of the analytes within method limits for the Initial Calibration (ICAL)?		X		The initial calibration for Cefotaxime did not meet the minimum method criteria for quantification. The "NQ" flag has been amended to "REJ" in samples and to "NC" in the OPRs. Where individual standards did not meet the method criteria, they have been excluded from the range used for the calibration curve. These points were usually on the high end, and did not affect sample results which were all within the lower range of the curve.
Are all of the analytes for the Continuing Calibration Verification (CCV) within method limits?	X			
Were all samples analyzed within 12 hours of tuning and calibration verification?	X			
Is the method blank free of any positive results?		X		Where the sample concentration was less than ten times the blank concentration; the sample result was flagged with a "B" by the contract laboratory. The affected corresponding results have been qualified as non-detects at the EQL; or at the level of detection, if that is above the EQL. In cases where the sample concentration for a congener was greater than ten times that of the blank, the blank result is considered insignificant relative to the native concentration detected in the sample. No qualification is warranted in these situations. In addition, a few compounds detected in the blank were not flagged by AXYS because they were below the quantitation limit. Where these blank detections appeared to be valid, greater than half the quantitation limit, and greater than 1/10th the sample result, the sample values have been amended to non-detects. The results for analytes associated with the extraction internal standard (IS) 13C3-N15-Ciprofloxacin were rejected in both blanks due to low IS recovery. Therefore, there is no way to evaluate the effect of

background contamination on the samples from the analytes:	
	,e
Ciprofloxacin	
Clinafloxacin	
Enrofloxacin	
Lomefloxacin	
Norfloxacin	
Ofloxacin	
Sarafloxacin	
All sample results have already been qualified as	
estimates due to preparation past the holding time.	
Affected analytes have been qualified in the sample	
On-going Precision and Recovery (OPR) aka with "J" for detected analytes and "UJ" for non-dete	cts.
Laboratory Control Sample (LCS): Was the LCS	
(OPP) spiked with all terrest analytes and were all A analyte in the corresponding sample have been quality	fied
recoveries within quality control (QC) limits?	
Where the OPR recovery has been flagged "NQ" th	9
qualifier has been amended to "NC".	
If analyzed, is the Sample Duplicate Relative AXYS QC limits for this method are <40% for	
Percent Difference (RPD) within QC limits? X concentrations > 5 times the RL.	
Analytes that use the affected labeled compounds for	r
quantification have been qualified with "J" for detec	
analytes and "UJ" for non-detects.	
When the surrogate recovery was below 10% the	
Are the internal standard (15) surrogate recoveries V associated results have been rejected "REI" when	10t
within acceptable method QC limits? Main acceptable method QC limits? Main acceptable method QC limits? detected. The "NQ" flag on the surrogate has been	101
amended to "NC".	
Analytes that may have been biased high have not be	een
flagged if the affected congener was not detected.	CCII
Does the chromatography of the samples match the	
reported data?	
Are the results correctly calculated, with proper	
units and within the linear range of the calibrations?	
Is all of the data properly entered into the EDD? Several surrogates did not meet criteria, but were no	t
correctly flagged in the EDD. The MEL Amended	
values are appropriately revised.	
Certain analyte results were missing for some samp	es
or a different result was reported in the EDD vs. the	
	Pui
data package reports	
AXYS responded that this can happen whenever a	
reanalysis or dilution is performed. The results form	
or the other analysis may not be transferred correctl	
into the EDD. The error was caused by a human err	
They do use reports to indicate to the chemists check	_
the results when a result is reported (or not), which	S
critical when trying to report long target lists such a	s
pharmaceuticals however in this case the individual	
reviewing the data missed this information.	
Results have been added or amended where necessary	rv

DEPARTMENT OF ECOLOGY

Manchester Environmental Laboratory
7411 Beach Drive East ● Port Orchard, Washington 98366-8204

Case Narrative

February 6, 2020

To: Dutch, Margaret

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Work Order: 1906027

Subject: Per- and polyfluoroalkyl substances by LCMSMS

From: Jeff Westerlund

Sample Receipt

Enclosed are the PFAS (Anions) results for the samples received by MEL on June 13, 2019. All samples were received in acceptable condition unless noted in Analyst Comments. All samples were prepared and analyzed within holding times unless noted in Analyst Comments.

Analytical Methods

These samples were prepared, analyzed, and verified by MEL according to the submitted chain-of-custody and MEL's procedures. A Sample Correlation Table with batch summary is located in Appendix A. The samples were:

- extracted following a modification of method AOAC2007.01.
- analyzed following a modification of method SW8321BM.

Analyst Comments

<u>PFAS by LC-MS/MS</u>. Several of the samples had recoveries of the injection internal standards that were above control limits. These high results appear to be due to matrix enhancement. A subset of these were analyzed diluted to determine if this would minimize the matrix enhancement, but still showed matrix enhancement. All spike recoveries and SRM recoveries were within control limits.

Sample Qualification

The samples were qualified according to MEL's procedures. The table in Appendix B summarizes the manual qualifiers added by MEL. All results reported below the method reporting limit (RL) were automatically qualified as estimates, but not included in Appendix B. The qualifiers are defined in Appendix C.

Sample Verification

All analyses met QC acceptance criteria except as noted in Appendix D. All analytes met linearity requirements unless noted in Appendix E.

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40079-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.275 g Final Vol: 4 mL

NULL

Lab ID #: 1906027-02 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 71.77%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualific	er RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0,264	U	0.264	0.0334
NULL	N-methyl perfluorooctanesulfonamideacetate	0.264	U	0.264	0.0321
45187-15-3	Perfluorobutanesulfonate	0.264	U	0.264	0.0111
335-77-3	Perfluorodecanesulfonate	0.264	U	0.264	0.0446
73829-36-4	Perfluorodecanoate	0.264	U	0.264	0.0195
171978-95-3	Perfluorododecanoate	0.528	U	0.528	0.0156
375-92-8	Perfluoroheptanesulfonate	0.264	U	0.264	0.0252
120885-29-2	Perfluoroheptanoate	0.264	U	0.264	0.0455
108427-53-8	Perfluorohexanesulfonate	0.264	U	0.264	0.0804
92612-52-7	Perfluorohexanoate	0.352		0.264	0.0421
68259-12-1	Perfluorononanesulfonate	0.264	U	0.264	0.0168
72007-68-2	Perfluorononanoate	0.264	U	0.264	0.0255
45298-90-6	Perfluorooctanesulfonate	0.0370	J	0.264	0.0337
45285-51-6	Perfluorooctanoate	0.264	U	0.264	
45167-47-3	Perfluoropentanoate	0,264	U	0.264	
365971 - 87 - 5	Perfluorotetradecanoate	1.06	Ū	1.06	0.0208
862374-87-6	Perfluorotridecanoate	1.06	Ū	1.06	0.0113
NULL	Perfluoroundecanoate	0.264	U	0.264	0.0131
Surrogate Rec	overv*		~ 4-		0/75
ALCON 1			Spike	% Rec.	% Rec. Limits
CAS#	Analyte		Level		
NULL	D3-N-MeFOSAA	2.35	4.23	56	20-200
NULL	D5-N-EtFOSAA	2.33	4.23	55	20-200
NULL	M2PFTeDA	3.33	4.23	79	20-200
NULL	M3PFBS	4.49	4.23	106	20-200
NULL	M3PFHxS	3.75	4.23	89	20-200
NULL	M4PFHpA	3.70	4.23 4.23	88 95	20-200 20-200
NULL	M5PFHxA	4.03	4.23	93 80	20-200
NULL	M5PFPeA	3.37 3.33	4.23	79	20-200
NULL	M6PFDA	3.33 3.20	4.23	7 9 76	20-200
NULL NULL	M7PFUnA M8PFOA	3.20	4.23	73	20-200
NULL	M8PFOA M8PFOS	3.42	4.23	81	20-200
NULL	M9PFNA	3.31	4.23	78	20-200
INULL	IVIZI I I IVIZ	2.12	1.23	74	20 200

3.13

4.23

74

Release Date: Authorized by:

20-200

MPFDoA

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40179-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.12 g Final Vol: 4.55 mL Lab ID #: 1906027-03 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 33.21%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.669	U	0.669	0.0846
NULL	N-methyl perfluorooctanesulfonamideacetate	0.669	U	0.669	0.0813
45187-15-3	Perfluorobutanesulfonate	0.669	U	0.669	0.0282
335-77-3	Perfluorodecanesulfonate	0.131	J	0.669	0.113
73829-36-4	Perfluorodecanoate	0.110	J	0.669	0.0495
171978-95-3	Perfluorododecanoate	1.34	U	1.34	0.0394
375-92-8	Perfluoroheptanesulfonate	0.669	U	0.669	0.0639
120885-29-2	Perfluoroheptanoate	0.669	U	0.669	0.115
108427-53-8	Perfluorohexanesulfonate	0.669	U	0.669	0.204
92612-52-7	Perfluorohexanoate	0.669	U	0.669	0.107
68259-12-1	Perfluorononanesulfonate	0.669	U	0.669	0.0426
72007-68-2	Perfluorononanoate	0.669	U	0.669	0.0646
45298-90-6	Perfluorooctanesulfonate	0.230	J	0.669	0.0854
45285-51-6	Perfluorooctanoate	0.669	U	0.669	0.0806
45167-47-3	Perfluoropentanoate	0.669	U	0.669	0.169
365971-87-5	Perfluorotetradecanoate	2.68	U	2.68	0.0527
862374-87-6	Perfluorotridecanoate	2.68	U	2.68	0.0287
NULL	Perfluoroundecanoate	0.669	U	0.669	0.0332
Surrogate Re	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	4.53	9.41	48	20-200
NULL	D5-N-EtFOSAA	4.88	9.41	52	20-200
NULL	M2PFTeDA	8.59	9.41	91	20-200
NULL	M3PFBS	8.36	9.41	89	20-200
				76	20-200
NULL	M3PFHxS	7.19	9.41		20.200
NULL	M4PFHpA	8.79	9.41	93	20-200
NULL NULL	M4PFHpA M5PFHxA	8.79 7.33	9.41 9.41	93 78	20-200
NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA	8.79 7.33 8.55	9.41 9.41 9.41	93 78 91	20-200 20-200
NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA	8.79 7.33 8.55 6.56	9.41 9.41 9.41 9.41	93 78 91 70	20-200 20-200 20-200
NULL NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	8.79 7.33 8.55 6.56 7.07	9.41 9.41 9.41 9.41 9.41	93 78 91 70 75	20-200 20-200
NULL NULL NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	8.79 7.33 8.55 6.56 7.07 7.79	9.41 9.41 9.41 9.41	93 78 91 70	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	8.79 7.33 8.55 6.56 7.07	9.41 9.41 9.41 9.41 9.41 9.41	93 78 91 70 75 83	20-200 20-200 20-200 20-200 20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40207-R1

Work Order: 1906027 Project Officer: Dutch, Margaret

Initial Vol: 5.397 g Final Vol: 4 mL Lab ID #: 1906027-04 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 55.06%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.337	U	0.337	0.0426
NULL	N-methyl perfluorooctanesulfonamideacetate	0.337	U	0.337	0.0409
45187-15-3	Perfluorobutanesulfonate	0.337	U	0.337	0.0142
335-77-3	Perfluorodecanesulfonate	0.337	U	0.337	0.0568
73829-36-4	Perfluorodecanoate	0.337	U	0.337	0.0249
171978-95-3	Perfluorododecanoate	0.673	U	0.673	0.0198
375-92-8	Perfluoroheptanesulfonate	0.337	U	0.337	0.0321
120885-29-2	Perfluoroheptanoate	0.337	U	0.337	0.0580
108427-53-8	Perfluorohexanesulfonate	0.337	U	0.337	0.102
92612-52-7	Perfluorohexanoate	0.672		0.337	0.0537
68259-12-1	Perfluorononanesulfonate	0.337	U	0.337	0.0214
72007-68-2	Perfluorononanoate	0.337	U	0.337	0.0325
45298-90-6	Perfluorooctanesulfonate	0.0660	J	0.337	0.0429
45285-51-6	Perfluorooctanoate	0.337	U	0.337	0.0405
45167-47-3	Perfluoropentanoate	0.337	U	0.337	0.0849
365971-87-5	Perfluorotetradecanoate	1.35	U	1.35	0.0265
862374-87-6	Perfluorotridecanoate	1.35	U	1.35	0.0144
NULL	Perfluoroundecanoate	0.337	U	0.337	0.0167
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.50	5.38	65	20-200
NULL	D5-N-EtFOSAA	3.38	5.38	63	20-200
NULL	M2PFTeDA	5.75	5.38	107	20-200
NULL	M3PFBS	4.74	5.38	88	20-200
NULL	M3PFHxS	4.13	5.38	77	20-200
NULL	M4PFHpA	4.42	5.38	82	20-200
NULL	M5PFHxA	4.26	5.38	79	20-200
NULL	M5PFPeA	4.99	5.38	93	20-200
NULL	M6PFDA	4.16	5.38	77	20-200 20-200
NULL	M7PFUnA	4.59	5.38	85 74	20-200
	M8PFOA	3.99	5.38		20-200
NULL		4 2 4	5 2 0	70	
NULL	M8PFOS	4.24	5.38	79 77	
		4.24 4.16 4.47	5.38 5.38 5.38	79 77 83	20-200 20-200 20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Work Order: 1906027

Initial Vol: 5.536 g

Final Vol: 4.08 mL

Project Officer: Dutch, Margaret

Days Scument Wontering

Lab ID #: 1906027-05 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 55.25%

Field ID: 40207-R2

Batch ID: B19K054

Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.333	U	0.333	0.0422
NULL	N-methyl perfluorooctanesulfonamideacetate	0.333	U	0.333	0.0405
45187-15-3	Perfluorobutanesulfonate	0.333	U	0.333	0.0140
335-77-3	Perfluorodecanesulfonate	0.333	U	0.333	0.0563
73829-36-4	Perfluorodecanoate	0.333	U	0.333	0.0247
171978-95-3	Perfluorododecanoate	0.667	U	0.667	0.0196
375-92-8	Perfluoroheptanesulfonate	0.333	U	0.333	0.0318
120885-29-2	Perfluoroheptanoate	0.333	U	0.333	0.0574
108427-53-8	Perfluorohexanesulfonate	0.333	U	0.333	0.101
92612-52-7	Perfluorohexanoate	0.656		0.333	
68259-12-1	Perfluorononanesulfonate	0.333	U	0.333	
72007-68-2	Perfluorononanoate	0.333	U	0.333	
45298-90-6	Perfluorooctanesulfonate	0.0574	\mathbf{J}	0.333	
45285-51-6	Perfluorooctanoate	0.333	U	0.333	
45167-47-3	Perfluoropentanoate	0.333	U	0.333	
365971-87-5	Perfluorotetradecanoate	1.33	U	1.33	0.0263
862374-87-6	Perfluorotridecanoate	1.33	U	1.33	0.0143
NULL	Perfluoroundecanoate	0.333	U	0.333	0.0165
Surrogate Re	covery:		Spike		% Rec.
			Opine		
CAS#	Analyte	Result	Level	% Rec.	Limits
	Analyte D3-N-MeFOSAA	Result	5.23	85	20-200
NULL NULL		4.46 3.27	5.23 5.23	85 63	20-200 20-200
NULL	D3-N-MeFOSAA	4.46 3.27 5.27	5.23 5.23 5.23	85 63 101	20-200 20-200 20-200
NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS	4.46 3.27 5.27 4.93	5.23 5.23 5.23 5.23	85 63 101 94	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS	4.46 3.27 5.27 4.93 4.46	5.23 5.23 5.23 5.23 5.23	85 63 101 94 85	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA	4.46 3.27 5.27 4.93 4.46 4.90	5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94	20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	4.46 3.27 5.27 4.93 4.46 4.90 4.66	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94 89	20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	4.46 3.27 5.27 4.93 4.46 4.90 4.66 5.30	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94 89	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	4.46 3.27 5.27 4.93 4.46 4.90 4.66 5.30 4.00	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94 89 101 76	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	4.46 3.27 5.27 4.93 4.46 4.90 4.66 5.30 4.00 4.31	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94 89 101 76 82	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	4.46 3.27 5.27 4.93 4.46 4.90 4.66 5.30 4.00 4.31 4.46	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94 89 101 76 82 85	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	4.46 3.27 5.27 4.93 4.46 4.90 4.66 5.30 4.00 4.31	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	85 63 101 94 85 94 89 101 76 82	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200

Authorized by: __________

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40307-R1

Work Order: 1906027 Project Officer: Dutch, Margaret

Project Officer: Dutch, Margar Initial Vol: 5 049 g

Initial Vol: 5.049 g Final Vol: 4.17 mL Lab ID #: 1906027-06 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 34.86%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.592	U	0.592	0.0749
NULL	N-methyl perfluorooctanesulfonamideacetate	0.592	U	0.592	0.0720
45187-15-3	Perfluorobutanesulfonate	0.592	U	0.592	0.0249
335-77-3	Perfluorodecanesulfonate	0.109	J	0.592	0.100
73829-36-4	Perfluorodecanoate	0.592	U	0.592	0.0438
171978-95-3	Perfluorododecanoate	1.18	U	1.18	0.0349
375-92-8	Perfluoroheptanesulfonate	0.592	U	0.592	0.0565
120885-29-2	Perfluoroheptanoate	0.592	U	0.592	0.102
108427-53-8	Perfluorohexanesulfonate	0.592	U	0.592	0.180
92612-52-7	Perfluorohexanoate	0.535	J	0.592	0.0945
68259-12-1	Perfluorononanesulfonate	0.592	U	0.592	0.0377
72007-68-2	Perfluorononanoate	0.592	U	0.592	0.0572
45298-90-6	Perfluorooctanesulfonate	0.168	J	0.592	0.0756
45285-51-6	Perfluorooctanoate	0.592	U	0.592	0.0713
45167-47-3	Perfluoropentanoate	0.592	U	0.592	0.149
365971-87-5	Perfluorotetradecanoate	2.37	U .	2.37	0.0467
862374-87-6	Perfluorotridecanoate	2.37	U	2.37	0.0254
NULL	Perfluoroundecanoate	0.592	U	0.592	0.0294

CCOVCTY.		Spike		% Rec.	
Analyte	Result	Level	% Rec.	Limits	
D3-N-MeFOSAA	5.54	9.09	61	20-200	
D5-N-EtFOSAA	6.51	9.09	72	20-200	
M2PFTeDA	10.4	9.09	114	20-200	
M3PFBS	8.36	9.09	92	20-200	
	7.79	9.09	86	20-200	
	. 8.39	9.09	92	20-200	
M5PFHxA	7.36	9.09	81	20-200	
M5PFPeA	9.54	9.09	105	20-200	
	7.30	9.09	80	20-200	
	8.10	9.09	89	20-200	
	7.54	9.09	83	20-200	
	7.97	9.09	88	20-200	
M9PFNA	8.50	9.09	94	20-200	
MPFDoA	8.74	9.09	96	20-200	
	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS	Analyte Result D3-N-MeFOSAA 5.54 D5-N-EtFOSAA 6.51 M2PFTeDA 10.4 M3PFBS 8.36 M3PFHxS 7.79 M4PFHpA 8.39 M5PFHxA 7.36 M5PFPeA 9.54 M6PFDA 7.30 M7PFUnA 8.10 M8PFOS 7.97 M9PFNA 8.50	AnalyteResultLevelD3-N-MeFOSAA5.549.09D5-N-EtFOSAA6.519.09M2PFTeDA10.49.09M3PFBS8.369.09M3PFHxS7.799.09M4PFHpA8.399.09M5PFHxA7.369.09M5PFPeA9.549.09M6PFDA7.309.09M7PFUnA8.109.09M8PFOA7.549.09M8PFOS7.979.09M9PFNA8.509.09	Analyte Result Level % Rec. D3-N-MeFOSAA 5.54 9.09 61 D5-N-EtFOSAA 6.51 9.09 72 M2PFTeDA 10.4 9.09 114 M3PFBS 8.36 9.09 92 M3PFHxS 7.79 9.09 86 M4PFHpA 8.39 9.09 92 M5PFHxA 7.36 9.09 81 M5PFPeA 9.54 9.09 105 M6PFDA 7.30 9.09 80 M7PFUnA 8.10 9.09 89 M8PFOS 7.97 9.09 88 M9PFNA 8.50 9.09 94	Analyte Result Level % Rec. Limits D3-N-MeFOSAA 5.54 9.09 61 20-200 D5-N-EtFOSAA 6.51 9.09 72 20-200 M2PFTeDA 10.4 9.09 114 20-200 M3PFBS 8.36 9.09 92 20-200 M3PFHxS 7.79 9.09 86 20-200 M4PFHpA 8.39 9.09 92 20-200 M5PFHxA 7.36 9.09 81 20-200 M5PFPeA 9.54 9.09 105 20-200 M6PFDA 7.30 9.09 80 20-200 M7PFUnA 8.10 9.09 89 20-200 M8PFOS 7.97 9.09 88 20-200 M9PFNA 8.50 9.09 94 20-200

Authorized by: Release Date: 2 (6/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40335-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.897 g Final Vol: 4 mL Lab ID #: 1906027-07 Collected: 6/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 74.38%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.228	U	0.228	0.0288
NULL	N-methyl perfluorooctanesulfonamideacetate	0.228	U	0.228	0.0277
45187-15-3	Perfluorobutanesulfonate	0.228	U	0.228	0.00960
335-77-3	Perfluorodecanesulfonate	0.228	U	0.228	0.0385
73829-36-4	Perfluorodecanoate	0.228	U	0.228	0.0169
171978-95-3	Perfluorododecanoate	0.456	U	0.456	0.0134
375-92-8	Perfluoroheptanesulfonate	0.228	U	0.228	0.0218
120885-29-2	Perfluoroheptanoate	0,228	U	0.228	0.0393
108427-53-8	Perfluorohexanesulfonate	0.228	U	0.228	0.0694
92612-52-7	Perfluorohexanoate	0.293		0.228	0.0364
68259-12-1	Perfluorononanesulfonate	0.228	U	0.228	0.0145
72007-68-2	Perfluorononanoate	0.228	U	0.228	0.0220
45298-90-6	Perfluorooctanesulfonate	0.0292	J	0.228	0.0291
45285-51-6	Perfluorooctanoate	0.228	U	0.228	0.0275
45167-47-3	Perfluoropentanoate	0.228	U	0.228	0.0575
365971-87-5	Perfluorotetradecanoate	0.912	U	0.912	0.0180
862374-87-6	Perfluorotridecanoate	0.912	U	0.912	0.00977
NULL	Perfluoroundecanoate	0.228	U	0.228	0.0113

Surrogate R	ecovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.48	3.65	68	20-200
NULL	D5-N-EtFOSAA	2.58	3.65	71	20-200
NULL	M2PFTeDA	3.63	3.65	99	20-200
NULL	M3PFBS	3.55	3.65	97	20-200
NULL	M3PFHxS	3.08	3.65	85	20-200
NULL	M4PFHpA	3.65	3.65	100	20-200
NULL	M5PFHxA	3.04	3.65	83	20-200
NULL	M5PFPeA	3.17	3.65	87	20-200
NULL	M6PFDA	2.94	3.65	81	20-200
NULL	M7PFUnA	3.26	3.65	89	20-200
NULL	M8PFOA	3.03	3.65	83	20-200
NULL	M8PFOS	3.13	3.65	86	20-200
NULL	M9PFNA	3.50	3.65	96	20-200
NULL	MPFDoA	3.15	3.65	86	20-200

Authorized by: Release Date: 24/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40455-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.532 g Final Vol: 4.17 mL Lab ID #: 1906027-08 Collected: 6/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 52.12%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.362	U	0.362	0.0457
NULL	N-methyl perfluorooctanesulfonamideacetate	0.362	U	0.362	0.0440
45187-15-3	Perfluorobutanesulfonate	0.362	U	0.362	0.0152
335-77-3	Perfluorodecanesulfonate	0.362	U	0.362	0.0610
73829-36-4	Perfluorodecanoate	0.362	U	0.362	0.0267
171978-95-3	Perfluorododecanoate	0.723	U	0.723	0.0213
375-92-8	Perfluoroheptanesulfonate	0.362	U	0.362	0.0345
120885-29-2	Perfluoroheptanoate	0.362	U	0.362	0.0623
108427-53-8	Perfluorohexanesulfonate	0.362	U	0.362	0.110
92612-52-7	Perfluorohexanoate	0.362	U	0.362	0.0577
68259-12-1	Perfluorononanesulfonate	0.362	U	0.362	0.0230
72007-68-2	Perfluorononanoate	0.362	U	0.362	0.0349
45298-90-6	Perfluorooctanesulfonate	0.0665	J	0.362	0.0461
45285-51-6	Perfluorooctanoate	0.362	U	0.362	0.0436
45167-47-3	Perfluoropentanoate	0.362	U	0.362	0.0912
365971-87-5	Perfluorotetradecanoate	1.45	U	1.45	0.0285
862374-87-6	Perfluorotridecanoate	1.45	U	1.45	0.0155
NULL	Perfluoroundecanoate	0.362	U	0.362	0.0179

Surrogate R	Recovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.32	5.55	60	20-200
NULL	D5-N-EtFOSAA	3.59	5.55	65	20-200
NULL	M2PFTeDA	5.83	5.55	105	20-200
NULL	M3PFBS	6.72	5.55	121	20-200
NULL	M3PFHxS	5.36	5.55	97	20-200
NULL	M4PFHpA	5.61	5.55	101	20-200
NULL	M5PFHxA	5.73	5.55	103	20-200
NULL	M5PFPeA	5.48	5.55	99	20-200
NULL	M6PFDA	4.53	5.55	82	20-200
NULL	M7PFUnA	4.93	5.55	89	20-200
NULL	M8PFOA	5.07	5.55	91	20-200
NULL	M8PFOS	5.40	5.55	97	20-200
NULL	M9PFNA	5.39	5.55	97	20-200
NULL	MPFDoA	5.08	5.55	92	20-200

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40463-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.477 g Final Vol: 4.17 mL Lab ID #: 1906027-09 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 44.61%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	er RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.427	U	0.427	0.0540
NULL	N-methyl perfluorooctanesulfonamideacetate	0.427	U	0.427	0.0519
45187-15-3	Perfluorobutanesulfonate	0.427	U	0.427	0.0180
335-77-3	Perfluorodecanesulfonate	0.0734	J	0.427	0.0720
73829-36-4	Perfluorodecanoate	0.427	U	0.427	0.0316
171978-95-3	Perfluorododecanoate	0.853	U	0.853	0.0251
375-92-8	Perfluoroheptanesulfonate	0.427	U	0.427	0.0407
120885-29-2	Perfluoroheptanoate	0.427	U	0.427	0.0735
108427-53-8	Perfluorohexanesulfonate	0,427	U	0.427	0.130
92612-52-7	Perfluorohexanoate	0.282	\mathbf{J}	0.427	0.0681
	Perfluorononanesulfonate	0.427	U	0.427	0.0272
68259-12-1	Perfluorononanoate	0.427	U	0.427	0.0412
72007-68-2	Perfluorooctanesulfonate	0.0836	J	0.427	0.0545
45298-90-6	Perfluorooctanoate	0.427	U	0.427	0.0514
45285-51-6		0.427	Ü	0.427	0.108
45167-47-3	Perfluoropentanoate Perfluoropentanoate	1.71	Ū	1.71	0.0336
365971-87-5	Perfluorotetradecanoate	1.71	Ü	1.71	0.0183
862374-87-6	Perfluorotridecanoate	0.427	Ŭ	0.427	
NULL	Perfluoroundecanoate	0.427	O	01.27	
Surrogate Rec	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.76	6.55	57	20-200
NULL	D5-N-EtFOSAA	4.07	6.55	62	20-200
NULL	M2PFTeDA	6.76	6.55	103	20-200
NULL	M3PFBS	6.27	6.55	96	20-200
NULL	M3PFHxS	5.58	6.55	85	20-200
NULL	M4PFHpA	6.54	6.55	100	20-200
NIT IT T	MSDEUTA	5.43	6.55	83	20-200

1	NULL	D3-N-MerOSAA	5.70	0.00			
l	NULL	D5-N-EtFOSAA	4.07	6.55	62	20-200	
1		_ • - · · · · · · · · ·	6.76	6.55	103	20-200	
	NULL	M2PFTeDA	6.27	6.55	96	20-200	
	NULL	M3PFBS	5.58	6.55	85	20-200	
	NULL	M3PFHxS			100	20-200	
	NULL	M4PFHpA	6.54	6.55			
	NULL	M5PFHxA	5.43	6.55	83	20-200	
	NULL	M5PFPeA	6.17	6.55	94	20-200	
	NULL	M6PFDA	4.82	6.55	74	20-200	
	NULL	M7PFUnA	5.21	6.55	80	20-200	
	NULL	M8PFOA	5.98	6.55	91	20-200	
	NULL	M8PFOS	5.86	6.55	89	20-200	
			6,20	6.55	95	20-200	
	NULL	M9PFNA	5.29	6.55	81	20-200	
	NULL	MPFDoA	3,29	0,55	01		

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40591-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.093 g Final Vol: 4 mL Lab ID #: 1906027-12 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 67.61%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.290	U	0.290	0.0367
NULL	N-methyl perfluorooctanesulfonamideacetate	0.290	U	0.290	0.0353
45187-15-3	Perfluorobutanesulfonate	0.290	U	0.290	0.0122
335-77-3	Perfluorodecanesulfonate	0.290	U	0.290	0.0490
73829-36-4	Perfluorodecanoate	0.290	U	0.290	0.0215
171978-95-3	Perfluorododecanoate	0.581	U	0.581	0.0171
375-92-8	Perfluoroheptanesulfonate	0.290	U	0.290	0.0277
120885-29-2	Perfluoroheptanoate	0.290	U	0.290	0.0500
108427-53-8	Perfluorohexanesulfonate	0.290	U	0.290	0.0884
92612-52-7	Perfluorohexanoate	0.829		0.290	0.0463
68259-12-1	Perfluorononanesulfonate	0.290	U	0.290	0.0185
72007-68-2	Perfluorononanoate	0.290	U	0.290	0.0280
45298-90-6	Perfluorooctanesulfonate	0.0987	J	0.290	0.0371
4529 6-90-0 45285-51-6	Perfluorooctanoate	0.290	U	0.290	0.0350
45265-51-6 45167-47-3	Perfluoropentanoate	0.290	U	0.290	0.0733
	Perfluorotetradecanoate	1.16	U	1.16	0.0229
365971-87-5	Perfluorotridecanoate	1.16	Ü	1.16	0.0124
862374-87 - 6	Perfluoroundecanoate	0.290	Ū	0.290	0.0144
NULL	r et moroundecanoaie	0,27			
Surrogate Rec	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.09	4.65	45	20-200
NULL	D5-N-EtFOSAA	3.86	4.65	83	20-200
NULL	M2PFTeDA	4.44	4.65	96	20-200
NULL	M3PFBS	5.15	4.65	111	20-200
NULL	M3PFHxS	4.16	4.65	90	20-200 20-200
NULL	M4PFHpA	4.22	4.65	91	20-200
NULL	M5PFHxA	4.65	4.65 4.65	100 83	20-200
NULL	M5PFPeA	3.84	4.65 4.65	70	20-200
NULL	M6PFDA	3.25 3.18	4.65 4.65	69	20-200
A VY TT T	M7PFUnA	3.51	4.65	76	20-200
	MODEO	J.J i		10	
NULL NULL	M8PFOA M8PFOG		4 65	78	20-200
NULL NULL	M8PFOS	3.64	4.65 4.65	78 74	20-200 20-200
NULL			4.65 4.65 4.65	78 74 66	20-200 20-200 20-200

Authorized by:

I Wital

Release Date:

1/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40711-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.221 g Final Vol: 4.44 mL Lab ID #: 1906027-13 Collected: 6/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 45.65%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.466	U	0.466	0.0589
	N-methyl perfluorooctanesulfonamideacetate	0.466	U	0.466	0,0566
NULL	Perfluorobutanesulfonate	0,466	U	0.466	0.0196
45187-15-3	Perfluorodecanesulfonate	0,466	U	0.466	0.0786
335-77-3	Perfluorodecanoate	0.466	U	0.466	0.0345
73829-36-4	Perfluorododecanoate	0.931	U	0.931	0.0274
171978-95-3		0.466	U	0,466	0.0445
375-92-8	Perfluoroheptanesulfonate	0.466	U	0.466	0.0802
120885-29-2	Perfluoroheptanoate	0.466	Ū	0.466	0.142
108427-53-8	Perfluorohexanesulfonate	0.585	_	0.466	0.0743
92612-52-7	Perfluorohexanoate	0.466	U	0.466	0.0297
68259-12-1	Perfluorononanesulfonate	0.466	Ŭ	0.466	0.0449
72007-68-2	Perfluorononanoate	0.101	J	0.466	0.0594
45298-90-6	Perfluorooctanesulfonate	0.466	Ŭ	0.466	0.0561
45285-51-6	Perfluorooctanoate	0.466	U	0.466	0.117
45167-47-3	Perfluoropentanoate	1.86	U	1.86	0.0367
365971-87-5	Perfluorotetradecanoate		U	1.86	0.0200
862374-87-6	Perfluorotridecanoate	1.86			0.0231
NULL	Perfluoroundecanoate	0.466	U	0.466	0.0231
Crawnagata Dag	OVO WY	_	. •	0.	/ Dog

Surrogate Recovery:			Spike		% Rec.
CAS# Analyte	<u>.</u>	Result	Level	% Rec.	Limits
NULL D3-N-MeFO NULL D5-N-EtFOS NULL M2PFTeDA	AA	4.13 4.33 6.39	6.71 6.71 6.71	62 65 95	20-200 20-200 20-200
NULLM3PFBSNULLM3PFHxSNULLM4PFHpA		7.51 6.30 6.97	6.71 6.71 6.71	112 94 104 93	20-200 20-200 20-200 20-200
NULLM5PFHxANULLM5PFPeANULLM6PFDA		6.22 6.76 5.37 5.77	6.71 6.71 6.71 6.71	101 80 86	20-200 20-200 20-200 20-200
NULL M7PFUnA NULL M8PFOA NULL M8PFOS NULL M9PFNA NULL MPFDoA		6.14 6.43 6.50 5.59	6.71 6.71 6.71 6.71	92 96 97 83	20-200 20-200 20-200 20-200

Authorized by:

Justieth E

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40719-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.182 g Final Vol: 4.08 mL Lab ID #: 1906027-14 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 43.89%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.448	U	0.448	0.0567
NULL	N-methyl perfluorooctanesulfonamideacetate	0.448	U	0.448	0.0545
45187-15-3	Perfluorobutanesulfonate	0.448	U	0.448	0.0189
335-77-3	Perfluorodecanesulfonate	0.448	U	0.448	0.0757
73829-36-4	Perfluorodecanoate	0.448	U	0.448	0.0332
171978-95-3	Perfluorododecanoate	0.897	U	0.897	0.0264
375-92-8	Perfluoroheptanesulfonate	0.448	U	0.448	0.0428
120885-29-2	Perfluoroheptanoate	0.448	U	0.448	0.0772
108427-53-8	Perfluorohexanesulfonate	0.448	U	0.448	0.136
92612-52-7	Perfluorohexanoate	0.603		0.448	0.0715
68259-12-1	Perfluorononanesulfonate	0,448	U	0.448	0.0286
72007-68-2	Perfluorononanoate	0.448	U	0.448	0.0433
45298-90-6	Perfluorooctanesulfonate	0.109	J	0.448	0.0572
45285-51-6	Perfluorooctanoate	0.448	U	0.448	0.0540
45167-47-3	Perfluoropentanoate	0.448	U	0.448	0.113
365971-87-5	Perfluorotetradecanoate	1.79	Ū	1.79	0.0353
	Perfluorotridecanoate	1.79	Ü	1.79	0.0192
862374-87-6 NULL	Perfluoroundecanoate	0.448	Ŭ	0.448	0.0222

Surrogate R	Surrogate Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.56	7.03	51	20-200	j
NULL	D5-N-EtFOSAA	3.95	7.03	56	20-200	1
NULL	M2PFTeDA	5.91	7.03	84	20-200	
NULL	M3PFBS	8.20	7.03	117	20-200	
NULL	M3PFHxS	6.44	7.03	92	20-200	
NULL	M4PFHpA	7.07	7.03	100	20-200	
NULL	M5PFHxA	7.20	7.03	102	20-200	
NULL	M5PFPeA	7.01	7.03	100	20-200	
NULL	M6PFDA	5.29	7.03	75	20-200	
NULL	M7PFUnA	5.71	7.03	81	20-200	
NULL	M8PFOA	6.03	7.03	86	20-200	
NULL	M8PFOS	5.97	7.03	85	20-200	
NULL	M9PFNA	6.31	7.03	90	20-200	
NULL	MPFDoA	6.60	7.03	94	20-200	

Authorized by: Release Date: Z/6/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40819-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.447 g Final Vol: 4.35 mL Lab ID #: 1906027-15 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 44.65%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.447	U	0.447	0.0565
NULL	N-methyl perfluorooctanesulfonamideacetate	0.447	U	0.447	0.0544
45187-15-3	Perfluorobutanesulfonate	0.447	U	0.447	0.0188
335-77-3	Perfluorodecanesulfonate	0.447	U	0.447	0.0755
73829-36-4	Perfluorodecanoate	0.447	U	0.447	0.0331
	Perfluorododecanoate	0.894	U	0.894	0.0263
171978-95-3 375-92-8	Perfluoroheptanesulfonate	0.447	U	0.447	0.0427
120885-29-2	Perfluoroheptanoate	0.447	U	0.447	0.0770
	Perfluorohexanesulfonate	0.447	U	0.447	0.136
108427-53-8	Perfluorohexanoate	0,499		0.447	0.0713
92612-52-7	Perfluorononanesulfonate	0,447	U	0.447	0.0285
68259-12-1	Perfluorononanoate	0.447	U	0.447	0.0432
72007-68-2	Perfluorooctanesulfonate	0.0787	J	0.447	0.0571
45298-90-6	Perfluorooctanoate	0.447	U	0.447	0.0539
45285-51-6	_ 	0.447	U	0.447	0.113
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate	1.79	U	1.79	0.0352
365971-87-5	Perfluorotridecanoate	1.79	Ū	1.79	0.0192
862374-87-6 NULL	Perfluoroundecanoate Perfluoroundecanoate	0.447	Ū	0.447	0.0222

Surrogate Recovery:			Spike		% Rec.	ļ
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.54	6.58	54	20-200	
NULL	D5-N-EtFOSAA	5.37	6.58	82	20-200	
NULL	M2PFTeDA	6.31	6.58	96	20-200	
NULL	M3PFBS	6.66	6.58	101	20-200	
NULL	M3PFHxS	6.02	6.58	92	20-200	
NULL	M4PFHpA	6.32	6.58	96	20-200	
NULL	M5PFHxA	5.85	6.58	89	20-200	
NULL	M5PFPeA	6.85	6.58	104	20-200	ļ
NULL	M6PFDA	5.06	6.58	77	20-200	
NULL	M7PFUnA	5.46	6.58	83	20-200	
NULL	M8PFOA	5.52	6.58	84	20-200	
NULL	M8PFOS	5.96	6.58	91	20-200	
NULL	M9PFNA	6.02	6.58	91	20-200	
NULL	MPFDoA	5.42	6.58	82	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40847-R1

Work Order: 1906027

Project Officer: Dutch, Margaret Initial Vol: 5.242 g

Final Vol: 5.242 g

Lab ID #: 1906027-16 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 74.27%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.257	U	0.257	0.0325
NULL	N-methyl perfluorooctanesulfonamideacetate	0.257	U	0.257	0.0312
45187-15-3	Perfluorobutanesulfonate	0.257	U	0.257	0.0108
335-77-3	Perfluorodecanesulfonate	0.257	U	0.257	0.0434
73829-36-4	Perfluorodecanoate	0.257	U	0.257	0.0190
171978-95-3	Perfluorododecanoate	0.514	U	0.514	0.0151
375-92-8	Perfluoroheptanesulfonate	0.257	U	0.257	0.0245
120885-29-2	Perfluoroheptanoate	0.257	U	0.257	0.0442
108427-53-8	Perfluorohexanesulfonate	0.257	U	0.257	0.0782
92612-52-7	Perfluorohexanoate	0.218	J	0.257	0.0410
68259-12-1	Perfluorononanesulfonate	0.257	U	0.257	0.0164
72007-68-2	Perfluorononanoate	0.257	U	0.257	0.0248
45298-90-6	Perfluorooctanesulfonate	0.0493	J	0.257	0.0328
45285-51-6	Perfluorooctanoate	0.257	U	0.257	0.0309
45167-47-3	Perfluoropentanoate	0.257	U	0.257	0.0648
365971-87-5	Perfluorotetradecanoate	1.03	U	1.03	0.0202
862374-87-6	Perfluorotridecanoate	1.03	U	1.03	0.0110
NULL	Perfluoroundecanoate	0.257	U	0.257	0.0127

Surrogate Reco	<u>very:</u>		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.58	4.11	63	20-200	
NULL	D5-N-EtFOSAA	2.77	4.11	68	20-200	
NULL	M2PFTeDA	3.47	4.11	84	20-200	
NULL	M3PFBS	4.50	4.11	110	20-200	
NULL	M3PFHxS	3.76	4.11	92	20-200	
NULL	M4PFHpA	4.10	4.11	100	20-200	
NULL	M5PFHxA	3.93	4.11	96	20-200	
NULL	M5PFPeA	3.66	4.11	89	20-200	
NULL	M6PFDA	3.45	4.11	84	20-200	
NULL	M7PFUnA	3.52	4.11	86	20-200	
NULL	M8PFOA	3.58	4.11	87	20-200	
NULL	M8PFOS	3.68	4.11	89	20-200	
NULL	M9PFNA	3.72	4.11	91	20-200	
NULL	MPFDoA	3.25	4.11	79	20-200	
I						

Authorized by:

Release Date:

26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40967-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.006 g Final Vol: 4 mL Lab ID #: 1906027-17 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 77.49%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.258	U	0.258	0.0326
NULL	N-methyl perfluorooctanesulfonamideacetate	0.258	U	0.258	0.0313
45187-15-3	Perfluorobutanesulfonate	0.258	U	0.258	0.0109
335-77-3	Perfluorodecanesulfonate	0.258	U	0.258	0.0435
73829-36-4	Perfluorodecanoate	0.0237	J	0.258	0.0191
171978-95-3	Perfluorododecanoate	0.516	U	0.516	0.0152
375-92-8	Perfluoroheptanesulfonate	0.258	U	0.258	0.0246
120885-29-2	Perfluoroheptanoate	0.258	U	0.258	0.0444
108427-53-8	Perfluorohexanesulfonate	0.258	U	0.258	0.0784
92612-52-7	Perfluorohexanoate	0.258	U	0.258	0.0411
68259-12-1	Perfluorononanesulfonate	0.258	U	0.258	0.0164
72007-68-2	Perfluorononanoate	0.258	U	0.258	0.0249
45298-90-6	Perfluorooctanesulfonate	0.0753	J	0.258	0.0329
45285-51-6	Perfluorooctanoate	0.0660	J	0.258	0.0311
45167-47-3	Perfluoropentanoate	0.258	U	0.258	0.0650
365971-87-5	Perfluorotetradecanoate	1.03	U	1.03	0.0203
862374-87-6	Perfluorotridecanoate	1.03	U	1.03	0.0110
NULL	Perfluoroundecanoate	0.258	U	0.258	0.0128

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.84	4.12	69	20-200	
NULL	D5-N-EtFOSAA	3.02	4.12	73	20-200	
NULL	M2PFTeDA	3.49	4.12	85	20-200	
NULL	M3PFBS	4.49	4.12	109	20-200	
NULL	M3PFHxS	3.88	4.12	94	20-200	
NULL	M4PFHpA	3.84	4.12	93	20-200	
NULL	M5PFHxA	3.89	4.12	94	20-200	
NULL	M5PFPeA	3.35	4.12	81	20-200	
NULL	M6PFDA	3.28	4.12	79	20-200	
NULL	M7PFUnA	3.48	4.12	84	20-200	
NULL	M8PFOA	3.31	4.12	80	20-200	
NULL	M8PFOS	3.72	4.12	90	20-200	
NULL	M9PFNA	3.66	4.12	89	20-200	
NULL	MPFDoA	3.30	4.12	80	20-200	

Authorized by: Release Date: 26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 40975-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.378 g Final Vol: 4.17 mL Lab ID #: 1906027-18 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 42.48%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.456	U	0.456	0.0577
NULL	N-methyl perfluorooctanesulfonamideacetate	0.456	U	0.456	0.0555
45187-15-3	Perfluorobutanesulfonate	0.456	U	0.456	0.0192
335-77-3	Perfluorodecanesulfonate	0.0803	J	0.456	0.0770
73829-36-4	Perfluorodecanoate	0.456	U	0.456	0.0338
171978-95-3	Perfluorododecanoate	0.913	U	0.913	0.0269
375-92-8	Perfluoroheptanesulfonate	0.456	U	0.456	0.0436
120885-29-2	Perfluoroheptanoate	0.456	U	0.456	0.0786
108427-53-8	Perfluorohexanesulfonate	0.456	U	0.456	0.139
92612-52-7	Perfluorohexanoate	0.347	J	0.456	0.0728
68259-12-1	Perfluorononanesulfonate	0.456	U	0.456	0.0291
72007-68-2	Perfluorononanoate	0.456	U	0.456	0.0440
45298-90-6	Perfluorooctanesulfonate	0.111	J	0.456	0.0582
45285-51-6	Perfluorooctanoate	0.456	U	0.456	0.0550
45167-47-3	Perfluoropentanoate	0,456	U	0.456	0.115
365971-87-5	Perfluorotetradecanoate	1.83	U	1.83	0.0360
862374-87-6	Perfluorotridecanoate	1.83	U	1.83	0.0195
NULL	Perfluoroundecanoate	0.456	U	0.456	0.0226
Surrogate Rec	overv:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	4.21	7.00	60	20-200
NULL	D5-N-EtFOSAA	4,69	7.00	67	20-200
NULL	M2PFTeDA	6.65	7.00	95	20-200
NULL	M3PFBS	7.36	7.00	105	20-200
NULL	M3PFHxS	6.87	7.00	98	20-200
NULL	M4PFHpA	7.20	7.00	103	20-200
NULL	M5PFHxA	6.63	7.00	95	20-200
NULL	M5PFPeA	7.12	7.00	102	20-200
NULL	M6PFDA	5.84	7.00	83	20-200
NULL	M7PFUnA	6.27	7.00	89	20-200 20-200
NULL	M8PFOA	6.32	7.00	90 93	20-200
NULL	M8PFOS	6.50	7.00 7.00	93 101	20-200
NULL	M9PFNA	7.10 6.52	7.00 7.00	93	20-200

Authorized by:

MPFDoA

Release Date:

7.00

20-200

93

NULL

6.52

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41103-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.268 g Final Vol: 4.55 mL Lab ID #: 1906027-20 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 35.19%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
	N-ethyl perfluorooctanesulfonamideacetate	0.614	U	0.614	0.0776
NULL	N-methyl perfluorooctanesulfonamideacetate	0.614	U	0.614	0.0746
NULL	Perfluorobutanesulfonate	0.614	U	0.614	0.0258
45187-15-3	Perfluorodecanesulfonate	0.157	J	0.614	0.104
335-77-3	Perfluorodecanoate	0.614	U	0.614	0.0454
73829-36-4	Perfluorododecanoate	1.23	U	1.23	0.0361
171978-95-3		0.614	U	0.614	0.0586
375-92-8	Perfluoroheptanesulfonate	0,614	U	0.614	0.106
120885-29-2	Perfluoroheptanoate	0.614	Ū	0.614	0.187
108427-53-8	Perfluorohexanesulfonate	0.614	Ŭ	0.614	0.0979
92612-52-7	Perfluorohexanoate	0.614	Ŭ	0.614	0.0391
68259-12-1	Perfluorononanesulfonate	0.614	Ŭ	0.614	0.0592
72007-68-2	Perfluorononanoate	0.142	J	0.614	0.0783
45298-90-6	Perfluorooctanesulfonate	0.614	Ü	0.614	0.0739
45285-51-6	Perfluorooctanoate	0.614	U	0.614	0.155
45167-47-3	Perfluoropentanoate		U	2.45	0.0484
365971-87-5	Perfluorotetradecanoate	2.45	U	2.45	0.0263
862374-87-6	Perfluorotridecanoate	2.45	_	0.614	0.0304
NULL	Perfluoroundecanoate	0.614	U	0.014	0.0504

Surrogate Re	ecovery:		Spike		% Rec.	1
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	10.8 6.87	8.63 8.63	126 80	20-200 20-200	
NULL NULL	D5-N-EtFOSAA M2PFTeDA	8.72	8.63	101 96	20-200 20-200	
NULL NULL	M3PFBS M3PFHxS	8.30 7.72	8.63 8.63	89	20-200	
NULL NULL	M4PFHpA M5PFHxA	7.90 8.02	8.63 8.63	92 93	20-200 20-200	
NULL	M5PFPeA	9.17 7.24	8.63 8.63	106 84	20-200 20-200	
NULL NULL	M6PFDA M7PFUnA	6.88	8.63	80 87	20-200 20-200	
NULL NULL	M8PFOA M8PFOS	7.54 7.95	8.63 8.63	92	20-200	
NULL NULL	M9PFNA MPFDoA	8.11 7.93	8.63 8.63	94 92	20-200 20-200	

authorized by:

Release Date:

26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41103-R2

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.371 g Final Vol: 4.35 mL Lab ID #: 1906027-21 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 35.36%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.573	U	0.573	0.0724
NULL	N-methyl perfluorooctanesulfonamideacetate	0.573	U	0.573	0.0696
45187-15-3	Perfluorobutanesulfonate	0.573	U	0.573	0.0241
335-77-3	Perfluorodecanesulfonate	0.573	U	0.573	0.0967
73829-36-4	Perfluorodecanoate	0.573	U	0.573	0.0424
171978-95-3	Perfluorododecanoate	1.15	U	1.15	0.0337
375-92-8	Perfluoroheptanesulfonate	0.573	U	0.573	0.0547
120885-29-2	Perfluoroheptanoate	0.573	U	0.573	0.0986
108427-53-8	Perfluorohexanesulfonate	0.573	U	0.573	0.174
92612-52-7	Perfluorohexanoate	0.573	U	0.573	0.0913
68259-12-1	Perfluorononanesulfonate	0.573	U	0.573	0.0365
72007-68-2	Perfluorononanoate	0.573	U	0.573	0.0553
45298-90-6	Perfluorooctanesulfonate	0.147	J	0.573	0.0731
45285-51-6	Perfluorooctanoate	0.573	U	0.573	0.0690
45167-47-3	Perfluoropentanoate	0.573	U	0.573	0.144
365971-87-5	Perfluorotetradecanoate	2.29	U	2.29	0.0451
862374-87-6	Perfluorotridecanoate	2.29	U	2.29	0.0245
NULL	Perfluoroundecanoate	0.573	U	0.573	0.0284

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.56	8.42	90	20-200	
NULL	D5-N-EtFOSAA	6.55	8.42	78	20-200	
NULL	M2PFTeDA	7.51	8.42	89	20-200	
NULL	M3PFBS	6.49	8.42	77	20-200	
NULL	M3PFHxS	6.39	8.42	76	20-200	
NULL	M4PFHpA	6.98	8.42	83	20-200	
NULL	M5PFHxA	6.29	8.42	75	20-200	
NULL	M5PFPeA	8.03	8.42	95	20-200	
NULL	M6PFDA	5.87	8.42	70	20-200	
NULL	M7PFUnA	6.08	8.42	72	20-200	
NULL	M8PFOA	6.63	8.42	79	20-200	
NULL	M8PFOS	6.77	8.42	80	20-200	
NULL	M9PFNA	7.22	8.42	86	20-200	
NULL	MPFDoA	6.78	8.42	80	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41223-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.201 g Final Vol: 4 mL Lab ID #: 1906027-22 Collected: 6/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 47.94%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.401	U	0.401	0.0507
NULL	N-methyl perfluorooctanesulfonamideacetate	0.401	Ū	0.401	0.0488
45187-15-3	Perfluorobutanesulfonate	0.401	U	0.401	0.0169
335-77-3	Perfluorodecanesulfonate	0.401	U	0.401	0.0677
73829-36-4	Perfluorodecanoate	0.401	U	0.401	0.0297
171978-95-3	Perfluorododecanoate	0.802	U	0.802	0.0236
375-92-8	Perfluoroheptanesulfonate	0.401	U	0.401	0.0383
120885-29-2	Perfluoroheptanoate	0.401	U	0.401	0.0691
108427-53-8	Perfluorohexanesulfonate	0.401	U	0.401	0.122
92612-52-7	Perfluorohexanoate	0.401	U	0.401	0.0640
68259-12-1	Perfluorononanesulfonate	0.401	U	0.401	0.0255
72007-68-2	Perfluorononanoate	0.401	U	0.401	0.0387
45298-90-6	Perfluorooctanesulfonate	0.0882	J	0.401	0.0512
45285-51-6	Perfluorooctanoate	0.401	U	0.401	0.0483
45167-47-3	Perfluoropentanoate	0.401	U	0.401	0.101
365971-87-5	Perfluorotetradecanoate	1.60	U	1.60	0.0316
862374-87-6	Perfluorotridecanoate	1.60	U	1.60	0.0172
NULL	Perfluoroundecanoate	0.401	U	0.401	0.0199
Surrogate Rec	eovery:		Spike		% Rec.
CAS#	Analyte	Result		% Rec.	Limits
NULL	D3-N-MeFOSAA	4.11	6.42	64	20-200
NULL	D5-N-EtFOSAA	4.13	6.42	64	20-200
NULL	M2PFTeDA	6.04	6.42	94	20-200
NULL	M3PFBS	6.29	6.42	98	20-200
NULL	M3PFHxS	5.51	6.42	86	20-200 20-200
NULL	M4PFHpA	5.87	6.42	91	20-200
NULL	M5PFHxA	5.14	6.42	80 92	20-200
NULL	M5PFPeA	5.89	6.42 6.42	92 76	20-200
NULL	M6PFDA	4.88 5.12	6.42	80	20-200
NULL	M7PFUnA	5.12	6.42	84	20-200
NULL	M8PFOA	5.58 5.54	6.42	86	20-200
NULL	M8PFOS	5.90	6.42	92	20-200
NULL	M9PFNA	4,95	6.42	77	20-200
NULL	MPFDoA	1,25	0, 12		

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41231-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.197 g Final Vol: 4.44 mL Lab ID #: 1906027-23 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 51.13%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.418	U	0.418	0.0528
NULL	N-methyl perfluorooctanesulfonamideacetate	0.418	U	0.418	0.0508
45187-15-3	Perfluorobutanesulfonate	0.418	U	0.418	0.0176
335-77-3	Perfluorodecanesulfonate	0.418	U	0.418	0.0705
73829-36-4	Perfluorodecanoate	0.418	U	0.418	0.0309
171978-95-3	Perfluorododecanoate	0.835	U	0.835	0.0246
375-92-8	Perfluoroheptanesulfonate	0.418	U	0.418	0.0399
120885-29-2	Perfluoroheptanoate	0.418	U ·	0.418	0.0720
108427-53-8	Perfluorohexanesulfonate	0.418	U	0.418	0.127
92612-52-7	Perfluorohexanoate	0.418	U	0.418	0.0666
68259-12-1	Perfluorononanesulfonate	0.418	U	0.418	0.0266
72007-68-2	Perfluorononanoate	0.418	U	0.418	0.0403
45298-90-6	Perfluorooctanesulfonate	0.0602	J	0.418	0.0533
45285-51-6	Perfluorooctanoate	0.418	U	0.418	0.0503
45167-47-3	Perfluoropentanoate	0.418	U	0.418	0.105
365971-87-5	Perfluorotetradecanoate	1.67	U	1.67	0.0329
862374-87-6	Perfluorotridecanoate	1.67	U	1.67	0.0179
NULL	Perfluoroundecanoate	0.418	U	0.418	0.0207

Surrogate I	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.71	6.02	128	20-200	
NULL	D5-N-EtFOSAA	7.36	6.02	122	20-200	
NULL	M2PFTeDA	5.30	6.02	88	20-200	
NULL	M3PFBS	4.43	6.02	74	20-200	
NULL	M3PFHxS	5.02	6.02	83	20-200	
NULL	M4PFHpA	5.39	6.02	90	20-200	
NULL	M5PFHxA	4.77	6.02	79	20-200	
NULL	M5PFPeA	5.83	6.02	97	20-200	
NULL	M6PFDA	4.82	6.02	80	20-200	
NULL	M7PFUnA	5.35	6.02	89	20-200	
NULL	M8PFOA	5.17	6.02	86	20-200	
NULL	M8PFOS	5.21	6.02	87	20-200	
NULL	M9PFNA	6.28	6.02	104	20-200	
NULL	MPFDoA	5.24	6.02	87	20-200	

Authorized by: Authorized by: Release Date: 26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41231-R2

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.482 g Final Vol: 4.26 mL Lab ID #: 1906027-24 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 51.27%

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.379	U	0.379	0.0479
NULL	N-methyl perfluorooctanesulfonamideacetate	0.379	U	0.379	0.0461
45187-15-3	Perfluorobutanesulfonate	0.379	U	0.379	0.0160
43187-13-3 335-77 - 3	Perfluorodecanesulfonate	0.379	U	0.379	0.0640
73829-36-4	Perfluorodecanoate	0.379	U	0.379	0.0280
	Perfluorododecanoate	0.758	U	0.758	0.0223
171978-95-3	Perfluoroheptanesulfonate	0.379	U	0.379	0.0362
375-92-8	Perfluoroheptanoate	0.379	U	0.379	0.0653
120885-29-2	Perfluorohexanesulfonate	0.379	U	0.379	0.115
108427-53-8	Perfluoronexanoate	0.935		0.379	0.0604
92612-52-7	Perfluorononanesulfonate	0.379	U	0.379	0.0241
68259-12-1	Perfluorononanoate	0.379	Ú	0.379	0.0366
72007-68-2	Perfluoronctanesulfonate	0.0849	J	0.379	0.0484
45298-90-6	Perfluorooctanoate	0.379	U	0.379	0.0456
45285-51-6		0.379	U	0.379	0.0956
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate	1.52	Ū	1.52	0.0299
365971-87-5	Perfluorotridecanoate Perfluorotridecanoate	1.52	Ü	1.52	0.0162
862374-87-6 NULL	Perfluoroundecanoate Perfluoroundecanoate	0.379	Ū	0.379	0.0188

Surrogate F	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.44	5.69	131	20-200	
NULL	D5-N-EtFOSAA	6.89	5.69	121	20-200	
NULL	M2PFTeDA	4.97	5.69	87	20-200	
NULL	M3PFBS	4.88	5.69	86	20-200	
NULL	M3PFHxS	5.41	5.69	95	20-200	
NULL	M4PFHpA	5.58	5.69	98	20-200	
NULL	M5PFHxA	5.23	5.69	92	20-200	
	M5PFPeA	5,78	5.69	101	20-200	
NULL	M6PFDA	4.64	5.69	81	20-200	
NULL	M7PFUnA	5.16	5.69	91	20-200	
NULL	M8PFOA	4.82	5.69	85	20-200	
NULL		5.15	5.69	90	20-200	
NULL	M8PFOS	6.28	5.69	110	20-200	
NULL NULL	M9PFNA MPFDoA	4.93	5.69	87	20-200	

Authorized by: Release Date: 26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Method Blank

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K054-BLK1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K054-BLK1 Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideaceta	0.0760	J	0.200	0.0253
NULL	N-methyl perfluorooctanesulfonamideaco	0.0696	J	0.200	0.0243
45187-15-3	Perfluorobutanesulfonate	0.200	U	0.200	0.00842
335-77-3	Perfluorodecanesulfonate	0.200	U	0.200	0.0338
73829-36-4	Perfluorodecanoate	0.200	U	0.200	0.0148
171978-95-3	Perfluorododecanoate	0.400	U	0.400	0.0118
375-92-8	Perfluoroheptanesulfonate	0.200	U	0.200	0.0191
120885-29-2	Perfluoroheptanoate	0.200	U	0.200	0.0345
108427-53-8	Perfluorohexanesulfonate	0.200	U	0.200	0.0609
92612-52-7	Perfluorohexanoate	0.200	U	0.200	0.0319
	Perfluorononanesulfonate	0.200	U	0.200	0.0127
68259-12-1	Perfluorononanoate	0.200	U	0.200	0.0193
72007-68-2	Perfluorooctanesulfonate	0.200	U	0.200	0.0255
45298-90-6	Perfluorooctanoate	0.200	U	0.200	0.0241
45285-51-6		0.200	Ū	0.200	0.0505
45167-47-3	Perfluoropentanoate	0.800	Ū	0.800	0.0158
365971-87-5	Perfluorotetradecanoate	0.800	Ü	0.800	0.00857
862374-87-6	Perfluorotridecanoate	0.200	U	0.200 ^	0.00991
NULL	Perfluoroundecanoate	0.200	U	0.200	0,00001

Surrogate Re	Surrogate Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.17	3.20	68	20-200	
NULL	D5-N-EtFOSAA	2.37	3.20	74	20-200	Į.
NULL	M2PFTeDA	2.80	3.20	87	20-200	
NULL	M3PFBS	4.24	3.20	132	20-200	i
NULL	M3PFHxS	3.42	3.20	107	20-200	
NULL	M4PFHpA	3.03	3.20	95	20-200	ļ
NULL	M5PFHxA	3.92	3.20	122	20-200	1
NULL	M5PFPeA	2.49	3.20	78	20-200	1
NULL	M6PFDA	3.24	3.20	101	20-200	
NULL	M7PFUnA	3.14	3.20	98	20-200	
NULL	M8PFOA	2.65	3.20	83	20-200	
	M8PFOS	2.93	3.20	92	20-200	
NULL	M9PFNA	2.45	3.20	76	20-200	
NULL NULL	MPFDoA	2.93	3.20	92	20-200	

Authorized by: A Watal Release Date: 2/6/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K054-BS1 Prep Method: AOAC2007.01

Analysis Method: SW8321BM Source Field ID: B19K054-BS1

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: %

			U	11118; 70		
Analyte		Result	Spike Level	RL	%Rec	%Rec Limits
<u>-</u>	uorooctanesulfonamideacetate	6.2	5.00	0.200	123	50-150
	rfluorooctanesulfonamideacetate	6.4	5.00	0.200	128	50-150
Perfluorobut		6.1	5.00	0.200	122	50-150
	ranesulfonate	6.6	5.00	0.200	133	50-150
Perfluorodec Perfluorodec		5.9	5.00	0.200	118	50-150
Perfluorodec Perfluorodoc		5.8	5.00	0.400	115	50-150
		6.7	5.00	0.200	133	50-150
	otanesulfonate	5.9	5.00	0.200	118	50-150
Perfluoroher		6.4	5.00	0.200	127	50-150
	canesulfonate	6.0	5.00	0.200	121	50-150
Perfluorohex		6.2	5.00	0.200	123	50-150
	nanesulfonate	5.7	5.00	0.200	114	50-150
Perfluoronor		6.1	5.00	0.200	123	50-150
	anesulfonate	5,3	5.00	0.200	107	50-150
Perfluorooct		5.9	5.00	0.200	117	50-150
Perfluoroper		5.6	5.00	0.800	112	50-150
Perfluorotetradecanoate		5.4	5.00	0.800	108	50-150
Perfluorotric		5.8	5.00	0.200	116	50-150
Perfluoroun	decanoate	5.6	5.00	0.200	110	20 100
Surrogate F	Recovery:		Spike			Rec.
CAS#	Analyte	Result	Level	% R		imits
NULL	D3-N-MeFOSAA	2.47	3.20	7)-200
NULL	D5-N-EtFOSAA	2.62	3.20	82)-200
NULL	M2PFTeDA	3.13	3.20	98)-200
NULL	M3PFBS	3.41	3.20	10)-200
NULL	M3PFHxS	2.96	3.20	9:)-200
NULL	M4PFHpA	2.93	3.20	9:)-200)-200
NULL	M5PFHxA	3.12	3.20	9°		0-200 0-200
NULL	M5PFPeA	2.88	3.20	9		0-200
NULL	M6PFDA	3.11	3.20 3.20	10		0-200
NULL	M7PFUnA	3.31	3.20	9		0-200
NULL	M8PFOA	3.10 2.99	3.20	9		0-200
NULL	M8PFOS	3.00	3.20	9		0-200
NULL	M9PFNA	2.94	3.20	9		0-200
NULL	MPFDoA	2,9 4	2,20	,		- - 00

Authorized by:

J. Witch C

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K054-BSD1

Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K054-BSD1 Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	%Rec_	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	6.3	5.00	125	2	50-150	40
N-methyl perfluorooctanesulfonamideacetate	6.6	5.00	132	3	50-150	40
Perfluorobutanesulfonate	6.5	5.00	130	7	50-150	40
Perfluorodecanesulfonate	6.6	5.00	131	1	50-150	40
Perfluorodecanoate	6.2	5.00	125	6	50-150	40
Perfluorododecanoate	6.0	5.00	119	3	50-150	40
Perfluoroheptanesulfonate	6.8	5.00	136	2	50-150	40
Perfluoroheptanoate	5.9	5.00	118	0.2	50-150	40
Perfluorohexanesulfonate	6.5	5.00	130	2	50-150	40
Perfluorohexanoate	6.1	5.00	122	8.0	50-150	40
Perfluorononanesulfonate	6.5	5.00	130	5	50-150	40
Perfluorononanoate	5.9	5.00	118	4	50-150	40
Perfluorooctanesulfonate	6.3	5.00	126	3	50-150	40
Perfluorooctanoate	6.2	5.00	124	15	50-150	40
Perfluoropentanoate	6.0	5.00	120	2	50-150	40
Perfluorotetradecanoate	6.0	5.00	119	6	50-150	40
Perfluorotridecanoate	5.6	5.00	112	4	50-150	40
Perfluoroundecanoate	6.0	5.00	119	3	50-150	40

Surrogate R	kecovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.57	3.20	80	20-200	
NULL	D5-N-EtFOSAA	2.70	3.20	84	20-200	
NULL	M2PFTeDA	3.22	3.20	101	20-200	
NULL	M3PFBS	3.58	3.20	112	20-200	
NULL	M3PFHxS	3.18	3.20	99	20-200	
NULL	M4PFHpA	3.00	3.20	94	20-200	
NULL	M5PFHxA	3.47	3.20	108	20-200	
NULL	M5PFPeA	2.77	3.20	87	20-200	
NULL	M6PFDA	3.11	3.20	97	20-200	
NULL	M7PFUnA	3.36	3.20	105	20-200	
NULL	M8PFOA	2.71	3.20	85	20-200	
NULL	M8PFOS	3.10	3.20	97	20-200	
NULL	M9PFNA	2.67	3.20	83	20-200	
NULL	MPFDoA	3.00	3.20	94	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: Matrix Spike

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.077 g Final Vol: 4 mL Lab ID #: B19K054-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K054-MS1

Source Lab ID #: 1906027-02

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: %

		Source Lab ID #: 1906027-	-02		Units: %		
Analyte			Result	Spike Level	Source Result	%Rec	%Rec Limits
N-ethyl perfl	luorooctanesulfonamideacetate		8.9	6.86	0.0	130	40-160
	rfluorooctanesulfonamideaceta		9.1	6.86	0.0	132	40-160
	anesulfonate		8.9	6.86	0.0	129	40-160
	canesulfonate		10.8	6.86	0.0	157	40-160
Perfluorodec Perfluorodec			8.1	6.86	0.0	118	40-160
Perfluorodoc Perfluorodoc			8,6	6.86	0.0	125	40-160
	otanesulfonate		9.2	6.86	0.0	133	40-160
Perfluorone _r			8.6	6.86	0.0	125	40-160
	xanesulfonate		9.1	6.86	0.0	132	40-160
Perfluorones Perfluorohes			9.4	6.86	0.4	132	40-160
			8.8	6.86	0.0	129	40-160
	nanesulfonate		8.3	6.86	0.0	120	40-160
Perfluorono			8.4	6.86	0.04	121	40-160
	tanesulfonate		8.4	6.86	0.0	123	40-160
Perfluorooct			8.9	6.86	0.0	129	40-160
Perfluorope			8.9	6.86	0.0	129	40-160
	radecanoate		7.5	6.86	0.0	109	40-160
Perfluorotric			8.5	6.86	0.0	124	40-160
Perfluoroun	decanoate		0.5	0.00	0.0	12.	
Surrogate F	Recovery:			Spike			Rec.
CAS#	Analyte		Result	Level	% I		mits
NULL	D3-N-MeFOSAA		3.16	4.39			-200
NULL	D5-N-EtFOSAA		3.29	4.39			-200
NULL	M2PFTeDA		5.30	4.39			-200
NULL	M3PFBS		4.91	4.39			-200
NULL	M3PFHxS		4.25	4.39			-200
NULL	M4PFHpA		4.21	4.39			-200
NULL	M5PFHxA		4.40	4.39			-200
NULL	M5PFPeA		3.77	4.39			-200 -200
NULL	M6PFDA		4.55	4.39			-200 -200
NULL	M7PFUnA		4.56	4.39 4.39			-200 -200
NULL	M8PFOA		4.10	4.39			-200
NULL	M8PFOS		4.37 4.26	4.39			-200
NULL	M9PFNA		4.26	4.39			-200
NULL	MPFDoA		7.41	7,37	•	., 20	

Authorized by:

Release Date:

16/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.847 g Final Vol: 4 mL

Lab ID #: B19K054-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K054-MSD1

Source Lab ID #: 1906027-02

Batch ID: B19K054 Prepared: 11/5/2019 Analyzed: 12/13/2019 Matrix: Sediment/Soil

Units: %

	Source Lab ID #:	190004/-	02	U	mits. 70		
Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	7.8	5,96	0.0	131	13	40-160	40
N-methyl perfluorooctanesulfonamideacetate	7.7	5.96	0.0	129	16	40-160	40
Perfluorobutanesulfonate	7.4	5.96	0.0	125	17	40-160	40
Perfluorodecanesulfonate	9.4	5.96	0.0	158	13	40-160	40
Perfluorodecanoate	7.7	5.96	0.0	129	6	40-160	40
Perfluorododecanoate	7.6	5.96	0.0	127	13	40-160	40
Perfluoroheptanesulfonate	7.8	5.96	0.0	132	16	40-160	40
Perfluoroheptanoate	7.2	5.96	0.0	122	17	40-160	40
Perfluorohexanesulfonate	8.0	5.96	0.0	134	13	40-160	40
Perfluorohexanoate	8.0	5,96	0.4	128	17	40-160	40
Perfluorononanesulfonate	8.1	5.96	0.0	135	9	40-160	40
Perfluorononanoate	7.6	5.96	0.0	127	9	40-160	40
Perfluorooctanesulfonate	7.7	5.96	0.04	128	8	40-160	40
Perfluorooctanoate	7.3	5.96	0.0	123	14	40-160	40
Perfluoropentanoate	7.7	5.96	0.0	129	15	40-160	40
Perfluorotetradecanoaté	7.5	5.96	0.0	125	17	40-160	40
Perfluorotridecanoate	6.6	5.96	0.0	111	12	40-160	40
Perfluoroundecanoate	7.3	5.96	0.0	123	15	40-160	40
Surrogate Recovery:				G 13		0/ D	
			7 5 17	Spike	% R	% Re ec. Limi	
CACH Amalusta			Recult	Level	% K	ec. Limi	AIS

			Spike			
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.29	3.81	60	20-200	
NULL	D5-N-EtFOSAA	2.27	3.81	60	20-200	
NULL	M2PFTeDA	3.68	3.81	96	20-200	
NULL	M3PFBS	3.99	3.81	105	20-200	
NULL	M3PFHxS	3.32	3.81	87	20-200	
NULL	M4PFHpA	3.54	3.81	93	20-200	
NULL	M5PFHxA	3.48	3.81	91	20-200	
NULL	M5PFPeA	3.22	3.81	84	20-200	
NULL	M6PFDA	3.11	3.81	82	20-200	
NULL	M7PFUnA	3.30	3.81	87	20-200	
NULL	M8PFOA	3.17	3.81	83	20-200	
NULL	M8PFOS	3.23	3.81	85	20-200	
NULL	M9PFNA	3.31	3.81	87	20-200	
NULL	MPFDoA	3.15	3.81	83	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: Reference

Batch ID: B19K054

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 0.521 g Final Vol: 2 mL

Lab ID #: B19K054-SRM1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM

Prepared: 11/5/2019 Analyzed: 12/13/2019 Source Field ID: B19K054-SRM1 Matrix: Sediment/Soil

Units: %

					mis. 70		
Analyte			Result	Spike Level	RL	%Rec	%Rec Limits
N-ethyl peri	fluorooctanesulfon		11.9	18.0	0.960	66	60-140
	erfluorooctanesulf		8.88	14.3	0.960	62	60-140
	itanesulfonate		17.0	20.6	0.960	83	60-140
	ecanesulfonate		23.1	21.4	0.960	108	60-140
Perfluorode Perfluorode			19.6	22.6	0.960	87	60-140
Perfluorodo Perfluorodo			11.6	13.8	1.92	84	60-140
	eptanesulfonate		13.3	13.3	0.960	100	60-140
Perfluorone Perfluorone			10.3	13.3	0.960	78	60-140
	exanesulfonate		16.2	18.5	0.960	88	60-140
Perfluorone			13.8	16.3	0.960	85	60-140
	onanesulfonate		22.9	17.8	0.960	129	60-140
Perfluorono			16.7	19.3	0.960	87	60-140
			12.3	15.3	0.960	80	60-140
Perfluorooctanoate Perfluorooctanoate			20.8 23.8 15.9 19.3		0.960	87	60-140 60-140
					0.960	83	
	Perfluoropentanoate		15.1	18.5	3.84	82	60-140
Perfluorotetradecanoate Perfluorotridecanoate			12.3	15.0	3.84	82	60-140
Perfluorofr	idecanoate						
	¥ .		107	77.3	0.960	X4	60-140
	ndecanoate		18.7	22.3	0.960	84	60-140
Perfluorou			18.7		0.960		60-140 Rec.
Perfluoroui Surrogate F			18.7 Result	22.3 Spike Level	0.960 % R	%	
Perfluoroui Surrogate F CAS#	Recovery:		Result	Spike Level	% R	ec. Li	Rec. mits
Perfluorous Surrogate F CAS# NULL NULL	Recovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA		11.0 11.4	Spike Level	% R	ec. Lin	Rec. mits -200
Perfluorous Surrogate F CAS# NULL NULL NULL NULL	Recovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA		11.0 11.4 13.0	Spike Level 30.7 30.7 30.7	% R 36 37 42	ec. Lin	Rec. mits -200 -200 -200
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS		11.0 11.4 13.0 18.2	30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59	% ec. Lin 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS		11.0 11.4 13.0 18.2 15.2	30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59	% 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA		11.0 11.4 13.0 18.2 15.2 14.1	30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46	ec. Lin 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA		11.0 11.4 13.0 18.2 15.2 14.1 16.4	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46	ec. Lin 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA		11.0 11.4 13.0 18.2 15.2 14.1 16.4 12.8	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46 53 42	ec. Lin 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA		11.0 11.4 13.0 18.2 15.2 14.1 16.4 12.8 14.1	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46 53 42 46	% 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA		11.0 11.4 13.0 18.2 15.2 14.1 16.4 12.8 14.1 14.1	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46 53 42 46	% 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA		11.0 11.4 13.0 18.2 15.2 14.1 16.4 12.8 14.1 14.1 12.7	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46 53 42 46 46	% 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS		11.0 11.4 13.0 18.2 15.2 14.1 16.4 12.8 14.1 14.1 12.7 14.6	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46 53 42 46 46 42 48	% 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluorous Surrogate F CAS# NULL NULL NULL NULL NULL NULL NULL NU	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA		11.0 11.4 13.0 18.2 15.2 14.1 16.4 12.8 14.1 14.1 12.7	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	% R 36 37 42 59 50 46 53 42 46 46	% ec. Lin 20 20 20 20 20 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41331-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.131 g Final Vol: 4 mL Lab ID #: 1906027-25 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 46.25%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.421	U	0.421	0.0533
NULL	N-methyl perfluorooctanesulfonamideacetate	0.421	U	0.421	0.0512
45187-15-3	Perfluorobutanesulfonate	0.421	U	0.421	0.0177
335-77-3	Perfluorodecanesulfonate	0.421	U	0.421	0.0711
73829-36-4	Perfluorodecanoate	0.421	U	0.421	0.0312
171978-95-3	Perfluorododecanoate	0.843	U	0.843	0.0248
375-92-8	Perfluoroheptanesulfonate	0.421	U	0.421	0.0402
120885-29-2	Perfluoroheptanoate	0.421	U	0.421	0.0726
108427-53-8	Perfluorohexanesulfonate	0,421	U	0.421	0.128
92612-52-7	Perfluorohexanoate	1.78		0.421	0.0672
68259-12-1	Perfluorononanesulfonate	0.421	U	0.421	0.0268
72007-68-2	Perfluorononanoate	0.421	U	0.421	0.0407
45298-90-6	Perfluorooctanesulfonate	0.0674	J	0.421	0.0538
45285-51-6	Perfluorooctanoate	0.421	U	0.421	0.0508
45167-47-3	Perfluoropentanoate	0.421	U	0.421	0.106
365971-87-5	Perfluorotetradecanoate	1.69	U	1.69	0.0332
862374-87-6	Perfluorotridecanoate	1.69	U	1.69	0.0181
NULL	Perfluoroundecanoate	0.421	U	0.421	0.0209
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte			% Rec.	Limits
NULL	D3-N-MeFOSAA	5.83	6.74	86	20-200

			Spike			
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	5.83	6.74	86	20-200	
NULL	D5-N-EtFOSAA	8.26	6.74	122	20-200	
NULL	M2PFTeDA	7.73	6.74	115	20-200	
NULL	M3PFBS	7.29	6.74	108	20-200	
NULL	M3PFHxS	7.03	6.74	104	20-200	
NULL	M4PFHpA	6.02	6.74	89	20-200	
NULL	M5PFHxA	7.24	6.74	107	20-200	
NULL	M5PFPeA	7.34	6.74	109	20-200	
NULL	M6PFDA	7.48	6.74	111	20-200	
NULL	M7PFUnA	7.29	6.74	108	20-200	
NULL	M8PFOA	5.80	6.74	86	20-200	
NULL	M8PFOS	7.22	6.74	107	20-200	
NULL	M9PFNA	6,70	6.74	99	20-200	
NULL	MPFDoA	7.76	6.74	115	20-200	

Authorized by:

Release Date:

26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41359-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.262 g Final Vol: 4.44 mL Lab ID #: 1906027-26 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 31.95%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.660	U	0.660	0.0835
NULL	N-methyl perfluorooctanesulfonamideacetate	0.660	U	0.660	0.0803
45187-15-3	Perfluorobutanesulfonate	0.660	U	0.660	0.0278
335-77-3	Perfluorodecanesulfonate	0.145	J	0.660	0.111
73829-36-4	Perfluorodecanoate	0.660	U	0.660	0.0489
171978-95-3	Perfluorododecanoate	1.32	U	1.32	0.0389
375-92-8	Perfluoroheptanesulfonate	0.660	U	0.660	0.0630
120885-29-2	Perfluoroheptanoate	0.660	U	0.660	0.114
108427-53-8	Perfluorohexanesulfonate	0.660	U	0.660	0.201
92612-52-7	Perfluorohexanoate	0.660	U	0.660	0.105
68259-12-1	Perfluorononanesulfonate	0.660	U	0.660	0.0421
72007-68-2	Perfluorononanoate	0.660	U	0.660	0.0637
45298-90-6	Perfluorooctanesulfonate	0.182	J	0.660	0.0843
45285-51-6	Perfluorooctanoate	0.660	U	0.660	0.0795
45167-47-3	Perfluoropentanoate	0.660	Ū	0.660	0.167
365971-87-5	Perfluorotetradecanoate	2.64	U	2.64	0.0520
862374-87-6	Perfluorotridecanoate	2.64	U	2.64	0.0283
NULL	Perfluoroundecanoate	0.660	U	0.660	0.0327

Bull of are 1	COUNTY TO THE CO		Spike		% Rec.	- 1
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.37	9.52	77	20-200	
NULL	D5-N-EtFOSAA	7.73	9.52	81	20-200	
NULL	M2PFTeDA	11.2	9.52	117	20-200	
NULL	M3PFBS	11.0	9.52	115	20-200	
NULL	M3PFHxS	9.88	9.52	104	20-200	
NULL	M4PFHpA	8.48	9.52	89	20-200	
NULL	M5PFHxA	9.47	9.52	99	20-200	
NULL	M5PFPeA	9.38	9.52	99	20-200	
NULL	M6PFDA	9.46	9.52	99	20-200	
NULL	M7PFUnA	9.87	9.52	104	20-200	
NULL	M8PFOA	8.06	9.52	85	20-200	
NULL	M8PFOS	9.40	9.52	99	20-200	
NULL	M9PFNA	8.43	9.52	89	20-200	
NULL	MPFDoA	11.2	9.52	117	20-200	
1						

Authorized by: Release Date: 26

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41479-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.566 g Final Vol: 4 mL

NULL

NULL

NULL

NULL

NULL

Lab ID #: 1906027-28 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 74.39%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.242	U	0.242	0.0305
NULL	N-methyl perfluorooctanesulfonamideacetate	0.242	U	0.242	
45187-15-3	Perfluorobutanesulfonate	0.242	U	0.242	0.0102
335-77-3	Perfluorodecanesulfonate	0.242	U	0.242	
73829-36-4	Perfluorodecanoate	0.242	U	0.242	
171978-95-3	Perfluorododecanoate	0.483	U	0.483	0.0142
375-92-8	Perfluoroheptanesulfonate	0.242	U	0.242	0.0231
120885-29-2	Perfluoroheptanoate	0.242	U	0.242	
108427-53-8	Perfluorohexanesulfonate	0.242	U	0.242	
92612-52-7	Perfluorohexanoate	0.242	U	0.242	0.0385
68259-12-1	Perfluorononanesulfonate	0.242	U	0.242	
72007-68-2	Perfluorononanoate	0.242	U	0.242	0.0233
45298-90-6	Perfluorooctanesulfonate	0.242	U	0.242	0.0308
45285-51-6	Perfluorooctanoate	0.242	U	0.242	0.0291
45167-47-3	Perfluoropentanoate	0.242	U	0.242	
365971-87-5	Perfluorotetradecanoate	0.966	U	0.966	
862374-87-6	Perfluorotridecanoate	0.966	U	0.966	
NULL	Perfluoroundecanoate	0.242	$^{'}$ U	0.242	0.0120
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte	Result		% Rec.	Limits
NULL	D3-N-MeFOSAA	3.51	3.86	91	20-200
NULL	D5-N-EtFOSAA	3.81	3.86	99	20-200
NULL	M2PFTeDA	4.42	3.86	114	20-200
NULL	M3PFBS	4.60	3.86	119	20-200
NULL	M3PFHxS	4.30	3.86	111	20-200
NULL	M4PFHpA	3.66	3.86	95	20-200
NULL	M5PFHxA	3.85	3.86	100	20-200
NULL	M5PFPeA	3.46	3.86	90	20-200
NULL	M6PFDA	4.22	3.86	109	20-200

Authorized by:

M7PFUnA

M8PFOA

M8PFOS

M9PFNA

MPFDoA

Release Date:

4.21

3.53

3.98

3.48

4.08

109

91

103

90

106

3.86

3.86

3.86

3.86

3,86

20-200

20-200

20-200

20-200

20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41487-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.186 g Final Vol: 4.17 mL Lab ID #: 1906027-29 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 58.30%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	. Qualif	ier RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.345		0.345	0.0436
NULL	N-methyl perfluorooctanesulfonamideacetate	0.345	U٠		0.0419
45187-15-3	Perfluorobutanesulfonate	0.345		0.345	0.0145
335-77-3	Perfluorodecanesulfonate	0.345	U	0.345	0.0582
73829-36-4	Perfluorodecanoate	0.345	U	0.345	0.0255
171978-95-3	Perfluorododecanoate	0.690		0.690	0.0203
375-92-8	Perfluoroheptanesulfonate	0.345	U	0.345	0.0329
120885-29-2	Perfluoroheptanoate	0.345	U	0.345	0.0594
108427-53-8	Perfluorohexanesulfonate	0.345	U	0.345	0.105
92612-52-7	Perfluorohexanoate	0.345	U	0.345	
68259-12-1	Perfluorononanesulfonate	0.345	U	0.345	
72007-68-2	Perfluorononanoate	0.345	U	0.345	0.0333
45298-90-6	Perfluorooctanesulfonate	0.0717	7 J	0.345	0.0440
45285-51-6	Perfluorooctanoate	0.345	U	0.345	0.0415
45167-47-3	Perfluoropentanoate	0.345	U	0.345	0.0870
365971-87-5	Perfluorotetradecanoate	1.38	U	1.38	0.0272
862374-87-6	Perfluorotridecanoate	1.38	U	1.38	0.0148
NULL	Perfluoroundecanoate	0.345	U	0.345	0.0171
Surrogate Rec	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.65	5.29	69	20-200
NULL	D5-N-EtFOSAA	3.74	5.29	71	20-200
NULL	M2PFTeDA	5.24	5.29	99	20-200
NULL	M3PFBS	5.71	5.29	108	20-200
NULL	MADELLC				20-200
	M3PFHxS	5.06	5.29	96	
NULL	M4PFHpA	4.62	5.29	87	20-200
NULL NULL	M4PFHpA M5PFHxA	4.62 4.98	5.29 5.29	87 94	20-200 20-200
NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA	4.62 4.98 4.82	5.29 5.29 5.29	87 94 91	20-200 20-200 20-200
NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA	4.62 4.98 4.82 4.99	5.29 5.29 5.29 5.29	87 94 91 94	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	4.62 4.98 4.82 4.99 4.94	5.29 5.29 5.29 5.29 5.29	87 94 91 94 93	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	4.62 4.98 4.82 4.99 4.94 3.87	5.29 5.29 5.29 5.29 5.29 5.29	87 94 91 94 93 73	20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	4.62 4.98 4.82 4.99 4.94	5.29 5.29 5.29 5.29 5.29	87 94 91 94 93	20-200 20-200 20-200 20-200 20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41615-R1

Work Order: 1906027 Project Officer: Dutch, Margaret

Initial Vol: 5.306 g Final Vol: 4.08 mL Lab ID #: 1906027-32 Collected: 6/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 57.65%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.333	U	0.333	0.0422
NULL	N-methyl perfluorooctanesulfonamideacetate	0.333	U	0.333	0.0405
45187-15-3	Perfluorobutanesulfonate	0.333	U	0.333	0.0140
335-77-3	Perfluorodecanesulfonate	0.333	U	0.333	0.0563
73829-36-4	Perfluorodecanoate	0.333	U	0.333	0.0247
171978-95-3	Perfluorododecanoate	0.667	U	0.667	0.0196
375-92-8	Perfluoroheptanesulfonate	0.333	U	0.333	0.0318
120885-29-2	Perfluoroheptanoate	0.333	U	0.333	0.0574
108427-53-8	Perfluorohexanesulfonate	0.333	U	0.333	0.101
92612-52-7	Perfluorohexanoate	0.507		0.333	0.0532
68259-12-1	Perfluorononanesulfonate	0.333	U	0.333	0.0212
72007-68-2	Perfluorononanoate	0.333	U	0.333	0.0322
45298-90-6	Perfluorooctanesulfonate	0.0627	J	0.333	0.0426
45285-51-6	Perfluorooctanoate	0.333	U	0.333	0.0402
45167-47-3	Perfluoropentanoate	0.333	U	0.333	0.0841
365971-87-5	Perfluorotetradecanoate	1.33	U	1.33	0.0263
862374-87-6	Perfluorotridecanoate	1.33	U	1.33	0.0143
NULL	Perfluoroundecanoate	0.333	U	0.333	0.0165
Surrogate Rec	overy:	S	pike	9/	6 Rec.

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.67	5.23	70	20-200	
NULL	D5-N-EtFOSAA	3.80	5.23	73	20-200	
NULL	M2PFTeDA	5.72	5.23	109	20-200	
NULL	M3PFBS	5.25	5.23	100	20-200	
NULL	M3PFHxS	4.76	5.23	91	20-200	l
NULL	M4PFHpA	4.22	5.23	81	20-200	
NULL	M5PFHxA	4.45	5.23	85	20-200	
NULL	M5PFPeA	4.78	5.23	91	20-200	
NULL	M6PFDA	4.46	5,23	85	20-200	
NULL	M7PFUnA	4.80	5.23	92	20-200	
NULL	M8PFOA	4.00	5.23	76	20-200	
NULL	M8PFOS	4.73	5.23	91	20-200	
NULL	M9PFNA	4.25	5.23	81	20-200	
NULL	MPFDoA	4.74	5.23	91	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41735-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.464 g Final Vol: 4 mL Lab ID #: 1906027-33 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 71.94%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.254	U	0.254	0.0322
NULL	N-methyl perfluorooctanesulfonamideacetate	0.254	U	0.254	0.0309
45187-15-3	Perfluorobutanesulfonate	0.254	U	0.254	0.0107
335-77-3	Perfluorodecanesulfonate	0.254	U	0.254	0.0429
73829-36-4	Perfluorodecanoate	0.254	U	0.254	0.0188
171978-95-3	Perfluorododecanoate	0.509	U	0.509	0.0150
	Perfluoroheptanesulfonate	0.254	U	0.254	0.0243
375-92-8	Perfluoroheptanoate	0.254	U	0.254	0.0438
120885-29-2	Perfluorohexanesulfonate	0.254	U	0.254	0.0774
108427-53-8	Perfluoronexanoate	0.911		0.254	0.0406
92612-52-7	Perfluorononanesulfonate	0.254	U	0.254	0.0162
68259-12-1		0.254	Ū	0.254	0.0246
72007-68-2	Perfluorononanoate Defluorononanoate	0.0834	J	0.254	0.0325
45298-90-6	Perfluorooctanesulfonate	0.254	Ū	0.254	0.0306
45285-51-6	Perfluorooctanoate	0.254	Ū	0.254	0.0642
45167-47-3	Perfluoropentanoate	1.02	U	1.02	0.0201
365971-87-5	Perfluorotetradecanoate	1.02	Ŭ	1.02	0.0109
862374-87-6 NULL	Perfluorotridecanoate Perfluoroundecanoate	0.254	Ŭ	0.254	0.0126

Surrogate Re	ecovery:		Spike		% Rec.	
CAS#	Analyte	Resul	t Level	% Rec.	Limits	
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS M9PFNA	3.38 4.89 5.95 5.06 4.22 3.90 4.37 4.47 4.01 4.18 3.31 3.85 3.57	4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.07	83 120 146 124 104 96 107 110 99 103 81 94	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200	
NULL	MPFDoA	4.12	4.07	101	20-200	

Authorized by: 1 Usturl

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41743-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.579 g Final Vol: 4.08 mL Lab ID #: 1906027-34 Collected: 6/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 54.91%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.333	U	0.333	0.0421
NULL	N-methyl perfluorooctanesulfonamideacetate	0.333	U	0.333	0.0405
45187-15-3	Perfluorobutanesulfonate	0.333	U	0.333	0.0140
335-77-3	Perfluorodecanesulfonate	0.333	U	0.333	0.0562
73829-36-4	Perfluorodecanoate	0.333	U	0.333	0.0246
171978-95-3	Perfluorododecanoate	0.666	U	0.666	0.0196
375-92-8	Perfluoroheptanesulfonate	0.333	U	0.333	0.0318
120885-29-2	Perfluoroheptanoate	0.333	U	0.333	0.0574
	Perfluorohexanesulfonate	0.333	U	0.333	0.101
108427-53-8	Perfluorohexanoate	1.16		0.333	0.0531
92612-52-7	Perfluorononanesulfonate	0.333	U	0.333	0.0212
68259-12-1	Perfluorononanoate	0.333	U	0.333	0.0321
72007-68-2	Perfluorooctanesulfonate	0.0573	J	0.333	0.0425
45298-90-6	Perfluorooctanoate	0.333	U	0.333	0.0401
45285-51-6		0.333	U	0.333	0.0840
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate	1.33	Ū	1.33	0.0262
365971-87-5	Perfluorotridecanoate Perfluorotridecanoate	1,33	Ū	1.33	0.0143
862374-87-6 NULL	Perfluoroundecanoate Perfluoroundecanoate	0.333	Ū	0.333	0.0165

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.87	5.22	74	20-200	
NULL	D5-N-EtFOSAA	4.38	5.22	84	20-200	
NULL	M2PFTeDA	6.16	5.22	118	20-200	
NULL	M3PFBS	5.19	5.22	99	20-200	l
NULL	M3PFHxS	4.85	5.22	93	20-200	
NULL	M4PFHpA	4.95	5.22	95	20-200	
NULL	M5PFHxA	4.59	5.22	88	20-200	
NULL	M5PFPeA	6.09	5.22	117	20-200	
	M6PFDA	4.77	5.22	91	20-200	
NULL	M7PFUnA	5.70	5.22	109	20-200	
NULL		4.37	5.22	84	20-200	
NULL	M8PFOA	4.78	5.22	92	20-200	
NULL	M8PFOS	4.59	5.22	88	20-200	
NULL	M9PFNA	5,22	5.22	100	20-200	
NULL	MPFDoA	3,22	5,44	100	20 200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41843-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.186 g Final Vol: 4.26 mL Lab ID #: 1906027-35 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 36.82%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.558	U	0.558	0.0705
NULL	N-methyl perfluorooctanesulfonamideacetate	0.558	U	0.558	0.0678
45187-15-3	Perfluorobutanesulfonate	0.558	U	0.558	0.0235
335-77-3	Perfluorodecanesulfonate	0.105	J	0.558	0.0941
73829-36-4	Perfluorodecanoate	0.558	U	0.558	0.0413
171978-95-3	Perfluorododecanoate	1.12	U	1.12	0.0328
375-92-8	Perfluoroheptanesulfonate	0.558	U	0.558	0.0532
120885-29-2	Perfluoroheptanoate	0.558	U	0.558	0.0961
108427-53-8	Perfluorohexanesulfonate	0.558	U	0.558	0.170
92612-52-7	Perfluorohexanoate	0.558	U	0.558	0.0890
68259-12-1	Perfluorononanesulfonate	0.558	U	0.558	0.0355
72007-68-2	Perfluorononanoate	0.558	U	0.558	0.0538
45298-90-6	Perfluorooctanesulfonate	0.127	J	0.558	0.0712
45285-51-6	Perfluorooctanoate	0.558	U	0.558	
45167-47-3	Perfluoropentanoate	0,558	U	0.558	
365971-87-5	Perfluorotetradecanoate	2.23	U	2.23	0.0440
862374-87-6	Perfluorotridecanoate	2,23	U	2.23	0.0239
NULL	Perfluoroundecanoate	0.558	U	0.558	0.0276
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte	Result		% Rec.	Limits
NULL	D3-N-MeFOSAA	6.32	8.38	75	20-200
NULL	D5-N-EtFOSAA	6.78	8.38	81	20-200
NULL	M2PFTeDA	9.52	8.38	114	20-200
NULL	M3PFBS	9.86	8.38	118	20-200
NULL	M3PFHxS	8.72	8.38	104	20-200
NULL	M4PFHpA	7.65	8.38	91	20-200
NULL	M5PFHxA	8.25	8.38	98	20-200 20-200
NULL	M5PFPeA	8.08	8.38	96	20-200

NULL	M5PFHxA	8.25	8.38	98	20-200
NULL	M5PFPeA	8.08	8.38	96	20-200
NULL	M6PFDA	7.87	8.38	94	20-200
NULL	M7PFUnA	8.37	8.38	100	20-200
NULL	M8PFOA	7.22	8.38	86	20-200
NULL	M8PFOS	8.73	8.38	104	20-200
NULL	M9PFNA	7.92	8.38	95	20-200
NULL	MPFDoA	8.34	8.38	99	20-200
TOLL					
i					
1					

Authorized by:

of Other C

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 41871-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.411 g Final Vol: 4.76 mL Lab ID #: 1906027-36 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 34.52%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.637	U	0.637	0.0806
NULL	N-methyl perfluorooctanesulfonamideacetate	0.637	U	0.637	0.0775
45187-15-3	Perfluorobutanesulfonate	0.637	\mathbf{U}	0.637	0.0268
335-77-3	Perfluorodecanesulfonate	0.178	J	0.637	0.108
73829-36-4	Perfluorodecanoate	0.637	U	0.637	0.0471
171978-95-3	Perfluorododecanoate	1.27	U	1.27	0.0375
375-92-8	Perfluoroheptanesulfonate	0.637	\mathbf{U}	0.637	0.0608
120885-29-2	Perfluoroheptanoate	0.637	U	0.637	0.110
108427-53-8	Perfluorohexanesulfonate	0.637	U	0.637	0.194
92612-52-7	Perfluorohexanoate	1.34		0.637	0.102
68259-12-1	Perfluorononanesulfonate	0.637	U	0.637	0.0406
72007-68-2	Perfluorononanoate	0.637	U	0.637	0.0615
45298-90-6	Perfluorooctanesulfonate	0.186	J	0.637	0.0813
45285-51-6	Perfluorooctanoate	0.637	U	0.637	0.0767
45167-47-3	Perfluoropentanoate	0.637	U	0.637	0.161
365971-87-5	Perfluorotetradecanoate	2,55	U	2.55	0.0502
862374-87-6	Perfluorotridecanoate	2.55	U	2.55	0.0273
NULL	Perfluoroundecanoate	0.637	U	0.637	0.0316
Surrogate Rec	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
CAS#	Analyte D3-N-MeFOSAA	5.59	Level 8.57	65	20-200
		5.59 5.99	8.57 8.57	65 70	20-200 20-200
NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA	5.59 5.99 7.66	8.57 8.57 8.57	65 70 89	20-200 20-200 20-200
NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS	5.59 5.99 7.66 8.75	8.57 8.57 8.57 8.57 8.57	65 70 89 102	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS	5.59 5.99 7.66 8.75 8.38	8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA	5.59 5.99 7.66 8.75 8.38 7.30	8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85	20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	5.59 5.99 7.66 8.75 8.38 7.30 7.42	8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85 87	20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	5.59 5.99 7.66 8.75 8.38 7.30 7.42 8.36	8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85 87 98	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	5.59 5.99 7.66 8.75 8.38 7.30 7.42 8.36 7.08	8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85 87 98 83	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	5.59 5.99 7.66 8.75 8.38 7.30 7.42 8.36 7.08 6.89	8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85 87 98 83 80	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	5.59 5.99 7.66 8.75 8.38 7.30 7.42 8.36 7.08 6.89 7.24	8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85 87 98 83 80 85	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	5.59 5.99 7.66 8.75 8.38 7.30 7.42 8.36 7.08 6.89	8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57	65 70 89 102 98 85 87 98 83 80	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 42639-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.107 g Final Vol: 4 mL Lab ID #: 1906027-37 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 68.91%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.284	U	0.284	0.0359
NULL	N-methyl perfluorooctanesulfonamideacetate	0.284	U	0.284	0.0345
45187-15-3	Perfluorobutanesulfonate	0.284	U	0.284	0.0120
335-77-3	Perfluorodecanesulfonate	0.284	U	0.284	0.0480
73829-36-4	Perfluorodecanoate	0.284	U	0.284	0.0210
171978-95-3	Perfluorododecanoate	0.568	U	0.568	0.0167
375-92-8	Perfluoroheptanesulfonate	0.284	U	0.284	0.0271
120885-29-2	Perfluoroheptanoate	0.284	U	0.284	0.0490
108427-53-8	Perfluorohexanesulfonate	0.284	U	0.284	0.0865
92612-52-7	Perfluorohexanoate	0.975		0.284	0.0453
68259-12-1	Perfluorononanesulfonate	0.284	U	0.284	0.0181
72007-68-2	Perfluorononanoate	0.284	U	0.284	0.0274
45298-90-6	Perfluorooctanesulfonate	0.0466	J	0.284	0.0363
45285-51-6	Perfluorooctanoate	0.284	U	0.284	0.0342
45167-47-3	Perfluoropentanoate	0.284	U	0.284	0.0717
365971-87-5	Perfluorotetradecanoate	1.14	U	1.14	0.0224
862374-87-6	Perfluorotridecanoate	1.14	U	1.14	0.0122
NULL	Perfluoroundecanoate	0.284	U	0.284	0.0141
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte			% Rec.	Limits
NULL	D3-N-MeFOSAA	2.75	4.55	61	20-200

Surroguter	ACCOVETY.		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.75	4.55	61	20-200	
NULL	D5-N-EtFOSAA	3.02	4.55	66	20-200	
NULL	M2PFTeDA	3.71	4.55	82	20-200	
NULL	M3PFBS	4.81	4.55	106	20-200	
NULL	M3PFHxS	4.09	4.55	90	20-200	
NULL	M4PFHpA	4.06	4.55	89	20-200	
NULL	M5PFHxA	4.31	4.55	95	20-200	
NULL	M5PFPeA	4.29	4.55	94	20-200	
NULL	M6PFDA	3.58	4.55	79	20-200	
NULL	M7PFUnA	3.65	4.55	80	20-200	
NULL	M8PFOA	3.40	4.55	75	20-200	
NULL	M8PFOS	3.62	4.55	80	20-200	
NULL	M9PFNA	3.65	4.55	80	20-200	
NULL	MPFDoA	3.52	4.55	77	20-200	
1						

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 42739-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.137 g Final Vol: 4.26 mL Lab ID #: 1906027-38 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 31.22%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.664	U	0.664	0.0840
NULL	N-methyl perfluorooctanesulfonamideacetate	0.664	U	0.664	0.0807
45187-15-3	Perfluorobutanesulfonate	0.664	\mathbf{U}	0.664	0.0280
335-77-3	Perfluorodecanesulfonate	0.151	J	0.664	0.112
73829-36-4	Perfluorodecanoate	0.664	U	0.664	0.0491
171978-95-3	Perfluorododecanoate	1.33	U	1.33	0.0391
375-92-8	Perfluoroheptanesulfonate	0.664	U	0.664	0.0634
120885-29-2	Perfluoroheptanoate	0.664	U	0.664	0.114
108427-53-8	Perfluorohexanesulfonate	0.664	U	0.664	0.202
92612-52-7	Perfluorohexanoate	0.988		0.664	0.106
68259-12-1	Perfluorononanesulfonate	0.664	U	0.664	0.0423
72007-68-2	Perfluorononanoate	0.664	U	0.664	0.0641
45298-90-6	Perfluorooctanesulfonate	0.197	${f J}$	0.664	0.0848
45285-51-6	Perfluorooctanoate	0.664	U	0.664	0.0800
45167-47-3	Perfluoropentanoate	0,664	U	0.664	0.168
365971-87-5	Perfluorotetradecanoate	2.66	U	2.66	0.0523
862374-87-6	Perfluorotridecanoate	2.66	U	2.66	0.0285
NULL	Perfluoroundecanoate	0.664	U	0.664	0.0329

Surrogate R	decovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.61	9.98	76	20-200	
NULL	D5-N-EtFOSAA	8.21	9.98	82	20-200	
NULL	M2PFTeDA	12.7	9.98	127	20-200	
NULL	M3PFBS	11.3	9.98	114	20-200	
NULL	M3PFHxS	10.4	9.98	104	20-200	
NULL	M4PFHpA	9.58	9.98	96	20-200	
NULL	M5PFHxA	9.76	9.98	98	20-200	
NULL	M5PFPeA	11.2	9.98	112	20-200	
NULL	M6PFDA	10.0	9.98	100	20-200	
NULL	M7PFUnA	10.6	9.98	107	20-200	
NULL	M8PFOA	8.98	9.98	90	20-200	
NULL	M8PFOS	10.3	9.98	103	20-200	
NULL	M9PFNA	9.85	9.98	99	20-200	
NULL	MPFDoA	11.0	9.98	110	20-200	

Authorized by: _____

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 42759-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.47 g Final Vol: 4 mL Lab ID #: 1906027-39 Collected: 6/14/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 55.63%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
	N-ethyl perfluorooctanesulfonamideacetate	0.329	U	0.329	0.0416
NULL	N-methyl perfluorooctanesulfonamideacetate	0.329	U	0.329	0.0400
NULL	Perfluorobutanesulfonate	0.329	U	0.329	0.0138
45187-15-3	Perfluorodecanesulfonate	0.329	U	0.329	0.0555
335-77-3	Perfluorodecanoate Perfluorodecanoate	0.329	U	0.329	0.0243
73829-36-4	Perfluorododecanoate Perfluorododecanoate	0.657	U	0.657	0.0193
171978-95-3		0.329	U	0.329	0.0314
375-92-8	Perfluoroheptanesulfonate	0.329	Ū	0.329	0.0566
120885-29-2	Perfluoroheptanoate	0.329	Ü	0.329	0.100
108427-53-8	Perfluorohexanesulfonate	0.329	Ü	0.329	0.0524
92612-52-7	Perfluorohexanoate	0.329	Ŭ	0.329	0.0209
68259-12-1	Perfluorononanesulfonate	0.329	Ü	0.329	0.0317
72007-68-2	Perfluorononanoate	0.0749	\mathbf{J}	0.329	0.0419
45298-90-6	Perfluorooctanesulfonate	0.329	U	0.329	0.0396
45285-51-6	Perfluorooctanoate	0.329	U	0.329	0.0829
45167-47-3	Perfluoropentanoate		U	1.31	0.0259
365971-87-5	Perfluorotetradecanoate	1.31			0.0237
862374-87-6	Perfluorotridecanoate	1.31	U	1.31	0.0141
NULL	Perfluoroundecanoate	0.329	U	0.329	0,0103

Surrogate R	<u>lecovery:</u>		Spike		% Rec.	ŀ
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.58	5.26	68	20-200	
B	D5-N-EtFOSAA	4.66	5.26	89	20-200	
NULL	M2PFTeDA	5.73	5.26	109	20-200	İ
NULL		5,34	5.26	102	20-200	Ì
NULL	M3PFBS	4.98	5.26	95	20-200	i
NULL	M3PFHxS	5.03	5.26	96	20-200	
NULL	M4PFHpA	5.26	5.26	100	20-200	
NULL	M5PFHxA	5.98	5.26	114	20-200	
NULL	M5PFPeA	4.67	5.26	89	20-200	
NULL	M6PFDA	4.60	5.26	87	20-200	1
NULL	M7PFUnA	4.56	5.26	87	20-200	
NULL	M8PFOA	4.94	5.26	94	20-200	
NULL	M8PFOS		5.26	89	20-200	
NULL	M9PFNA	4.67	5.26	91	20-200	
NULL	MPFDoA	4.78	3,20	91	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: 42867-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.344 g Final Vol: 4.17 mL Lab ID #: 1906027-40 Collected: 6/14/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 33.71%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.579	U	0.579	0.0732
NULL	N-methyl perfluorooctanesulfonamideacetate	0.579	U	0.579	0.0704
45187-15-3	Perfluorobutanesulfonate	0.579	U	0.579	0.0244
335-77-3	Perfluorodecanesulfonate	0.579	U	0.579	0.0977
73829-36-4	Perfluorodecanoate	0.579	U	0.579	0.0428
171978-95-3	Perfluorododecanoate	1.16	U	1.16	0.0341
375-92-8	Perfluoroheptanesulfonate	0.579	U	0.579	0.0552
120885-29-2	Perfluoroheptanoate	0.579	U	0.579	0.0997
108427-53-8	Perfluorohexanesulfonate	0.579	U	0.579	0.176
92612-52-7	Perfluorohexanoate	0.579	U	0.579	0.0923
68259-12-1	Perfluorononanesulfonate	0.579	U	0.579	0.0369
72007-68-2	Perfluorononanoate	0.579	U	0.579	0.0559
45298-90-6	Perfluorooctanesulfonate	0.178	J	0.579	0.0739
45285-51-6	Perfluorooctanoate	0.579	U	0.579	0.0697
45167-47-3	Perfluoropentanoate	0.579	U	0.579	0.146
365971-87-5	Perfluorotetradecanoate	2.31	U	2.31	0.0456
862374-87-6	Perfluorotridecanoate	2.31	U	2.31	0.0248
NULL	Perfluoroundecanoate	0.579	U	0.579	0.0287
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte	Result		% Rec.	Limits
NULL	D3-N-MeFOSAA	5.93	8.88	67	20-200
NULL	D5-N-EtFOSAA	6.43	8.88	72	20-200
NULL	M2PFTeDA	9.70	8.88	109	20-200
NULL	M3PFBS	10.6	8.88	120	20-200
NULL	M3PFHxS	8.81	8.88	99	20-200
NULL	M4PFHpA	8.46	8.88	95 104	20-200 20-200
NULL	M5PFHxA	9.20	8.88	104	20-200

Authorized by:

M5PFPeA

M6PFDA

M7PFUnA

M8PFOA

M8PFOS

M9PFNA

MPFDoA

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Release Date:

266/20

Printed: 2/6/202010:54:25AM

104

90

95

87

97

91

89

8.88

8.88

8,88

8.88

8.88

8.88

8.88

9.25

8.03

8.39

7.76

8.59

8.10

7.90

20-200

20-200

20-200

20-200

20-200

20-200

20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW012-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.291 g Final Vol: 4.44 mL Lab ID #: 1906027-51 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 23.63%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.888	U	0.888	0.112
NULL	N-methyl perfluorooctanesulfonamideacetate	0.888	U	0.888	0.108
45187-15-3	Perfluorobutanesulfonate	0.888	U	0.888	0.0374
335-77-3	Perfluorodecanesulfonate	0.167	J	0.888	0.150
73829-36-4	Perfluorodecanoate	0.888	U	0.888	0.0657
171978-95-3	Perfluorododecanoate	1.78	\mathbf{U}	1.78	0.0523
375-92-8	Perfluoroheptanesulfonate	0.888	U	0.888	0.0847
120885-29-2	Perfluoroheptanoate	0.888	U	0.888	0.153
108427-53-8	Perfluorohexanesulfonate	0.888	U	0.888	0.270
92612-52-7	Perfluorohexanoate	0.888	U	0.888	0.142
68259-12-1	Perfluorononanesulfonate	0.888	U	0.888	0.0566
72007-68-2	Perfluorononanoate	0.888	U .	0.888	0.0857
45298-90-6	Perfluorooctanesulfonate	0.419	J	0.888	0.113
45285-51-6	Perfluorooctanoate	0.888	U	0.888	0.107
45167-47-3	Perfluoropentanoate	0.888	U	0.888	0.224
365971-87-5	Perfluorotetradecanoate	3.55	U	3.55	0.0700
862374-87-6	Perfluorotridecanoate	3.55	U	3.55	0.0380
NULL	Perfluoroundecanoate	0.888	U	0.888	0.0440
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	9.76	12.8	76	20-200
NULL	D5-N-EtFOSAA	10.6	12.8	83	20-200
NULL	M2PFTeDA	15.3	12.8	119	20-200
NULL	M3PFBS	18.0	12.8	140	20-200
NULL	M3PFHxS	16.0	12.8	125	20-200
NULL	M4PFHpA	13.4	12.8	105	20-200
NULL	M5PFHxA	16.2	12.8	127	20-200
NULL	M5PFPeA	15.6	12.8	122	20-200 20-200
NULL	M6PFDA	13.0 13.2	12.8 12.8	102 103	20-200
NULL .	M7PFUnA	12.0	12.8	94	20-200
NULL	M8PFOA	13.8	12.8	108	20-200
NULL NULL	M8PFOS M9PFNA	12.3	12.8	96	20-200
I IND D. I	MARCINA	14,0	1410	/ 0	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW020-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.679 g Final Vol: 4.17 mL Lab ID #: 1906027-52 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 25.99%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.706	U	0.706	0.0893
NULL	N-methyl perfluorooctanesulfonamideacetate	0.706	U	0.706	0.0859
	Perfluorobutanesulfonate	0.706	U	0.706	0.0298
45187-15-3	Perfluorodecanesulfonate	0.706	U	0.706	0.119
335-77-3	Perfluorodecanoate	0.706	U	0.706	0.0523
73829-36-4	Perfluorododecanoate	1.41	U	1.41	0.0416
171978-95-3	Perfluoroheptanesulfonate	0.706	U	0.706	0.0674
375-92-8	•	0.706	U	0.706	0.122
120885-29-2	Perfluoroheptanoate Perfluorohexanesulfonate	0.706	Ū	0.706	0.215
108427-53-8		0.706	Ü	0.706	0.113
92612-52-7	Perfluorohexanoate	0.706	Ŭ	0.706	0.0450
68259-12-1	Perfluorononanesulfonate	0.706	Ü	0.706	0.0682
72007-68-2	Perfluorononanoate	0.192	\mathbf{J}	0.706	0.0901
45298-90-6	Perfluorooctanesulfonate	0.706	U	0.706	0.0851
45285-51-6	Perfluorooctanoate	0.706	U	0.706	0.178
45167-47-3	Perfluoropentanoate		U	2.83	0.0557
365971-87-5	Perfluorotetradecanoate	2.83			0.0303
862374-87-6	Perfluorotridecanoate	2.83	U	2.83	0.0303
NULL	Perfluoroundecanoate	0.706	U	0.706	0.0330

Surrogate R	decovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.96	10.8	73	20-200	
NULL	D5-N-EtFOSAA	11.3	10.8	105	20-200	§i
	M2PFTeDA	13.8	10.8	127	20-200	
NULL	M3PFBS	12.7	10.8	117	20-200	
NULL	M3PFHxS	11.1	10.8	103	20-200	
NULL		10.7	10.8	98	20-200	
NULL	M4PFHpA M5PFHxA	10.4	10.8	95	20-200	
NULL	M5PFPeA	12.2	10.8	113	20-200	
NULL	M6PFDA	9.87	10.8	91	20-200	
NULL	M7PFUnA	9.74	10.8	90	20-200	
NULL		9.20	10.8	85	20-200	
NULL	M8PFOA	10.9	10.8	101	20-200	
NULL	M8PFOS	9.28	10.8	86	20-200	
NULL NULL	M9PFNA MPFDoA	11.1	10.8	103	20-200	

Authorized by:

Release Date:

2/0/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW084-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.144 g Final Vol: 4.17 mL Lab ID #: 1906027-53 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 30.76%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.659	U	0.659	0.0833
	N-methyl perfluorooctanesulfonamideacetate	0.659	U	0.659	0.0801
NULL	Perfluorobutanesulfonate	0.659	U	0.659	0.0278
45187-15-3	Perfluorodecanesulfonate	0.659	U	0.659	0.111
335-77-3		0.659	U	0.659	0.0487
73829-36-4	Perfluorodecanoate	1.32	U	1.32	0.0388
171978-95-3	Perfluorododecanoate	0.659	Ū	0.659	0.0629
375-92-8	Perfluoroheptanesulfonate	0.659	Ü	0.659	0.114
120885-29-2	Perfluoroheptanoate	0.659	Ŭ	0.659	0.200
108427-53-8	Perfluorohexanesulfonate	0.659	Ü	0.659	0.105
92612-52-7	Perfluorohexanoate	0.659	U	0.659	0.0420
68259-12-1	Perfluorononanesulfonate	0.659	Ū	0.659	0.0636
72007-68-2	Perfluorononanoate		\mathbf{J}	0.659	0.0841
45298-90-6	Perfluorooctanesulfonate	0.182		0.659	0.0794
45285-51-6	Perfluorooctanoate	0.659	U		0.166
45167-47-3	Perfluoropentanoate	0.659	U	0.659	
365971-87-5	Perfluorotetradecanoate	2.64	U	2.64	0.0519
862374-87-6	Perfluorotridecanoate	2.64	U	2.64	0.0282
NULL	Perfluoroundecanoate	0.659	U	0.659	0.0327

Surrogate R	Recovery:		Spike		% Rec.	l
CAS#	Analyte	Result	Level	% Rec.	Limits	<u> </u>
NULL	D3-N-MeFOSAA	6.94	10.1	69	20-200	İ
NULL	D5-N-EtFOSAA	8.52	10.1	84	20-200	
NULL	M2PFTeDA	11.5	10.1	113	20-200	
NULL	M3PFBS	12.4	10.1	123	20-200	
NULL	M3PFHxS	10.8	10.1	107	20-200	
	M4PFHpA	9,94	10.1	98	20-200	
NULL NULL	M5PFHxA	11.1	10.1	110	20-200	
	M5PFPeA	11.6	10.1	115	20-200	
NULL	M6PFDA	9.29	10.1	92	20-200	
NULL	M7PFUnA	9.00	10.1	89	20-200	
NULL	M8PFOA	9.17	10.1	91	20-200	
NULL	M8PFOS	9.97	10.1	99	20-200	
NULL		9.09	10.1	90	20-200	
NULL NULL	M9PFNA MPFDoA	9.40	10.1	. 93	20-200	

Authorized by: Stork

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW100-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.298 g Final Vol: 4.17 mL Lab ID #: 1906027-54 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 32.99%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.597	U	0.597	0.0754
NULL	N-methyl perfluorooctanesulfonamideacetate	0.597	U	0.597	0.0725
45187-15-3	Perfluorobutanesulfonate	0.597	U	0.597	0.0251
335-77-3	Perfluorodecanesulfonate	0.597	U	0.597	0.101
73829-36-4	Perfluorodecanoate	0.597	U	0.597	0.0441
171978-95-3	Perfluorododecanoate	1.19	U	1.19	0.0351
375-92-8	Perfluoroheptanesulfonate	0.597	U	0.597	0.0569
120885-29-2	Perfluoroheptanoate	0.597	U	0.597	0.103
108427-53-8	Perfluorohexanesulfonate	0.597	U	0.597	0.182
92612-52-7	Perfluorohexanoate	0.597	U	0.597	0.0952
68259-12-1	Perfluorononanesulfonate	0.597	U	0.597	0.0380
72007-68-2	Perfluorononanoate	0.597	U	0.597	0.0576
45298-90-6	Perfluorooctanesulfonate	0.131	J	0.597	0.0761
45285-51-6	Perfluorooctanoate	0.597	U	0.597	0.0719
45167-47-3	Perfluoropentanoate	0.597	U	0.597	0.150
365971-87-5	Perfluorotetradecanoate	2.39	U	2.39	0.0470
862374-87-6	Perfluorotridecanoate	2.39	U	2.39	0.0256
NULL	Perfluoroundecanoate	0.597	U	0.597	0.0296

Surrogate F	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	9.15	9.16	100	20-200	
NULL	D5-N-EtFOSAA	11.7	9.16	128	20-200	
NULL	M2PFTeDA	12.4	9.16	135	20-200	
NULL	M3PFBS	9.31	9.16	102	20-200	
NULL	M3PFHxS	9.32	9.16	102	20-200	
NULL	M4PFHpA	8.44	9.16	92	20-200	
NULL	M5PFHxA	7.68	9.16	84	20-200	
NULL	M5PFPeA	10.5	9.16	. 114	20-200	
NULL	M6PFDA	9.51	9.16	104	20-200	
NULL	M7PFUnA	10.2	9.16	112	20-200	
NULL	M8PFOA	8.28	9.16	90	20-200	
NULL	M8PFOS	9.26	9.16	101	20-200	
NULL	M9PFNA	8.63	9.16	94	20-200	
NULL	MPFDoA	10.8	9.16	118	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW116-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.265 g Final Vol: 4.08 mL Lab ID #: 1906027-55 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 25.43%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.762	U	0.762	0.0963
NULL	N-methyl perfluorooctanesulfonamideacetate	0.762	U	0.762	0.0926
45187-15-3	Perfluorobutanesulfonate	0.762	U	0.762	0.0321
335-77-3	Perfluorodecanesulfonate	0.140	J	0.762	0.129
	Perfluorodecanoate	0.762	U .	0.762	0.0564
73829-36-4	Perfluorododecanoate	1.52	U	1.52	0.0449
171978-95-3	Perfluoroheptanesulfonate	0.762	U	0.762	0.0727
375-92-8	Perfluoroheptanoate	0.762	U	0.762	0.131
120885-29-2	Perfluorohexanesulfonate	0.762	U	0.762	0.232
108427-53-8	Perfluorohexanoate	1.70		0.762	0.122
92612-52-7	Perfluorononanesulfonate	0.762	U	0.762	0.0485
68259-12-1	Perfluorononanoate	0.762	U	0.762	0.0735
72007-68-2		0.411	J	0.762	0.0972
45298-90-6	Perfluorooctanesulfonate	0.762	Ū	0.762	0.0918
45285-51-6	Perfluorooctanoate	0.762	Ū	0.762	0.192
45167-47-3	Perfluoropentanoate	3.05	Ū	3.05	0.0600
365971-87-5	Perfluorotetradecanoate	3.05	Ŭ	3.05	0.0326
862374-87-6 NULL	Perfluorotridecanoate Perfluoroundecanoate	0.762	Ŭ	0.762	0.0378

Surrogate I	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.26	11.9	61	20-200	
NULL	D5-N-EtFOSAA	8.64	11.9	72	20-200	
NULL	M2PFTeDA	12.8	11.9	107	20-200	
NULL	M3PFBS	14.5	11.9	122	20-200	
NULL	M3PFHxS	12.4	11.9	104	20-200	
	M4PFHpA	12.1	11.9	101	20-200	
NULL	M5PFHxA	13.4	11.9	112	20-200	
NULL	M5PFPeA	12.4	11.9	104	20-200	
NULL	M6PFDA	10.9	11.9	91	20-200	
NULL		10.4	11.9	87	20-200	
NULL	M7PFUnA	10.2	11.9	85	20-200	
NULL	M8PFOA	11.0	11.9	92	20-200	
NULL	M8PFOS	10.6	11.9	89	20-200	
NULL	M9PFNA		11.9	91	20-200	
NULL	MPFDoA	10.9	11.9	91	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW140-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.387 g Final Vol: 4.35 mL Lab ID #: 1906027-56 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 28.29%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.714	U	0.714	0.0902
	N-methyl perfluorooctanesulfonamideacetate	0.714	U	0.714	0.0868
NULL	Perfluorobutanesulfonate	0.714	U	0.714	0.0301
45187-15-3	Perfluorodecanesulfonate	0.148	J	0.714	0.120
335-77-3	Perfluorodecanoate	0.714	U	0.714	0.0528
73829-36-4	Perfluorododecanoate	1,43	U	1.43	0.0420
171978-95-3	Perfluorododecanoate Perfluoroheptanesulfonate	0.714	U	0.714	0.0681
375-92-8	•	0.714	U	0.714	0.123
120885-29-2	Perfluoroheptanoate	0.714	Ü	0.714	0.217
108427-53-8	Perfluorohexanesulfonate	0.714	Ū	0.714	0.114
92612-52-7	Perfluorohexanoate	0.714	Ū	0.714	0.0455
68259-12-1	Perfluorononanesulfonate	0.714	Ū	0.714	0.0689
72007-68-2	Perfluorononanoate	0.311	j	0.714	0.0911
45298-90-6	Perfluorooctanesulfonate	0.714	Ŭ	0.714	0.0860
45285-51-6	Perfluorooctanoate	0.714	Ü	0.714	0.180
45167-47-3	Perfluoropentanoate	2.85	Ŭ	2.85	0.0562
365971-87-5	Perfluorotetradecanoate	2.85	U	2.85	0.0306
862374-87-6 NULL	Perfluorotridecanoate Perfluoroundecanoate	0.714	Ŭ	0.714	0.0354

Surrogate F	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.49	10.5	71	20-200	
l .	D5-N-EtFOSAA	9.26	10.5	88	20-200	
NULL		13.2	10.5	126	20-200	
NULL	M2PFTeDA	13.2	10.5	125	20-200	
NULL	M3PFBS	11.7	10.5	111	20-200	
NULL	M3PFHxS	11.2	10.5	106	20-200	
NULL	M4PFHpA	12.2	10.5	116	20-200	
NULL	M5PFHxA	11.2	10.5	107	20-200	
NULL	M5PFPeA	10.6	10.5	101	20-200	
NULL	M6PFDA	10.6	10.5	101	20-200	
NULL	M7PFUnA	9.85	10.5	94	20-200	
NULL	M8PFOA	11.3	10.5	108	20-200	
NULL	M8PFOS		10.5	93	20-200	
NULL	M9PFNA	9.76		112	20-200	
NULL	MPFDoA	11.8	10.5	114	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW148-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.412 g Final Vol: 4.17 mL Lab ID #: 1906027-57 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 22.60%

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.852	U	0.852	0.108
NULL	N-methyl perfluorooctanesulfonamideacetate	0.852	U	0.852	0.104
45187-15-3	Perfluorobutanesulfonate	0.852	U	0.852	0.0359
335-77-3	Perfluorodecanesulfonate	0.852	U	0.852	0.144
73829-36-4	Perfluorodecanoate	0.852	U	0.852	0.0631
171978-95-3	Perfluorododecanoate	1.70	U	1.70	0.0502
375-92-8	Perfluoroheptanesulfonate	0.852	U	0.852	0.0814
120885-29-2	Perfluoroheptanoate	0.852	U	0.852	0.147
108427-53-8	Perfluorohexanesulfonate	0.852	U	0.852	0.259
92612-52-7	Perfluorohexanoate	0.852	U	0.852	0.136
68259-12-1	Perfluorononanesulfonate	0.852	U	0.852	0.0543
72007-68-2	Perfluorononanoate	0.852	U	0.852	0.0823
45298-90-6	Perfluorooctanesulfonate	0.368	J	0.852	0.109
45285-51-6	Perfluorooctanoate	0.852	· U	0.852	0.103
45167-47-3	Perfluoropentanoate	0.852	U	0.852	0.215
365971-87-5	Perfluorotetradecanoate	3.41	Ū	3.41	0.0672
862374-87-6	Perfluorotridecanoate	3.41	Ū	3.41	0.0365
NULL	Perfluoroundecanoate	0.852		0.852	
		,			
Surrogate Rec	overy:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	9.71	13.1	74	20-200
NULL	D5-N-EtFOSAA	12.3	13.1	94	20-200
NULL	M2PFTeDA	16.7	13.1	128	20-200
NULL	M3PFBS	16.2	13.1	124	20-200
NULL	M3PFHxS	15.1	13.1	115	20-200
NULL	M4PFHpA	14.1	13.1	108	20-200
NULL	M5PFHxA	15.6	13.1	119	20-200
NULL	M5PFPeA	15.7	13.1	120	20-200
NULL	M6PFDA	13.7	13.1	105	20-200
NULL	M7PFUnA	13.1	13.1	100	20-200
NULL	M8PFOA	12.4	13.1	95 105	20-200 20-200
NULL	M8PFOS	13.8	13.1 13.1	105 95	20-200
NULL	M9PFNA	12.5	13.1	95 107	20-200
NULL	MPFDoA	13.9	13.1	107	∠U - ∠UU

Authorized by:

J. Ustah C.

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Method Blank

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K055-BLK1

Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K055-BLK1 Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	\mathbf{RL}	MDL
NULL	N-ethyl perfluorooctanesulfonamideaceta	0.0720	J	0.200	0.0253
NULL	N-methyl perfluorooctanesulfonamideaceta	0.200	U	0.200	0.0243
45187-15-3	Perfluorobutanesulfonate	0.200	U	0.200	0.00842
335-77-3	Perfluorodecanesulfonate	0.200	U	0.200	0.0338
73829-36-4	Perfluorodecanoate	0.200	U	0.200	0.0148
171978-95-3	Perfluorododecanoate	0.400	U	0.400	0.0118
375-92-8	Perfluoroheptanesulfonate	0.200	U	0.200	0.0191
120885-29-2	Perfluoroheptanoate	0.200	U	0.200	0.0345
108427-53-8	Perfluorohexanesulfonate	0.200	U	0.200	0.0609
92612-52-7	Perfluorohexanoate	0,200	U	0.200	0.0319
68259-12-1	Perfluorononanesulfonate	0.200	U	0.200	0.0127
72007-68-2	Perfluorononanoate	0.200	U	0.200	0.0193
45298-90-6	Perfluorooctanesulfonate	0.200	U	0.200	0.0255
45285-51-6	Perfluorooctanoate	0.200	U	0.200	0.0241
45167-47-3	Perfluoropentanoate	0.200	U	0.200	0.0505
365971-87-5	Perfluorotetradecanoate	0.800	U	0.800	0.0158
862374-87-6	Perfluorotridecanoate	0.800	U	0.800	0.00857
NULL	Perfluoroundecanoate	0.200	U .	0.200	0.00991

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.69	3.20	84	20-200	
NULL	D5-N-EtFOSAA	2.55	3.20	80	20-200	
NULL	M2PFTeDA	2.63	3.20	82	20-200	
NULL	M3PFBS	4.15	3.20	130	20-200	
NULL	M3PFHxS	3.46	3.20	108	20-200	
NULL	M4PFHpA	2.99	3.20	93	20-200	
NULL	M5PFHxA	3.98	3.20	124	20-200	
NULL	M5PFPeA	2.58	3.20	81	20-200	
NULL	M6PFDA	3.29	3.20	103	20-200	
NULL	M7PFUnA	3.07	3.20	96	20-200	
NULL	M8PFOA	2.79	3.20	87	20-200	
NULL	M8PFOS	3.13	3.20	98	20-200	
NULL	M9PFNA	2.69	3.20	84	20-200	
NULL	MPFDoA	2.94	3.20	92	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K055-BS1

Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K055-BS1 QC Type : LCS

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte		Result	Spike Level	RL	%Rec	%Rec Limits
N-ethyl perf	luorooctanesulfonamideacetate	6.6	5.00	0.200	132	50-150
	rfluorooctanesulfonamideacetate	7.0	5.00	0.200	140	50-150
	tanesulfonate	6.2	5.00	0.200	123	50-150
	canesulfonate	7.0	5.00	0.200	140	50-150
Perfluorode		6.2	5.00	0.200	125	50-150
Perfluorodo		6.0	5.00	0.400	121	50-150
	otanesulfonate	6.7	5.00	0.200	134	50-150
Perfluorohe		6.1	5.00	0.200	121	50-150
	xanesulfonate	6.5	5.00	0.200	130	50-150
Perfluorohe		6.3	5.00	0.200	125	50-150
	nanesulfonate	6.4	5.00	0.200	127	50-150
Perfluorono		6.5	5.00	0.200	130	50-150
	tanesulfonate	6.5	5.00	0.200	131	50-150
Perfluorooc		6.3	5.00	0,200	125	50-150
Perfluorope:		6.3	5,00	0.200	127	50-150
	radecanoate	5.9	5.00	0.800	119	50-150
Perfluorotri		6.1	5.00	0.800	122	50-150
Perfluoroun		6.2	5.00	0.200	123	50-150
Surrogate F	Recovery:		Spike			Rec.
CAS#	Analyte	Result	Level	% R	ec. Li	mits
NULL	D3-N-MeFOSAA	2.64	3.20	82		-200
ATT TT T	D5-N-EtFOSAA	2.80	3.20	87		-200
					1 20.	-200
NULL	M2PFTeDA	3.22	3.20	10		
NULL NULL	M3PFBS	3.78	3.20	11	8 20-	-200
NULL NULL NULL	M3PFBS M3PFHxS	3.78 3.52	3.20 3.20	11 11	8 20- 0 20-	-200 -200
NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA	3.78 3.52 3.18	3.20 3.20 3.20	11 11 99	8 20- 0 20- 9 20-	-200 -200 -200
NULL NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA M5PFHxA	3.78 3.52 3.18 3.44	3.20 3.20 3.20 3.20	11 11 99 10	8 20- 0 20- 9 20- 7 20-	-200 -200 -200 -200
NULL NULL NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	3.78 3.52 3.18 3.44 2.97	3.20 3.20 3.20 3.20 3.20	11 11 99 10	8 20- 0 20- 9 20- 7 20- 3 20-	-200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	3.78 3.52 3.18 3.44 2.97 3.59	3.20 3.20 3.20 3.20 3.20 3.20	11 11 99 10 93	8 20- 0 20- 0 20- 7 20- 3 20- 2 20-	-200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	3.78 3.52 3.18 3.44 2.97 3.59 3.50	3.20 3.20 3.20 3.20 3.20 3.20 3.20	11 11 99 10 93 11	8 20- 0 20- 7 20- 3 20- 2 20- 9 20-	-200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	3.78 3.52 3.18 3.44 2.97 3.59 3.50 2.95	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	11 11 99 10 93 11 10	8 20- 0 20- 7 20- 3 20- 2 20- 2 20- 2 20- 2 20- 2 20-	-200 -200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	3.78 3.52 3.18 3.44 2.97 3.59 3.50	3.20 3.20 3.20 3.20 3.20 3.20 3.20	11 11 99 10 93 11	8 20- 0 20- 7 20- 3 20- 2 20- 9 20- 2 20- 1 20-	-200 -200 -200 -200 -200 -200 -200

Authorized by:

J. Wtah

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K055-BSD1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K055-BSD1 Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	6.6	5.00	133	0.6	50-150	40
N-methyl perfluorooctanesulfonamideacetate	7.4	5.00	148	6	50-150	40
Perfluorobutanesulfonate	6.5	5.00	131	6	50-150	40
Perfluorodecanesulfonate	7.1	5.00	142	1	50-150	40
Perfluorodecanoate	6.5	5.00	130	4	50-150	40
Perfluorododecanoate	6.5	5.00	131	8	50-150	40
Perfluoroheptanesulfonate	6.9	5.00	139	4	50-150	40
Perfluoroheptanoate	6.3	5.00	126	4	50-150	40
Perfluorohexanesulfonate	6.7	5.00	134	3	50-150	40
Perfluorohexanoate	6.7	5.00	133	6	50-150	40
Perfluorononanesulfonate	6.4	5.00	128	0.5	50-150	40
Perfluorononanoate	6.1	5.00	122	6	50-150	40
Perfluorooctanesulfonate	6.7	5.00	134	3	50-150	40
Perfluorooctanoate	6.8	5.00	135	8	50-150	40
Perfluoropentanoate	6.6	5.00	132	4	50-150	40
Perfluorotetradecanoate	5.7	5.00	113	5	50-150	40
Perfluorotridecanoate	5.6	5.00	111	9	50-150	40
Perfluoroundecanoate	6.9	5.00	137	11	50-150	40
Surrogate Recovery:			Snika		% R	20

Surrogate I	cecovery.		Spike		% Kec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.75	3.20	86	20-200	
NULL	D5-N-EtFOSAA	2.84	3,20	89	20-200	
NULL	M2PFTeDA	3.16	3.20	99	20-200	
NULL	M3PFBS	3.61	3.20	113	20-200	
NULL	M3PFHxS	3.33	3.20	104	20-200	
NULL	M4PFHpA	3.04	3.20	95	20-200	
NULL	M5PFHxA	3.18	3.20	99	20-200	
NULL	M5PFPeA	2.83	3.20	88	20-200	
NULL	M6PFDA	3.29	3.20	103	20-200	
NULL	M7PFUnA	3.36	3.20	105	20-200	
NULL	M8PFOA	2.83	3.20	89	20-200	
NULL	M8PFOS	3.18	3.20	100	20-200	
NULL	M9PFNA	3.09	3.20	96	20-200	
NULL	MPFDoA	3.36	3.20	105	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.382 g Final Vol: 4.44 mL Lab ID #: B19K055-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K055-MS1

Source Lab ID #: 1906027-36

Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Spike Level	Source Result	%Rec	%Rec Limits
13.5	0.0	144	40-160
13.5	0.0	145	40-160
13.5	0.0	134	40-160
13.5	0.2	221	40-160
13.5	0.0	137	40-160
13.5	0.0	134	40-160
13.5	0.0	139	40-160
13.5	0.0	133	40-160
13.5	0.0	139	40-160
13.5	1.3	122	40-160
13.5	0.0	167	40-160
13.5	0.0	120	40-160
13.5	0.2	140	40-160
13.5	0.0	129	40-160
13.5	0.0	133	40-160
13.5	0.0	126	40-160
13.5	0.0	123	40-160
13.5	0.0	132	40-160
1010			
Spike			Rec.
Level	l %]	Rec. L	imits
8.61			0-200
8.61			0-200
8.61			0-200
8.61			0-200 0-200
8.61			0-200
8.61			0-200
8.61			0-200
8.61 8.61			20-200
			20-200
8.61 8.61			20-200
			20-200
			20-200
			20-200
	8.61	8.61	8.61 96 2

Authorized by:

1. Ustarle

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.433 g Final Vol: 4.44 mL Lab ID #: B19K055-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K055-MSD1 Source Lab ID #: 1906027-36 Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	19.7	13.3	0.0	147	2	40-160	40
N-methyl perfluorooctanesulfonamideacetate	19.6	13.3	0.0	147	0.4	40-160	40
Perfluorobutanesulfonate	18.7	13.3	0.0	140	4	40-160	40
Perfluorodecanesulfonate	30.2	13.3	0.2	225	1	40-160	40
Perfluorodecanoate	18.8	13.3	0.0	141	2	40-160	40
Perfluorododecanoate	18.6	13.3	0.0	140	4	40-160	40
Perfluoroheptanesulfonate	19.8	13.3	0.0	149	6	40-160	40
Perfluoroheptanoate	18.3	13.3	0.0	137	2	40-160	40
Perfluorohexanesulfonate	19.3	13.3	0.0	145	3	40-160	40
Perfluorohexanoate	19.5	13.3	1.3	136	9	40-160	40
Perfluorononanesulfonate	23.5	13.3	0.0	176	4	40-160	40
Perfluorononanoate	17.9	13.3	0.0	134	10	40-160	40
Perfluorooctanesulfonate	19.6	13.3	0.2	145	3	40-160	40
Perfluorooctanoate	18.6	13.3	0.0	139	7	40-160	40
Perfluoropentanoate	19.4	13.3	0.0	145	8	40-160	40
Perfluorotetradecanoate	16.8	13.3	0.0	126	0.8	40-160	40
Perfluorotridecanoate	16.1	13.3	0.0	121	3	40-160	40
Perfluoroundecanoate	19.2	13.3	0.0	144	8	40-160	40
Currento Donovores							

Surrogate R	Recovery:		Spike		% Rec.	1
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.68	8.53	90	20-200	
NULL	D5-N-EtFOSAA	8.07	8.53	95	20-200	
NULL	M2PFTeDA	13.5	8.53	158	20-200	
NULL	M3PFBS	9.26	8.53	109	20-200	
NULL	M3PFHxS	9.24	8.53	108	20-200	
NULL	M4PFHpA	7.33	8.53	86	20-200	
NULL	M5PFHxA	7.54	8.53	88	20-200	
NULL	M5PFPeA	8.55	8.53	100	20-200	
NULL	M6PFDA	9.87	8.53	116	20-200	
NULL	M7PFUnA	10.4	8.53	122	20-200	
NULL	M8PFOA	7.35	8.53	86	20-200	
NULL	M8PFOS	9.36	8.53	110	20-200	
NULL	M9PFNA	7.90	8.53	93	20-200	
NULL	MPFDoA	11.5	8.53	134	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: Reference

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 0.501 g Final Vol: 4 mL

Lab ID #: B19K055-SRM1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K055-SRM1 Batch ID: B19K055 Prepared: 11/5/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

			U	nits: %		
Analyte		Result	Spike Level	RL	%Rec	%Rec Limits
N-ethyl perf	luorooctanesulfon	19.0	18.0	2.00	106	60-140
	erfluorooctanesulf	15.8	14.3	2.00	111	60-140
	tanesulfonate	19.0	20.6	2.00	92	60-140
	canesulfonate	24.1	21.4	2.00	113	60-140
Perfluorode		21.2	22.6	2.00	94	60-140
Perfluorodo		12.4	13.8	3.99	90	60-140
	ptanesulfonate	14.9	13.3	2.00	112	60-140
Perfluorone		11.1	13.3	2.00	84	60-140
	exanesulfonate	18.2	18.5	2.00	99	60-140
Perfluorone		15.8	16.3	2.00	97	60-140
	onanesulfonate	24.2	17.8	2.00	136	60-140
Perfluorono		15.9	19.3	2.00	82	60-140
	etanesulfonate	14.0	15.3	2.00	92	60-140
Perfluorooc		22.3	23.8	2.00	94	60-140
Perfluorope		19.8	19.3	2.00	102	60-140
-	tradecanoate	17.0	18.5	7.98	92	60-140
Perfluorote		13.2	15.0	7.98	88	60-140
Perfluorous		19.7	22.3	2.00	88	60-140
Surrogate F	Recovery:		Spike		%	Rec.
CAS#	Analyte	Result	Level	% F	Rec. Li	mits
NULL	D3-N-MeFOSAA	28.9	31.9	9		-200
NULL	D5-N-EtFOSAA	28.7	31.9	9	-	-200
NULL	M2PFTeDA	32.3	31.9	10		-200
NULL	M3PFBS	41.8	31.9	13		-200
NULL	M3PFHxS	36.4	31.9	11)-200 - 200
NULL	M4PFHpA	30.0	31.9	9)-200
NULL	M5PFHxA	37.2	31.9	11)-200
NULL	M5PFPeA	28.9	31.9	9	1 20)-200

Authorized by:

M6PFDA

M8PFOA

M8PFOS

M9PFNA

MPFDoA

M7PFUnA

NULL

NULL

NULL

NULL

NULL

NULL

Release Date:

37.3

37.1

28.0

33.7

29.0

34.5

117

116

88

106

91

108

20-200

20-200

20-200

20-200

20-200

20-200

31.9

31.9

31.9

31.9

31.9

31.9

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW268-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.121 g Final Vol: 4 mL Lab ID #: 1906027-60 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 23.16%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result `	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.843	U	0.843	0.107
NULL	N-methyl perfluorooctanesulfonamideacetate	0.843	U	0.843	0.103
45187-15-3	Perfluorobutanesulfonate	0.843	U	0.843	0.0355
335-77-3	Perfluorodecanesulfonate	0.843	U	0.843	0.142
73829-36-4	Perfluorodecanoate	0.843	U	0.843	0.0624
171978-95-3	Perfluorododecanoate	1.69	U ·	1.69	0.0496
375 - 92 - 8	Perfluoroheptanesulfonate	0.843	U	0.843	0.0805
120885-29-2	Perfluoroheptanoate	0,843	U	0.843	0.145
108427-53-8	Perfluorohexanesulfonate	0,843	U	0.843	0.257
92612-52-7	Perfluorohexanoate	0.843	U	0.843	0.135
68259-12-1	Perfluorononanesulfonate	0.843	U	0.843	0.0537
72007-68-2	Perfluorononanoate	0.843	U	0.843	0.0814
45298-90-6	Perfluorooctanesulfonate	0.314	J	0.843	0.108
45285-51-6	Perfluorooctanoate	0.843	U	0.843	0.102
45167-47-3	Perfluoropentanoate	0,843	U	0.843	0.213
365971-87-5	Perfluorotetradecanoate	3.37	U	3.37	0.0665
862374-87 - 6	Perfluorotridecanoate	3.37	U	3.37	0.0361
NULL	Perfluoroundecanoate	0.843	U	0.843	0.0418

Surrogate	Surrogate Recovery:			Spike		% Rec.	
CAS#	Analyte		Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7	9.88	13.5	73	20-200	
NULL	D5-N-EtFOSAA		12.8	13.5	95	20-200	
NULL	M2PFTeDA		18.6	13.5	138	20-200	
NULL	M3PFBS		16.5	13.5	123	20-200	
NULL	M3PFHxS	•	13.7	13.5	102	20-200	
NULL	M4PFHpA		13.8	13.5	102	20-200	
NULL	M5PFHxA		13.2	13.5	98	20-200	
NULL	M5PFPeA		14.9	13.5	110	20-200	
NULL	M6PFDA		12.5	13.5	93	20-200	
NULL	M7PFUnA		12.7	13.5	94	20-200	
NULL	M8PFOA		11.8	13.5	87	20-200	
NULL	M8PFOS		13.6	13.5	101	20-200	
NULL	M9PFNA		12.8	13.5	95	20-200	
NULL	MPFDoA		13.6	13.5	101	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW300-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.631 g Final Vol: 4 mL Lab ID #: 1906027-61 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 46.76%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.380	U	0.380	0.0480
NULL	N-methyl perfluorooctanesulfonamideacetate	0.380	U	0.380	0.0462
45187-15-3	Perfluorobutanesulfonate	0.380	U	0.380	0.0160
335-77-3	Perfluorodecanesulfonate	0.380	U	0.380	0.0641
73829-36-4	Perfluorodecanoate	0.380	U	0.380	0.0281
171978-95-3	Perfluorododecanoate	0.760	U	0.760	0.0224
375-92-8	Perfluoroheptanesulfonate	0.380	U	0.380	0.0363
120885-29-2	Perfluoroheptanoate	0.380	U	0.380	0.0654
108427-53-8	Perfluorohexanesulfonate	0.380	U	0.380	0.116
92612-52-7	Perfluorohexanoate	0.380	U	0.380	0.0606
68259-12-1	Perfluorononanesulfonate	0.380	U	0.380	0.0242
72007-68-2	Perfluorononanoate	0.380	U	0.380	0.0367
45298-90-6	Perfluorooctanesulfonate	0.0775	J	0.380	0.0485
45285-51-6	Perfluorooctanoate	0.380	U	0.380	0.0457
45167-47-3	Perfluoropentanoate	0.380	U	0.380	0.0958
365971-87-5	Perfluorotetradecanoate	1.52	U	1.52	0.0299
862374-87-6	Perfluorotridecanoate	1.52	U	1.52	0.0163
NULL	Perfluoroundecanoate	0.380	U	0.380	0.0188

Surrogate Recovery:			Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.65	6.08	60	20-200	
NULL	D5-N-EtFOSAA	4.83	6.08	79	20-200	
NULL	M2PFTeDA	7.09	6.08	117	20-200	
NULL	M3PFBS	6.03	6.08	99	20-200	
NULL	M3PFHxS	5.33	6.08	88	20-200	
NULL	M4PFHpA	5.99	6.08	99	20-200	
NULL	M5PFHxA	5.30	6.08	87	20-200	
NULL	M5PFPeA	6.57	6.08	108	20-200	
NULL	M6PFDA	4.98	6.08	82	20-200	
NULL	M7PFUnA	5.13	6.08	84	20-200	
NULL	M8PFOA	5.11	6.08	84	20-200	
NULL	M8PFOS	5.23	6.08	86	20-200	
NULL	M9PFNA	5.34	6.08	88	20-200	
NULL	MPFDoA	5.53	6.08	91	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Work Order: 1906027

Project Officer: Dutch, Margaret Initial Vol: 5.201 g Final Vol: 4 mL Lab ID #: 1906027-62 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 48.07%

Batch ID: B19K056 Prepared: 11/6/2019

Field ID: PSUW300-R2

Analyzed: 12/14/2019 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.400	U	0.400	0.0506
NULL	N-methyl perfluorooctanesulfonamideacetate	0.400	U	0.400	0.0486
45187-15-3	Perfluorobutanesulfonate	0.400	U	0.400	0.0168
335-77-3	Perfluorodecanesulfonate	0.400	U	0.400	0.0675
73829-36-4	Perfluorodecanoate	0.400	U	0.400	0.0296
171978-95-3	Perfluorododecanoate	0.800	U	0.800	0.0236
375-92-8	Perfluoroheptanesulfonate	0.400	U	0.400	0.0382
120885-29-2	Perfluoroheptanoate	0.400	U	0.400	0.0689
108427-53-8	Perfluorohexanesulfonate	0.400	U	0.400	0.122
92612-52-7	Perfluorohexanoate	0.400	U	0.400	0.0638
68259-12-1	Perfluorononanesulfonate	0.400	U	0.400	0.0255
72007-68-2	Perfluorononanoate	0.400	U	0.400	0.0386
45298-90-6	Perfluorooctanesulfonate	0.0784	J	0.400	0.0510
45285-51-6	Perfluorooctanoate	0.400	U	0.400	0.0482
45167-47-3	Perfluoropentanoate	0.400	U	0.400	0.101
365971-87-5	Perfluorotetradecanoate	1.60	U	1.60	0.0315
862374-87-6	Perfluorotridecanoate	1.60	U	1.60	0.0171
NULL	Perfluoroundecanoate	0.400	U	0.400	0.0198

Surrogate Recovery:			Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	5.66	6.40	88	20-200	
NULL	D5-N-EtFOSAA	6.23	6.40	97	20-200	
NULL	M2PFTeDA	7.64	6.40	119	20-200	
NULL	M3PFBS	6.28	6.40	98	20-200	
NULL	M3PFHxS	5.99	6.40	94	20-200	
NULL	M4PFHpA	6.50	6.40	102	20-200	
NULL	M5PFHxA	5.72	6.40	89	20-200	
NULL	M5PFPeA	8.06	6.40	126	20-200	
NULL	M6PFDA	5.56	6.40	87	20-200	
NULL	M7PFUnA	5.66	6.40	88	20-200	
NULL	M8PFOA	5.55	6.40	87	20-200	
NULL	M8PFOS	5.73	6.40	90	20-200	
NULL	M9PFNA	6.10	6.40	95	20-200	
NULL	MPFDoA	6.36	6.40	99	20-200	

Authorized by: Release Date:

Printed: 2/6/202010:54:25AM

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW556-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.232 g Final Vol: 4 mL Lab ID #: 1906027-63 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 25.00%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.764	U	0.764	0.0967
NULL	N-methyl perfluorooctanesulfonamideacetate	0.764	U	0.764	0.0929
45187-15-3	Perfluorobutanesulfonate	0.764	U	0.764	0.0322
	Perfluorodecanesulfonate	0.764	U	0.764	0.129
335-77-3	Perfluorodecanoate	0.764	U	0.764	0.0566
73829-36-4	Perfluorododecanoate	1.53	U	1.53	0.0450
171978-95-3		0.764	U	0.764	0.0730
375-92-8	Perfluoroheptanesulfonate	0.764	U	0.764	0.132
120885-29-2	Perfluoroheptanoate	0.764	Ü	0.764	0.233
108427-53-8	Perfluorohexanesulfonate	0.764	Ŭ	0.764	0.122
92612-52-7	Perfluorohexanoate	0.764	Ü	0.764	0.0487
68259-12-1	Perfluorononanesulfonate	0.764	Ü	0.764	0.0738
72007-68-2	Perfluorononanoate	0.704 0.147	J	0.764	0.0976
45298-90-6	Perfluorooctanesulfonate		Ü	0.764	0.0921
45285-51-6	Perfluorooctanoate	0.764		0.764	0.193
45167-47-3	Perfluoropentanoate	0.764	U		0.0603
365971-87-5	Perfluorotetradecanoate	0.125	J	3.06	
862374-87-6	Perfluorotridecanoate	3.06	U	3.06	0.0327
NULL	Perfluoroundecanoate	0.764	U	0.764	0.0379

Surrogate I	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NILIT	D3-N-MeFOSAA	13.2	12.2	108	20-200	
NULL		12.9	12.2	106	20-200	
NULL	D5-N-EtFOSAA	15.0	12.2	122	20-200	
NULL	M2PFTeDA	12.0	12.2	98	20-200	
NULL	M3PFBS	10.8	12.2	88	20-200	
NULL	M3PFHxS	12.5	12.2	102	20-200	
NULL	M4PFHpA	10.5	12.2	86	20-200	
NULL	M5PFHxA	13.8	12.2	113	20-200	
NULL	M5PFPeA		12.2	82	20-200	
NULL	M6PFDA	10.0		90	20-200	
NULL	M7PFUnA	10.9	12.2		20-200	
NULL	M8PFOA	11.0	12.2	90		
NULL	M8PFOS	11.0	12.2	90	20-200	
NULL	M9PFNA	11.7	12.2	95	20-200	
NULL	MPFDoA	11.7	12.2	96	20-200	
1						

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40056-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.698 g Final Vol: 4 mL Lab ID #: 1906027-64 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 29.86%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.588	U	0.588	0.0743
NULL	N-methyl perfluorooctanesulfonamideacetate	0.588	U	0.588	0.0715
45187-15-3	Perfluorobutanesulfonate	0.588	U	0.588	0.0248
335-77-3	Perfluorodecanesulfonate	0.588	U	0.588	0.0992
73829-36-4	Perfluorodecanoate	0.588	U	0.588	0.0435
	Perfluorododecanoate	1.18	U	1.18	0.0346
171978-95-3	Perfluoroheptanesulfonate	0.588	\mathbf{U}^{\perp}	0.588	0.0561
375-92-8	Perfluoroheptanoate	0.588	U	0.588	0.101
120885-29-2	Perfluorohexanesulfonate	0.588	U	0.588	0.179
108427-53-8	Perfluorohexanoate	0.588	U	0.588	0.0938
92612-52-7		0.588	U	0.588	0.0374
68259-12-1	Perfluorononanesulfonate	0.588	Ū	0.588	0.0567
72007-68-2	Perfluorononanoate Perfluorononanoate	0.111	$\overline{\mathbf{J}}$	0.588	0.0750
45298-90-6	Perfluorooctanesulfonate	0.588	Ŭ	0.588	0.0708
45285-51-6	Perfluorooctanoate	0.588	Ŭ	0.588	0.148
45167-47-3	Perfluoropentanoate	2.35	Ü	2.35	0.0463
365971-87-5	Perfluorotetradecanoate	2.35	Ü	2.35	0.0252
862374-87-6 NULL	Perfluorotridecanoate Perfluoroundecanoate	0.588	U	0.588	0.0291

Surrogate F	Recovery:		Spike		% Rec.	1
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	8.78	9.41	93	20-200	
NULL	D5-N-EtFOSAA	11.1	9.41	118	20-200	1
NULL	M2PFTeDA	13.6	9.41	144	20-200	İ
NULL	M3PFBS	10.5	9.41	111	20-200	
NULL	M3PFHxS	8.92	9.41	95	20-200	
NULL	M4PFHpA	9.50	9.41	101	20-200	
NULL	M5PFHxA	8.29	9.41	88	20-200	
	M5PFPeA	10.1	9.41	108	20-200	
NULL NULL	M6PFDA	8.68	9.41	92	20-200	
	M7PFUnA	9.21	9.41	98	20-200	
NULL	M8PFOA	8.42	9.41	90	20-200	
NULL		9.21	9.41	98	20-200	
NULL	M8PFOS	8.72	9.41	93	20-200	
NULL NULL	M9PFNA MPFDoA	10.6	9.41	113	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40056-R2

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.788 g Final Vol: 4 mL Lab ID #: 1906027-65 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 29.70%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.582	U	0.582	0.0736
NULL	N-methyl perfluorooctanesulfonamideacetate	0.582	U	0.582	0.0707
45187-15-3	Perfluorobutanesulfonate	0.582	U	0.582	0.0245
335-77-3	Perfluorodecanesulfonate	0.582	U	0.582	0.0982
73829-36-4	Perfluorodecanoate	0.582	U	0.582	0.0430
171978-95-3	Perfluorododecanoate	1.16	U	1.16	0.0343
375-92-8	Perfluoroheptanesulfonate	0.582	U	0.582	0.0555
120885-29-2	Perfluoroheptanoate	0.582	U	0.582	0.100
108427-53-8	Perfluorohexanesulfonate	0.582	U	0.582	0.177
92612-52-7	Perfluorohexanoate	0.582	U	0.582	0.0928
68259-12-1	Perfluorononanesulfonate	0.582	U	0.582	0.0371
72007-68-2	Perfluorononanoate	0.582	U	0.582	0.0561
45298-90-6	Perfluorooctanesulfonate	0.116	J	0.582	0.0742
45285-51-6	Perfluorooctanoate	0.582	U	0.582	0.0701
45167-47-3	Perfluoropentanoate	0.582	U	0.582	0.147
365971-87-5	Perfluorotetradecanoate	2.33	U	2.33	0.0459
862374-87-6	Perfluorotridecanoate	2,33	U	2.33	0.0249
NULL	Perfluoroundecanoate	0.582	U	0.582	0.0288

Surrogate R	Recovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	9.31	9.31	100	20-200
NULL	D5-N-EtFOSAA	12.3	9.31	132	20-200
NULL	M2PFTeDA	13.6	9.31	146	20-200
NULL	M3PFBS	11.2	9.31	120	20-200
NULL	M3PFHxS	9.68	9.31	104	20-200
NULL	M4PFHpA	10.3	9.31	111	20-200
NULL	M5PFHxA	9.02	9.31	97	20-200
NULL	M5PFPeA	10.7	9.31	115	20-200
NULL	M6PFDA	8.97	9.31	96	20-200
NULL	M7PFUnA	9.58	9.31	103	20-200
NULL	M8PFOA	8.70	9.31	94	20-200
NULL	M8PFOS	9.58	9.31	103	20-200
NULL	M9PFNA	9.13	9.31	98	20-200
NULL	MPFDoA	11.3	9.31	122	20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40216-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.028 g Final Vol: 4 mL Lab ID #: 1906027-66 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 25.06%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.794	U	0.794	0.100
NULL	N-methyl perfluorooctanesulfonamideacetate	0.794	U	0.794	0.0965
45187-15-3	Perfluorobutanesulfonate	0.794	U	0.794	0.0334
335-77-3	Perfluorodecanesulfonate	0.143	J	0.794	0.134
73829-36-4	Perfluorodecanoate	0.794	U	0.794	0.0587
171978-95-3	Perfluorododecanoate	1.59	U	1.59	0.0467
375-92-8	Perfluoroheptanesulfonate	0.794	U	0.794	0.0758
120885-29-2	Perfluoroheptanoate	0.794	U	0.794	0.137
108427-53-8	Perfluorohexanesulfonate	0.794	U	0.794	0.241
92612-52-7	Perfluorohexanoate	0.794	U	0.794	0.127
68259-12-1	Perfluorononanesulfonate	0.794	U	0.794	0.0506
72007-68-2	Perfluorononanoate	0.794	U	0.794	0.0766
45298-90-6	Perfluorooctanesulfonate	0.321	J	0.794	0.101
45285-51-6	Perfluorooctanoate	0.794	U	0.794	0.0956
45167-47-3	Perfluoropentanoate	0.794	U	0.794	0.200
365971-87-5	Perfluorotetradecanoate	3.17	U	3.17	0.0626
862374-87-6	Perfluorotridecanoate	3.17	U	3.17	0.0340
NULL	Perfluoroundecanoate	0.794	U	0.794	0.0393

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	9.22	12.7	73	20-200	
NULL	D5-N-EtFOSAA	12.1	12.7	95	20-200	
NULL	M2PFTeDA	16.4	12.7	129	20-200	
NULL	M3PFBS	14.4	12.7	113	20-200	
NULL	M3PFHxS	13.1	12.7	103	20-200	
NULL	M4PFHpA	12.8	12.7	101	20-200	
NULL	M5PFHxA	13.1	12.7	103	20-200	
NULL	M5PFPeA	15.5	12.7	122	20-200	
NULL	M6PFDA	11.7	12.7	92	20-200	
NULL	M7PFUnA	12.5	12.7	99	20-200	
NULL	M8PFOA	11.2	12.7	88	20-200	
NULL	M8PFOS	12.2	12.7	96	20-200	
NULL	M9PFNA	11.8	12.7	93	20-200	
NULL	MPFDoA	13.2	12.7	104	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40272-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.047 g Final Vol: 4 mL Lab ID #: 1906027-67 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 30.26%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.655	U	0.655	0.0828
NULL	N-methyl perfluorooctanesulfonamideacetate	0.655	U	0.655	0.0796
45187-15-3	Perfluorobutanesulfonate	0.655	U .	0.655	0.0276
335-77-3	Perfluorodecanesulfonate	0.115	J	0.655	0.111
73829-36-4	Perfluorodecanoate	0.655	U	0.655	0.0484
171978-95-3	Perfluorododecanoate	1.31	U	1.31	0.0386
375-92-8	Perfluoroheptanesulfonate	0.655	U	0.655	0.0625
120885-29-2	Perfluoroheptanoate	0.655	U	0.655	0.113
108427-53-8	Perfluorohexanesulfonate	0.655	U	0.655	0.199
92612-52-7	Perfluorohexanoate	0.655	U	0.655	0.104
68259-12-1	Perfluorononanesulfonate	0.655	U	0.655	0.0417
72007-68-2	Perfluorononanoate	0.655	U	0.655	0.0632
	Perfluorooctanesulfonate	0.288	J	0.655	0.0836
45298-90-6	Perfluorooctanoate	0.655	U	0.655	0.0789
45285-51-6		0.655	Ū	0.655	0.165
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate	2.62	Ū	2.62	0.0516
365971-87-5	Perfluorotridecanoate Perfluorotridecanoate	2.62	Ū	2.62	0.0281
862374-87-6 NULL	Perfluoroundecanoate Perfluoroundecanoate	0.655	· Ü	0.655	0.0325

Surrogate F	Recovery:		Spike		% Rec.	ĺ
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	6.49	10.5	62	20-200	
NULL	D5-N-EtFOSAA	6.98	10.5	67	20-200	i
NULL	M2PFTeDA	10.8	10.5	103	20-200	
NULL	M3PFBS	12.3	10.5	117	20-200	}
NULL	M3PFHxS	10.0	10.5	96	20-200	J
NULL	M4PFHpA	10.5	10.5	101	20-200	
NULL	M5PFHxA	10.6	10.5	101	20-200	
NULL	M5PFPeA	11.8	10.5	113	20-200	
NULL	M6PFDA	8.46	10.5	81	20-200	
NULL	M7PFUnA	8.23	10.5	79	20-200	
NULL	M8PFOA	8.68	10.5	83	20-200	Í
NULL	M8PFOS	9,29	10.5	89	20-200	
NULL	M9PFNA	8.81	10.5	84	20-200	
NULL	MPFDoA	9.25	10.5	88	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40528-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.386 g Final Vol: 4 mL Lab ID #: 1906027-68 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 26.52%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.700	U	0.700	0.0885
NULL	N-methyl perfluorooctanesulfonamideacetate	0.700	U	0.700	0.0851
45187-15-3	Perfluorobutanesulfonate	0.700	U	0.700	0.0295
335-77-3	Perfluorodecanesulfonate	0.151	J	0.700	0.118
73829-36-4	Perfluorodecanoate	0.700	U	0.700	0.0518
171978-95-3	Perfluorododecanoate	1.40	U	1.40	0.0412
375-92-8	Perfluoroheptanesulfonate	0.700	U	0.700	0.0668
120885-29-2	Perfluoroheptanoate	0.700	U	0.700	0.121
108427-53-8	Perfluorohexanesulfonate	0.700	U	0.700	0.213
92612-52-7	Perfluorohexanoate	0.700	U ·	0.700	0.112
68259-12-1	Perfluorononanesulfonate	0.700	U	0.700	0.0446
72007-68-2	Perfluorononanoate	0.700	U	0.700	0.0676
45298-90-6	Perfluorooctanesulfonate	0.372	J	0.700	0.0893
45285-51-6	Perfluorooctanoate	0.700	U	0.700	0.0843
45167-47-3	Perfluoropentanoate	0.700	U	0.700	0.177
365971-87-5	Perfluorotetradecanoate	2.80	U	2.80	0.0552
862374-87-6	Perfluorotridecanoate	2.80	U	2.80	0.0300
NULL	Perfluoroundecanoate	0.700	U	0.700	0.0347

Surrogate Recovery:		<i>y</i>	Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.55	11.2	67	20-200	
NULL	D5-N-EtFOSAA	8.46	11.2	76	20-200	
NULL	M2PFTeDA	12.7	11.2	113	20-200	
NULL	M3PFBS	14.1	11.2	126	20-200	
NULL	M3PFHxS	11.7	11.2	105	20-200	
NULL	M4PFHpA	11.0	11.2	98	20-200	
NULL	M5PFHxA	12.0	11.2	107	20-200	
NULL	M5PFPeA	12.3	11.2	109	20-200	
NULL	M6PFDA	9.89	11.2	88	20-200	
NULL	M7PFUnA	10.1	11.2	90	20-200	
NULL	M8PFOA	9.47	11.2	85	20-200	
NULL	M8PFOS	10.5	11.2	94	20-200	
NULL	M9PFNA	9.79	11.2	87	20-200	
NULL	MPFDoA	10.1	11.2	90	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40728-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.077 g Final Vol: 4 mL Lab ID #: 1906027-69 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 22.95%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.858	U	0.858	0.109
NULL	N-methyl perfluorooctanesulfonamideacetate	0.858	U	0.858	0.104
45187-15-3	Perfluorobutanesulfonate	0.858	U	0.858	0.0362
335-77-3	Perfluorodecanesulfonate	0.858	U	0.858	0.145
73829-36-4	Perfluorodecanoate	0.858	U	0.858	0.0635
171978-95-3	Perfluorododecanoate	1.72	U	1.72	0.0505
375-92-8	Perfluoroheptanesulfonate	0.858	U	0.858	0.0819
120885-29-2	Perfluoroheptanoate	0.858	U	0.858	0.148
108427-53-8	Perfluorohexanesulfonate	0.858	U	0.858	0.261
92612-52-7	Perfluorohexanoate	0.858	U	0.858	0.137
68259-12-1	Perfluorononanesulfonate	0.858	U	0.858	0.0547
72007-68-2	Perfluorononanoate	0.858	U	0.858	0.0828
45298-90-6	Perfluorooctanesulfonate	0.264	J	0.858	0.110
45298-90-6 45285-51-6	Perfluorooctanoate	0.858	U	0.858	0.103
	Perfluoropentanoate	0.858	U	0.858	0.217
45167-47-3	Perfluorotetradecanoate	3,43	U	3.43	0.0676
365971-87-5	Perfluorotridecanoate	3.43	U	3.43	0.0368
862374-87-6 NULL	Perfluoroundecanoate	0.858	U	0.858	0.0425

Surrogate R	ecovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	11.3	13.7	82	20-200	
NULL	D5-N-EtFOSAA	14.9	13.7	108	20-200	
NULL	M2PFTeDA	21.6	13.7	158	20-200	ŀ
NULL	M3PFBS	18.3	13.7	133	20-200	
NULL	M3PFHxS	15.2	13.7	111	20-200	1
NULL	M4PFHpA	14.1	13.7	103	20-200	
NULL	M5PFHxA	15.0	13.7	109	20-200	
NULL	M5PFPeA	15.3	13.7	111	20-200	
1	M6PFDA	12.8	13.7	94	20-200	
NULL	M7PFUnA	13.3	13.7	. 97	20-200	
NULL	M8PFOA	12.5	13.7	91	20-200	
NULL		14.5	13.7	106	20-200	
NULL	M8PFOS	12.3	13.7	90	20-200	
NULL NULL	M9PFNA MPFDoA	15.8	13.7	115	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW40984-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.021 g Final Vol: 4 mL Lab ID #: 1906027-70 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 25.26%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

NULL N-II 45187-15-3 Per 335-77-3 Per 73829-36-4 Per 171978-95-3 Per 375-92-8 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	ethyl perfluorooctanesulfonamideacetate methyl perfluorooctanesulfonamideacetate rfluorobutanesulfonate rfluorodecanesulfonate rfluorodecanoate rfluorodecanoate rfluoroheptanesulfonate rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorooctanesulfonate rfluorooctanesulfonate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 0.788 0.788 0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15 0.788	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	0.788 0.788 0.788 0.788 0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.0997 0.0959 0.0332 0.133 0.0583 0.0464 0.0753 0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338 0.0391
NULL N-r. 45187-15-3 Per 335-77-3 Per 73829-36-4 Per 171978-95-3 Per 375-92-8 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 862374-87-6 Per NULL Per	methyl perfluorooctanesulfonamideacetate rfluorobutanesulfonate rfluorodecanesulfonate rfluorodecanoate rfluorodecanoate rfluoroheptanesulfonate rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rrfluorooctanesulfonate rrfluorooctanesulfonate rrfluorooctanoate rrfluoropentanoate rrfluorotetradecanoate rrfluorotridecanoate rrfluoroundecanoate	0.788 0.788 0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	υ υ υ υ υ υ υ υ	0.788 0.788 0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15	0.0332 0.133 0.0583 0.0464 0.0753 0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
45187-15-3 Per 335-77-3 Per 73829-36-4 Per 171978-95-3 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45285-51-6 Per 45167-47-3 Per 862374-87-5 Per 862374-87-6 Per NULL Per Surrogate Recovery	rfluorobutanesulfonate rfluorodecanesulfonate rfluorodecanoate rfluorodecanoate rfluoroheptanesulfonate rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorooctanesulfonate rfluorooctanesulfonate rfluoropentanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	υ υ υ υ υ υ υ υ	0.788 0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.133 0.0583 0.0464 0.0753 0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
335-77-3 Per 73829-36-4 Per 171978-95-3 Per 375-92-8 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45285-51-6 Per 45167-47-3 Per 862374-87-5 Per 862374-87-6 Per NULL Per Surrogate Recovery	rfluorodecanoate rfluoroheptanesulfonate rfluoroheptanoate rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	U U U U U U U U U	0.788 1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.0583 0.0464 0.0753 0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
73829-36-4 Per 171978-95-3 Per 375-92-8 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluorododecanoate rfluoroheptanesulfonate rfluoroheptanesulfonate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	1.58 0.788 0.788 0.788 0.788 0.788 0.173 0.788 0.788 3.15	U U U U U U U U U	1.58 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.0464 0.0753 0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
171978-95-3 Per 375-92-8 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluoroheptanesulfonate rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 0.788 0.788 0.788 0.788 0.173 0.788 0.788 3.15	U U U U U U U U	0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.0753 0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
375-92-8 Per 120885-29-2 Per 120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluoroheptanesulfonate rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 0.788 0.788 0.788 0.173 0.788 0.788 3.15	U U U U J U U U	0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.136 0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
120885-29-2 Per 108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluoroheptanoate rfluorohexanesulfonate rfluorohexanoate rfluorononanesulfonate rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 0.788 0.788 0.173 0.788 0.788 3.15	U U U U U U U	0.788 0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.240 0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
108427-53-8 Per 92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 862374-87-6 Per NULL Per	rfluorohexanesulfonate rfluoronexanoate rfluorononanesulfonate rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 0.788 0.173 0.788 0.788 3.15 3.15	Մ Մ J Մ Մ Մ	0.788 0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.126 0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
92612-52-7 Per 68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluorohexanoate rfluorononanesulfonate rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 0.173 0.788 0.788 3.15 3.15	U U J U U U	0.788 0.788 0.788 0.788 0.788 3.15 3.15	0.0502 0.0761 0.101 0.0950 0.199 0.0621 0.0338
68259-12-1 Per 72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.173 0.788 0.788 3.15 3.15	U J U U U U	0.788 0.788 0.788 0.788 3.15 3.15	0.0761 0.101 0.0950 0.199 0.0621 0.0338
72007-68-2 Per 45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per	rfluorononanoate rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.173 0.788 0.788 3.15 3.15	J U U U	0.788 0.788 0.788 3.15 3.15	0.101 0.0950 0.199 0.0621 0.0338
45298-90-6 Per 45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per Surrogate Recovery	rfluorooctanesulfonate rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 0.788 3.15 3.15	U U U U	0.788 0.788 3.15 3.15	0.0950 0.199 0.0621 0.0338
45285-51-6 Per 45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per Surrogate Recovery	rfluorooctanoate rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	0.788 3.15 3.15	U U U	0.788 3.15 3.15	0.199 0.0621 0.0338
45167-47-3 Per 365971-87-5 Per 862374-87-6 Per NULL Per Surrogate Recovery	rfluoropentanoate rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	3.15 3.15	U U	3.15 3.15	0.0621 0.0338
365971-87-5 Per 862374-87-6 Per NULL Per Surrogate Recovery	rfluorotetradecanoate rfluorotridecanoate rfluoroundecanoate	3.15	U	3.15	0.0338
862374-87-6 Per NULL Per Surrogate Recovery	rfluorotridecanoate rfluoroundecanoate				
NULL Per Surrogate Recovery	rfluoroundecanoate	0.788	U	0.788	0.0391
Surrogate Recovery					
CADII	<u>':</u> Analyte	Result	Spike Level	% Rec.	% Rec. Limits
					20-200
	3-N-MeFOSAA	10.5 14.2	12.6 12.6	83 112	20-200
	5-N-EtFOSAA	18.6	12.6	148	20-200
	2PFTeDA 3PFBS	14.1	12.6	112	20-200
	3PFHxS	11.5	12.6	91	20-200
	4PFHpA	12.5	12.6	99	20-200
	5PFHxA	11.5	12.6	91	20-200
	5PFPeA	14.2	12.6	112	20-200
	6PFDA	10.9	12.6	87	20-200
	7PFUnA	11.5	12.6	92	20-200
	8PFOA	10.5	12.6	83	20-200
	8PFOS	11.6	12.6	92	20-200
	9PFNA	10.6	12.6	84	20-200
NULL M	PFDoA	13.2	12.6	104	20-200

Authorized by: Release Date: 2

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW41040-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.139 g Final Vol: 4 mL Lab ID #: 1906027-71 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 25.78%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.755	U	0.755	0.0954
NULL	N-methyl perfluorooctanesulfonamideacetate	0.755	U	0.755	0.0918
45187-15-3	Perfluorobutanesulfonate	0.755	U	0.755	0.0318
335-77-3	Perfluorodecanesulfonate	0.755	U	0.755	0.127
73829-36-4	Perfluorodecanoate	0.755	U	0.755	0.0558
171978-95-3	Perfluorododecanoate	1.51	U	1.51	0.0444
375-92-8	Perfluoroheptanesulfonate	0.755	U	0.755	0.0720
120885-29-2	Perfluoroheptanoate	0.755	U	0.755	0.130
108427-53-8	Perfluorohexanesulfonate	0.755	U	0.755	0.230
92612-52-7	Perfluorohexanoate	0.755	U	0.755	0.120
	Perfluorononanesulfonate	0.755	U	0.755	0.0481
68259-12-1 72007-68-2	Perfluorononanoate	0.755	U	0.755	0.0728
	Perfluorooctanesulfonate	0.202	J	0.755	0.0963
45298-90-6	Perfluorooctanoate	0.755	U	0.755	0.0909
45285-51-6	Perfluoropentanoate	0.755	U	0.755	0.190
45167-47-3	Perfluorotetradecanoate	3.02	U	3.02	0.0595
365971-87-5	Perfluorotridecanoate	3.02	Ū	3.02	0.0323
862374-87-6 NULL	Perfluoroundecanoate	0.755	Ū	0.755	0.0374

Surrogate R	ecovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	9.26	12.1	77	20-200	
NULL	D5-N-EtFOSAA	11.8	12.1	98	20-200	
NULL	M2PFTeDA	16.8	12.1	139	20-200	
NULL	M3PFBS	14.1	12.1	117	20-200	
NULL	M3PFHxS	12.2	12.1	101	20-200	
NULL	M4PFHpA	13.3	12.1	110	20-200	
NULL	M5PFHxA	12.1	12.1	100	20-200	
NULL	M5PFPeA	14.0	12.1	116	20-200	
NULL	M6PFDA	10,4	12.1	86	20-200	
NULL	M7PFUnA	10.3	12.1	85	20-200	
NULL	M8PFOA	10.7	12.1	89	20-200	
NULL	M8PFOS	10.8	12.1	90	20-200	
NULL	M9PFNA	11.0	12.1	91	20-200	
NULL	MPFDoA	12.0	12.1	99	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW41240-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.483 g Final Vol: 4.08 mL Lab ID #: 1906027-72 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 24.32%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.765	U	0.765	0.0967
NULL	N-methyl perfluorooctanesulfonamideacetate	0.765	U	0.765	0.0930
45187-15-3	Perfluorobutanesulfonate	0.765	U	0.765	0.0322
335-77-3	Perfluorodecanesulfonate	0.141	J	0.765	0.129
73829-36-4	Perfluorodecanoate	0.765	U	0.765	0.0566
171978-95-3	Perfluorododecanoate	1.53	U	1.53	0.0450
375-92-8	Perfluoroheptanesulfonate	0.765	U	0.765	0.0730
120885-29-2	Perfluoroheptanoate	0.765	U	0.765	0.132
108427-53-8	Perfluorohexanesulfonate	0.765	U	0.765	0.233
92612-52-7	Perfluorohexanoate	0.765	U	0.765	0.122
68259-12-1	Perfluorononanesulfonate	0.765	U	0.765	0.0487
72007-68-2	Perfluorononanoate	0.765	U	0.765	0.0738
45298-90-6	Perfluorooctanesulfonate	0.318	J	0.765	0.0976
4529 8- 90 - 0 45285-51-6	Perfluorooctanoate	0.765	U	0.765	0.0921
45285-51-6 45167-47-3	Perfluoropentanoate	0.765	U	0.765	0.193
365971-87-5	Perfluorotetradecanoate	3.06	U	3.06	0.0603
	Perfluorotridecanoate	3.06	U	3.06	0.0328
862374-87-6	Perfluoroundecanoate	0.765		0.765	0.0379
NULL					
Surrogate Recovery:			Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
> ** ** **					
NULL	D3-N-MeFOSAA	8.73	12.0	73	20-200
NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA	11.7	12.0	98	20-200
NULL		11.7 15.7	12.0 12.0	98 131	20-200 20-200
NULL NULL NULL	D5-N-EtFOSAA	11.7 15.7 14.4	12.0 12.0 12.0	98 131 120	20-200 20-200 20-200
NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS	11.7 15.7 14.4 13.8	12.0 12.0 12.0 12.0	98 131 120 115	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA	11.7 15.7 14.4 13.8 12.7	12.0 12.0 12.0 12.0 12.0	98 131 120 115 106	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	11.7 15.7 14.4 13.8 12.7 12.7	12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106	20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	11.7 15.7 14.4 13.8 12.7 12.7	12.0 12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106 121	20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	11.7 15.7 14.4 13.8 12.7 12.7 14.5	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106 121 100	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	11.7 15.7 14.4 13.8 12.7 12.7 14.5 12.0 11.9	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106 121 100 99	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	11.7 15.7 14.4 13.8 12.7 12.7 14.5 12.0 11.9 11.5	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106 121 100 99 96	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS	11.7 15.7 14.4 13.8 12.7 12.7 14.5 12.0 11.9 11.5 12.3	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106 121 100 99 96 102	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	11.7 15.7 14.4 13.8 12.7 12.7 14.5 12.0 11.9 11.5	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	98 131 120 115 106 106 121 100 99 96	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW41296-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.521 g Final Vol: 4.17 mL Lab ID #: 1906027-73 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 26.17%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.722	U	0.722	0.0913
NULL	N-methyl perfluorooctanesulfonamideacetate	0.722	U	0.722	0.0877
45187-15-3	Perfluorobutanesulfonate	0.722	U	0.722	0.0304
335-77-3	Perfluorodecanesulfonate	0.722	U	0.722	0.122
73829-36-4	Perfluorodecanoate	0.722	U	0.722	0.0534
171978-95-3	Perfluorododecanoate	1.44	U	1.44	0.0425
375-92-8	Perfluoroheptanesulfonate	0.722	U	0.722	0.0689
120885-29-2	Perfluoroheptanoate	0.722	U	0.722	0.124
108427-53-8	Perfluorohexanesulfonate	0.722	U	0.722	0.220
92612-52-7	Perfluorohexanoate	0.722	U	0.722	0.115
68259-12-1	Perfluorononanesulfonate	0.722	U	0.722	0.0460
72007-68-2	Perfluorononanoate	0.722	U	0.722	0.0696
45298-90-6	Perfluorooctanesulfonate	0.185	J	0.722	0.0921
45285-51-6	Perfluorooctanoate	0.722	U	0.722	0.0869
45167-47-3	Perfluoropentanoate	0.722	Ú	0.722	0.182
365971-87-5	Perfluorotetradecanoate	2.89	U	2.89	0.0569
862374-87-6	Perfluorotridecanoate	2.89	U	2.89	0.0309
NULL	Perfluoroundecanoate	0.722	U	0.722	0.0358

Surrogate R	<u>kecovery:</u>		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	6.97	11.1	63	20-200	
NULL	D5-N-EtFOSAA	10.7	11.1	97	20-200	
NULL	M2PFTeDA	12.7	11.1	115	20-200	
NULL	M3PFBS	11.4	11.1	103	20-200	
NULL	M3PFHxS	10.2	11.1	92	20-200	
NULL	M4PFHpA	11.2	11.1	101	20-200	
NULL	M5PFHxA	10.3	11.1	93	20-200	
NULL	M5PFPeA	12.3	11.1	111	20-200	
NULL	M6PFDA	9.31	11.1	84	20-200	
NULL	M7PFUnA	9.86	11.1	89	20-200	
NULL	M8PFOA	9.69	11.1	87	20-200	
NULL	M8PFOS	10.0	11.1	91	20-200	
NULL	M9PFNA	10.0	11.1	90	20-200	
NULL	MPFDoA	11.2	11.1	101	20-200	

Authorized by:) Ustur

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW41552-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.222 g Final Vol: 4 mL Lab ID #: 1906027-74 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 24.19%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifie	r RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.792	U	0.792	0.100
NULL	N-methyl perfluorooctanesulfonamideacetate	0.792	U	0.792	0.0963
45187-15-3	Perfluorobutanesulfonate	0.792	U	0.792	0.0334
335-77-3	Perfluorodecanesulfonate	0.152	J	0.792	0.134
73829-36-4	Perfluorodecanoate	0.792	U	0.792	0.0586
171978-95-3	Perfluorododecanoate	1.58	U	1.58	0.0466
375-92-8	Perfluoroheptanesulfonate	0.792	U	0.792	0.0756
120885-29-2	Perfluoroheptanoate	0.792	U	0.792	0.136
108427-53-8	Perfluorohexanesulfonate	0.792	U	0.792	0.241
92612-52-7	Perfluorohexanoate	0.792	U	0.792	0.126
68259-12-1	Perfluorononanesulfonate	0.792	U	0.792	0.0504
72007-68-2	Perfluorononanoate	0.792	U	0.792	0.0764
45298-90-6	Perfluorooctanesulfonate	0.326	J	0.792	0.101
45285-51-6	Perfluorooctanoate	0.792	U	0.792	0.0954
45265-51-0 45167-47-3	Perfluoropentanoate	0.792	U	0.792	0.200
365971-87 - 5	Perfluorotetradecanoate	3.17	U	3.17	0.0624
862374-87-6	Perfluorotridecanoate	3.17	U	3.17	0.0339
NULL	Perfluoroundecanoate	0.792	U	0.792	0.0392
Surrogate Rec	eovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	8.46	12.7	67	20-200
NULL	D5-N-EtFOSAA	11.1	12.7	87	20-200
NULL	M2PFTeDA	15.6	12.7	124	20-200
NULL	M3PFBS	13.8	12.7	109	20-200
NULL	M3PFHxS	12.0	12.7	95	20-200
NULL	M4PFHpA	12.5	12.7	99	20-200
NULL	M5PFHxA	11.9	12.7	94	20-200
NULL	M5PFPeA	13.6	12.7	107	20-200
NULL	M6PFDA	10.5	12.7	83	20-200
NULL	M7PFUnA	11.2	12.7 12.7	89 89	20-200 20-200
NULL	M8PFOA	11.2	12.7	89 97	20-200

Authorized by:

M8PFOS

M9PFNA

MPFDoA

NULL

NULL

NULL

Release Date:

26/20

87

90

103

12.7

12.7

12.7

11.0

11.4

13.1

20-200

20-200

20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW41680-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.168 g Final Vol: 4 mL Lab ID #: 1906027-75 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 48.33%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.400	U	0.400	0.0506
NULL	N-methyl perfluorooctanesulfonamideacetate	0,400	U	0.400	0.0487
45187-15-3	Perfluorobutanesulfonate	0.400	U	0.400	0.0169
335-77-3	Perfluorodecanesulfonate	0.400	U	0.400	0.0676
73829-36-4	Perfluorodecanoate	0.400	U	0.400	0.0296
171978-95-3	Perfluorododecanoate	0.801	U	0.801	0.0236
375-92-8	Perfluoroheptanesulfonate	0.400	U	0.400	0.0382
120885-29-2	Perfluoroheptanoate	0.400	U	0.400	0.0690
108427-53-8	Perfluorohexanesulfonate	0.400	U	0.400	0.122
92612-52-7	Perfluorohexanoate	0.400	U	0.400	0.0639
68259-12-1	Perfluorononanesulfonate	0.400	U	0.400	0.0255
72007-68-2	Perfluorononanoate	0.400	U	0.400	0.0386
45298-90-6	Perfluorooctanesulfonate	0.149	J	0.400	0.0511
45285-51-6	Perfluorooctanoate	0.400	U	0.400	0.0482
45167-47-3	Perfluoropentanoate	0.400	U	0.400	0.101
	Perfluorotetradecanoate	1.60	U	1.60	0.0316
365971-87-5	Perfluorotridecanoate	1.60	U	1.60	0.0172
862374-87-6 NULL	Perfluoroundecanoate	0.400	Ü	0.400	0.0198
Surrogate Rec	OVAPV+			0.	(Dog

Surrogate F	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	3.94	6.41	62	20-200	
NULL	D5-N-EtFOSAA	5.20	6.41	81	20-200	ł
NULL	M2PFTeDA	8.06	6.41	126	20-200	
NULL	M3PFBS	6.63	6.41	103	20-200	
NULL	M3PFHxS	5.44	6.41	85	20-200	
NULL	M4PFHpA	6.53	6.41	102	20-200	
NULL	M5PFHxA	5.53	6.41	86	20-200	
NULL	M5PFPeA	6.99	6.41	109	20-200	
NULL	M6PFDA	5.35	6.41	84	20-200	
NULL	M7PFUnA	5.42	6.41	85	20-200	
NULL	M8PFOA	5.43	6.41	85	20-200	
NULL	M8PFOS	5.73	6.41	89	20-200	
NULL	M9PFNA	5.84	6.41	91	20-200	
NULL	MPFDoA	5.69	6.41	89	20-200	

Authorized by:

Release Date:

/e/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UW41752-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.437 g Final Vol: 4 mL Lab ID #: 1906027-76 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 40.16%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.458	U	0.458	0.0579
NULL	N-methyl perfluorooctanesulfonamideacetate	0.458	U	0.458	0.0557
45187-15-3	Perfluorobutanesulfonate	0.458	U	0.458	0.0193
335-77-3	Perfluorodecanesulfonate	0.458	U	0.458	0.0773
73829 - 36-4	Perfluorodecanoate	0.458	U	0.458	0.0339
171978-95-3	Perfluorododecanoate	0.916	U	0.916	0.0270
375-92-8	Perfluoroheptanesulfonate	0.458	U	0.458	0.0437
120885-29-2	Perfluoroheptanoate	0.458	U	0.458	0.0789
108427-53-8	Perfluorohexanesulfonate	0.458	U	0.458	0.139
92612-52-7	Perfluorohexanoate	0.773		0.458	0.0731
68259-12-1	Perfluorononanesulfonate	0.458	U	0.458	0.0292
72007-68-2	Perfluorononanoate	0.458	U	0.458	0.0442
45298-90-6	Perfluorooctanesulfonate	0.145	J	0.458	0.0585
4529 5-90-6 45285-51-6	Perfluorooctanoate	0.458	U	0.458	0.0552
	Perfluoropentanoate	0.458	U	0.458	0.116
45167-47-3	Perfluorotetradecanoate	1.83	Ū	1.83	0.0361
365971-87-5	Perfluorotridecanoate	1.83	Ŭ	1.83	0.0196
862374-87 - 6 NULL	Perfluoroundecanoate	0.458	Ŭ	0.458	0.0227

Surrogate F	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.42	7.33	101	20-200	
NULL	D5-N-EtFOSAA	7.73	7.33	105	20-200	
NULL	M2PFTeDA	9.43	7.33	129	20-200	
NULL	M3PFBS	7.54	7.33	103	20-200	
NULL	M3PFHxS	6.77	7.33	92	20-200	
NULL	M4PFHpA	7.49	7.33	102	20-200	
NULL	M5PFHxA	7.11	7.33	97	20-200	
NULL	M5PFPeA	8.40	7.33	115	20-200	
NULL	M6PFDA	6.29	7.33	86	20-200	
NULL	M7PFUnA	6.04	7.33	82	20-200	
NULL	M8PFOA	6.25	7.33	85	20-200	
NULL	M8PFOS	6.63	7.33	90	20-200	
NULL	M9PFNA	6.58	7.33	90	20-200	
NULL	MPFDoA	7.40	7.33	101	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO236-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.219 g Final Vol: 4 mL Lab ID #: 1906027-77 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 24.90%

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.770	U	0.770	0.0973
NULL	N-methyl perfluorooctanesulfonamideacetate	0.770	U	0.770	0.0936
45187-15-3	Perfluorobutanesulfonate	0.770	U	0.770	0.0324
335-77-3	Perfluorodecanesulfonate	0.770	U	0.770	0.130
73829-36-4	Perfluorodecanoate	0.770	U	0.770	0.0569
171978-95-3	Perfluorododecanoate	1.54	U	1.54	0.0453
375-92-8	Perfluoroheptanesulfonate	0.770	U	0.770	0.0735
120885-29-2	Perfluoroheptanoate	0.770	U	0.770	0.133
108427-53-8	Perfluorohexanesulfonate	0.770	U	0.770	0.234
92612-52-7	Perfluorohexanoate	1.50		0.770	0.123
68259-12-1	Perfluorononanesulfonate	0.770	U	0.770	0.0490
72007-68-2	Perfluorononanoate	0.770	U	0.770	0.0743
45298-90-6	Perfluorooctanesulfonate	0.283	${f J}$	0.770	0.0982
45285-51-6	Perfluorooctanoate	0.770	U	0.770	0.0927
45167-47-3	Perfluoropentanoate	0.770	U	0.770	0.194
365971-87-5	Perfluorotetradecanoate	3.08	U	3.08	0.0607
862374-87-6	Perfluorotridecanoate	3.08	U	3.08	0.0330
NULL	Perfluoroundecanoate	0.770	U	0.770	0.0381

<u>Surrogate F</u>	Recovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	9.24	12.3	75	20-200
NULL	D5-N-EtFOSAA	11.7	12.3	95	20-200
NULL	M2PFTeDA	15.4	12.3	125	20-200
NULL	M3PFBS	12.1	12.3	98	20-200
NULL	M3PFHxS	11.3	12.3	92	20-200
NULL	M4PFHpA	12.4	12.3	100	20-200
NULL	M5PFHxA	10.7	12.3	87	20-200
NULL	M5PFPeA	12.8	12.3	104	20-200
NULL	M6PFDA	10.4	12.3	85	20-200
NULL	M7PFUnA	11.0	12.3	90	20-200
NULL	M8PFOA	10.2	12.3	83	20-200
NULL	M8PFOS	11.0	12.3	90	20-200
NULL	M9PFNA	11.0	12.3	90	20-200
NULL	MPFDoA	12.3	12.3	100	20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: Method Blank

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K056-BLK1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K056-BLK1 Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideaceta	0.0584	J	0.200	0.0253
NULL	N-methyl perfluorooctanesulfonamideaceta	0.200	U	0.200	0.0243
45187-15-3	Perfluorobutanesulfonate	0.200	U	0.200	0.00842
335-77-3	Perfluorodecanesulfonate	0.200	U	0.200	0.0338
73829-36-4	Perfluorodecanoate	0.200	U	0.200	0.0148
171978-95-3	Perfluorododecanoate	0.400	U	0.400	0.0118
375-92-8	Perfluoroheptanesulfonate	0.200	U	0.200	0.0191
120885-29-2	Perfluoroheptanoate	0.200	U	0.200	0.0345
108427-53-8	Perfluorohexanesulfonate	0,200	U	0.200	0.0609
92612-52-7	Perfluorohexanoate	0.200	U	0.200	0.0319
68259-12-1	Perfluorononanesulfonate	0.200	U	0.200	0.0127
72007-68-2	Perfluorononanoate	0.200	U	0.200	0.0193
45298-90-6	Perfluorooctanesulfonate	0.200	U	0.200	0.0255
45285-51-6	Perfluorooctanoate	0.200	U	0.200	0.0241
45167-47-3	Perfluoropentanoate	0.200	U	0.200	0.0505
365971-87-5	Perfluorotetradecanoate	0.800	U	0.800	0.0158
862374-87-6	Perfluorotridecanoate	0.800	U	0.800	0.00857
NULL	Perfluoroundecanoate	0.200	U	0.200	0.00991

Surrogate 1	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	1.85	3.20	58	20-200	
NULL	D5-N-EtFOSAA	1.98	3.20	62	20-200	
NULL	M2PFTeDA	2.16	3.20	67	20-200	
NULL	M3PFBS	3.14	3.20	98	20-200	
NULL	M3PFHxS	2.78	3.20	87	20-200	
NULL	M4PFHpA	2.81	3.20	88	20-200	
NULL	M5PFHxA	2.65	3.20	83	20-200	
NULL	M5PFPeA	2.70	3.20	84	20-200	
NULL	M6PFDA	2.46	3.20	77	20-200	
NULL	M7PFUnA	2.29	3.20	72	20-200	
NULL	M8PFOA	2.52	3.20	79	20-200	
NULL	M8PFOS	2.62	3.20	82	20-200	
NULL	M9PFNA	2.69	3.20	84	20-200	
NULL	MPFDoA	2.20	3.20	69	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K056-BS1

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

Source Field ID: B19K056-BS1

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

				Jnits: - %		
Analyte		Result	Spike Level	RL	%Rec	%Rec Limits
N-ethyl per	fluorooctanesulfonamideacetate	6.5	5.00	0.200	130	50-150
	erfluorooctanesulfonamideacetate	6.3	5.00	0.200	126	50-150
	tanesulfonate	6.2	5.00	0.200	124	50-150
Perfluorode	canesulfonate	6.8	5.00	0.200	136	50-150
Perfluorode	canoate	5.9	5.00	0.200	117	50-150
Perfluorodo	decanoate	6.0	5.00	0.400	120	50-150
Perfluorohe	ptanesulfonate	6,6	5.00	0.200	133	50-150
Perfluorohe		5.9	5.00	0.200	118	50-150
	xanesulfonate	6.3	5.00	0.200	125	50-150
Perfluorohe		6.3	5.00	0.200	125	50-150
Perfluorono	nanesulfonate	6.1	5.00	0.200	122	50-150
Perfluorono		5.7	5.00	0.200	115	50-150
	tanesulfonate	6.5	5.00	0.200	130	50-150
Perfluorooc	tanoate	6.3	5.00	0.200	127	50-150
Perfluorope	ntanoate	6.0	5.00	0.200	120	50-150
	radecanoate	5.6	5.00	0.800	113	50-150
Perfluorotri	decanoate	5.6	5.00	0.800	112	50-150
Perfluoroun	decanoate	6.5	5.00	0.200	131	50-150
Surrogate l	Recovery:		Spike		0/0	Rec.
CAS#	Analyte	Result	Level	% R		mits
				77	20	200
	D3-N-MeFOSAA	2.32	3.20	73		-200
NULL	D5-N-EtFOSAA	2.31	3.20	72	2 20-	-200
NULL NULL	D5-N-EtFOSAA M2PFTeDA	2.31 2.59	3.20 3.20	72 81	2 20- 1 20-	-200 -200
NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS	2.31 2.59 3.01	3.20 3.20 3.20	72 81 94	2 20- 1 20- 1 20-	-200 -200 -200
NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS	2.31 2.59 3.01 2.89	3.20 3.20 3.20 3.20	72 81 94 90	2 20- 1 20- 1 20- 1 20- 1 20-	-200 -200 -200 -200
NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA	2.31 2.59 3.01 2.89 2.84	3.20 3.20 3.20 3.20 3.20	72 81 94 90 89	2 20- 1 20- 1 20- 1 20- 20- 20-	-200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	2.31 2.59 3.01 2.89 2.84 2.62	3.20 3.20 3.20 3.20 3.20 3.20	72 81 94 90 89 82	2 20- 1 20- 1 20- 1 20- 2 20- 2 20- 2 20-	-200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	2.31 2.59 3.01 2.89 2.84 2.62 2.88	3.20 3.20 3.20 3.20 3.20 3.20 3.20	72 81 92 90 89 82	2 20- 1 20- 1 20- 2 20- 2 20- 2 20- 2 20- 2 20- 2 20-	-200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	2.31 2.59 3.01 2.89 2.84 2.62 2.88 2.87	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	72 81 94 90 89 82 90	2 20- 1 20- 1 20- 1 20- 2	-200 -200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	2.31 2.59 3.01 2.89 2.84 2.62 2.88 2.87 2.74	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	72 83 94 90 89 82 90 90	2 20- 1 20- 4 20- 20- 20- 20- 20- 20- 20- 20-	-200 -200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	2.31 2.59 3.01 2.89 2.84 2.62 2.88 2.87 2.74	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	72 81 94 90 89 82 90	2 20- 1 20- 4 20- 20- 20- 20- 20- 20- 20- 20-	-200 -200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	2.31 2.59 3.01 2.89 2.84 2.62 2.88 2.87 2.74	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	72 83 94 90 89 82 90 90 86	2 20- 1 20- 4 20- 20- 20- 20- 20- 20- 20- 20-	-200 -200 -200 -200 -200 -200 -200 -200 -200 -200 -200

Authorized by:

Release Date:

16/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K056-BSD1 Prep Method: AOAC2007.01

Analysis Method: SW8321BM Source Field ID: B19K056-BSD1 Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

				U	nits: %		
Analyte		Sample Result	Spike Level	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfl	uorooctanesulfonamideacetate	6.7	5.00	133	2	50-150	40
N-methyl pe	rfluorooctanesulfonamideacetate	6.4	5.00	127	0.9	50-150	40
Perfluorobut	anesulfonate	6.3	5.00	126	2	50-150	40
Perfluorodec	anesulfonate	6.8	5.00	136	0.4	50-150	40
Perfluorodec	anoate	6.5	5.00	129	10	50-150	40
Perfluorodoo	lecanoate	6.0	5.00	119	0.6	50-150	40
Perfluoroher	tanesulfonate	7.2	5.00	144	8	50-150	40
Perfluoroher	tanoate	5.9	5.00	118	0.1	50-150	40
	anesulfonate	6.7	5.00	135	7	50-150	40
Perfluorohex	anoate	6.3	5.00	125	0.3	50-150	40
Perfluoronor	anesulfonate	7.0	5.00	141	14	50-150	40
Perfluoronor	nanoate	5.8	5.00	116	0.9	50-150	40
	anesulfonate	6.5	5.00	130	0.6	50-150	40
Perfluorooct		6.2	5.00	125	2	50-150	40
Perfluoroper		6.3	5.00	126	5	50-150	40
Perfluorotetr		6.0	5.00	119	6	50-150	40
Perfluorotric		6.0	5.00	121	8	50-150	40
Perfluoround		6.1	5.00	122	7	50-150	40
Surrogate R	ecovery:			Snike		% Re	C.
	ecovery: Analyte		Result	Spike Level	% Re	% Re c. Limi	
CAS#			2.28	Level	71	c. Limi	ts
CAS# NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA		2.28 2.30	3.20 3.20	71 72	20-20 20-20	00 00
CAS# NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA		2.28 2.30 2.51	3.20 3.20 3.20 3.20	71 72 78	20-20 20-20 20-20	00 00 00
CAS# NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS		2.28 2.30 2.51 2.94	3.20 3.20 3.20 3.20 3.20	71 72 78 92	20-20 20-20 20-20 20-20 20-20	00 00 00 00
CAS# NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS		2.28 2.30 2.51 2.94 2.63	3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82	20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00
CAS# NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA		2.28 2.30 2.51 2.94 2.63 2.71	3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85	20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00 00
CAS# NULL NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA		2.28 2.30 2.51 2.94 2.63 2.71 2.53	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85 79	20-20 20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00 00 00 00
CAS# NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA		2.28 2.30 2.51 2.94 2.63 2.71 2.53 2.64	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85 79 83	20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00 00 00 00 00
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA		2.28 2.30 2.51 2.94 2.63 2.71 2.53 2.64 2.54	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85 79 83 79	20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00 00 00 00 00 00
CAS# NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA		2.28 2.30 2.51 2.94 2.63 2.71 2.53 2.64 2.54 2.68	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85 79 83 79 84	20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20	000 000 000 000 000 000 000 000 000
CAS# NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA		2.28 2.30 2.51 2.94 2.63 2.71 2.53 2.64 2.54 2.68 2.59	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85 79 83 79 84 81	20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00 00 00 00 00 00 00 00
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA		2.28 2.30 2.51 2.94 2.63 2.71 2.53 2.64 2.54 2.68	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	71 72 78 92 82 85 79 83 79 84	20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20 20-20	00 00 00 00 00 00 00 00 00 00 00 00 00

Authorized by: J. Uttrl

Release Date:

26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.104 g Final Vol: 4 mL Lab ID #: B19K056-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K056-MS1

Source Lab ID #: 1906027-66

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte		Result	Spike Level	Source Result	%Rec	%Rec Limits
N-ethyl perf	luorooctanesulfonamideacetate	25.6	19.5	0.0	131	40-160
	rfluorooctanesulfonamideaceta	26.9	19.5	0.0	137	40-160
	anesulfonate	25.9	19.5	0.0	132	40-160
	canesulfonate	40.7	19.5	0.1	208	40-160
Perfluorode		25.6	19.5	0.0	131	40-160
Perfluorodo		26.2	19.5	0.0	134	40-160
	otanesulfonate	29.2	19.5	0.0	149	40-160
Perfluorohe _l		25.4	19.5	0.0	130	40-160
	xanesulfonate	27.0	19.5	0.0	138	40-160
Perfluorone:		26.2	19.5	0.0	134	40-160
	nanesulfonate	28.5	19.5	0.0	146	40-160
Perfluorono		23.7	19.5	0.0	121	40-160
	tanesulfonate	26.1	19.5	0.3	132	40-160
		25.9	19.5	0.0	132	40-160
Perfluorooctanoate Perfluoropentanoate		26.0	19.5	0.0	133	40-160
	radecanoate	24.8	19.5	0.0	127	40-160
Perfluorotei. Perfluorotrio		24.7	19.5	0.0	126	40-160
Perfluoroun Perfluoroun		26.3	19.5	0.0	135	40-160
Permuoroum	decanoate	20.5	23.0	0,0		
<u>Surrogate F</u>	Recovery:		Spike			Rec.
CAS#	Analyte	Result	Level	% I	Rec. Li	mits
NULL	D3-N-MeFOSAA	7.67	12.5	6		-200
NULL				7	7 20	-200
	D5-N-EtFOSAA	9.58	12.5			
NULL NULL	M2PFTeDA	12.9	12.5	10)3 20	-200
NULL NULL NULL	M2PFTeDA M3PFBS	12.9 12.1	12.5 12.5	10 9	03 20- 6 20-	-200
NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS	12.9 12.1 10.5	12.5 12.5 12.5	10 9 8	03 20- 6 20- 4 20	-200 -200
NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA	12.9 12.1 10.5 10.4	12.5 12.5 12.5 12.5	10 9 8 8	03 20- 6 20- 4 20- 4 20	-200 -200 -200
NULL NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	12.9 12.1 10.5 10.4 10.6	12.5 12.5 12.5 12.5 12.5	10 9 8 8 8	20- 6 20- 4 20- 4 20- 5 20	-200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	12.9 12.1 10.5 10.4 10.6 12.7	12.5 12.5 12.5 12.5 12.5 12.5	10 9 8 8 8	20 20 20 4 20 4 20 5 20 20 20 20 20 20 20 20 20 20 20 20 20	-200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	12.9 12.1 10.5 10.4 10.6 12.7 10.1	12.5 12.5 12.5 12.5 12.5 12.5 12.5	10 9 8 8 8 10 8	20 6 20 4 20 4 20 5 20 01 20 1 20	-200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	12.9 12.1 10.5 10.4 10.6 12.7 10.1	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	10 9 8 8 8 10 8	20 6 20 4 20 4 20 5 20 01 20 1 20 1 20	-200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	12.9 12.1 10.5 10.4 10.6 12.7 10.1 10.1 9.55	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	10 9 8 8 8 10 8 8	03 20· 66 20 44 20 44 20 55 20 01 20 1 20 1 20 6 20	-200 -200 -200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	12.9 12.1 10.5 10.4 10.6 12.7 10.1	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	10 9 8 8 8 10 8 8 7	03 20· 66 20 44 20 45 20 51 20 11 20 11 20 66 20 33 20	-200 -200 -200 -200 -200 -200 -200

Authorized by:

J. Wtohl

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.362 g Final Vol: 4 mL Lab ID #: B19K056-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K056-MSD1

Source Lab ID #: 1906027-66

Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	26.5	18.6	0.0	142	3	40-160	40
N-methyl perfluorooctanesulfonamideacetate	26.5	18.6	0.0	142	1	40-160	40
Perfluorobutanesulfonate	25.5	18.6	0.0	137	1	40-160	40
Perfluorodecanesulfonate	40.5	18.6	0.1	217	0.6	40-160	40
Perfluorodecanoate	25.8	18.6	0.0	139	1	40-160	40
Perfluorododecanoate	26.9	18.6	0.0	145	3	40-160	40
Perfluoroheptanesulfonate	28.2	18.6	0.0	151	4	40-160	40
Perfluoroheptanoate	25.3	18.6	0.0	136	0.2	40-160	40
Perfluorohexanesulfonate	26.8	18.6	0.0	144	0.7	40-160	40
Perfluorohexanoate	26.6	18.6	0.0	143	1	40-160	40
Perfluorononanesulfonate	29.6	18.6	0.0	159	4	40-160	40
Perfluorononanoate	22.5	18.6	0.0	121	5	40-160	40
Perfluorooctanesulfonate	25.6	18.6	0.3	136	2	40-160	40
Perfluorooctanoate	26.7	18.6	0.0	144	3	40-160	40
Perfluoropentanoate	26.7	18.6	0.0	144	3	40-160	40
Perfluorotetradecanoate	24.0	18.6	0.0	129	3	40-160	40
Perfluorotridecanoate	23.5	18.6	0.0	126	5	40-160	40
Perfluoroundecanoate	26.3	18.6	0.0	142	0.1	40-160	40

Surrogate R	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	7.68	11.9	64	20-200	
NULL	D5-N-EtFOSAA	9.40	11.9	79	20-200	
NULL	M2PFTeDA	13.8	11.9	116	20-200	
NULL	M3PFBS	11.6	11.9	97	20-200	
NULL	M3PFHxS	10.5	11.9	88	20-200	
NULL	M4PFHpA	10.6	11.9	89	20-200	
NULL	M5PFHxA	10.2	11.9	86	20-200	
NULL	M5PFPeA	12.8	11.9	107	20-200	
NULL	M6PFDA	9.37	11.9	79	20-200	
NULL	M7PFUnA	10.0	11.9	84	20-200	
NULL	M8PFOA	9.74	11.9	82	20-200	
NULL	M8PFOS	10.5	11.9	88	20-200	
NULL	M9PFNA	10.6	11.9	89	20-200	
NULL	MPFDoA	10.7	11.9	89	20-200	

Authorized by:

Release Date:

46/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: Reference

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 0.537 g Final Vol: 4 mL Lab ID #: B19K056-SRM1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K056-SRM1 Batch ID: B19K056 Prepared: 11/6/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte		Result	Spike Level	RL	%Rec	%Rec Limits
N-ethyl per	fluorooctanesulfon	17.0	18.0	1.86	94	60-140
N-methyl pe	erfluorooctanesulf(13.8	14.3	1.86	96	60-140
	ıtanesulfonate	16.5	20.6	1.86	80	60-140
Perfluorode	ecanesulfonate	20.5	21.4	1.86	96	60-140
Perfluorode	ecanoate	19.7	22.6	1.86	87	60-140
Perfluorodo	odecanoate	11.7	13.8	3.72	85	60-140
Perfluorohe	eptanesulfonate	12.8	13.3	1.86	96	60-140
Perfluorohe	•	10.0	13.3	1.86	75	60-140
	exanesulfonate	15.5	18.5	1.86	84	60-140
Perfluorohe		13.3	16.3	1.86	81	60-140
	onanesulfonate	22.2	17.8	1.86	125	60-140
Perfluorono		14.6	19.3	1.86	76	60-140
	etanesulfonate	12.1	15.3	1.86	79	60-140
Perfluorood		20.8	23.8	1.86	87	60-140
Perfluorope		17.3	19.3	1.86	89	60-140
•	tradecanoate	14.5	18.5	7.45	79	60-140
Perfluorote		12.3	15.0	7.45	82	60-140
Perfluorou		18.1	22.3	1.86	81	60-140
Surrogate F						_
	Recovery.		Spike			Rec.
CAS#	Analyte	Result	Level	% R	ec. Li	imits
NULL	D3-N-MeFOSAA	18.4	29.8	62)-200
NULL	D5-N-EtFOSAA	18.2	29.8	61)-200
NULL	M2PFTeDA	18.7	29.8	63)-200
NULL	M3PFBS	28.5	29.8	96)-200
NULL	M3PFHxS	25.6	29.8	86)-200
NULL	M4PFHpA	25.1	29.8	84)-200
NULL	M5PFHxA	26.1	29.8	88)-200
NULL	M5PFPeA	24.7	29.8	83)-200
NULL	M6PFDA	22.0	29.8	74)-200
NULL	M7PFUnA	22.6	29.8	76		0-200
NULL	M8PFOA	23.3	29.8	78 79		0-200 0-200
NULL	M8PFOS	23.6	29.8	/9 84		0-200 0-200
NULL	M9PFNA	25.2 21.7	29.8 29.8	84 73		0-200 0-200
NULL	MPFDoA	21,7	47.0	1.	, 20	J-200

Authorized by: _

J. Ustil C

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW228-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.181 g Final Vol: 4.55 mL Lab ID #: 1906027-58 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 22.87%

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.960	U	0.960	0.121
NULL	N-methyl perfluorooctanesulfonamideacetate	0.960	U	0.960	0.117
45187-15-3	Perfluorobutanesulfonate	0.960	U	0.960	0.0404
335-77-3	Perfluorodecanesulfonate	0.960	U	0.960	0.162
73829-36-4	Perfluorodecanoate	0.960	U	0.960	0.0710
171978-95-3	Perfluorododecanoate	1.92	U	1.92	0.0565
375-92-8	Perfluoroheptanesulfonate	0.960	U	0.960	0.0917
120885-29-2	Perfluoroheptanoate	0.960	U	0.960	0.165
108427-53-8	Perfluorohexanesulfonate	0.960	U	0.960	0.292
92612-52-7	Perfluorohexanoate	0.757	J	0.960	0.153
68259-12-1	Perfluorononanesulfonate	0.960	U	0.960	0.0612
72007-68-2	Perfluorononanoate	0.960	U	0.960	0.0927
45298-90-6	Perfluorooctanesulfonate	0.204	J	0.960	0.123
45285-51-6	Perfluorooctanoate	0.960	U	0.960	0.116
45167-47-3	Perfluoropentanoate	0.960	U	0.960	0.242
365971-87-5	Perfluorotetradecanoate	3.84	UJ	3.84	0.0757
862374-87-6	Perfluorotridecanoate	3.84	U	3.84	0.0411
NULL	Perfluoroundecanoate	0.960	U	0.960	0.0476

Surrogate 1	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	14.8	13.5	110	20-200	
NULL	D5-N-EtFOSAA	17.4	13.5	129	20-200	
NULL	M2PFTeDA	24.3	13.5	180	20-200	
NULL	M3PFBS	20.3	13.5	150	20-200	
NULL	M3PFHxS	18.4	13.5	136	20-200	
NULL	M4PFHpA	17.4	13.5	129	20-200	
NULL	M5PFHxA	17.8	13.5	132	20-200	
NULL	M5PFPeA	20.5	13.5	152	20-200	
NULL	M6PFDA	18.1	13.5	134	20-200	
NULL	M7PFUnA	18.8	13.5	139	20-200	
NULL	M8PFOA	15.4	13.5	114	20-200	
NULL	M8PFOS	18.1	13.5	134	20-200	
NULL	M9PFNA	15.5	13.5	115	20-200	•
NULL	MPFDoA	19.7	13.5	146	20-200	

Authorized by:

Release Date:

26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: PSUW244-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.997 g Final Vol: 4 mL Lab ID #: 1906027-59 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 40.81%

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.409	U	0.409	0.0517
NULL	N-methyl perfluorooctanesulfonamideacetate	0.409	U	0.409	0.0497
45187-15-3	Perfluorobutanesulfonate	0.409	U	0.409	0.0172
335-77-3	Perfluorodecanesulfonate	0.409	U	0.409	0.0690
73829-36-4	Perfluorodecanoate	0.409	U	0.409	0.0302
171978-95-3	Perfluorododecanoate	0.817	U	0.817	0.0241
375-92-8	Perfluoroheptanesulfonate	0.409	U	0.409	0.0390
120885-29-2	Perfluoroheptanoate	0.409	U	0.409	0.0704
108427-53-8	Perfluorohexanesulfonate	0.409	U	0.409	0.124
92612-52-7	Perfluorohexanoate	0.564		0.409	0.0652
68259-12-1	Perfluorononanesulfonate	0.409	U	0.409	0.0260
72007-68-2	Perfluorononanoate	0.409	U	0.409	0.0394
45298-90-6	Perfluorooctanesulfonate	0.198	J	0.409	0.0522
45285-51-6	Perfluorooctanoate	0.409	U	0.409	0.0492
45167-47-3	Perfluoropentanoate	0.409	U	0.409	0.103
365971-87-5	Perfluorotetradecanoate	1.63	UJ	1.63	0.0322
862374-87-6	Perfluorotridecanoate	1.63	U	1.63	0.0175
NULL	Perfluoroundecanoate	0.409	U	0.409	0.0203

Surrogate Rec	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	5.48	6.54	84	20-200
NULL	D5-N-EtFOSAA	6.38	6.54	98	20-200
NULL	M2PFTeDA	9.05	6.54	138	20-200
NULL	M3PFBS	9.17	6.54	140	20-200
NULL	M3PFHxS	8.37	6.54	128	20-200
NULL	M4PFHpA	6.79	6.54	104	20-200
NULL	M5PFHxA	9.25	6.54	141	20-200
NULL	M5PFPeA	7.58	6.54	116	20-200
NULL	M6PFDA	7.98	6.54	122	20-200
NULL	M7PFUnA	7.63	6.54	117	20-200
NULL	M8PFOA	6.30	6.54	96	20-200
NULL	M8PFOS	7.82	6.54	120	20-200
NULL	M9PFNA	6.63	6.54	101	20-200
NULL	MPFDoA	8.14	6.54	125	20-200

Authorized by: Release Date: 26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO237-R1

Work Order: 1906027 Project Officer: Dutch, Margaret

Initial Vol: 5.266 g Final Vol: 4 mL Lab ID #: 1906027-78 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

Matrix: Sediment/Soil Units: ug/Kg dw

Batch ID: B19K058

Prepared: 11/7/2019

Analyzed: 12/14/2019

% Solids: 27.14%

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.700	U	0.700	0.0885
NULL	N-methyl perfluorooctanesulfonamideacetate	0.700	U	0.700	0.0851
45187-15-3	Perfluorobutanesulfonate	0.134	J	0.700	0.0295
335-77-3	Perfluorodecanesulfonate	0.700	U	0.700	0.118
73829-36-4	Perfluorodecanoate	0.700	U	0.700	0.0518
171978-95-3	Perfluorododecanoate	1.40	U	1.40	0.0412
375-92-8	Perfluoroheptanesulfonate	0.700	U	0.700	0.0668
120885-29-2	Perfluoroheptanoate	0.700	U	0.700	0.121
108427-53-8	Perfluorohexanesulfonate	0.700	U	0.700	0.213
92612-52-7	Perfluorohexanoate	0.663	J	0.700	0.112
68259-12-1	Perfluorononanesulfonate	0.700	U	0.700	0.0446
72007-68-2	Perfluorononanoate	0.700	U	0.700	0.0675
45298-90-6	Perfluorooctanesulfonate	0.325	J	0.700	0.0893
45285-51-6	Perfluorooctanoate	0.700	U	0.700	0.0843
45167-47-3	Perfluoropentanoate	0.700	U	0.700	0.177
365971-87-5	Perfluorotetradecanoate	2.80	UJ	2.80	0.0552
862374-87-6	Perfluorotridecanoate	2.80	U	2.80	0.0300
NULL	Perfluoroundecanoate	0.700	U	0.700	0.0347

Surrogate 1	<u> Recovery:</u>		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	8.53	11.2	76 .	20-200	
NULL	D5-N-EtFOSAA	10.0	11.2	89	20-200	
NULL	M2PFTeDA	14.1	11.2	126	20-200	
NULL	M3PFBS	14.2	11.2	127	20-200	
NULL	M3PFHxS	12.2	11.2	109	20-200	
NULL	M4PFHpA	11.3	11.2	101	20-200	
NULL	M5PFHxA	12.6	11.2	113	20-200	
NULL	M5PFPeA	13.9	11.2	124	20-200	
NULL	M6PFDA	11.3	11.2	101	20-200	
NULL	M7PFUnA	11.6	11.2	103	20-200	
NULL	M8PFOA	9.74	11.2	87	20-200	
NULL	M8PFOS	11.2	11.2	100	20-200	
NULL	M9PFNA	10.4	11.2	93	20-200	
NULL	MPFDoA	11.8	11.2	106	20-200	
1						

Authorized by:

Release Date:

26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO241-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.279 g Final Vol: 4 mL

Surrogate Recovery:

Lab ID #: 1906027-79 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 23.64%

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.801	U	0.801	0.101
NULL	N-methyl perfluorooctanesulfonamideacetate	0.801	U	0.801	0.0974
45187-15-3	Perfluorobutanesulfonate	0.801	U	0.801	0.0337
335-77-3	Perfluorodecanesulfonate	0.801	U	0.801	0.135
73829-36-4	Perfluorodecanoate	0.801	U	0.801	0.0593
171978-95-3	Perfluorododecanoate	1.60	U	1.60	0.0472
375-92-8	Perfluoroheptanesulfonate	0,801	U	0.801	0.0765
120885-29-2	Perfluoroheptanoate	0.801	U	0.801	0.138
108427-53-8	Perfluorohexanesulfonate	0.801	U	0.801	0.244
92612-52-7	Perfluorohexanoate	0.881		0.801	0.128
68259-12-1	Perfluorononanesulfonate	0.801	U	0.801	0.0510
72007-68-2	Perfluorononanoate	0.801	U	0.801	0.0773
45298-90-6	Perfluorooctanesulfonate	0.426	J	0.801	0.102
45285-51-6	Perfluorooctanoate	0.801	U	0.801	0.0965
45167-47-3	Perfluoropentanoate	0.801	U	0.801	0.202
365971-87-5	Perfluorotetradecanoate	3.21	UJ	3.21	0.0632
862374-87-6	Perfluorotridecanoate	3.21	U	3.21	0.0343
NULL	Perfluoroundecanoate	0.801	U	0.801	0.0397

Buildate	Accovery.		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	10.5	12.8	82	20-200	
NULL	D5-N-EtFOSAA	12.2	12.8	95	20-200	
NULL	M2PFTeDA	18.6	12.8	145	20-200	
NULL	M3PFBS	18.1	12.8	141	20-200	
NULL	M3PFHxS	15.7	12.8	123	20-200	
NULL	M4PFHpA	13.9	12.8	108	20-200	
NULL	M5PFHxA	17.1	12.8	133	20-200	
NULL	M5PFPeA	15.4	12.8	120	20-200	
NULL	M6PFDA	13.9	12.8	109	20-200	
NULL	M7PFUnA	14.5	12.8	113	20-200	
NULL	M8PFOA	11.4	12.8	89	20-200	
NULL	M8PFOS	14.1	12.8	110	20-200	
NULL	M9PFNA	12.7	12.8	99	20-200	
NULL	MPFDoA	15.0	12.8	117	20-200	

Authorized by: Release Date: 36/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO242-R1

Work Order: 1906027 Project Officer: Dutch, Margaret

Initial Vol: 5.159 g Final Vol: 4 mL Lab ID #: 1906027-80 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 21.88%

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.886	U	0.886	0.112
NULL	N-methyl perfluorooctanesulfonamideacetate	0.886	U	0.886	0.108
45187-15-3	Perfluorobutanesulfonate	0.886	U	0.886	0.0373
335-77-3	Perfluorodecanesulfonate	0.886	U	0.886	0.150
73829-36-4	Perfluorodecanoate	0.886	U	0.886	0.0655
171978-95-3	Perfluorododecanoate	1.77	U	1.77	0.0522
375-92-8	Perfluoroheptanesulfonate	0.886	U	0.886	0.0846
120885-29-2	Perfluoroheptanoate	0.886	U	0.886	0.153
108427-53-8	Perfluorohexanesulfonate	0.886	U	0.886	0.270
92612-52-7	Perfluorohexanoate	0.886	U	0.886	0.141
68259-12-1	Perfluorononanesulfonate	0.886	U	0.886	0.0564
72007-68-2	Perfluorononanoate	0.886	U	0.886	0.0855
45298-90-6	Perfluorooctanesulfonate	0.174	J	0.886	0.113
45285-51-6	Perfluorooctanoate	0.886	U	0.886	0.107
45167-47-3	Perfluoropentanoate	0.886	U	0.886	0.223
365971-87-5	Perfluorotetradecanoate	0.174	J	3.54	0.0698
862374-87-6	Perfluorotridecanoate	3.54	U	3.54	0.0379
NULL	Perfluoroundecanoate	0.886	U	0.886	0.0439

Surrogate Rec	covery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	10.2	14.2	72	20-200
NULL	D5-N-EtFOSAA	15.1	14.2	107	20-200
NULL	M2PFTeDA	17.5	14.2	123	20-200
NULL	M3PFBS	14.9	14.2	105	20-200
NULL	M3PFHxS	13.9	14.2	98	20-200
NULL	M4PFHpA	13.2	14.2	93	20-200
NULL	M5PFHxA	14.6	14.2	103	20-200
NULL	M5PFPeA	16.4	14.2	116	20-200
NULL	M6PFDA	14.3	14.2	101	20-200
NULL	M7PFUnA	14.5	14.2	103	20-200
NULL	M8PFOA	12.1	14.2	85	20-200
NULL	M8PFOS	14.1	14.2	100	20-200
NULL	M9PFNA	12.7	14.2	90	20-200
NULL	MPFDoA	14.6	14.2	103	20-200

Authorized by: A Waterland Release Date: Z(6(20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO243-R1

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.21 g Final Vol: 4 mL Lab ID #: 1906027-81 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 40.71%

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.471	U	0.471	0.0596
NULL	N-methyl perfluorooctanesulfonamideacetate	0.471	U	0.471	0.0573
45187-15-3	Perfluorobutanesulfonate	0.471	U	0.471	0.0199
335-77-3	Perfluorodecanesulfonate	0.0962	J	0.471	0.0796
73829-36-4	Perfluorodecanoate	0.471	U	0.471	0.0349
171978-95-3	Perfluorododecanoate	0.943	U	0.943	0.0278
375-92-8	Perfluoroheptanesulfonate	0.471	U	0.471	0.0450
120885-29-2	Perfluoroheptanoate	0.471	U	0.471	0.0812
108427-53-8	Perfluorohexanesulfonate	0.471	U	0.471	0.143
92612-52-7	Perfluorohexanoate	0.471	U	0.471	0.0752
68259-12-1	Perfluorononanesulfonate	0.471	U	0.471	0.0300
72007-68-2	Perfluorononanoate	0.471	U	0.471	0.0455
45298-90-6	Perfluorooctanesulfonate	0.0905	J	0.471	0.0602
45285-51-6	Perfluorooctanoate	0.471	U	0.471	0.0568
45167-47-3	Perfluoropentanoate	0.471	U	0.471	0.119
365971-87-5	Perfluorotetradecanoate	0.109	J	1.89	0.0372
862374-87-6	Perfluorotridecanoate	1.89	U	1.89	0.0202
NULL	Perfluoroundecanoate	0.471	U	0.471	0.0234

Surrogate R	ecovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	6.96	7.54	92	20-200
NULL	D5-N-EtFOSAA	9.45	7.54	125	20-200
NULL	M2PFTeDA	8.62	7.54	114	20-200
NULL	M3PFBS	7.15	7.54	95	20-200
NULL	M3PFHxS	7.26	7.54	96	20-200
NULL	M4PFHpA	6.76	7.54	90	20-200
NULL	M5PFHxA	6.43	7.54	85	20-200
NULL	M5PFPeA	9.02	7.54	120	20-200
NULL	M6PFDA	7.12	7.54	94	20-200
NULL	M7PFUnA	7.41	7.54	98	20-200
NULL	M8PFOA	6.56	7.54	87	20-200
NULL	M8PFOS	7.66	7.54	102	20-200
NULL	M9PFNA	7.18	7.54	95	20-200
NULL	MPFDoA	7.95	7.54	105	20-200

Authorized by: Release Date: 26/20

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO244-R1

Work Order: 1906027 Project Officer: Dutch, Margaret

Initial Vol: 5.265 g Final Vol: 4 mL

Lab ID #: 1906027-82 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM % Solids: 54.17%

Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Batch ID: B19K058

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.351	U	0.351	0.0443
NULL	N-methyl perfluorooctanesulfonamideacetate	0.351	Ū	0.351	0.0426
45187-15-3	Perfluorobutanesulfonate	0.351	Ŭ	0.351	0.0148
335-77-3	Perfluorodecanesulfonate	0.351	U	0.351	0.0592
73829-36-4	Perfluorodecanoate	0.351	U	0.351	0.0259
171978-95-3	Perfluorododecanoate	0.701	U	0.701	0.0206
375-92-8	Perfluoroheptanesulfonate	0.351	U	0.351	0.0335
120885-29-2	Perfluoroheptanoate	0.351	U	0.351	0.0604
108427-53-8	Perfluorohexanesulfonate	0.351	U	0.351	0.107
92612-52-7	Perfluorohexanoate	0.351	U	0.351	0.0559
68259-12-1	Perfluorononanesulfonate	0.351	U	0.351	0.0223
72007-68-2	Perfluorononanoate	0.351	U	0.351	0.0338
45298-90-6	Perfluorooctanesulfonate	0.0505	J	0.351	0.0447
45285-51-6	Perfluorooctanoate	0.351	U	0.351	0.0422
45167-47-3	Perfluoropentanoate	0.351	U	0.351	0.0884
365971-87-5	Perfluorotetradecanoate	1.40	UJ	1.40	0.0276
862374-87-6	Perfluorotridecanoate	1.40	U	1.40	0.0150
NULL	Perfluoroundecanoate	0.351	U	0.351	0.0174

Surrogate F	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	5.33	5.61	95	20-200	
NULL	D5-N-EtFOSAA	5.26	5.61	94	20-200	
NULL	M2PFTeDA	7.73	5.61	138	20-200	
NULL	M3PFBS	6.42	5.61	115	20-200	
NULL	M3PFHxS	5.65	5.61	101	20-200	
NULL	M4PFHpA	5.12	5.61	91	20-200	
NULL	M5PFHxA	5.15	5.61	92	20-200	
NULL	M5PFPeA	6.18	5.61	110	20-200	
NULL	M6PFDA	5.22	5.61	93	20-200	
NULL	M7PFUnA	5.12	5.61	91	20-200	
NULL	M8PFOA	4.53	5.61	81	20-200	
NULL	M8PFOS	5.23	5.61	93	20-200	
NULL	M9PFNA	4.37	5.61	78	20-200	
NULL	MPFDoA	5.49	5.61	98	20-200	

Release Date: Authorized by:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

Field ID: UWNO244-R2

Work Order: 1906027

Project Officer: Dutch, Margaret

Initial Vol: 5.14 g Final Vol: 4 mL Lab ID #: 1906027-83 Collected: 6/18/2019

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

% Solids: 52.00%

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideacetate	0.374	U	0.374	0.0473
NULL	N-methyl perfluorooctanesulfonamideacetate	0.374	U	0.374	0.0455
45187-15-3	Perfluorobutanesulfonate	0.374	U	0.374	0.0158
335-77-3	Perfluorodecanesulfonate	0.374	U	0.374	0.0632
73829-36-4	Perfluorodecanoate	0.374	U	0.374	0.0277
171978-95-3	Perfluorododecanoate	0.748	U	0.748	0.0220
375-92-8	Perfluoroheptanesulfonate	0.374	U	0.374	0.0357
120885-29-2	Perfluoroheptanoate	0.374	U	0.374	0.0644
108427-53-8	Perfluorohexanesulfonate	0.374	U	0.374	0.114
92612-52-7	Perfluorohexanoate	0.374	U	0.374	0.0597
68259-12-1	Perfluorononanesulfonate	0.374	U	0.374	0.0238
72007-68-2	Perfluorononanoate	0.374	U	0.374	0.0361
45298-90-6	Perfluorooctanesulfonate	0.0539	J	0.374	0.0477
45285-51-6	Perfluorooctanoate	0.374	U	0.374	0.0451
45167-47-3	Perfluoropentanoate	0.374	U	0.374	0.0944
365971-87-5	Perfluorotetradecanoate	1.50	UJ	1.50	0.0295
862374-87-6	Perfluorotridecanoate	1.50	U	1.50	0.0160
NULL	Perfluoroundecanoate	0.374	U	0.374	0.0185

Surrogate R	<u>lecovery:</u>		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	6.14	5,99	103	20-200	
NULL	D5-N-EtFOSAA	5.96	5.99	100	20-200	
NULL	M2PFTeDA	8.77	5.99	146	20-200	
NULL	M3PFBS	6.42	5.99	107	20-200	
NULL	M3PFHxS	5.93	5.99	99	20-200	
NULL	M4PFHpA	5.77	5.99	96	20-200	
NULL	M5PFHxA	5.34	5.99	89	20-200	
NULL	M5PFPeA	6.58	5.99	110	20-200	
NULL	M6PFDA	5.77	5.99	96	20-200	
NULL	M7PFUnA	5.84	5.99	98	20-200	
NULL	M8PFOA	4.94	5.99	82	20-200	
NULL	M8PFOS	5.55	5.99	93	20-200	
NULL	M9PFNA	4.87	5.99	81	20-200	
NULL	MPFDoA	6.14	5.99	103	20-200	

Authorized by: S. Witch Release Date: 2(6(20)

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Method Blank

Work Order: Batch QC

Initial Vol: 5 g

Final Vol: 4 mL

Project Officer: Dutch, Margaret

buys seament Monteoring

Lab ID #: B19K058-BLK1

Prep Method: AOAC2007.01 Analysis Method: SW8321BM

Source Field ID: B19K058-BLK1

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019

Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte	Result	Qualifier	RL	MDL
NULL	N-ethyl perfluorooctanesulfonamideaceta	0.0576	J	0.200	0.0253
NULL	N-methyl perfluorooctanesulfonamideaceta	0.200	U	0.200	0.0243
45187-15-3	Perfluorobutanesulfonate	0.200	U	0.200	0.00842
335-77-3	Perfluorodecanesulfonate	0.200	U	0.200	0.0338
73829-36-4	Perfluorodecanoate	0.200	U	0.200	0.0148
171978-95-3	Perfluorododecanoate	0.400	U	0.400	0.0118
375-92-8	Perfluoroheptanesulfonate	0.200	U	0.200	0.0191
120885-29-2	Perfluoroheptanoate	0.200	U	0.200	0.0345
108427-53-8	Perfluorohexanesulfonate	0.200	U	0.200	0.0609
92612-52-7	Perfluorohexanoate	0.200	U	0.200	0.0319
68259-12-1	Perfluorononanesulfonate	0.200	U	0.200	0.0127
72007-68-2	Perfluorononanoate	0.200	U	0.200	0.0193
45298-90-6	Perfluorooctanesulfonate	0.200	U	0.200	0.0255
45285-51-6	Perfluorooctanoate	0.200	U	0.200	0.0241
45167-47-3	Perfluoropentanoate	0.200	U	0.200	0.0505
365971-87-5	Perfluorotetradecanoate	0.800	UJ	0.800	0.0158
862374-87-6	Perfluorotridecanoate	0.800	U	0.800	0.00857
NULL	Perfluoroundecanoate	0.200	U	0.200	0.00991

Buildate	accovery.		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	2.33	3.20	73	20-200	
NULL	D5-N-EtFOSAA	2.38	3.20	74	20-200	
NULL	M2PFTeDA	2.60	3.20	81	20-200	
NULL	M3PFBS	3.55	3.20	111	20-200	
NULL	M3PFHxS	3.07	3.20	96	20-200	
NULL	M4PFHpA	2.77	3.20	87	20-200	
NULL	M5PFHxA	3.12	3.20	98	20-200	
NULL	M5PFPeA	2.80	3.20	87	20-200	
NULL	M6PFDA	2.70	3.20	85	20-200	
NULL	M7PFUnA	2.54	3.20	79	20-200	
NULL	M8PFOA	2.59	3,20	81	20-200	
NULL	M8PFOS	2.69	3.20	84	20-200	
NULL	M9PFNA	2.68	3.20	84	20-200	
NULL	MPFDoA	2.64	3.20	82	20-200	

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K058-BS1

Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K058-BS1 Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

			Spike	nr	0/ Doc	%Rec
Analyte		Result	Level	RL	%Rec	Limits
	uorooctanesulfonamideacetate	6.3	5.00	0.200	126	50-150
N-methyl per	rfluorooctanesulfonamideacetate	6.7	5.00	0.200	133	50-150
Perfluorobuta	anesulfonate	6.2	5.00	0.200	124	50-150
Perfluorodec	anesulfonate	6.8	5.00	0.200	136	50-150
Perfluorodec	anoate	6.1	5.00	0.200	122	50-150
Perfluorodod	lecanoate	5.9	5.00	0.400	118	50-150
Perfluorohep	tanesulfonate	6.9	5.00	0.200	139	50-150
Perfluorohep		5.8	5.00	0.200	116	50-150
	anesulfonate	6.4	5.00	0.200	129	50-150
Perfluorohex		5.9	5.00	0.200	119	50-150
	anesulfonate	6.6	5.00	0.200	133	50-150
Perfluoronon		5.8	5.00	0.200	117	50-150
Perfluoroocta		6.3	5.00	0.200	126	50-150
Perfluorooct		6.1	5.00	0.200	122	50-150
Perfluoropen		6.0	5.00	0.200	119	50-150
Perfluorotetr		6.0	5.00	0.800	120	50-150
Perfluoroteti Perfluorotrid		6.0	5.00	0.800	120	50-150
	ccanoaic	0,0				
		6.1	5.00	0.200	122	50-150
Perfluoround	lecanoate	6.1	5.00	0.200		
Perfluoround	lecanoate		Spike		%	Rec.
Perfluoround Surrogate R	lecanoate	6.1 Result		0.200 % R	%	50-150 Rec. mits
Perfluoround Surrogate R CAS#	ecovery: Analyte		Spike	% R	kec. Li	Rec. mits
Perfluoround Surrogate R CAS# NULL	ecovery: Analyte D3-N-MeFOSAA	Result	Spike Level	% R	% Li 2 20 5 20	Rec. mits -200 -200
Perfluoround Surrogate R CAS# NULL NULL	ecovery: Analyte	2.31 2.43 2.62	3.20 3.20 3.20 3.20	% R 72 76 82	% Li 20 20 20 20 20 20 20 20	Rec. mits -200 -200 -200
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL	ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS	2.31 2.43 2.62 2.74	3.20 3.20 3.20 3.20 3.20	% R 72 76 82	% 2 20 5 20 5 20 5 20 5 20	Rec. mits -200 -200 -200 -200
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS	2.31 2.43 2.62 2.74 2.57	3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86	% Lec. Li 2 20 5 20 2 20 5 20 5 20 0 20	Rec. mits -200 -200 -200 -200 -200 -200
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA	2.31 2.43 2.62 2.74 2.57 2.98	3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80	% Lec. Li 2 20 5 20 2 20 5 20 5 20 6 20 6 20 7 20 8 20	Rec. mits -200 -200 -200 -200 -200 -200 -200
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	2.31 2.43 2.62 2.74 2.57 2.98 2.53	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 93	% Lec. Li 2 20 5 20 2 20 5 20 5 20 6 20 6 20 7 20 8 20 8 20 9 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	2.31 2.43 2.62 2.74 2.57 2.98 2.53 2.98	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 92 79	%	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	2.31 2.43 2.62 2.74 2.57 2.98 2.53 2.98 2.70	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 92 79 93	% 20 20 20 20 20 20 20 20 20 20 3 20 20 3 20 3 20 4 20	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	2.31 2.43 2.62 2.74 2.57 2.98 2.53 2.98 2.70 2.65	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 92 79 93 84	%	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	2.31 2.43 2.62 2.74 2.57 2.98 2.53 2.98 2.70 2.65 2.66	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 93 79 92 84 83	% 20 20 5 20 20 20 20 3 20 3 20 4 20 3 20 3 20 3	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS	2.31 2.43 2.62 2.74 2.57 2.98 2.53 2.98 2.70 2.65 2.66 2.53	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 93 79 92 84 83	%	Rec. mits -200 -200 -200 -200 -200 -200 -200 -20
Perfluoround Perfluoround Surrogate R CAS# NULL NULL NULL NULL NULL NULL NULL NU	decanoate ecovery: Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	2.31 2.43 2.62 2.74 2.57 2.98 2.53 2.98 2.70 2.65 2.66	3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	% R 72 76 82 86 80 93 79 92 84 83	%	Rec. mits -200 -200 -200 -200 -200 -200 -200 -2

Release Date:

Authorized by:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: LCS Dup

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 5 g Final Vol: 4 mL Lab ID #: B19K058-BSD1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K058-BSD1 Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	6.3	5.00	125	0.9	50-150	40
N-methyl perfluorooctanesulfonamideacetate	6.5	5.00	129	3	50-150	40
Perfluorobutanesulfonate	6.1	5.00	123	1	50-150	40
Perfluorodecanesulfonate	6.4	5.00	128	7	50-150	40
Perfluorodecanoate	6.1	5.00	122	0.09	50-150	40
Perfluorododecanoate	5.7	5.00	113	4	50-150	40
Perfluoroheptanesulfonate	6.5	5.00	130	7	50-150	40
Perfluoroheptanoate	5.7	5.00	115	1	50-150	40
Perfluorohexanesulfonate	6.3	5.00	125	3	50-150	40
Perfluorohexanoate	6.1	5.00	121	2	50-150	40
Perfluorononanesulfonate	6.5	5.00	130	2	50-150	40
Perfluorononanoate	5.6	5.00	112	4	50-150	40
Perfluorooctanesulfonate	6.0	5.00	119	5	50-150	40
Perfluorooctanoate	6,2	5.00	125	2	50-150	40
Perfluoropentanoate	5.8	5.00	116	3	50-150	40
Perfluorotetradecanoate	5.9	5.00	117	3	50-150	40
Perfluorotridecanoate	5.7	5.00	113	5	50-150	40
Perfluoroundecanoate	5.8	5.00	117	4	50-150	40

Surrogate F	Recovery:		Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.73	3.20	85	20-200
NULL	D5-N-EtFOSAA	2.71	3.20	85	20-200
NULL	M2PFTeDA	2.87	3.20	90	20-200
NULL	M3PFBS	3.81	3.20	119	20-200
NULL	M3PFHxS	3.47	3.20	109	20-200
NULL	M4PFHpA	3.26	3.20	102	20-200
NULL	M5PFHxA	3.49	3.20	109	20-200
NULL	M5PFPeA	3.31	3.20	103	20-200
NULL	M6PFDA	3.09	3.20	97	20-200
NULL	M7PFUnA	3.05	3.20	95	20-200
NULL	M8PFOA	2.86	3.20	89	20-200
NULL	M8PFOS	3.34	3.20	104	20-200
NULL	M9PFNA	3.14	3.20	98	20-200
NULL	MPFDoA	3.10	3.20	97	20-200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 5.265 g Final Vol: 4 mL Lab ID #: B19K058-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K058-MS1

Source Lab ID #: 1906027-83

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte		Result	Spike Level	Source Result	%Rec	%Rec Limits
N-ethyl perf	fluorooctanesulfonamideacetate	11.7	9.13	0.0	129	40-160
	erfluorooctanesulfonamideaceta	11.5	9.13	0.0	126	40-160
	tanesulfonate	11.4	9.13	0.0	124	40-160
Perfluorode	canesulfonate	15.9	9.13	0.0	175	40-160
Perfluorode	canoate	10.8	9.13	0.0	119	40-160
Perfluorodo	decanoate	10.6	9.13	0.0	117	40-160
	ptanesulfonate	10.9	9.13	0.0	119	40-160
Perfluorohe		12.3	9.13	0.0	134	40-160
	xanesulfonate	11.7	9.13	0.0	128	40-160
Perfluorohe		10.9	9.13	0.0	119	40-160
	onanesulfonate	12.6	9.13	0.0	138	40-160
Perfluorono		9.2	9.13	0.0	101	40-160
	tanesulfonate	11.2	9.13	0.05	122	40-160
Perfluorooc		11.9	9.13	0.0	130	40-160
Perfluoropentanoate		10.8	9.13	0.0	118	40-160
Perfluorotetradecanoate		9.8	9,13	0.0	107	40-160
Perfluorotridecanoate		8.6	9.13	0.0	94	40-160
Perfluoroun		11.3	9.13	0.0	124	40-160
Surrogate I	Recovery:		Spike		0/0	Rec.
CAS#	Analyte	Result	Level	% F		mits
NULL	D3-N-MeFOSAA	5.97	5.84	10	2 20-	200
NULL	D5-N-EtFOSAA	5.76	5.84	99		-200
NULL	M2PFTeDA	9.44	5.84	16		-200
NULL	M3PFBS	6.80	5,84	11		-200
NULL	M3PFHxS	5.74	5.84	98		-200
NULL	M4PFHpA	5.06	5.84	80		-200
NULL	M5PFHxA	5.28	5.84	9(-200
NULL	M5PFPeA	7.10	5.84	12		-200
NULL	M6PFDA	5.57	5.84	9:		-200
NHILL	M7PFUnA	5.99	5.84	10		-200
	M8PFOA	4.63 5.81	5.84	7! 9!		-200 -200
NULL	LODEOG	5 0 1	5.84	0	a 20.	.7HH
NULL NULL	M8PFOS					
NULL	M8PFOS M9PFNA MPFDoA	4.90 6.32	5.84 5.84	84	4 20-	-200 -200 -200

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring QC Type: Matrix Spike Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 5.434 g Final Vol: 4 mL Lab ID #: B19K058-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K058-MSD1

Source Lab ID #: 1906027-83

Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

	Bouree Line 12 //	1,000-					
Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
N-ethyl perfluorooctanesulfonamideacetate	11.0	8.85	0.0	124	6	40-160	40
N-methyl perfluorooctanesulfonamideacetate	11.9	8.85	0.0	135	4	40-160	40
Perfluorobutanesulfonate	10.8	8.85	0.0	122	5	40-160	40
Perfluorodecanesulfonate	15.0	8.85	0.0	169	6	40-160	40
Perfluorodecanoate	10.1	8.85	0.0	114	7	40-160	40
Perfluorododecanoate	10.7	8.85	0.0	121	0.6	40-160	40
Perfluoroheptanesulfonate	10.4	8.85	0.0	118	4	40-160	40
Perfluoroheptanoate	12,0	8.85	0.0	136	2	40-160	40
Perfluorohexanesulfonate	11.0	8.85	0.0	125	6	40-160	40
Perfluorohexanoate	10.9	8.85	0.0	123	0.6	40-160	40
Perfluorononanesulfonate	10.6	8.85	0.0	119	17	40-160	40
Perfluorononanoate	9.3	8.85	0.0	105	0.6	40-160	40
Perfluorooctanesulfonate	11.4	8.85	0.05	128	2	40-160	40
Perfluorooctanoate	11.1	8.85	0.0	125	7	40-160	40
Perfluoropentanoate	10.4	8.85	0.0	118	3	40-160	40
Perfluorotetradecanoate	10.0	8.85	0.0	113	3	40-160	40
Perfluorotridecanoate	9.0	8.85	0.0	102	4	40-160	40
Perfluoroundecanoate	11.0	8.85	0.0	125	2	40-160	40
Surrogate Recovery:				Spike		% Re	ec.
CAS# Analyte			Result	Level	% R		

Surrogate I	Recovery:		Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA	5.16	5.66	91	20-200	
NULL	D5-N-EtFOSAA	5.38	5.66	95	20-200	
NULL	M2PFTeDA	8.27	5.66	146	20-200	
NULL	M3PFBS	6.27	5.66	111	20-200	
NULL	M3PFHxS	5,59	5.66	99	20-200	
NULL	M4PFHpA	5.04	5.66	89	20-200	
NULL	M5PFHxA	4.97	5.66	88	20-200	
NULL	M5PFPeA	6.85	5.66	121	20-200	
NULL	M6PFDA	5.42	5.66	96	20-200	
NULL	M7PFUnA	5.61	5.66	99	20-200	
NULL	M8PFOA	4.90	5.66	86	20-200	
NULL	M8PFOS	5.40	5.66	95	20-200	
NULL	M9PFNA	4.85	5.66	86	20-200	
NULL	MPFDoA	5.99	5.66	106	20-200	

Authorized by:

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: 2019 PSEMP Urban Bays Sediment Monitoring

QC Type: Reference

Work Order: Batch QC

Project Officer: Dutch, Margaret

Initial Vol: 0.504 g Final Vol: 4 mL Lab ID #: B19K058-SRM1 Prep Method: AOAC2007.01 Analysis Method: SW8321BM Source Field ID: B19K058-SRM1 Batch ID: B19K058 Prepared: 11/7/2019 Analyzed: 12/14/2019 Matrix: Sediment/Soil

Units: %

Analyte		Result	Spike Level	RL	%Rec	%Rec Limits
N-ethyl per	fluorooctanesulfon	16.0	18.0	1.98	89	60-140
	erfluorooctanesulf	13.1	14.3	1.98	91	60-140
	ıtanesulfonate	16.1	20.6	1.98	78	60-140
Perfluorodo	ecanesulfonate	19.3	21.4	1.98	90	60-140
Perfluorodo	ecanoate	18.4	22.6	1.98	81	60-140
Perfluorodo	odecanoate	11.0	13.8	3.97	80	60-140
Perfluoroh	eptanesulfonate	11.7	13.3	1.98	88	60-140
Perfluoroh		9.29	13.3	1.98	70	60-140
	exanesulfonate	14.7	18.5	1.98	79	60-140
Perfluoroh		12.5	16.3	1.98	76	60-140
	onanesulfonate	21.5	17.8	1.98	121	60-140 60-140
Perfluoron		13.7	19.3	1.98	71	
	etanesulfonate	11.3	15.3	5.3 1.98 23.8 1.98	74	60-140
Perfluoroo		19.6	23.8		82	60-140
Perfluorope		17.5	19.3		91	60-140 60-140
	tradecanoate		18.5	7.94	69	
Perfluorotridecanoate		10.6	15.0	7.94	71	60-140
	ndecanoate	17.2	22.3	1.98	77	60-140
Surrogate I	Recovery.					
			Spike			Rec.
CAS#	Analyte	Result	Level	% R	kec. Lii	mits
NULL	D3-N-MeFOSAA	25.8	31.7	8		-200
NULL	D5-N-EtFOSAA	26.2	31.7	82		-200
NULL	M2PFTeDA	27.5	31.7	80		-200
NULL	M3PFBS	33.5	31.7	10		-200
	M3PFHxS	30.6	31.7	90		-200
	A CADETT A		217	90) 20.	-200
NULL	M4PFHpA	28.6	31.7			
NULL NULL	M5PFHxA	29.2	31.7	92		
NULL NULL NULL	M5PFHxA M5PFPeA	29.2 30.8	31.7 31.7	92 91	7 20	-200
NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA	29.2 30.8 27.1	31.7 31.7 31.7	92 91 83	7 20- 5 20-	-200 -200
NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA	29.2 30.8 27.1 27.5	31.7 31.7 31.7 31.7	92 91 83 81	7 20- 5 20- 7 20-	-200 -200 -200
NULL NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA	29.2 30.8 27.1 27.5 26.0	31.7 31.7 31.7 31.7 31.7	92 94 83 84 82	7 20- 5 20- 7 20- 2 20-	-200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS	29.2 30.8 27.1 27.5 26.0 28.1	31.7 31.7 31.7 31.7 31.7 31.7	92 97 83 87 88	7 20- 5 20- 7 20- 2 20- 9 20-	-200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS M9PFNA	29.2 30.8 27.1 27.5 26.0 28.1 26.0	31.7 31.7 31.7 31.7 31.7 31.7 31.7	92 92 83 83 84 84 85	7 20- 5 20- 7 20- 2 20- 9 20- 2 20- 2 20-	-200 -200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS	29.2 30.8 27.1 27.5 26.0 28.1	31.7 31.7 31.7 31.7 31.7 31.7	92 97 83 87 88	7 20- 5 20- 7 20- 2 20- 9 20- 2 20- 2 20-	-200 -200 -200 -200 -200
NULL NULL NULL NULL NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA M8PFOA M8PFOS M9PFNA	29.2 30.8 27.1 27.5 26.0 28.1 26.0	31.7 31.7 31.7 31.7 31.7 31.7 31.7	92 92 83 83 84 84 85	7 20- 5 20- 7 20- 2 20- 9 20- 2 20- 2 20-	-200 -200 -200 -200 -200 -200

Release Date:

Authorized by:

Prep Method: AOAC2007.01 **Batch ID:** B19K054

Prepared: 11/5/2019 **Analysis Method:** SW8321BM

Field ID	MEL ID
40079-R1	1906027-02
40179-R1	1906027-03
40207-R1	1906027-04
40207-R2	1906027-05
40307-R1	1906027-06
40335-R1	1906027-07
40455-R1	1906027-08
40463-R1	1906027-09
40591-R1	1906027-12
40711 - R1	1906027-13
40719-R1	1906027-14
40819-R1	1906027-15
40847-R1	1906027-16
40967-R1	1906027-17
40975-R1	1906027-18
41103-R1	1906027-20
41103-R2	1906027-21
41223-R1	1906027-22
41231-R1	1906027-23
41231-R2	1906027-24
Blank	B19K054-BLK1
LCS	B19K054-BS1
LCS Dup	B19K054-BSD1
Matrix Spike (40079-R1)	B19K054-MS1
Matrix Spike Dup (40079-R1)	B19K054-MSD1
Reference	B19K054-SRM1

Prep Method: AOAC2007.01 **Batch ID:** B19K055

Analysis Method: SW8321BM **Prepared:** 11/5/2019

Field ID	MEL ID
41331-R1	1906027-25
41359-R1	1906027-26
41479-R1	1906027-28
41487-R1	1906027-29
41615-R1	1906027-32
41735-R1	1906027-33
41743-R1	1906027-34
41843-R1	1906027-35
41871-R1	1906027-36
42639-R1	1906027-37
42739-R1	1906027-38
42759-R1	1906027-39
42867-R1	1906027-40
PSUW012-R1	1906027-51
PSUW020-R1	1906027-52
PSUW084-R1	1906027-53
PSUW100-R1	1906027-54
PSUW116-R1	1906027-55
PSUW140-R1	1906027-56
PSUW148-R1	1906027-57
Blank	B19K055-BLK1
LCS	B19K055-BS1
LCS Dup	B19K055-BSD1
Matrix Spike (41871-R1)	B19K055-MS1
Matrix Spike Dup (41871-R1)	B19K055-MSD1
Reference	B19K055-SRM1

Batch ID: B19K056 Prep Method: AOAC2007.01

Prepared: 11/6/2019 Analysis Method: SW8321BM

Field ID	MEL ID
PSUW268-R1	1906027-60
PSUW300-R1	1906027-61
PSUW300-R2	1906027-62
PSUW556-R1	1906027-63
UW40056-R1	1906027-64
UW40056-R2	1906027-65
UW40216-R1	1906027-66
UW40272-R1	1906027-67
UW40528-R1	1906027-68
UW40728-R1	1906027-69
UW40984-R1	1906027-70
UW41040-R1	1906027-71
UW41240-R1	1906027-72
UW41296-R1	1906027-73
UW41552-R1	1906027-74
UW41680-R1	1906027-75
UW41752-R1	1906027-76
UWNO236-R1	1906027-77
Blank	B19K056-BLK1
LCS	B19K056-BS1
LCS Dup	B19K056-BSD1
Matrix Spike (UW40216-R1)	B19K056-MS1
Matrix Spike Dup (UW40216-R1)	B19K056-MSD1
Reference	B19K056-SRM1

Batch ID: B19K058 Prep Method: AOAC2007.01

Prepared: 11/7/2019 Analysis Method: SW8321BM

Field ID	MEL ID
PSUW228-R1	1906027-58
PSUW244-R1	1906027-59
UWNO237-R1	1906027-78
UWNO241-R1	1906027-79
UWNO242-R1	1906027-80
UWNO243-R1	1906027-81
UWNO244-R1	1906027-82
UWNO244-R2	1906027-83
Blank	B19K058-BLK1
LCS	B19K058-BS1
LCS Dup	B19K058-BSD1
Matrix Spike (UWNO244-R2)	B19K058-MS1
Matrix Spike Dup (UWNO244-R2)	B19K058-MSD1
Reference	B19K058-SRM1

Appendix B Manual Qualification Table

Analysis: PFAS (Anions) WO: 1906027

Analyte was not detected at or above the estimated MRL; CCV exceeded QC limits. Perfluorotetradecanoate UJ: 1906027-58, 1906027-59, 1906027-78, 1906027-79, 1906027-82, 1906027-83, B19K058-BLK1,

Appendix C Data Qualifier Definitions

Code	Definition
E	Reported result is an estimate because it exceeds the calibration range.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
N	The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification".
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
NAF	Not analyzed for.
NC	Not calculated.
REJ	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	The analyte was not detected at or above the reported sample quantitation limit.
UJ	The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.
bold	The analyte was present in the sample. (Visual aid to locate detected compounds on the analytical report.)

Lab ID	Analyte	Exception
1906027-03	istd: M2PFOA	Exceeds upper control limit
1906027-03	istd: MPFDA	Exceeds upper control limit
1906027-03	istd; MPFOS	Exceeds upper control limit
1906027-04	istd: M2PFOA	Exceeds upper control limit
1906027-04	istd: MPFDA	Exceeds upper control limit
1906027-04	istd: MPFOS	Exceeds upper control limit
1906027-05	istd: M2PFOA	Exceeds upper control limit
1906027-05	istd: MPFDA	Exceeds upper control limit
1906027-05	istd: MPFOS	Exceeds upper control limit
1906027-06	istd: M2PFOA	Exceeds upper control limit
1906027-06	istd: MPFDA	Exceeds upper control limit
1906027-06	istd: MPFOS	Exceeds upper control limit
1906027-07	istd: MPFOS	Exceeds upper control limit
1906027-09	istd; M2PFOA	Exceeds upper control limit
1906027-09	istd: MPFDA	Exceeds upper control limit
1906027-09	istd: MPFOS	Exceeds upper control limit
1906027-13	istd: M2PFOA	Exceeds upper control limit
1906027-13	istd; MPFDA	Exceeds upper control limit
1906027-13	istd: MPFOS	Exceeds upper control limit
1906027-14	istd: MPFDA	Exceeds upper control limit
1906027-15	istd; M2PFOA	Exceeds upper control limit
1906027-15	istd: MPFDA	Exceeds upper control limit
1906027-15	istd: MPFOS	Exceeds upper control limit
1906027-18	istd: M2PFOA	Exceeds upper control limit
1906027-18	istd: MPFDA	Exceeds upper control limit
1906027-18	istd: MPFOS	Exceeds upper control limit
1906027-10	istd: M2PFOA	Exceeds upper control limit
1906027-20	istd: MPFDA	Exceeds upper control limit
1906027-20	istd: MPFOS	Exceeds upper control limit
1906027-21	istd: M2PFOA	Exceeds upper control limit
1906027-21	istd: MPFDA	Exceeds upper control limit
1906027-21	istd: MPFOS	Exceeds upper control limit
1906027-21	istd: M2PFOA	Exceeds upper control limit
1906027-22	istd: MPFDA	Exceeds upper control limit
1906027-22	istd: MPFOS	Exceeds upper control limit
1906027-22	istd: M2PFOA	Exceeds upper control limit
1906027-23	istd: MPFDA	Exceeds upper control limit
	istd: MPFOS	Exceeds upper control limit
1906027-23 1906027-24	istd: M2PFOA	Exceeds upper control limit
	istd: MPFDA	Exceeds upper control limit
1906027-24	istd: MPFOS	Exceeds upper control limit
1906027-24		Exceeds upper control limit
1906027-25	istd: M2PFOA	Exceeds upper control limit
1906027-25	istd: MPFDA	Exceeds upper control limit
1906027-25	istd: MPFOS	Exceeds upper control limit Exceeds upper control limit
1906027-32	istd: M2PFOA	Exceeds upper control limit
1906027-32	istd: MPFOS	Exceeds upper control limit
1906027-33	istd: M2PFOA	Exceeds upper control limit
1906027-34	istd: M2PFOA	Exceeds upper control limit

Lab ID	Analyte	Exception
1906027-34	istd: MPFOS	Exceeds upper control limit
1906027-38	istd: M2PFOA	Exceeds upper control limit
1906027-38	istd: MPFDA	Exceeds upper control limit
1906027-38	istd: MPFOS	Exceeds upper control limit
1906027-39	istd: M2PFOA	Exceeds upper control limit
1906027-39	istd: MPFDA	Exceeds upper control limit
1906027-39	istd: MPFOS	Exceeds upper control limit
1906027-51	istd: M2PFOA	Exceeds upper control limit
1906027-52	istd: M2PFOA	Exceeds upper control limit
1906027-52	istd: MPFDA	Exceeds upper control limit
1906027-52	istd: MPFOS	Exceeds upper control limit
1906027-53	istd: M2PFOA	Exceeds upper control limit
1906027-53	istd: MPFDA	Exceeds upper control limit
1906027-53	istd: MPFOS	Exceeds upper control limit
1906027-54	istd: M2PFOA	Exceeds upper control limit
1906027-54	istd: MPFDA	Exceeds upper control limit
1906027-54	istd: MPFOS	Exceeds upper control limit
1906027-55	istd: M2PFOA	Exceeds upper control limit
1906027-56	istd: M2PFOA	Exceeds upper control limit
1906027-57	istd: M2PFOA	Exceeds upper control limit
1906027-57	istd: MPFDA	Exceeds upper control limit
1906027-57	istd: MPFOS	Exceeds upper control limit
1906027-58	istd: M2PFOA	Exceeds upper control limit
1906027-58	istd: M3PFBA	Exceeds upper control limit
1906027-58	istd: MPFOS	Exceeds upper control limit
1906027-59	istd: M2PFOA	Exceeds upper control limit
1906027-59	istd: M3PFBA	Exceeds upper control limit
1906027-60	istd: M2PFOA	Exceeds upper control limit
1906027-60	istd: MPFOS	Exceeds upper control limit
1906027-61	istd: M2PFOA	Exceeds upper control limit
1906027-61	istd: MPFDA	Exceeds upper control limit
1906027-61	istd: MPFOS	Exceeds upper control limit
1906027-62	istd: M2PFOA	Exceeds upper control limit
1906027-62	istd: MPFDA	Exceeds upper control limit
1906027 - 62	istd: MPFOS	Exceeds upper control limit
1906027-63	istd: M2PFOA	Exceeds upper control limit
1906027-63	istd: MPFDA	Exceeds upper control limit
1906027-63	istd: MPFOS	Exceeds upper control limit
1906027-64	istd: M2PFOA	Exceeds upper control limit
1906027-64	istd: MPFDA	Exceeds upper control limit
1906027-64	istd: MPFOS	Exceeds upper control limit
1906027-65	istd: M2PFOA	Exceeds upper control limit
1906027-65	istd: MPFDA	Exceeds upper control limit
1906027-65	istd: MPFOS	Exceeds upper control limit
1906027-66	istd: M2PFOA	Exceeds upper control limit
1906027-66	istd: MPFDA	Exceeds upper control limit
1906027-66	istd: MPFOS	Exceeds upper control limit
1906027-67	istd: M2PFOA	Exceeds upper control limit

Lab ID	Analyte	Exception
1906027-68	istd: M2PFOA	Exceeds upper control limit
1906027-69	istd: M2PFOA	Exceeds upper control limit
1906027-69	istd: MPFOS	Exceeds upper control limit
1906027-70	istd: M2PFOA	Exceeds upper control limit
1906027-70	istd: MPFDA	Exceeds upper control limit
1906027-70	istd: MPFOS	Exceeds upper control limit
1906027-71	istd: M2PFOA	Exceeds upper control limit
1906027-71	istd: MPFDA	Exceeds upper control limit
1906027-71	istd: MPFOS	Exceeds upper control limit
1906027-72	istd: M2PFOA	Exceeds upper control limit
1906027-72	istd: MPFDA	Exceeds upper control limit
1906027-72	istd: MPFOS	Exceeds upper control limit
1906027-73	istd: M2PFOA	Exceeds upper control limit
1906027-73	istd: MPFDA	Exceeds upper control limit
1906027-73	istd: MPFOS	Exceeds upper control limit
1906027-74	istd: M2PFOA	Exceeds upper control limit
1906027-74	istd: MPFDA	Exceeds upper control limit
1906027-74	istd: MPFOS	Exceeds upper control limit
1906027-75	istd: M2PFOA	Exceeds upper control limit
1906027-75	istd: MPFOS	Exceeds upper control limit
1906027-76	istd: M2PFOA	Exceeds upper control limit
1906027-76	istd: MPFDA	Exceeds upper control limit
1906027-76	istd: MPFOS	Exceeds upper control limit
1906027-77	istd: M2PFOA	Exceeds upper control limit
1906027-77	istd: MPFDA	Exceeds upper control limit
1906027-77	istd: MPFOS	Exceeds upper control limit
1906027-78	istd: M2PFOA	Exceeds upper control limit
1906027-78	istd: M3PFBA	Exceeds upper control limit
1906027-79	istd: M2PFOA	Exceeds upper control limit
1906027-79	istd: M3PFBA	Exceeds upper control limit
1906027-79	istd: MPFOS	Exceeds upper control limit
1906027-80	istd: M2PFOA	Exceeds upper control limit
1906027-80	istd: M3PFBA	Exceeds upper control limit
1906027-80	istd; MPFDA	Exceeds upper control limit
1906027-80	istd: MPFOS	Exceeds upper control limit
1906027-81	istd: M2PFOA	Exceeds upper control limit
1906027-81	istd: M3PFBA	Exceeds upper control limit
1906027-81	istd: MPFDA	Exceeds upper control limit
1906027-81	istd: MPFOS	Exceeds upper control limit
1906027-82	istd: M2PFOA	Exceeds upper control limit
1906027-82	istd: M3PFBA	Exceeds upper control limit
1906027-82	istd: MPFDA	Exceeds upper control limit
1906027-82	istd: MPFOS	Exceeds upper control limit
1906027-83	istd: M2PFOA	Exceeds upper control limit
1906027-83	istd: M3PFBA	Exceeds upper control limit
1906027-83	istd: MPFDA	Exceeds upper control limit
1906027-83	istd: MPFOS	Exceeds upper control limit
B19K054-BLK1	N-ethyl perfluorooctanesulfonamideacetate	Blank > MDL

Lab ID	Analyte	Exception
B19K054-BLK1	N-methyl perfluorooctanesulfonamideacetate	Blank > MDL
B19K055-BLK1	N-ethyl perfluorooctanesulfonamideacetate	Blank > MDL
B19K055-MS1	Perfluorodecanesulfonate	Exceeds upper control limit
B19K055-MS1	Perfluorononanesulfonate	Exceeds upper control limit
B19K055-MSD1	Perfluorodecanesulfonate	Exceeds upper control limit
B19K055-MSD1	Perfluorononanesulfonate	Exceeds upper control limit
B19K055-MSD1	istd: M2PFOA	Exceeds upper control limit
B19K055-MSD1	istd: MPFOS	Exceeds upper control limit
B19K056-BLK1	N-ethyl perfluorooctanesulfonamideacetate	Blank > MDL
B19K056-MS1	Perfluorodecanesulfonate	Exceeds upper control limit
B19K056-MS1	istd: M2PFOA	Exceeds upper control limit
B19K056-MS1	istd: MPFDA	Exceeds upper control limit
B19K056-MS1	istd: MPFOS	Exceeds upper control limit
B19K056-MSD1	Perfluorodecanesulfonate	Exceeds upper control limit
B19K056-MSD1	istd: M2PFOA	Exceeds upper control limit
B19K056-MSD1	istd: MPFDA	Exceeds upper control limit
B19K056-MSD1	istd: MPFOS	Exceeds upper control limit
B19K058-BLK1	N-ethyl perfluorooctanesulfonamideacetate	Blank > MDL
B19K058-MS1	Perfluorodecanesulfonate	Exceeds upper control limit
B19K058-MS1	istd: M2PFOA	Exceeds upper control limit
B19K058-MS1	istd: MPFDA	Exceeds upper control limit
B19K058-MSD1	Perfluorodecanesulfonate	Exceeds upper control limit
B19K058-MSD1	istd: M2PFOA	Exceeds upper control limit
B19K058-MSD1	istd: M3PFBA	Exceeds upper control limit
B19K058-MSD1	istd: MPFDA	Exceeds upper control limit
B19K058-MSD1	istd: MPFOS	Exceeds upper control limit

Appendix E Initial Calibration Exceptions Report

Calibration ID: B9L1601		Analysis: PFAS (Anions)	
LabNumber	Analyte	QC Exception	
B195102-ICV1	Perfluorononanesulfonate	Exceeds upper control limit	

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive East · Port Orchard, Washington 98366-8204 · (360) 871-8800 · FAX (360) 871-8850

February 6, 2020

Revised – February 11, 2020

To: Maggie Dutch, Project Officer

Environmental Assessment Program

Through:

Alan Rue, Director for Manchester Environmental Laboratory, Environmental Assessment Program

From:

John Weakland, Data Validator
Manchester Environmental Laboratory, Environmental Assessment Program

Subject: Data Validation Report, Puget Ambient Monitoring Program Urban Bays Sediments

2019, Analysis of Pharmaceutical and Personal Care Products (PPCP) in marine

sediments, MEL WO 1906027.

This validation report covers the evaluation of the PPCP analysis of 33 samples and 6 laboratory QC samples listed in Table 1. This table is a summary and correlation of sample numbers, sample description, and pertinent dates of sample collection, extraction, and analysis. Ecology conducted this study to identify PPCPs in Budd Inlet sediments.

Ecology collected a total of 30 marine sediment samples, and 3 field replicates between June 17 and 18, 2019, and then shipped them by courier on June 20, 2019, to SGS Axys located in Sidney, BC Canada. SGS Axys received the samples on June 21, 2019, and analyzed the samples for 118 PPCPs following SGS Axys Method MLA-075 Rev7 using Liquid Chromatography\Tandem Mass Spectrometry (LCMSMS).

VALIDATION AND DATA QUALIFICATIONS

I conducted a stage 4 data validation as MEL's Data Validator using manual review and verification of reported results (S4VM)¹ per the technical specifications of the:

- Quality Assurance Project Plan (QAPP): 2019 Addendum to Quality Assurance Monitoring Program, March 2019.
- Summary of SGS Axys Method MLA-075 REV. 07 VER. 06, February 26, 2019.
- Statement of Work (SOW) MEL 2019-Cx-40.

¹* Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, EPA-540-R-08-005, January 13, 2009.

- National Functional Guidelines for Organic Superfund Methods Data Review, January 2017.
- Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediments, and Biosolids by HPLC/MS/MS, U.S. EPA, December 2007.
- Stability of Pharmaceuticals and Personal Care Products, Steroids, and Hormones in Aqueous Samples, POTW Effluents, and Biosolids, U.S. EPA, September 2010.

All of the analytical results were qualified using the validator's professional judgment.

Table 1. Summary of Samples Validated

Data Package Work Group 69803						
Client Sample ID	MEL Sample ID	SGS Axys Lab ID	Matrix	Collection Date	Extraction Date	Analysis Date
PSUW012-R1	1906027-51	L31363-1	SEDIMENT	6/17/2019	7/8/2019	7/24/2019
PSUW020-R1	1906027-52	L31363-2	SEDIMENT	6/17/2019	7/8/2019	7/24/2019
PSUW084-R1	1906027-53	L31363-3	SEDIMENT	6/18/2019	7/8/2019	7/24/2019
PSUW100-R1	1906027-54	L31363-4	SEDIMENT	6/18/2019	7/8/2019	7/25/2019
PSUW116-R1	1906027-55	L31363-5	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
PSUW140-R1	1906027-56	L31363-6	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
PSUW148-R1	1906027-57	L31363-7	SEDIMENT	6/18/2019	7/8/2019	7/25/2019
PSUW228-R1	1906027-58	L31363-8	SEDIMENT	6/18/2019	7/8/2019	7/25/2019
PSUW244-R1	1906027-59	L31363-9	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
PSUW268-R1	1906027-60	L31363-10	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
PSUW300-R1	1906027-61	L31363-11	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
PSUW300-R2	1906027-62	L31363-12	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
PSUW556-R1	1906027-63	L31363-13	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
UW40056-R1	1906027-64	L31363-14	SEDIMENT	6/18/2019	7/8/2019	7/25/2019
UW40056-R2	1906027-65	L31363-15	SEDIMENT	6/18/2019	7/8/2019	7/25/2019
UW40216-R1	1906027-66	L31363-16	SEDIMENT	6/18/2019	7/8/2019	7/25/2019
UW40272-R1	1906027-67	L31363-17	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
MB	NA	WG68603-101	SOLID	NA	7/8/2019	7/24/2019
LCS	NA	WG68603-102	SOLID	NA	7/8/2019	7/24/2019
PSUW244-R1	1906027-59	WG68603-103	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
MB	NA	WG68622-101	SOLID	NA	7/8/2019	7/24/2019
LCS	NA	WG68622-102	SOLID	NA	7/8/2019	7/24/2019
PSUW244-R1	1906027-59	WG68622-103	SEDIMENT	6/17/2019	7/8/2019	7/25/2019
Data Package W	ork Group 696	554				
Client	MEL	SGS Axys		Collection	Extraction	Analysis
Sample ID	Sample ID	Lab ID	Matrix	Date	Date	Date
UW40528-R1	1906027-68	L31363-18	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UW40728-R1	1906027-69	L31363-19	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UW40984-R1	1906027-70	L31363-20	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UW41040-R1	1906027-71	L31363-21	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UW41240-R1	1906027-72	L31363-22	SEDIMENT	6/18/2019	7/9/2019	7/25/2019
UW41296-R1	1906027-73	L31363-23	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UW41552-R1	1906027-74	L31363-24	SEDIMENT	6/18/2019	7/9/2019	7/25/2019
UW41680-R1	1906027-75	L31363-25	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UW41752-R1	1906027-76	L31363-26	SEDIMENT	6/18/2019	7/9/2019	7/25/2019

UWNO236-R1	1906027-77	L31363-27	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UWNO237-R1	1906027-78	L31363-28	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UWNO241-R1	1906027-79	L31363-29	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
UWNO242-R1	1906027-80	L31363-30	SEDIMENT	6/18/2019	7/9/2019	7/25/2019
UWNO243-R1	1906027-81	L31363-31	SEDIMENT	6/18/2019	7/9/2019	7/25/2019
UWNO244-R1	1906027-82	L31363-32	SEDIMENT	6/18/2019	7/9/2019	7/25/2019
UWNO244-R2	1906027-83	L31363-33	SEDIMENT	6/18/2019	7/9/2019	7/25/2019
MB	NA	WG68621-101	SOLID	NA	7/9/2019	7/25/2019
LCS	NA	WG68621-102	SOLID	NA	7/9/2019	7/25/2019
UW41296-R1	1906027-73	WG68621-103	SEDIMENT	6/17/2019	7/9/2019	7/25/2019
MB	NA	WG68623-101	SOLID	NA	7/9/2019	7/20/2019
LCS	NA	WG68623-102	SOLID	NA	7/9/2019	7/20/2019
UW41296-R1	1906027-73	WG68623-103	SEDIMENT	6/17/2019	7/9/2019	7/20/2019

I based the conclusions presented in this report on the information available at the time of the review. I evaluated the following QC elements in this report.

- 1. Overall Assessment of the Data
- 2. Completeness
- 3. Holding Times
- 4. Initial Calibration
- 5. Continuing Calibration Verification
- 6. Method Blank
- 7. Laboratory Control Sample
- 8. Sample/Sample Duplicate
- 9. Field Sample/Field Replicate
- 10. Surrogates aka Extracted Internal Standards
- 11. Internal Standards aka Injection Internal Standards
- 12. Target Compound Identification
- 13. Target Compound Quantitation

1. OVERALL ASSESSMENT OF THE DATA

Table 2. Summary of Sample Qualifiers Added

Summary of	Data Points/	%	
Applied Qualifiers	# Qualified	Qualified	Reasons
Total Number of Data Points	3,926/3,926	100%	
UJ/J	3,403	86.7%	Sample holding time exceeded
U(J), raised MRL	68	1.73%	Lab blank contamination
R	35	0.89%	LCS recoveries severely exceed limits
R	474	12.1%	Surrogate recoveries severely exceed limits
NJ	11	0.28%	Coeluting interfering peaks

Table 3. Summary of Method Blank Qualifiers Added Below the MRL

I qualified wegulte MDs only	Data Points/ Oualified		December
J qualified results MBs only	Quanned	Qualified	Reasons
J, estimated value (MBs only)	224/12	5.36%	Unreported result below the MRL but area
			within 10x sample result.

At the request of the Project Officer, I evaluated the reported results to determine how many results were qualified solely based on exceeding holding times. Table 4 compares the number of sample qualifiers added for holding times to the number of qualifiers with the number I would have added if holding times were met. Thus, I would not have qualified 2,992 results if holding times were met.

Table 4. Summary Samples Qualified due to exceeding holding times (HT)

# Results	# Qualified Solely for HTs	# Qualified if HTs met
3,926	3,408	416

Except for the R qualified rejected data, the data, as qualified, are acceptable and usable for all purposes.

SGS Axys analyzed and reported the samples per the SOW with the following exceptions.

Many of the criteria in the SOW incorrectly referred to high resolution gas chromatography/mass spectrometry analytical requirements, which cannot be performed by an LCMSMS instrument. Therefore, whenever there was a conflict of specifications between SGS Axys' MLA-075 method summary and the SOW, the MLA-075 was used.

The SOW requested conflicting information regarding method holding times. The SOW requested to "analyze samples within the method holding times." Method 1694 states the holding time as "preferably 48 hours or frozen to extend the holding time to seven days." EPA's 2010 Holding Time study concluded a holding time of seven days at < 6°C. SGS extracted samples at the first opportunity.

The SOW requested the laboratory follow EPA Method 1694 sections 14, 15, 16, 17, and 18. However, SGS Axys reported over 30% more analytes than the analytical method, and to do so, had to make changes to the instrument requirements in those sections. Therefore, I used SGS Axys' MLA-075 specifications.

The SOW requested sample results reported as $\mu g/g$ dry weight. As agreed, SGS Axys reported results as ng/g dry weight instead of $\mu g/g$ dry weight.

The SOW requested the Method Detection Limit in the EDD. However, limitations with SGS Axys' LIMS prevents them from reporting the MDL. In addition, the SOW requested a Sample Extraction Date column. However, that is not an EIM field and SGS Axys did not provide the column in their submitted EDDs.

The SOW requested sample results reported below the MRL. However, SGS Axys' method does not report results below the MRL. So, I reported target compounds in the associated method blanks below the MRL whenever the sample result was less than 10x the amount found in the blank and qualified due to background contamination. I also added these results to reflect the background contamination present in the method blanks in the EDD and qualified with a J, estimated value.

The SOW requested the successful laboratory to qualify instead of flag analytical results for exceeding QC criteria. However, commercial environmental laboratories typically only report analytical data using flags to highlight exceeded QC criteria. Data qualification is left to the data user because the data user and not the laboratory is responsible for how the reported data is used.

The SOW requested "chromatograms of before and after manual integration must be included in the data package." SGS Axys currently can only provide the after chromatograms with the data package.

The SOW requested ICAL Data Summary with %RSD, %Rec, and RFs/RRFs. SGS Axys provided recoveries but did not provide a summary of the ICAL slope/intercept for target compounds or %RSDs for surrogate compounds. SGS Axys currently cannot provide an ICAL summary similar to the CLP Form VI.

The SOW requested "communication logs, nonconformance memo, and corrective action reports." SGS Axys does not maintain collated communication logs and only provides PDFs of emails in exceptional situations. Also, SGS Axys does not document QC failures on particular forms but through internal email and in case narratives on final reports.

SGS Axys extracted and analyzed the samples following the specifications of the Summary of SGS Axys Method MLA-075 REV. 07 VER. 06. They extracted each sample using two different extraction methods, one under acidic conditions, while the other under basic conditions. The extracts were analyzed using five different analyses. For ease, SGS Axys uses the term Lists for the five separate analyses with a unique acronym and defines the lists as:

- List 1. Acid extraction; analyzed by positive electrospray ionization (APOS).
- List 2. Acid extraction; analyzed by positive electrospray ionization (TCYC).
- List 3. Acid extraction; analyzed by negative electrospray ionization (ANEG).
- List 4. Base extraction; analyzed by positive electrospray ionization (BPOS)
- List 5. Acid extraction; analyzed by positive electrospray ionization (APOSX).

If you have questions regarding this validation report, contact John Weakland at (360) 871-8820 or e-mail at jwea461@ecy.wa.gov.

2. COMPLETENESS

I evaluated the initial two data packages, ten electronic data deliverables (EDD) for this validation report, and two revised data packages. The data packages included the following documentation:

Data Package

- Section 1: Cover Page
- Section 2: Narrative, Chain of Custody, Method Summary, Correlation Table, Sample Receiving Documentation, Extraction and Cleanup Worksheets, and Preparation Logs for standards
- Section 3: Analysis Reports
- Section 4: Analysis Chromatography

• Section 5: Accreditation Scope

The sample chain of custody records, preparation bench sheets, cleanup bench sheets, standard preparation sheets, instrument sequence logs, calibration, sample and QC sample data, and raw chromatographic data were all included in the data package.

Ecology did not request Instrument Carryover and Instrument Background (ICIB) checks in the SOW. The ICIB check analyzes an instrument blank after every initial and continuing calibration and LCSs. SGS Axys does not have an ICIB report, so I verified checks were analyzed after every LCS and before any client samples.

3. HOLDING TIMES – Not Acceptable

Table 1 is a list of sample and QC samples evaluated in this report and the pertinent dates of sample extraction and analysis. SGS Axys received all of the samples in good condition, and less than 6°C with no anomalies found.

The extraction holding time is determined from the date of sample collection to the date of extraction and specified in method holding time guidance as seven days in the dark at $< 6^{\circ}$ C. All of the samples were extracted 21 or 22 days after the sample collection date, and greatly exceeded the method holding time of 7 Days. SGS Axys extracted the samples at the first opportunity starting July 8, 2019.

The analytical holding time is calculated from the date of extraction to the date of analysis. The analytical holding time is 30 days, ten days in the case of tetracyclines. All of the samples met the analytical holding times.

I did not outright reject all of the data for greatly exceeding holding times, because EPA did not conduct, nor plans to conduct, a multi-laboratory holding time study for this method. Also, Method 1694 states, "Exceeding these default holding times does not invalidate the sample results." Therefore, I qualified all of the sample results as J estimated value if detected, or UJ not detected at the estimated method reporting limit, unless the result was qualified as rejected for other reasons.

4. **INITIAL CALIBRATION -** Acceptable

SGS Axys analyzed six initial calibration (ICAL) curves for all target and surrogate compounds. The technical acceptance criteria for the target compounds are at least five calibration points using a 1/X weighted linear calibration excluding the origin, an $r^2 > 0.985$, and back-calculated recovery limits of 70 - 130% with one point per compound allowed 60 - 140%.

They calibrated all surrogates using a single point average response factor. The technical acceptance criteria are back-calculated recovery limits of 50 - 150%.

All of the target and surrogate compounds met technical acceptance criteria with the following exceptions.

List 1 (APOS) ICAL 7/12/19.

Cloxacillin, Oxacillin, and Penicillin G were calibrated using four point calibration curves. Data were not further qualified on this basis.

List 1 (APOS) ICAL 7/19/19.

Carbadox, Cloxacillin, Oxacillin, Penicillin G, and Sulfanilamide were calibrated using four point calibration curves. Data were not further qualified on this basis.

5. **CONTINUING CALIBRATION VERIFICATION -** Acceptable

SGS Axys analyzed bracketing continuing calibration verification (CCV) standards at the beginning and end of each analytical sequence. All of the bracketing CCVs met frequency criteria.

The technical acceptance criteria for the opening CCV target compounds is 70 - 130% with a maximum of 1, or 10% of the compounds, allowed 60 - 140%. The technical acceptance criteria for surrogate compounds is 50 - 150%.

The technical acceptance criteria for the closing CCV target compounds are 70 - 130% with a maximum of 1, or 10% of the compounds, allowed 60 - 140% or within 50 - 150%, and the RPD between the closing and opening CCVs is < 40%. The technical acceptance criteria for surrogate compounds is 50 - 150%.

All of the target and surrogate compounds met technical acceptance criteria, and no data qualifiers added with the following exceptions.

DPWG69803

List 4 (BPOS)

The surrogate compounds d5-amphetamine, d4-clonidine, d3-Contidine, d5-Enalapril, and d6-Metformin for the 7/25 Closing CCV and target compound Ranitidine for the 7/26 closing CCV exceeded QC limits. Data were not further qualified on this basis.

6. METHOD BLANK - Acceptable

SGS Axys extracted and analyzed a method blank (MB) with every batch of samples. All samples met MB frequency criteria. The technical acceptance criteria are no target compounds detected above the method reporting limit (MRL). As per their method, SGS Axys did *not* report any detected target compounds below the MRL in the method blank.

In cases where the amount or area of target compounds found in the associated samples was < 10x the area found in the MB, the target compound was qualified U, not detected, at the amount found in the sample. Moreover, whenever I qualified target compounds in the associated samples due to MB contamination below the MRL, I also reported the target compounds in the MB and qualified them J, estimated value.

All of the MBs met technical acceptance criteria, and no data qualifiers added with the following exceptions.

DPWG69803

List 1 (APOS)

The MB WG68622-101 detected Clinafloxacin above the MRL, but the target compound was not detected in any of the samples, so data were not qualified on this basis. Target compounds were present in the MB below the MRL but within 10x sample results. Table 5 lists samples qualified on this basis.

Table 5. Sample/Compound Qualifiers Added

Sample ID	Flumequine	Miconazole	Thiabendazole
1906027-56		U	
1906027-58	U		
1906027-61		U	
1906027-63		U	
1906027-64		U	U
1906027-65		U	
WG68622-101	J	J	J

List 4 (BPOS)

The MB met technical acceptance criteria. However, target compounds were present in the MB below the MRL, but within 10x sample results. Table 6 lists samples qualified on this basis.

Table 6. Sample/Compound Qualifiers Added

Sample ID	Amphetamine	Metformin
1906027-51		
1906027-52		U
1906027-53		
1906027-54		U
1906027-55		
1906027-56		
1906027-57		U
1906027-59		U
WG68603-103		U
1906027-60		U
1906027-61		
1906027-62	U	
1906027-63		U
1906027-64		U
1906027-65		U
1906027-66		U
1906027-67		
WG68603-101	J	J

List 5 (APOSX)

The MB WG68622-101 detected Cocaine and DEET above the MRL. Also, target compounds were present in the MB below the MRL, but within 10x sample results. Table 7 lists samples qualified on these bases.

Table 7. Sample/Compound Qualifiers Added

Sample ID	Benztropine	Cocaine	DEET
1906027-51			U
1906027-52			U
1906027-53			U
1906027-54		U	U
1906027-55			U
1906027-56			U
1906027-57			U
1906027-58			U
1906027-59			U
WG68622-103		U	U
1906027-60			U
1906027-61			U
1906027-62			U
1906027-63			U
1906027-65			U
1906027-66		U	U
1906027-67			U
WG68622-101	J		

DPWG69654

List 1 (APOS)

The MB met technical acceptance criteria. However, target compounds were present in the MB below the MRL, but within 10x sample results. Table 8 lists samples qualified on this basis.

Table 8. Sample/Compound Qualifiers Added

Sample ID	Erythromycin-H2O	Sarafloxacin	Thiabendazole	Miconazole	Enrofloxacin
1906027-68	U				
1906027-70		U	U		
1906027-73		U		U	
WG68623-103				U	
1906027-74					U
1906027-78			U		
1906027-82				U	
WG68623-101	J	J	J	J	J

List 4 (BPOS)

The MB met technical acceptance criteria. However, target compounds were present in the MB below the MRL, but within 10x sample results. Table 9 lists samples qualified on this basis.

Table 9. Sample/Compound Qualifiers Added

Sample ID	Amphetamine
1906027-75	U
1906027-78	U
1906027-79	U
1906027-81	U
1906027-82	U
1906027-83	U
WG68621-101	J

List 5 (APOSX)

The MB WG68623-101 detected DEET above the MRL. Table 10 lists samples qualified on this basis.

Table 10. Sample/Compound Qualifiers Added

Sample ID	DEET
1906027-68	U
1906027-69	U
1906027-70	U
1906027-71	U
1906027-72	U
1906027-73	U
WG68623-103	U
1906027-74	U
1906027-75	U
1906027-76	U
1906027-77	U
1906027-78	U
1906027-79	U
1906027-80	U
1906027-81	U
1906027-82	U
1906027-83	U

7. LABORATORY CONTROL SAMPLE (LCS) - Acceptable

SGS extracted and analyzed a Laboratory Control Sample (LCS) for every batch of samples. All samples met LCS frequency criteria. Table 11, Table 12, Table 13, Table 14, and Table 15 list the technical acceptance criteria for the target compound recoveries. I evaluated any target compound exceeding the recovery limits in Table 11 - Table 15 for data qualification.

Table 11. List 1 (APOS) Recovery Limits

Table 11. List 1 (Al	POS) Recovery Limits
Compound	LCS %R Limits
Acetaminophen	70-130
Azithromycin	70-160
Caffeine	70-135
Carbadox	30-130
Carbamazepine	70-160
Cefotaxime	65-300
Ciprofloxacin	70-180
Clarithromycin	50-200
Clinafloxacin	70-180
Cloxacillin ²	70-220
Dehydronifedipine	70-180
Digoxigenin	70-160
Digoxin	60-180
Diltiazem	70-135
1,7-Dimethylxanthine	70-180
Diphenhydramine	70-150
Enrofloxacin	70-150
Erythromycin - H ₂ O	70-145
Flumequine	70-180
Fluoxetine	65-135
Lincomycin	40-250
Lomefloxacin	70-160
Miconazole	55-145

Compound	LCS %R Limits		
Norfloxacin	70-200		
Norgestimate	40-130		
Ofloxacin	70-180		
Ormetoprim	70-145		
Oxacillin ²	70-180		
Oxolinic Acid	70-180		
Penicillin G ²	70-200		
Penicillin V	70-250		
Roxithromycin	45-160		
Sarafloxacin	70-180		
Sulfachloropyridazine	70-200		
Sulfadiazine	70-180		
Sulfadimethoxine	50-130		
Sulfamerazine	70-135		
Sulfamethazine	70-135		
Sulfamethizole	55-135		
Sulfamethoxazole	70-130		
Sulfanilamide	50-150		
Sulfathiazole	35-130		
Thiabendazole	70-160		
Trimethoprim	70-135		
Tylosin	30-145		
Virginiamycin M1	70-180		

Table 12. List 2 (TCYC) Recovery Limits

Compound	LCS %R Limits
Anhydrochlortetracycline (ACTC)	9-145
Anhydrotetracycline (ATC)	25-150
Chlortetracycline (CTC)	40-180
Demeclocycline	20-130
Doxycycline	35-220
Epianhydrochlortetracycline (EACT	5-130
Epianhydrotetracycline (EATC)	20-160

Compound	LCS %R Limits
Epichlortetracycline	30-200
Epioxytetracycline	9-145
Epitetracycline (ETC)	20-250
Isochlortetracycline	35-140
Minocycline	9-400
Oxytetracycline (OTC)	15-150
Tetracycline (TC)	25-180

Table 13. List 3 (ANEG) Recovery Limits

Compound	LCS %R Limits
Bisphenol A	60-130
Furosemide	50-150
Gemfibrozil	70-130
Glipizide	70-135
Glyburide	65-135

Compound	LCS %R Limits
2-hydroxy-ibuprofen	65-130
Ibuprofen	65-130
Naproxen	60-145
Triclocarban	60-145
Triclosan	70-150

Table 14. List 4 (BPOS) Recovery Limits

Eist + (Bi OS) Recovery Emits			
	Compound	LCS %R Limits	
	Albuterol	70-180	
	Amphetamine	70-200	
	Atenolol	70-220	
	Atorvastatin	25-130	
	Cimetidine	70-145	
	Clonidine	70-220	
	Codeine	70-250	

Compound	LCS %R Limits
Cotinine	70-145
Enalapril	70-150
Hydrocodone	70-220
Metformin	70-200
Oxycodone	70-180
Ranitidine	30-130

Table 15. List 5 (APOSX) Recovery Limits

Compound	LCS %R Limits
Alprazolam	65-135
Amitriptyline	70-135
Amlodipine	70-150
Benzoylecgonine	70-140
Benztropine	70-135
Betamethasone	70-160
Cocaine	70-135
DEET	70-150
Desmethyldiltiazem	70-135
Diazepam	70-145
Fluocinonide	60-140
Fluticasone propionate	45-130
Hydrocortisone	60-150
10-hydroxy-amitriptyline	60-135
Meprobamate	70-200
Methylprednisolone	65-130

Compound	LCS %R Limits
Metoprolol	70-135
Norfluoxetine	70-160
Norverapamil	65-130
Paroxetine	70-145
Prednisolone	70-180
Prednisone	70-145
Promethazine	65-150
Propoxyphene	70-145
Propranolol	70-140
Sertraline	55-130
Simvastatin	45-180
Theophylline	70-500
Trenbolone	70-135
Trenbolone acetate	50-130
Valsartan	65-130
Verapamil	65-145

All of LCS recoveries met technical acceptance criteria, and no data qualifiers added with the following exceptions.

DPWG69803

List 1 (APOS)

The recoveries of some target compounds exceeded QC limits but were not detected, so data were not qualified on this basis. The recoveries of some target compounds were below QC limits; no further qualification of the data was necessary, except for the method blank. The recovery of Sulfanilamide severely greatly exceeded QC limits. Table 16 lists the samples qualified on these bases.

Table 16. Sample/Compound Qualifiers Added

Sample ID	Sulfanilamide	Cloxacillin	Digoxin	Lincomycin	Penicillin G	1,7-Dimethylxanthine
1906027-51	R					
1906027-52	R					
1906027-53	R					
1906027-54	R					
1906027-55	R					
1906027-56	R					
1906027-57	R					
1906027-58	R					
1906027-59	R					
WG68622-103	R					
1906027-60	R					
1906027-61	R					
1906027-62	R					
1906027-63	R					
1906027-64	R					
1906027-65	R					
1906027-66	R					
1906027-67	R					
WG68622-101	R	UJ	UJ	UJ	UJ	UJ

List 2 (TCYC)

The recoveries of some target compounds exceeded QC limits but were not detected, so data were not qualified on this basis. The recoveries of some target compounds were below QC limits, but data were not further qualified on this basis.

List 4 (BPOS)

The recoveries of some target compounds were below QC limits; no further qualification of the data was necessary, except for the method blank. Table 17 lists the sample qualified on this basis.

Table 17. Sample/Compound Qualifiers Added

Sample ID	Atorvastatin	
WG68603-101	UJ	

List 5 (APOSX)

The recoveries of some target compounds were below QC limits; no further qualification of the data was necessary, except for the method blank. Table 18 lists the sample qualified on this basis.

Table 18. Sample/Compound Qualifiers Added

Sample ID	Simvastatin
WG68622-101	UJ

DPWG69654

List 1 (APOS)

The recoveries of some target compounds exceeded QC limits but were not detected, so data were not qualified on this basis. The recoveries of some target compounds were below QC limits with the recovery of Cefotaxime severely exceeding QC limits. Table 19 lists the samples qualified on these bases.

Table 19. Sample/Compound Qualifiers Added

Sample ID	Cefotaxime	Cloxacillin	Digoxin	Lomefloxacin	Oxacillin	Penicillin G	Sulfanilamide
1906027-68	R						
1906027-69	R						
1906027-70	R						
1906027-71	R						
1906027-72	R						
1906027-73	R						
WG68623-103	R						
1906027-74	R						
1906027-75	R						
1906027-76	R						
1906027-77	R						
1906027-78	R						
1906027-79	R						
1906027-80	R						
1906027-81	R						
1906027-82	R						
1906027-83	R						
WG68623-101	R	UJ	UJ	UJ	UJ	UJ	UJ

List 2 (TCYC)

The recoveries of some target compounds exceeded QC limits but were not detected, so data were not qualified on this basis.

List 4 (BPOS)

The recoveries of some target compounds exceeded QC limits; no further qualification of the data was necessary, except for the method blank. Table 20 lists the sample qualified on this basis.

Table 20. Sample/Compound Qualifiers Added

Sample ID	Atorvastatin	Ranitidine
WG68621-101	UJ	UJ

List 5 (APOSX)

The recoveries of some target compounds exceeded QC limits but were not detected, so data were not qualified on this basis.

8. SAMPLE / SAMPLE DUPLICATE - Acceptable

SGS Axys extracted two Sample/Sample Duplicate pairs for a frequency of 6.1% and met the frequency criteria of 5% per the SOW. The technical acceptance criteria for detected target compounds is based on the associated MRL. If the sample concentration is > 5x, the MRL, the RPD criteria. If the sample concentration $\le 5x$ the MRL, then the RPD criteria are $\le 40\%$ for 60% of the analytes.

All of the Sample/Sample Dup RPDs met technical acceptance criteria.

9. FIELD SAMPLE / FIELD REPLICATE - Acceptable

The Project Officer submitted three pairs of field sample/field replicate samples for the project for a frequency of 10% for the project. The QAPP acceptance criteria for detected target compounds is an RPD \leq 40%. I only evaluated the replicate RPD if one of the sample concentrations was > 5x the MRL.

All of the Sample/Sample Dup RPDs met acceptance criteria with the following exceptions.

DPWG69803

List 1 (APOS)

The RPD of Diphehydramine for samples 1906027-64 and -65 exceeded QC limits. Data were already qualified, and no further qualification was necessary.

List 5 (APOSX)

The RPD of DEET for samples 1906027-64 and -65 exceeded QC limits. Data were already qualified, and no further qualification was necessary.

10. SURROGATES (EXTRACTED INTERNAL STANDARDS) - Acceptable

SGS Axys added isotopically labeled Extracted Internal Standards (EIS) as surrogates to every sample and batch QC before extraction to recovery correct the results. Table 21 lists the technical acceptance criteria for the surrogate recoveries. Target compounds associated with surrogates severely exceeding QC criteria, recoveries less than 10% or less than the lower control limit if less than 10%, were qualified R if not detected.

Table 21. EIS Recovery Limits

Fable 21. EIS Recovery Limits						
Surrogate	Solid %R					
List 1 (APOS)						
13C2, 15N-Acetaminophen	30-160					
13C3-Caffeine	40-140					
d10-Carbamazepine	40-150					
13C3, 15N-Ciprofloxacin	7-150					
13C2-Erythromycin - H2O	35-130					
d5-Fluoxetine	10-160					
13C6-Sulfamethazine	30-160					
13C6-Sulfamethoxazole	30-140					
d6-Thiabendazole	25-180					
13C3-Trimethoprim	30-140					
List 2 (TCY	(C)					
d6-Thiabendazole	25-140					
List 3 (ANE						
d6-Bisphenol A	50-170					
d6-Gemfibrozil	50-150					
d11-Glipizide	30-180					
d3-Glyburide	20-160					
13C3-Ibuprofen	50-140					
13C-d3-Naproxen	30-150					
List 4 (BPC						
d3-Albuterol	20-140					
d5-Amphetamine	20-130					
d7-Atenolol	50-130					
d3-Cimetidine	15-130					
d4-Clonidine	50-130					
d6-Codeine	50-130					
d3-Cotinine	50-140					
d5-Enalapril	50-130					
d3-Hydrocodone	50-130					
d 6 -Metformin	3-130					
d6-Oxycodone	50-150					
List 5 (APO)						
d5-Alprazolam	45-130					
d6-Amitriptyline	10-130					
d8-Benzoylecgonine	10-130					
d3-Benztropine	20-140					
d3-Cocaine d7-DEET	25-140 15-160					
d5-Diazepam	15-160					
d4-Hydrocortisone	40-240					
d3-Methylprednisolone	15-160					
d7-Metoprolol	25-140					
d5-Norfluoxetine	20-130					

All surrogate recoveries met technical acceptance criteria, and no data qualifiers added with the following exceptions.

DPWG69803

List 1 (APOS)

The recovery of 13C-15N-Ciprofloxacin in all samples severely exceeded QC limits and is a known issue specific to marine sediments. Additionally, some of the surrogate recoveries exceeded QC limits and were either not detected, or qualified for other reasons, so no further qualification of the data was necessary except for the method blank.

The recoveries of 13C3-Caffeine, 13C2-Erythromycin-H₂O, d5-Fluoxetine, d6-Thiabendazole, and 13C3-Trimethoprim in some samples severely exceeded QC limits. SGS Axys reextracted and reanalyzed samples 1906027-55, 1906027-59, and 1906027-62 yielding similar results and attributed to matrix effects. Table 22 lists samples qualified on these bases.

Table 22. Compound/Sample Qualifiers Added

			ira, sa							190	06027								
Analyte	MB	51	52	53	54	55	56	57	58	59	Dup	60	61	62	63	64	65	66	67
Acetaminophen	UJ																		
Azithromycin						R				R				R					
Caffeine	UJ			R					R	R									
Carbadox						R				R				R					
Cefotaxime						R				R				R					
Ciprofloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Clinafloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Cloxacillin						R				R				R					
Dehydronifedipine						R				R				R					
Digoxigenin						R				R				R					
Digoxin						R				R				R					
Diltiazem						R				R				R					
Diphenhydramine						R				R				R					
Enrofloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Erythromycin-H2O						R	R			R			R	R					
Flumequine						R				R				R					
Fluoxetine						R				R				R					
Lincomycin						R				R				R					
Lomefloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Miconazole						R				R				R					
Norfloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Norgestimate						R				R				R					
Ofloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Ormetoprim						R				R				R					
Oxacillin						R				R				R					
Oxolinic Acid						R				R				R					
Penicillin G						R				R				R					
Penicillin V						R				R				R					
Sarafloxacin		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Thiabendazole														R					
Trimethoprim						R				R				R					
Virginiamycin M1						R				R				R					
1,7-Dimethylxanthine	UJ			R					R	R									

List 2 (TCYC)

The surrogate recovery of sample 1906027-62 severely exceeded QC specifications. SGS Axys reextracted and reanalyzed the sample yielding similar results and is attributed to severe matrix effects. Table 23 lists samples qualified on this basis.

Table 23. Compound/Sample Qualifiers Added

Analyte	1906027-62
Anhydrochlortetracycline [ACTC]	R
Anhydrotetracycline [ATC]	R
Chlortetracycline [CTC]	R
Demeclocycline	R
Doxycycline	R
4-Epianhydrochlortetracycline [EACTC]	R
4-Epianhydrotetracycline [EATC]	R
4-Epichlortetracycline [ECTC]	R
4-Epioxytetracycline [EOTC]	R
4-Epitetracycline [ETC]	R
Isochlortetracycline [ICTC]	R
Minocycline	R
Oxytetracycline [OTC]	R
Tetracycline [TC]	R

List 3 (ANEG)

The recoveries of some surrogates for samples 1906027-58 and 1906027-60 were diluted and re-analyzed due to poor recoveries. However, the dilution data yielded similar results, and the original data are reported. Some of the surrogate recoveries exceeded QC limits, and were either not detected, or qualified for other reasons, and no further qualification of the data was necessary. The recovery of 13C6-Triclocarban in some samples severely exceeded QC limits but was detected in every case. Data were not qualified on these bases.

List 4 (BPOS)

Some of the surrogate recoveries exceeded QC limits, and were either not detected, or qualified for other reasons, and no further qualification of the data was necessary except for the method blank. The recoveries of d3-Cimetidine severely exceeded QC limits in all of the samples and method blank. The recoveries of d6-Metformin also severely exceeded QC limits but were detected in the samples for every case, so no further qualification of the data was necessary. Table 24 lists samples qualified on these bases.

Table 24. Sample/Compound Qualifiers Added

Sample ID	Cimetidine	Cotinine
1906027-51	R	
1906027-52	R	
1906027-53	R	
1906027-54	R	
1906027-55	R	
1906027-56	R	
1906027-57	R	
1906027-58	R	
1906027-59	R	
WG68603-103	R	
1906027-60	R	
1906027-61	R	
1906027-62	R	
1906027-63	R	
1906027-64	R	
1906027-65	R	
1906027-66	R	
1906027-67	R	
WG68603-101	R	UJ

List 5 (APOSX)

Some of the surrogate recoveries exceeded QC limits, and were either not detected, or qualified for other reasons, and no further qualification of the data was necessary except for the method blank. Additionally, the recoveries of d6-Amitriptyline, d3-Benzotropine, d3-Cocaine, d7-Metoprolol, d6-Paroxetine, d4-Promethazine, d5-Propoxyphene, d7-Propanolol, d5-Norfluoxetine, and 13C1-15N2-Theophylline in some samples severely exceeded QC limits. SGS Axys diluted and reanalyzed the samples yielding similar results and attributed to severe matrix effects. Table 25 lists samples qualified on these bases.

Table 25. Compound/Sample Qualifiers Added

			<u></u>			1	906027					
Analyte	MB	52	53	54	55	56	57	58	59	61	62	65
Amitriptyline					R	R			R	R	R	
Amlodipine					R				R	R	R	
Betamethasone					R	R			R	R	R	
Benztropine		R	R	R	R	R	R	R	R	R	R	R
Cocaine					R	R			R	R	R	R
Desmethyldiltiazem					R	R			R	R	R	
Fluticasone propionate											R	
10-hydroxy-amitriptyline									R		R	
Meprobamate											R	
Metoprolol											R	
Norfluoxetine					R				R	R	R	
Noverapamil									R		R	
Paroxetine					R	R			R	R	R	R
Prednisolone									R		R	
Prednisone									R		R	
Promethazine					R	R			R	R	R	R
Propoxyphene					R	R			R	R	R	R
Propranolol									R		R	
Sertraline									R		R	
Simvastatin					R	R			R	R	R	R
Theophylline	UJ		R	R				R	R			
Valsartan					R	R			R	R	R	R
Verapamil					R	R			R	R	R	

DPWG69654

List 1 (APOS)

The recovery of 13C-15N-Ciprofloxacin in many of the samples severely exceeded QC limits and is a known issue specific to marine sediments. Also, some of the surrogate recoveries exceeded QC limits and were either not detected, or qualified for other reasons, so no further qualification of the data was necessary except for the method blank. Some of the recoveries in some samples severely exceeded QC limits. SGS Axys reextracted and reanalyzed sample 1906027-83 yielding similar results and attributed to severe matrix interferences. Table 26 lists samples qualified on these bases.

Table 26. Compound/Sample Qualifiers Added

14010 20.	1906027											
Analyte	68	69	71	75	76	77	78	79	80	81	82	83
Azithromycin												R
Carbadox												R
Cefotaxime												R
Ciprofloxacin	R	R	R	R	R	R	R	R	R	R	R	R
Clinafloxacin	R	R	R	R	R	R	R	R	R	R	R	R
Cloxacillin												R
Dehydronifedipine												R
Digoxigenin												R
Digoxin												R
Diltiazem												R
Diphenhydramine												R
Enrofloxacin	R	R	R	R	R	R	R	R	R	R	R	R
Erythromycin-H2O												R
Flumequine												R
Lincomycin												R
Lomafloxacin	R	R	R	R	R	R	R	R	R	R	R	R
Miconazole												R
Norfloxacin	R	R	R	R	R	R	R	R	R	R	R	R
Norgestimate												R
Ofloxacin	R	R	R	R	R	R	R	R	R	R	R	R
Ormetoprim												R
Oxacillin												R
Oxolinic Acid												R
Penicillin G												R
Penicillin V												R
Sarafloxacin	R	R	R	R	R	R		R	R	R	R	R
Trimethoprim												R
Virginiamycin M1												R

List 2 (TCYC)

Some of the surrogate recoveries exceeded QC limits, and were either not detected, or qualified for other reasons, so no further qualification of the data was necessary.

List 4 (BPOS)

Some of the surrogate recoveries exceeded QC limits, and were either not detected, or qualified for other reasons, and no further qualification of the data was necessary except for the method blank. The recoveries of d3-Cimetidine severely exceeded QC limits in all of the samples. Table 27 lists samples qualified on these bases.

Table 27. Sample/Compound Qualifiers Added

Sample ID	Cimetidine
1906027-68	R
1906027-69	R
1906027-70	R
1906027-71	R
1906027-72	R
1906027-73	R
WG68621-103	R
1906027-74	R
1906027-75	R
1906027-76	R
1906027-77	R
1906027-78	R
1906027-79	R
1906027-80	R
1906027-81	R
1906027-82	R
1906027-83	R

List 5 (APOSX)

Some of the surrogate recoveries exceeded QC limits, and were either not detected, or qualified for other reasons, and no further qualification of the data was necessary except for the method blank. Additionally, the recoveries in some samples severely exceeded QC limits for d6-Amitriptyline, d3-Benzotropine, d3-Cocaine, d5-Norfluoxetine, d6-Paroxetine, d4-Promethazine, d5-Propoxyphene. SGS Axys reextracted and reanalyzed samples 1906027-82 and -83 yielding similar results and is attributed to severe matrix interferences. Table 28 lists samples qualified on these bases.

Table 28. Compound/Sample Qualifiers Added

		19	06027	
Analyte	27	76	82	83
Amitriptyline			R	R
Amlodipine				R
Betamethasone			R	R
Benztropine	R	R	R	R
Cocaine			R	R
Desmethyldiltiazem				R
Norfluoxetine				R
Paroxetine			R	R
Promethazine				R
Propoxyphene			R	R
Simvastatin			R	R
Valsartan			R	R
Verapamil			R	R

11. INTERNAL STANDARDS (INJECTION INTERNAL STANDARDS) - Acceptable

SGS Axys added isotopically labeled Injection Internal Standards (IIS) just before analysis with recoveries calculated comparing area counts in the samples to the average area counts from the ICAL. Table 29 lists SGS Axys' guidance criteria for the IIS recoveries. I evaluated any IIS compound exceeding recovery limits for data qualification.

Table 29. IIS Recovery Limits

Analysis List	IIS	%R Limits
List 1 (APOS)	13C3-Atrazine	30-200
List 2 (TCYC)	13C3-Atrazine	30-200
List 3 (ANEG)	13C6-2,4,5-T	30-200
List 4 (BPOS)	d3-Amitriptyline	30-200
List 5 (APOSX)	13C3-Atrazine	30-200

All of the IIS recoveries met technical acceptance criteria, and no data qualifiers added.

12. TARGET COMPOUND IDENTIFICATION- Acceptable

The compound identification technical acceptance criteria for target compounds are an S:N ratio \geq 3, the retention time (RT) of the detected target compound is \pm 0.4 minutes of the CCV RT, and an RT of the detected target compound is \pm 0.1 minutes of the labeled EIS RT, if available.

All of the reported target compounds met technical acceptance criteria with the following notable exceptions.

DPWG69803

List 4 (BPOS)

All client samples and duplicate samples were diluted and reanalyzed to minimize matrix interferences with the target compound Amphetamine. The dilution data did not improve the data except for samples 1906027-55, -57, and -60. The results for Amphetamine for these three samples are reported from the dilution. Data were not qualified on this basis.

DPWG69654

List 1 (APOS)

Samples 1906027-68, -73, -78, -80, and -82 were diluted and instrumentally re-analyzed to minimize the interference observed affecting the analyte Caffeine. The chromatography for this analyte was improved, so they reported the dilution data. Data were not qualified on this basis.

List 4 (BPOS)

For most samples, an interference was observed at the expected retention time for Amphetamine and/or Metformin. SGS flagged the results stating the values are considered maximum possible concentrations. Table 30 lists the samples qualified on this basis.

Table 30. Sample/Compound Qualifiers Added

Sample ID	Amphetamine	Metformin
1906027-68	NJ	
1906027-69		NJ
1906027-72		NJ
1906027-73	NJ	
1906027-74	NJ	
1906027-76	NJ	
1906027-77	NJ	NJ
1906027-78	NJ	
1906027-79	NJ	
1906027-80	NJ	

Generally, SGS Axys reports results to the Method Reporting Limit (MRL), or Sample Detection Limit (SDL), whichever was higher. They calculated MRLs based on the lowest calibration standard and the amount of sample extracted. They calculated SDLs based on three times the instrument noise and the amount of sample extracted. SDLs indicate the level of matrix interferences present in the sample within the retention time window of the target compound.

SGS Axys reported the SDL whenever the SDL exceeded the MRL, and flagged the results U not detected. In these cases, the lab reported EDL in the Analysis Detection Limit Type field in the EDD. Data were already qualified, and no further qualification of the data was necessary.

13. TARGET COMPOUND QUANTITATION - Acceptable

I verified the quantitation of analytical results by recalculation of the raw data. I recalculated 10% of the ICAL, Instrument QC, Batch QC, and Samples. No calculation or transcriptions errors were found.

DATA QUALIFIERS

Table 31 lists the descriptions for the data qualifiers used in the report and EDD.

Table 31. Qualifier Descriptions

MEL Flag	Description
U	The compound was analyzed for but not detected at the reported
	quantitation limits.
J	The compound was positively identified, and the associated
	numerical value is the approximate concentration of the compound
	in the sample.
UJ	The compound was not detected at or above the reported
	quantitation limits. However, the reported quantitation limit is
	approximate and may or may not represent the actual limit of
	quantitation necessary to accurately and precisely measure the
	compound in the sample.
NJ	The compound is tentatively identified and reported at the estimated
	concentration due to coeluting interfering peaks present in the
	sample.
R	The sample results are rejected due to severe deficiencies in the
	ability to analyze the sample and meet the quality control criteria.
	The presence or absence of the compound cannot be verified.

WASHINGTON STATE DOE SOLID SAMPLES

PHARMACEUTICAL AND PERSONAL-CARE PRODUCT ANALYSIS SGS AXYS METHOD: MLA-075

4793: L31363-18 to -33

PROJECT: BUDD INLET MEL CX40- PO#19-34200

30 September 2019

RESUBMISSION: 24 January 2020

The data for the above samples and analyses was resubmitted to correct errors found for some target analytes associated with the APOS analysis and the 1906027-80 sample (SGS AXYS IDs: L31363-30). Revisions were also made to the discussion of the results for the BPOS analysis for the 1906027-79 and OPR samples (SGS AXYS IDs: L31363-29 and WG68621-102 respectively). For the TCYC analysis, a definition was added for the MAX flag assigned to the ICTC compound where detected in an analysis batch sample.

Previous versions of data including the database provided by SGS AXYS for these samples and analyses should be ignored and this submission considered the final version. No other changes beyond those discussed above were made.

NARRATIVE

This narrative describes the analysis of sixteen marine sediment samples for the determination of pharmaceutical and personal-care products using high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS).

SAMPLE RECEIPT AND STORAGE

The samples were received on the 21st of June, 2019. Details of sample conditions upon receipt are provided on the Sample Receiving Record forms included in the sample documentation section of this data package. The sample temperatures upon receipt ranged from -0.2°C to 0.1°C, meeting the recommended maximum sample storage temperature requirement criteria (< or equal to 4°C). The samples were stored at -20°C prior to extraction and analysis.

SAMPLE PREPARATION AND ANALYSIS

The samples were analyzed under two analysis batches designated as WG68621 and WG68623; the composition of each analysis batch is shown on the Correlation Table included with this Data Package. Each analysis batch included QC samples consisted of a laboratory procedural blank, a lab-generated reference sample referred to as an Ongoing Precision and Recovery (OPR) sample. The laboratory procedural blank was prepared using Canadian Springs water. The OPR sample was prepared using a reference biosolid. A duplicate of the 1906027-73 sample (SGS AXYS ID: L31363-23) was also prepared.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with MLA-075: Analytical Procedures for the Analysis of Pharmaceutical and Personal Care Products and Hormones in Solid, Aqueous, Tissue and POCIS Samples by LC-MS/MS. A method summary for this SGS AXYS Method MLA-075 (MSU-075) is included with this data package.

Approximately 1.0 g of sample was accurately weighed (dry mass basis), spiked with isotopically labeled quantification standards and extracted under acidic conditions (WG68623) with acetonitrile at pH = 2. For each sample, a separate portion of the same material was accurately weighed (dry mass basis) spiked with isotopically labeled quantification standards and also extracted under alkaline conditions (WG68621) with ammonium hydroxide at pH = 10. The extract for each sample was then reduced in volume, reconstituted with ultra-pure water and cleaned up using individual solid phase extraction (SPE) cartridges. After spiking with labeled recovery

(internal) standards, the extracts were analyzed by LC-MS/MS. Analyte concentrations were determined by isotope dilution/internal standard method, comparing the area of the quantification ion to that of the isotopically labeled standard. Linear quantification equations with 1/X weighting fit were determined from a multi-point calibration series prepared in solvent.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard analyzed (LMCL) or the sample specific detection limits (SDL), whichever was greater.

REPORTING CONVENTIONS

For internal tracking, SGS AXYS assigned the client the contract number 4793. SGS AXYS logged the field samples under the unique laboratory identifiers L31363-XX where X represents a numeral. All data reports reference both the SGS AXYS ID and the client sample identifier. To assist in locating data, a table correlating the SGS AXYS ID with the client sample number is included with this data package. The report forms were generated using Laboratory Information Management Software (LIMS).

Any extra work required and performed after the initial instrumental analysis of the sample extract is given an extra "test suffix" code. The single letter code per extra work performed was added to the SGS AXYS sample ID as a suffix and was combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

(A) = the parent sample for a duplicate pair

i = instrumental re-analysis performed on the sample extract

N = a large dilution of the sample extract followed by instrumental re-analysis

The following data qualifier flags were used in this data package:

B = analyte found in the lab associated blank and the concentration in the sample is less than 10x the concentration if the blank

D = dilution data

H = target analyte concentration was estimated (information only value)

MAX = concentration is an estimated maximum value.

N = analyte recovery was not within method control limits for the OPR sample

NJ = identifies a target that could not be confirmed by virtue of not satisfying all method required criteria, the reported value may be interpreted as an estimated maximum

analyte concentration

R = data not quantifiable

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limits

X = result reported separately

Results are reported in concentration units of nanogram per gram (ng/g) on a dry mass basis. Concentration and detection limits are provided to three significant figures. Analysis results for each sample are provided on Analysis Report forms 1A/2.

QA/QC NOTES

Samples and QC samples analyzed in two analysis batches were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. Blank data should be evaluated against specifications using the same blank sample size as the size of the client samples.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.

 All linearity, CAL/VER, OPR, precision and labeled compound recovery specifications were met with following exceptions:

WG68621

BPOS Compounds

For the OPR sample (SGS AXYS ID: WG68621-102), the percent recoveries for Atorvastatin, Ranitidine and Triamterene did not meet the method criteria limits and were flagged with an 'N'. Other data may be similarly affected.

For the 1906027-69, 1906027-72 and 1906027-77 samples (SGS AXYS IDs: L31363-19, 22 and -27), an interference was observed at the expected retention time for Metformin. The results were flagged as 'NJ' and should be considered the maximum possible concentrations.

For most field samples, an interference was observed at the expected retention time for Amphetamine. Where this compound was detected above the reporting limit, the result was flagged as 'NJ' and should be considered the maximum possible concentration. Where the interference was observed but the result was reported as not detected, the results were flagged with an 'H' and provided as information only.

For some samples, the percent recoveries for some surrogate compounds did not meet the method criteria limits and were flagged with a 'V'. As the isotope dilution method of quantification produces data that is recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

WG68623

APOS Compounds

For the initial calibration (QA9J_128 S:04 to S:10), at least five data points were used to quantify all target analytes except Carbadox, Cloxacillin, Oxacillin, Penicillin-G and Sulfanilamide which used four data points. Excluding Carbadox, the results for the other 4 compounds were flagged with an 'H' and were reported for information only.

For the on-going calibration verification solution injections (QA9J_128S:30 and S:49), the percent recoveries for the target analyte Cefotaxime were below the lower method criteria limits. For all samples, the results for this compound were deemed to be not quantifiable and were flagged as 'R'.

For the OPR sample (SGS AXYS ID: WG68623-102), the percent recoveries for Cloxacillin, Digoxin, Lomefloxacin, Oxacillin, Penicillin-G and Sulfanilamide were below the lower method criteria limits and were flagged with an 'N'. Other data may be similarly affected.

For most samples, the results for the surrogate compound 13C3-15N-Ciprofloxacin did not meet the minimum method criteria requirement (for percent recovery and/or signal to noise criteria) to use for accurate quantification of the related target analytes. For these compounds, the results were deemed to be not quantifiable and were flagged as 'R'.

For the 1906027-83 sample (SGS AXYS ID: L31363-33), where the percent recovery of a surrogate compound was below 10% and less than half the lower method criteria limit, the native target analyte was flagged with an 'H'. Non-native target analytes were deemed to be not quantifiable and were flagged with an 'R'. Where the surrogate recovery was below 1% or below the minimum signal to noise criteria, the results for the surrogate compound and all target analytes were flagged with an 'R'.

For some samples, the percent recoveries for some surrogate compounds did not meet the method criteria limits and were flagged with a 'V'. As the isotope dilution method of quantification produces data that is recovery

corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

TCYC compounds

In the OPR (SGS AXYS ID: WG68623-102), percent recovery of the analyte Tetracycline was observed be above the method upper control limit and was flagged with an 'N'. However, this analyte was not detected in any of the samples, sample data was not considered to be affected. For the same sample, the result for ICTC was flagged as "MAX" to indicate that the result reported was the maximum possible concentration. Due to structural similarities for 4-Epichlortetracycline (ECTC), a known positive interference with Isochlortetracycline (ICTC) is created for the analysis. No correction for this interference is applied to the instrument responses; so the concentrations reported for ICTC are flagged and reported as the maximum possible concentration.

For sample 1906027-83 (SGS AXYS ID: L31363-33), percent recovery of the labeled surrogate D6-Thiabendazole did not meet the method specifications and was flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

For the lab blank and samples 1906027-68, 1906027-69 and 1906027-79 (SGS AXYS IDs: WG68623-101, L31363-18, -19 and -29, respectively), Anhydrochlortetracycline (ACTC) was elevated by the instrument background to be marginally above the detection limit. The results have been reported as non-detect with the detection limit being raised to the detect.

ANEG Compounds

All method specifications were met.

APOSX Compounds

DEET was detected in the lab blank. Blank data should be taken into consideration when evaluating sample data.

For the OPR (SGS AXYS ID: WG68623-102), percent recovery of the analyte Verapamil was observed to be above the method upper control limit and flagged with an 'N'. For the samples with the analyte not being detected, data is not considered affected; for those samples with the analyte detected, the concentration may be similarly affected. The surrogate 13C1-15N2-Theophylline was observed to be below the method lower limit. However, the percent recovery of the analyte Theophylline met the method specification, the data was not affected.

For samples 1906027-75 and 1906027-81 (SGS AXYS IDs: L31363-25 and -31, respectively), percent recoveries of the labeled surrogates D5-Propoxyphene or D3-Benztropine did not meet the method specifications and are flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

For the lab blank and samples 1906027-75 and 1906027-76 (SGS AXYS IDs: L31363-25 and -26, respectively), percent recoveries of the labeled surrogates D3-Benztropine or D7-DEET was below 10% and less than half of the method lower control limits. The surrogates are flagged with a 'V' and the associated targets Benztropine or DEET are flagged with an 'H', which denotes that the concentrations are estimated.

For samples 1906027-82 and 1906027-83 (SGS AXYS IDs: L31363-32 and -33, respectively), percent recoveries for some labeled surrogates were below the method lower control limits and are flagged with a 'V'. In case where surrogate recoveries were observed to be below 10% and less than half of the method lower control limits, the surrogates are flagged with a 'V' and the associated analog targets are flagged with an 'H', which denotes that the concentrations are estimated, and the other associated non-analog targets were flagged with a 'R', and the data is not available. In cases where surrogate recoveries were observed to be above half of the method lower control limits or greater than 10%, as the isotope dilution method of quantification produces data that are recovery

corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

ANALYTICAL DISCUSSION

WG68621

BPOS Compounds

The extracts for the client and QC samples listed in the following table were instrumentally re-analyzed as the calibration verification data did not meet the all the method criteria in the initial analysis. The re-analysis was successful and the re-injection data are reported (indicated with the suffix 'i' following the SGS AXYS ID on the report forms.

Client Sample ID	AXYS Lab ID
1906027-68	L31363-18 i
1906027-69	L31363-19 i
1906027-70	L31363-20 i
1906027-71	L31363-21 i
1906027-72	L31363-22 i
1906027-73	L31363-23 i (A)
1906027-73 (Duplicate)	WG68621-103 i (DUP L31363-23)
WG68621-101	WG68621-101 i
WG68621-102	WG68621-102 i

All the client samples and the duplicate except for the samples 1906027-78, 1906027-79 and 1906027-82 (SGS AXYS IDs: L31363-28, -29 and -32, respectively) were diluted and instrumentally re-analyzed as an instrumental interference was observed at the expected retention time for the target analyte Amphetamine. The results for the analyte Amphetamine are reported from the dilution data (indicated by the suffix 'N' added to the SGS AXYS IDs).

For all samples and the dilution data above, the raw instrument response for the surrogate compound d5-Amphetamine were all approximately 15% when compared to the raw instrument response for the same compound from the initial analysis data (with the dilution factor taken into consideration). A decline was also observed in the instrument response for the recovery standard d3-Amitriptyline used to recovery correct and calculate the percent recoveries for the d5-Amphetamine surrogate compound. This created a positive directional bias in the final percent recoveries reported for d5-Amphetamine. Given that the surrogate compound used to quantify Amphetamine is an isotope of the target analyte and that the lower method criteria limit for d5-Amphetamine is 20%, this marginal variance was deemed acceptable with limited influence on the data quality for the results reported.

WG68623

APOS Compounds

Samples listed in the following table were diluted and instrumentally re-analyzed to minimize the interference observed affecting the analyte Caffeine. The chromatography for this analyte was improved in the dilution data. The results for this analyte are reported from the dilution data (indicated by the test suffix 'N' added to the SGS AXYS IDs).

Client Semple ID	AVVELabID
Client Sample ID	AXYS Lab ID

1906027-68	L31363-18 N
1906027-73	L31363-23 N (A)
1906027-78	L31363-28 N
1906027-80	L31363-30 N
1906027-82	L31363-32 N

Sample 1906027-83 (SGS AXYS ID: L31363-33) was repeated in another analysis batch WG69071 due to poor surrogate recoveries. However, the surrogate recoveries were not improved, and therefore the original data are reported. The repeat data (not validated) are provided in 'Unvalidated Data' in this data package.

TCYC compounds

Samples listed in the following table were instrumentally re-analyzed as the initial calibrations did not meet all the method specifications. The re-analysis was successful, and the re-analysis data are reported (indicated by the suffix 'i' added to the SGS AXYS IDs). The original data (not validated) are provided in 'Unvalidated Data' in this data package.

Client Sample ID	AXYS Lab ID
1906027-68	L31363-18 i
1906027-69	L31363-19 i
1906027-70	L31363-20 i
1906027-71	L31363-21 i
1906027-72	L31363-22 i
1906027-73	L31363-23 i (A)
1906027-74	L31363-24 i
1906027-75	L31363-25 i
1906027-76	L31363-26 i
WG68623-101	WG68623-101 i
WG68623-102	WG68623-102 i
1906027-73 (Duplicate)	WG68623-103 i (DUP L31363-23)

ANEG Compounds

No analytical difficulties were encountered.

APOSX Compounds

Samples 1906027-82 and 1906027-83 (SGS AXYS IDs: L31363-32 and -33, respectively) were repeated in another analysis batch WG69071 due to low surrogate recoveries. However, the repeat analysis did not improve the surrogate recoveries, the original data are reported. The repeat data (not validated) are provided in 'Unvalidated Data' in this data package.

DATA PACKAGE

This data package was assigned a unique identifier, DPWG69654, shown on the front page. The following documents are included in the data package:

- Method summary
- Sample Correlation Table

- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory Extraction Worksheets
- Preparation Logs for Standard Solutions
- Sample data reports (in order of SGS AXYS ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Audit reports
- Sample Raw Data (in order of SGS AXYS ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unvalidated Data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of SGS AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Andrew Porat	28-January-2020
Signed: Andrew Porat, Data Validation Chemist	Date Signed

WASHINGTON STATE DOE SOLID SAMPLES

PHARMACEUTICAL AND PERSONAL-CARE PRODUCT ANALYSIS SGS AXYS METHOD: MLA-075

4793: L31363-1 to -17

PROJECT: BUDD INLET MEL CX40- PO#19-34200

30 September 2019 Revised 23 December 2019

Revision on 23 December 2019

This data package is re-submitted for the corrections below:

- 1) Revised the Sample Receipt and Storage section.
- 2) Added sensitivity check for list 2 (data filename: QF9P 140 S: 5);
- 3) Added standard sheet for the quantification standard named QG008A-Sur/01;
- 4) Update narrative for CCV recoveries exceeding QC limits for QG9P_148 S: 41 in WG68603 BPOS;
- 5) Corrected the reporting limit of the analyte Trenbolone in the sample 1906027-58 (SGS AXYS ID: L31363-8);
- 6) Corrected retention time of the analyte Amitriptyline in the sample '1906027-60 (SGS AXYS ID: L31363-10);
- 7) Corrected concentration of the analyte Metoprolol in the sample 1906027-59 duplicate (SGS AXYS ID: WG68622-103).

None of the other information has been changed.

NARRATIVE

This narrative describes the analysis of seventeen marine sediment samples for the determination of pharmaceutical and personal-care products using high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS).

SAMPLE RECEIPT AND STORAGE

Details of sample conditions upon receipt are provided on the Sample Receiving Record forms included in the sample documentation section of this data package. The sample temperatures upon receipt ranged from -0.2°C to 0.1°C, meeting the recommended maximum sample storage temperature requirement criteria (< or equal to 4°C). Samples were collected in the field 17-and 18-June 2019, received at the laboratory on 21-June 2019 and stored frozen until extraction, except for a brief thaw period for homogenization. Samples were extracted at the first opportunity on 8-July 2019.

As specified in MLA-075, extraction of samples past the 7 day hold time guideline does not invalidate results. There is not a single preservation/storage condition to maximize the hold times for all compounds covered by MLA-075; the method procedure represents the 'best combination' of conditions for the extensive list of compounds and is protective for the largest number of compounds, rather than universal.

SAMPLE PREPARATION AND ANALYSIS

The samples were analyzed under two analysis batches designated as WG68603 and WG68622; the composition of each analysis batch is shown on the Correlation Table included with this Data Package. Each analysis batch included QC samples consisted of a laboratory procedural blank, a lab-generated reference sample referred to as

an Ongoing Precision and Recovery (OPR) sample. The laboratory procedural blank was prepared using Canadian Springs water. The OPR sample was prepared using a reference biosolid. A duplicate of the 1906027-59 sample (SGS AXYS ID: L31363-9) was also prepared.

Sample preparation, instrumental analysis and analyte quantification procedures were in accordance with MLA-075: Analytical Procedures for the Analysis of Pharmaceutical and Personal Care Products and Hormones in Solid, Aqueous, Tissue and POCIS Samples by LC-MS/MS. A method summary for this SGS AXYS Method MLA-075 (MSU-075) is included with this data package.

Approximately 1.0 g of sample was accurately weighed (dry mass basis), spiked with isotopically labeled quantification standards and extracted under acidic conditions (WG68622) with acetonitrile at pH = 2. For each sample, a separate portion of the same material was accurately weighed (dry mass basis) spiked with isotopically labeled quantification standards and also extracted under alkaline conditions (WG68603) with ammonium hydroxide at pH = 10. The extract for each sample was then reduced in volume, reconstituted with ultra-pure water and cleaned up using individual solid phase extraction (SPE) cartridges. After spiking with labeled recovery (internal) standards, the extracts were analyzed by LC-MS/MS. Analyte concentrations were determined by isotope dilution/internal standard method, comparing the area of the quantification ion to that of the isotopically labeled standard. Linear quantification equations with 1/X weighting fit were determined from a multi-point calibration series prepared in solvent.

The reporting limit (RL) was defined as the concentration equivalent to the lowest calibration standard analyzed (LMCL) or the sample specific detection limits (SDL), whichever was greater.

REPORTING CONVENTIONS

For internal tracking, SGS AXYS assigned the client the contract number 4793. SGS AXYS logged the field samples under the unique laboratory identifiers L31363-XX where X represents a numeral. All data reports reference both the SGS AXYS ID and the client sample identifier. To assist in locating data, a table correlating the SGS AXYS ID with the client sample number is included with this data package. The report forms were generated using Laboratory Information Management Software (LIMS).

Any extra work required and performed after the initial instrumental analysis of the sample extract is given an extra "test suffix" code. The single letter code per extra work performed was added to the SGS AXYS sample ID as a suffix and was combined with any other applicable test suffix codes. The extra work codes used to report data in this package include:

(A) = the parent sample for a duplicate pair

= instrumental re-analysis performed on the sample extract

N = extract was diluted in a new microvial followed by instrumental re-analysis

The following data qualifier flags were used in this data package:

B = analyte found in the lab associated blank and the concentration in the sample is less than 10x the concentration if the blank

D = dilution data

H = concentration is estimated

N = analyte recovery was not within method control limits for the OPR sample

R = data not quantifiable

U = identifies a compound that was not detected

V = surrogate recovery is not within method/contract control limits

X = result reported separately

Results are reported in concentration units of nanogram per gram (ng/g) on a dry mass basis. Concentration and detection limits are provided to three significant figures. Analysis results for each sample are provided on Analysis Report forms 1A/2.

QA/QC NOTES

Samples and QC samples analyzed in two analysis batches were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. Blank data should be evaluated against specifications using the same blank sample size as the size of the client samples.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- All linearity, CAL/VER, OPR, precision and labeled compound recovery specifications were met with following exceptions:

WG68603

BPOS Compounds

For the calibration verification (data filename: QG9P_148 S: 41), percent recoveries for some labeled surrogates were observed to be above the method upper control limits likely due to the sample matrix. However, percent recoveries for the associated analytes met the method criteria, surrogate recoveries in samples may be similarly biased high, data for the targets are not considered affected.

In the OPR (SGS AXYS ID: WG68603-102), percent recovery of the analyte Atorvastatin was observed to be below the method lower control limit and was flagged with an 'N', sample data may be similarly affected.

For the lab blank and client samples 1906027-52, 1906027-53, 1906027-55, 1906027-57, 1906027-58, 1906027-60, 1906027-63, 1906027-64 and 1906027-65 (SGS AXYS IDs: WG68603-101, L31363-2, -3, -5, -7, -8, -10, -13, -14, -15, respectively). Percent recovery of the labeled surrogate D3-Cimetidine was below 1% and less than half of the method lower control limit, the surrogate and the associated target were not quantifiable and are flagged with 'R' on report, data is not available.

For samples 1906027-51,1906027-54,1906027-56,1906027-59,1906027-59 (Duplicate),1906027-61, 1906027-62, 1906027-66 and 1906027-67 (SGS AXYS IDs: WG68603-101, L31363-1, -4, -6, -9, WG68603-103, L31363-11, -12, -16 and -17, respectively). Percent recovery of the labeled surrogate D3-Cimetidine was below 10% and less than half of the method lower control limit but greater than 1%, the surrogate was flagged with a 'V" and the associated target was flagged with an 'H' on reports to indicate that the concentration is estimated.

For the lab blank and all the client samples, percent recoveries of some labeled surrogates did not meet the method specifications and are flagged with a 'V'. However, these surrogate recoveries were either above the half or the method lower control limits or 10%. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

WG68622

APOS Compounds

For the initial calibration (QA9J_122 S:02 to S:08), at least five calibration points were used to quantify all target analytes except Carbadox, Cloxacillin, Oxacillin, Penicilin-G and Penicillin-V which used four calibration points. Given that the results in all QC samples for Carbadox and Penicillin-V met the method criteria requirements, no data flags were applied to the results reported.

For the OPR sample (SGS AXYS ID: WG68622-102), the percent recoveries for some target analytes did not meet the method criteria requirements and were flagged with an 'N'. For Lincomycin and Sulfanilamide, other results may be similarly affected.

For all field samples, the percent recoveries and instrument response for the surrogate compound 13C-15N-Ciprofloxacin did not meet the minimum method criteria requirements to use for accurate quantification of all related target analytes. For these compounds, the results were deemed to be not quantifiable and were flagged as 'R'.

For some samples, where the percent recovery of a surrogate compound was below 10% and less than half the lower method criteria limit, the native target analyte was flagged with an 'H'. Non-native target analytes were deemed to be not quantifiable and were flagged as 'R'. Where the surrogate recovery was below 1% or below the minimum signal to noise criteria, the results for the surrogate compound and all target analytes were flagged as 'R'.

For some samples, the percent recoveries for some surrogate compounds did not meet the method criteria limits and were flagged with a 'V'. As the isotope dilution method of quantification produces data that is recovery corrected, these variances from method criteria were deemed to not affect the quantification of the target analytes. Percent surrogate recoveries are used as general method performance indicator only.

TCYC compounds

For the OPR (SGS AXYS ID: WG68622-102), percent recovery of the analyte Tetracycline [TC] was observed to be above the method upper control limit and flagged with an 'N'. However, this analyte was not detected in any of the samples, sample data is not considered affected.

The sample 1906027-62 (SGS AXYS ID: L31363-12) was repeated in another batch WG69071 due to low surrogate recovery. However, the repeat data did not improve, and the original data are reported. All the analytes are flagged with an 'H' to denote that the results are estimated as the surrogate recovery was below 10% and less than half of the control limit. The surrogate is flagged with a 'V'.

ANEG Compounds

For the OPR and all the client samples except for sample '1906027-67 (SGS AXYS ID: L31363-17), percent recoveries of some labeled surrogates did not meet the method specifications and are flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

For the sample '1906027-58 (SGS AXYS ID: L31363-8), percent recovery of the labeled surrogate 13C6-Triclocarban was below 10% and less than the half of the lower control limit. The surrogate is flagged with a 'V' and the associated target is flagged with an 'H' denoting that the concentration was estimated.

APOSX Compounds

DEET and Cocaine were detected in the lab blank. Blank data should be taken into consideration when evaluating sample data.

For the OPR (SGS AXYS ID: WG68622-102), percent recovery of the analyte Simvastatin was observed to be below the method lower control limit and flagged with an 'N', sample data may be similarly affected. The surrogate 13C1-15N2-Theophylline was observed to be below the method lower limit. However, the percent recovery of the analyte Theophylline met the method specification, the data was not affected.

For samples 1906027-55,1906027-56,1906027-59,1906027-61,1906027-62 and 1906027-65 (SGS AXYS IDs: L31363-5, -6, -9, -11, -12 and -15, respectively), some analytes and their surrogates were not quantifiable or surrogate recoveries were too low to accurately quantify the data and are flagged with 'R' on the reports, data are not available.

For samples 1906027-52, 1906027-53, 1906027-54, 1906027-55, 1906027-56, 1906027-57, 1906027-58, 1906027-59, 1906027-61,1906027-62 and 1906027-65 (SGS AXYS IDs: L31363-2, -3, -4, -5, -6, -7, -8, -9, -11, -

12 and -15, respectively), percent recoveries of some labeled surrogates were below 10% and less than half of the method lower control limits. The surrogates are flagged with a 'V' and the associated analog targets are flagged with an 'H', which denote that the concentrations are estimated. Non-native target analytes were deemed to be not quantifiable and were flagged as 'R'.

For the lab blank, OPR and client samples 1906027-51, 1906027-53, 1906027-54, 1906027-55, 1906027-56, 1906027-59, 1906027-60, 1906027-63, 1906027-65 and 1906027-66 (SGS AXYS IDs: L31363-14 and -17, respectively), percent recoveries of some labeled surrogates did not meet the method specifications and are flagged with a 'V'. However, the percent recoveries are either above 10% or greater than half of the method lower control limit. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent labeled compound recoveries are used as a general method performance indicator only.

ANALYTICAL DISCUSSION

WG68603

BPOS Compounds

All client samples and duplicate sample were diluted followed by instrumental re-analysis to minimize the interference with the analyte Amphetamine. The dilution data did not improve the data for all these samples except for samples 1906027-55, 1906027-57 and 1906027-60 (SGS AXYS IDs: L31363-5, -7, and -10, respectively). The results for Amphetamine for these three samples are reported from the dilution (indicated by the suffix 'N' added to the SGS AXYS IDs). The original data are reported for the rest of the samples and duplicate, and the dilution data (not validated) are provided in the 'Unvalidated Data' section provided in this data package.

WG68622

APOS Compounds

For the 1906027-55, 1906027-59 and 1906027-62 samples (SGS AXYS IDs: L31363-5, -9 and -12), the instrument response for some surrogate compounds did not meet the minimum method criteria to use for accurate quantification of most target analytes. As remedial action, a dilution and instrumental re-analysis was conducted, as well as a repeat analysis was performed under WG69071 analysis batch using a smaller sample amount. However, neither dilution nor the repeat analysis improved the data, therefore the original data are reported. The dilution data (not validated) and the repeat data (not validated) for these samples are provided in the 'Unvalidated Data' section provided in this data package.

TCYC compounds

All the QC samples and client samples listed in the following table were instrumentally re-analyzed as the continuing calibration verification data in the initial analysis did not meet all the method specifications. The re-analysis was successful, and the re-analysis data were reported (indicated by the test suffix 'i' on the SGS AXYS IDs). The original data (not validated) for these samples are provided in 'Unvalidated Data' in this data package.

Client Sample ID	AXYS Lab ID
1906027-51	L31363-1 i
1906027-52	L31363-2 i
1906027-53	L31363-3 i
1906027-54	L31363-4 i
1906027-55	L31363-5 i
1906027-56	L31363-6 i
1906027-57	L31363-7 i
1906027-58	L31363-8 i
1906027-59	L31363-9 i (A)
1906027-59 (Duplicate)	WG68622-103 i (DUP L31363-9)
WG68622-101	WG68622-101 i
WG68622-102	WG68622-102 i

The sample 1906027-62 (SGS AXYS ID: L31363-12) was repeated in another batch WG69071 due to low surrogate recovery. However, the repeat data did not improve, and the original data are reported. The repeat data (not validated) are provided in 'Unvalidated Data' in this data package.

ANEG Compounds

Samples 1906027-58 and 1906027-60 (SGS AXYS IDs: L31363-8 and -10, respectively) were diluted and instrumentally re-analyzed due to poor surrogate recoveries. Dilution data did not improve the surrogate recoveries and the original data are reported. The dilution data (not validated) for these two samples are provided in the 'Unvalidated Data' section provided in this data package.

APOSX Compounds

Samples 1906027-53, 1906027-55, 1906027-56, 1906027-59, 1906027-60 and 1906027-61 (SGS AXYS IDs: L31363-3, -5, -6, -9, -10 and -11, respectively) were diluted due to low surrogate recoveries. However, dilution analysis did not improve the surrogate recoveries, the original data are reported. The dilution data (not validated) for these samples are provided in the 'Unvalidated Data' section provided in this data package.

Samples 1906027-53,1906027-55,1906027-56,1906027-59,1906027-61,1906027-62 and 1906027-65 (SGS AXYS IDs: L31363-3, -5, -6, -9, -11, -12 and -15, respectively) were repeated in analysis batch WG69071 due to low surrogate recoveries. However, repeat analysis did not improve the surrogate recoveries, the original data are reported. The repeat data (not validated) are provided in 'Unvalidated Data' in this data package.

DATA PACKAGE

This data package was assigned a unique identifier, DPWG69803, shown on the front page. The following documents are included in the data package:

- Method summary
- Sample Correlation Table
- Sample Receiving Documentation
- Sample Homogenization Records
- Laboratory Extraction Worksheets
- Preparation Logs for Standard Solutions
- Sample data reports (in order of SGS AXYS ID)
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Audit reports
- Sample Raw Data (in order of SGS AXYS ID)
- Laboratory QC raw data
- Instrumental QC raw data (organized by analysis date)
- Unvalidated Data
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of SGS AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Henry Huang	23-Dec-2019
Signed: Henry Huang, Ph.D., Data Validation Chemist	Date Signed

DEPARTMENT OF ECOLOGY

Manchester Environmental Laboratory
7411 Beach Drive East ● Port Orchard, Washington 98366-8204

Case Narrative

February 2, 2021

To: Dutch, Margaret

Project: PSEMP - 2020

Work Order: 2011020

Subject: Per- and polyfluoroalkyl substances by LCMSMS

From: Jeff Westerlund

Sample Receipt

Enclosed are the PFAS (Anions) results for the samples received by MEL on November 6, 2020. All samples were received in acceptable condition unless noted in Analyst Comments. All samples were prepared and analyzed within holding times unless noted in Analyst Comments.

Analytical Methods

These samples were prepared, analyzed, and verified by MEL according to the submitted chain-of-custody and MEL's procedures. A Sample Correlation Table with batch summary is located in Appendix A. The samples were:

- extracted following a modification of method AOAC2007.01.
- analyzed following a modification of method SW8327.

Analyst Comments

<u>PFAS by LC-MS/MS</u>. All samples were received after the extract hold time had passed, and all results were qualified as estimated. Sample final volumes were corrected for extract volume less than 5 mls. Several SRM recoveries were above expected levels, possibly due to the small amount of the SRM sample remaining in the jar. The response of the surrogate M2-4:2 FTS increased in three samples to where it could not be calculated. As the response was high and there were no detections of the associated analyte, no data was qualified.

Sample Qualification

The samples were qualified according to MEL's procedures. The table in Appendix B summarizes the manual qualifiers added by MEL. All results reported below the method reporting limit (RL) were automatically qualified as estimates, but not included in Appendix B. The qualifiers are defined in Appendix C.

Sample Verification

All analyses met QC acceptance criteria except as noted in Appendix D. All analytes met linearity requirements unless noted in Appendix E.

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 34-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.037 g Final Vol: 4.54 mL

CAS#

Lab ID #: 2011020-01 Collected: 4/15/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 34.98%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

	V				
414911-30-1	4:2 fluorotelomersulfonate		1.29	UJ	1.29
425670-75-3	6:2 fluorotelomersulfonate		1.29	UJ	1.29
481071-78-7	8:2 fluorotelomersulfonate		1.29	UJ	1.29
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.323	UJ	0.323
NULL	N-methyl perfluorooctanesulfonamideacetate		0.323	UJ	0.323
45187-15-3	Perfluorobutanesulfonate		0.323	UJ	0.323
375-22-4	Perfluorobutanoate		0.323	UJ	0.323
335-77-3	Perfluorodecanesulfonate		0.323	UJ	0.323
73829-36-4	Perfluorodecanoate		0.323	UJ	0.323
171978-95-3	Perfluorododecanoate		0.647	UJ	0.647
375-92-8	Perfluoroheptanesulfonate		0.323	UJ	0.323
	•		0.323	UJ	0.323
120885-29-2	Perfluoroheptanoate				
108427-53-8	Perfluorohexanesulfonate		0.109	J	0.323
92612-52-7	Perfluorohexanoate		0.323	UJ	0.323
68259-12-1	Perfluorononanesulfonate		0.323	UJ	0.323
72007-68-2	Perfluorononanoate		0.323	UJ	0.323
754-91-6	Perfluorooctanesulfonamide		0.323	UJ	0.323
45298-90-6	Perfluorooctanesulfonate		0.674	J	0.323
45285-51-6	Perfluorooctanoate		0.323	UJ	0.323
2706-91-4	Perfluoropentanesulfonate		0.323	UJ	0.323
45167-47-3	Perfluoropentanoate		0.323	UJ	0.323
365971-87-5	Perfluorotetradecanoate		1.29	UJ	1.29
862374-87-6	Perfluorotridecanoate		1.29	UJ	1.29
NULL	Perfluoroundecanoate		0.323	UJ	0.323
Surrogate Reco	overv:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.55	5.70	27	20-200
NULL	D5-N-EtFOSAA	1.69	5.70	30	20-200
NULL	M2-4:2 FTS	1.22	5.34	23	20-200
NULL	M2-6:2 FTS	1.96	5.42	36	20-200
NULL	M2-8:2 FTS	1.75	5.47	32	20-200
NULL	M2PFTeDA	2.05	5.70	36	20-200
NULL	M3PFBS	2.57	5.31	48	20-200
NULL	M3PFHxS	1.98	5.40	37	20-200
NULL	M4PFHpA	2.26	5.70	40	20-200
NULL	M5PFHxA	2.28	5.70	40	20-200
NULL	M5PFPeA	2.01	5.70	35	20-200
NULL	M6PFDA	1.94	5.70	34	20-200
NULL	M7PFUnA	1.97	5.70	35	20-200
NULL	M8FOSA	1.44	5.70	25	20-200
NULL	M8PFOA	2.16	5.70	38	20-200
NULL	M8PFOS	1.65	5.46	30	20-200
NULL	M9PFNA	2.03	5.70	36	20-200
NULL	MPFBA	2.04	5.70	36	20-200
NULL	MPFDoA	1.85	5.70	33	20-200
Authorized by	. Jeff Westerlund	Release Dat		2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.097 g Final Vol: 4.17 mL Lab ID #: 2011020-03 Collected: 4/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 68.20%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.606	UJ	0.606
425670-75-3	6:2 fluorotelomersulfonate		0.606	UJ	0.606
481071-78-7	8:2 fluorotelomersulfonate		0.606	UJ	0.606
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.151	UJ	0.151
NULL	N-methyl perfluorooctanesulfonamideacetate		0.151	UJ	0.151
45187-15-3	Perfluorobutanesulfonate		0.151	UJ	0.151
375-22-4	Perfluorobutanoate		0.151	UJ	0.151
335-77-3	Perfluorodecanesulfonate		0.151	UJ	0.151
73829-36-4	Perfluorodecanoate		0.151	UJ	0.151
171978-95-3	Perfluorododecanoate		0.0236	J	0.303
375-92-8	Perfluoroheptanesulfonate		0.151	UJ	0.151
120885-29-2	Perfluoroheptanoate		0.151	UJ	0.151
108427-53-8	Perfluorohexanesulfonate		0.151	UJ	0.151
92612-52-7	Perfluorohexanoate		0.151	UJ	0.151
68259-12-1	Perfluorononanesulfonate		0.151	UJ	0.151
72007-68-2	Perfluorononanoate		0.151	UJ	0.151
754-91-6	Perfluorooctanesulfonamide		0.151	UJ	0.151
45298-90-6	Perfluorooctanesulfonate		0.0751	J	0.151
45285-51-6	Perfluorooctanoate		0.151	ÚJ	0.151
2706-91-4	Perfluoropentanesulfonate		0.151	UJ	0.151
45167-47-3	Perfluoropentanoate		0.151	UJ	0.151
365971-87-5	Perfluorotetradecanoate		0.606	UJ	0.606
862374-87-6	Perfluorotridecanoate		0.606	UJ	0.606
NULL	Perfluoroundecanoate		0.151	UJ	0.151
Surrogate Reco		Sample	Spike	% Rec.	% Rec.
	Analyte	Result	Level		Limits
NULL	D3-N-MeFOSAA	0.865	2.90	30	20-200
NULL	D5-N-EtFOSAA	1.04	2.90	36 27	20-200
NULL NULL	M2-4:2 FTS M2-6:2 FTS	0.741 1.00	2.72 2.76	36	20-200 20-200
NULL	M2-8:2 FTS	0.859	2.79	31	20-200
NULL	M2PFTeDA	1.13	2.79	39	20-200
NULL	M3PFBS	1.23	2.71	46	20-200
NULL	M3PFHxS	0.992	2.75	36	20-200
NULL	M4PFHpA	1.07	2.90	37	20-200
NULL	M5PFHxA	1.14	2.90	39	20-200
NULL	M5PFPeA	0.967	2.90	33	20-200
NULL	M6PFDA	0.950	2.90	33	20-200
NULL	M7PFUnA	1.04	2.90	36	20-200
NULL	M8FOSA	0.808	2.90	28	20-200
NULL	M8PFOA	1.11	2.90	38	20-200
NULL	M8PFOS	0.890	2.78	32	20-200
NULL	M9PFNA	0.996	2.90	34	20-200
NULL	MPFBA	1.07	2.90	37	20-200
NULL	MPFDoA	0.959	2.90	33	20-200
Authorized by	: Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 21-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.419 g Final Vol: 4.17 mL

Lab ID #: 2011020-04 **Collected: 4/22/2019**

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 62.84%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.637	UJ	0.637
425670-75-3	6:2 fluorotelomersulfonate		0.637	UJ	0.637
481071-78-7	8:2 fluorotelomersulfonate		0.637	UJ	0.637
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.159	UJ	0.159
NULL	N-methyl perfluorooctanesulfonamideacetate		0.159	UJ	0.159
45187-15-3	Perfluorobutanesulfonate		0.159	UJ	0.159
375-22-4	Perfluorobutanoate		0.159	UJ	0.159
335-77-3	Perfluorodecanesulfonate		0.159	UJ	0.159
73829-36-4	Perfluorodecanoate		0.159	UJ	0.159
171978-95-3	Perfluorododecanoate		0.00764	J	0.318
375-92-8	Perfluoroheptanesulfonate		0.159	UJ	0.159
120885-29-2	Perfluoroheptanoate		0.159	UJ	0.159
108427-53-8	Perfluorohexanesulfonate		0.159	UJ	0.159
92612-52-7	Perfluorohexanoate		0.159	UJ	0.159
68259-12-1	Perfluorononanesulfonate		0.159	UJ	0.159
72007-68-2	Perfluorononanoate		0.159	UJ	0.159
754-91-6	Perfluorooctanesulfonamide		0.159	UJ	0.159
45298-90-6	Perfluorooctanesulfonate		0.0446	J	0.159
45285-51-6	Perfluorooctanoate		0.159	UJ	0.159
2706-91-4	Perfluoropentanesulfonate		0.159	UJ	0.159
45167-47-3	Perfluoropentanoate		0.159	UJ	0.159
365971-87-5	Perfluorotetradecanoate		0.637	UJ	0.637
862374-87-6	Perfluorotridecanoate		0.637	UJ	0.637
NULL	Perfluoroundecanoate		0.159	UJ	0.159
Surrogate Rec	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.83	3.05	60	20-200
NULL	D5-N-EtFOSAA	2.02	3.05	66	20-200
NULL	M2-4:2 FTS	0.954	2.87	33	20-200
NULL	M2-6:2 FTS	2.37	2.91	82	20-200
NULL	M2-8:2 FTS	2.15	2.93	73 112	20-200
NULL NULL	M2PFTeDA M3PFBS	3.43 1.87	3.05 2.85	66	20-200 20-200
NULL	M3PFHxS	2.32	2.83	80	20-200
NULL	M4PFHpA	2.08	3.05	68	20-200
NULL	M5PFHxA	1.71	3.05	56	20-200
NULL	M5PFPeA	1.07	3.05	35	20-200
NULL	M6PFDA	2.21	3.05	72	20-200
NULL	M7PFUnA	2.35	3.05	77	20-200
NULL	M8FOSA	2.10	3.05	69	20-200
NULL	M8PFOA	2.33	3.05	76	20-200
NULL	M8PFOS	2.14	2.93	73	20-200
NULL	M9PFNA	2.18	3.05	71	20-200
NULL	MPFBA	1.47	3.05	48	20-200
NULL	MPFDoA	2.38	3.05	78	20-200
Authorized by	: Jeff Westerlund	Release Date	e:	2/2/	2021
		_			202110.25.45 4 1

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40013-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.289 g Final Vol: 4 mL Lab ID #: 2011020-05 Collected: 4/24/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 51.25%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.759	UJ	0.759
425670-75-3	6:2 fluorotelomersulfonate		0.0334	J	0.759
481071-78-7	8:2 fluorotelomersulfonate		0.759	UJ	0.759
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.190	UJ	0.190
NULL	N-methyl perfluorooctanesulfonamideacetate		0.190	UJ	0.190
45187-15-3	Perfluorobutanesulfonate		0.190	UJ	0.190
375-22-4	Perfluorobutanoate		0.190	UJ	0.190
335-77-3	Perfluorodecanesulfonate		0.250	J	0.190
73829-36-4	Perfluorodecanoate		0.190	UJ	0.190
171978-95-3	Perfluorododecanoate		0.379	UJ	0.379
375-92-8	Perfluoroheptanesulfonate		0.190	UJ	0.190
120885-29-2	Perfluoroheptanoate		0.190	UJ	0.190
108427-53-8	Perfluorohexanesulfonate		0.190	UJ	0.190
92612-52-7	Perfluorohexanoate		0.190	UJ	0.190
68259-12-1	Perfluorononanesulfonate		0.190	UJ	0.190
72007-68-2	Perfluorononanoate		0.190	UJ	0.190
754-91-6	Perfluorooctanesulfonamide		0.190	UJ	0.190
45298-90-6	Perfluorooctanesulfonate		0.190	UJ	0.190
45285-51-6	Perfluorooctanoate		0.190	UJ	0.190
2706-91-4	Perfluoropentanesulfonate		0.190	UJ	0.190
45167-47-3	Perfluoropentanoate		0.190	UJ	0.190
365971-87-5	Perfluorotetradecanoate		0.759	UJ	0.759
862374-87-6	Perfluorotridecanoate		0.759	UJ	0.759
NULL	Perfluoroundecanoate		0.190	UJ	0.190
			0.170	03	
Surrogate Reco		Sample	Spike	0/ Dag	% Rec.
	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.99	3.79	53	20-200
NULL	D5-N-EtFOSAA	0.979	3.79	26	20-200
NULL	M2-4:2 FTS	0.739	3.56	21	20-200
NULL NULL	M2-6:2 FTS M2-8:2 FTS	1.47 1.18	3.61 3.64	41 32	20-200 20-200
NULL	M2PFTeDA	1.36	3.79	36	20-200
NULL	M3PFBS	1.64	3.79	46	20-200
NULL	M3PFHxS	1.40	3.60	39	20-200
NULL	M4PFHpA	1.52	3.79	40	20-200
NULL	M5PFHxA	1.48	3.79	39	20-200
NULL	M5PFPeA	1.15	3.79	30	20-200
NULL	M6PFDA	1.32	3.79	35	20-200
NULL	M7PFUnA	1.26	3.79	33	20-200
NULL	M8FOSA	0.979	3.79	26	20-200
NULL	M8PFOA	1.51	3.79	40	20-200
NULL	M8PFOS	1.29	3.63	36	20-200
NULL	M9PFNA	1.36	3.79	36	20-200
NULL	MPFBA	1.60	3.79	42	20-200
NULL	MPFDoA	1.26	3.79	33	20-200
Authorized by	: Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40015-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.075 g Final Vol: 5.41 mL Lab ID #: 2011020-06 Collected: 4/22/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 30.65%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.75	UJ	1.75
425670-75-3	6:2 fluorotelomersulfonate		1.75	UJ	1.75
481071-78-7	8:2 fluorotelomersulfonate		1.75	UJ	1.75
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.438	UJ	0.438
NULL	N-methyl perfluorooctanesulfonamideacetate		0.438	UJ	0.438
45187-15-3	Perfluorobutanesulfonate		0.438	UJ	0.438
375-22-4	Perfluorobutanoate		0.438	UJ	0.438
335-77-3	Perfluorodecanesulfonate		0.438	UJ	0.438
73829-36-4	Perfluorodecanoate		0.116	J	0.438
171978-95-3	Perfluorododecanoate		0.0561	J	0.876
375-92-8	Perfluoroheptanesulfonate		0.438	UJ	0.438
120885-29-2	Perfluoroheptanoate		0.438	UJ	0.438
108427-53-8	Perfluorohexanesulfonate		0.438	UJ	0.438
92612-52-7	Perfluorohexanoate		0.438	UJ	0.438
68259-12-1	Perfluorononanesulfonate		0.438	UJ	0.438
72007-68-2	Perfluorononanoate		0.0894	J	0.438
754-91-6	Perfluorooctanesulfonamide		0.438	Ŭ	0.438
45298-90-6	Perfluorooctanesulfonate		0.277	J	0.438
45285-51-6	Perfluorooctanoate		0.438	ÚJ	0.438
2706-91-4	Perfluoropentanesulfonate		0.438	UJ	0.438
45167-47-3	Perfluoropentanoate		0.438	UJ	0.438
365971-87-5	Perfluorotetradecanoate		1.75	UJ	1.75
862374-87-6	Perfluorotridecanoate		0.107	\mathbf{J}	1.75
NULL	Perfluoroundecanoate		0.184	J	0.438
				•	
Surrogate Reco	<u>overy:</u> Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
	·				
NULL	D3-N-MeFOSAA	2.90	6.48	45	20-200
NULL NULL	D5-N-EtFOSAA M2-4:2 FTS	3.12 1.00	6.48 6.08	48 17	20-200 20-200
NULL	M2-6:2 FTS	4.01	6.16	65	20-200
NULL	M2-8:2 FTS	3.02	6.22	48	20-200
NULL	M2PFTeDA	4.42	6.48	68	20-200
NULL	M3PFBS	3.25	6.04	54	20-200
NULL	M3PFHxS	4.00	6.14	65	20-200
NULL	M4PFHpA	3.32	6.48	51	20-200
NULL	M5PFHxA	2.62	6.48	40	20-200
NULL	M5PFPeA	1.95	6.48	30	20-200
NULL	M6PFDA	3.58	6.48	55	20-200
NULL	M7PFUnA	3.86	6.48	60	20-200
NULL	M8FOSA	3.13	6.48	48	20-200
NULL	M8PFOA	4.29	6.48	66	20-200
NULL	M8PFOS	3.71	6.20	60	20-200
NULL	M9PFNA	3.77	6.48	58	20-200
NULL	MPFBA	2.94	6.48	45	20-200
NULL	MPFDoA	3.54	6.48	55	20-200
Authorized by	Jeff Westerlund	Release Date	e :	2/2/.	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40016-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.007 g Final Vol: 4.65 mL Lab ID #: 2011020-07 Collected: 4/9/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 33.28%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.40	UJ	1.40
425670-75-3	6:2 fluorotelomersulfonate		1.40	UJ	1.40
481071-78-7	8:2 fluorotelomersulfonate		1.40	UJ	1.40
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.349	UJ	0.349
NULL	N-methyl perfluorooctanesulfonamideacetate		0.349	UJ	0.349
45187-15-3	Perfluorobutanesulfonate		0.349	UJ	0.349
375-22-4	Perfluorobutanoate		0.349	UJ	0.349
335-77-3	Perfluorodecanesulfonate		0.349	UJ	0.349
73829-36-4	Perfluorodecanoate		0.349	UJ	0.349
171978-95-3	Perfluorododecanoate		0.698	UJ	0.698
375-92-8	Perfluoroheptanesulfonate		0.349	UJ	0.349
120885-29-2	Perfluoroheptanoate		0.349	UJ	0.349
108427-53-8	Perfluorohexanesulfonate		0.349	UJ	0.349
92612-52-7	Perfluorohexanoate		0.349	UJ	0.349
68259-12-1	Perfluorononanesulfonate		0.349	UJ	0.349
72007-68-2	Perfluorononanoate		0.0545	J	0.349
754-91-6	Perfluorooctanesulfonamide		0.349	ÚJ	0.349
45298-90-6	Perfluorooctanesulfonate		0.176	J	0.349
45285-51-6	Perfluorooctanoate		0.349	UJ	0.349
2706-91-4	Perfluoropentanesulfonate		0.349	UJ	0.349
45167-47-3	Perfluoropentanoate		0.349	UJ	0.349
365971-87-5	Perfluorotetradecanoate		1.40	UJ	1.40
862374-87-6	Perfluorotridecanoate		1.40	UJ	1.40
NULL	Perfluoroundecanoate		0.349	UJ	0.349
			0.5 17	03	
Surrogate Reco		Sample	Spike	0/ Dag	% Rec.
	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.45	6.01	41	20-200
NULL	D5-N-EtFOSAA	2.42	6.01	40	20-200
NULL NULL	M2-4:2 FTS	0.852 2.85	5.63 5.71	15 50	20-200
NULL	M2-6:2 FTS M2-8:2 FTS	2.83	5.77	41	20-200 20-200
NULL	M2PFTeDA	3.27	6.01	54	20-200
NULL	M3PFBS	2.99	5.60	53	20-200
NULL	M3PFHxS	3.07	5.69	54	20-200
NULL	M4PFHpA	2.82	6.01	47	20-200
NULL	M5PFHxA	2.25	6.01	37	20-200
NULL	M5PFPeA	1.81	6.01	30	20-200
NULL	M6PFDA	2.91	6.01	48	20-200
NULL	M7PFUnA	2.94	6.01	49	20-200
NULL	M8FOSA	2.31	6.01	38	20-200
NULL	M8PFOA	3.36	6.01	56	20-200
NULL	M8PFOS	2.80	5.75	49	20-200
NULL	M9PFNA	2.90	6.01	48	20-200
NULL	MPFBA	2.77	6.01	46	20-200
NULL	MPFDoA	2.88	6.01	48	20-200
Authorized by	Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40017-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.116 g Final Vol: 4.65 mL Lab ID #: 2011020-08 Collected: 4/29/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 68.93%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.667	UJ	0.667
425670-75-3	6:2 fluorotelomersulfonate		0.667	UJ	0.667
481071-78-7	8:2 fluorotelomersulfonate		0.667	UJ	0.667
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.167	UJ	0.167
NULL	N-methyl perfluorooctanesulfonamideacetate		0.167	UJ	0.167
45187-15-3	Perfluorobutanesulfonate		0.167	UJ	0.167
375-22-4	Perfluorobutanoate		0.167	UJ	0.167
335-77-3	Perfluorodecanesulfonate		0.167	UJ	0.167
73829-36-4	Perfluorodecanoate		0.167	UJ	0.167
171978-95-3	Perfluorododecanoate		0.333	UJ	0.333
375-92-8	Perfluoroheptanesulfonate		0.167	UJ	0.167
120885-29-2	Perfluoroheptanoate		0.167	UJ	0.167
108427-53-8	Perfluorohexanesulfonate		0.167	UJ	0.167
92612-52-7	Perfluorohexanoate		0.167	UJ	0.167
68259-12-1	Perfluorononanesulfonate		0.167	UJ	0.167
72007-68-2	Perfluorononanoate		0.167	UJ	0.167
754-91-6	Perfluorooctanesulfonamide		0.167	UJ	0.167
45298-90-6	Perfluorooctanesulfonate		0.0487	J	0.167
45285-51-6	Perfluorooctanoate		0.167	UJ	0.167
2706-91-4	Perfluoropentanesulfonate		0.167	UJ	0.167
45167-47-3	Perfluoropentanoate		0.167	UJ	0.167
365971-87-5	Perfluorotetradecanoate		0.667	UJ	0.667
862374-87-6	Perfluorotridecanoate		0.667	UJ	0.667
NULL	Perfluoroundecanoate		0.167	UJ	0.167
Surrogate Reco	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.03	2.87	36	20-200
NULL	D5-N-EtFOSAA	1.06	2.87	37	20-200
NULL	M2-4:2 FTS	0.345	2.69	13	20-200
NULL	M2-6:2 FTS	1.22	2.73	45	20-200
NULL NULL	M2-8:2 FTS M2PFTeDA	0.998 1.27	2.75 2.87	36 44	20-200 20-200
NULL	M3PFBS	1.27	2.67	48	20-200
NULL	M3PFHxS	1.27	2.72	47	20-200
NULL	M4PFHpA	1.16	2.87	41	20-200
NULL	M5PFHxA	1.03	2.87	36	20-200
NULL	M5PFPeA	0.806	2.87	28	20-200
NULL	M6PFDA	1.18	2.87	41	20-200
NULL	M7PFUnA	1.22	2.87	43	20-200
NULL	M8FOSA	0.960	2.87	33	20-200
NULL	M8PFOA	1.42	2.87	49	20-200
NULL	M8PFOS	1.09	2.75	40	20-200
NULL	M9PFNA	1.20	2.87	42	20-200
NULL	MPFBA	1.60	2.87	56	20-200
NULL	MPFDoA	1.11	2.87	39	20-200
Authorized by	. Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40018-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.362 g Final Vol: 5.56 mL Lab ID #: 2011020-09 Collected: 5/2/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 24.62%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		2.18	UJ	2.18
425670-75-3	6:2 fluorotelomersulfonate		2.18	UJ	2.18
481071-78-7	8:2 fluorotelomersulfonate		2.18	UJ	2.18
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.545	UJ	0.545
NULL	N-methyl perfluorooctanesulfonamideacetate		0.545	UJ	0.545
45187-15-3	Perfluorobutanesulfonate		0.545	UJ	0.545
375-22-4	Perfluorobutanoate		0.545	UJ	0.545
335-77-3	Perfluorodecanesulfonate		0.545	UJ	0.545
73829-36-4	Perfluorodecanoate		0.122	J	0.545
171978-95-3	Perfluorododecanoate		1.09	UJ	1.09
375-92-8	Perfluoroheptanesulfonate		0.545	UJ	0.545
120885-29-2	Perfluoroheptanoate		0.545	UJ	0.545
108427-53-8	Perfluorohexanesulfonate		0.545	UJ	0.545
92612-52-7	Perfluorohexanoate		0.545	UJ	0.545
68259-12-1	Perfluorononanesulfonate		0.545	UJ	0.545
72007-68-2	Perfluorononanoate		0.133	J	0.545
754-91-6	Perfluorooctanesulfonamide		0.545	ÚJ	0.545
45298-90-6	Perfluorooctanesulfonate		0.397	J	0.545
45285-51-6	Perfluorooctanoate		0.545	ÚJ	0.545
2706-91-4	Perfluoropentanesulfonate		0.545	UJ	0.545
45167-47-3	Perfluoropentanoate		0.545	UJ	0.545
	Perfluorotetradecanoate		2.18	UJ	2.18
365971-87-5 862374-87-6	Perfluorotridecanoate		2.18	UJ	2.18
	Perfluoroundecanoate		0.196	J	0.545
NULL				J	
Surrogate Rec CAS#	<u>overy:</u> Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
NULL	D3-N-MeFOSAA	3.09	7.84	39	20-200
NULL	D5-N-EtFOSAA	3.06	7.84	39	20-200
NULL	M2-4:2 FTS	0.937	7.35	13	20-200
NULL	M2-6:2 FTS	3.83	7.46	51	20-200
NULL	M2-8:2 FTS	3.19	7.53	42	20-200
NULL	M2PFTeDA	4.00	7.84	51	20-200
NULL	M3PFBS	3.52	7.31	48	20-200
NULL	M3PFHxS	3.86	7.43	52	20-200
NULL	M4PFHpA	3.49	7.84	44	20-200
NULL	M5PFHxA	2.95	7.84	38	20-200
NULL	M5PFPeA	2.36	7.84	30	20-200
NULL	M6PFDA	3.84	7.84	49	20-200
NULL	M7PFUnA	3.75	7.84	48	20-200
NULL	M8FOSA	2.95	7.84	38	20-200
NULL	M8PFOA	4.45	7.84	57	20-200
NULL	M8PFOS MODENIA	3.59	7.51	48	20-200
NULL NULL	M9PFNA MPFBA	3.92	7.84 7.84	50 40	20-200 20-200
NULL	MPFDoA	3.16 3.49	7.84 7.84	40 45	20-200
NULL		J. 4 7	7.04		
Authorized by	: Jeff Westerlund	Release Da	te:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40019-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.525 g Final Vol: 4.44 mL Lab ID #: 2011020-10 Collected: 4/22/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 66.75%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.632	UJ	0.632
425670-75-3	6:2 fluorotelomersulfonate		0.632	UJ	0.632
481071-78-7	8:2 fluorotelomersulfonate		0.632	UJ	0.632
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.158	UJ	0.158
NULL	N-methyl perfluorooctanesulfonamideacetate		0.158	UJ	0.158
45187-15-3	Perfluorobutanesulfonate		0.158	UJ	0.158
375-22-4	Perfluorobutanoate		0.158	UJ	0.158
335-77-3	Perfluorodecanesulfonate		0.158	UJ	0.158
73829-36-4	Perfluorodecanoate		0.158	UJ	0.158
171978-95-3	Perfluorododecanoate		0.316	UJ	0.316
375-92-8	Perfluoroheptanesulfonate		0.158	UJ	0.158
120885-29-2	Perfluoroheptanoate		0.158	UJ	0.158
108427-53-8	Perfluorohexanesulfonate		0.158	UJ	0.158
92612-52-7	Perfluorohexanoate		0.158	UJ	0.158
68259-12-1	Perfluorononanesulfonate		0.158	UJ	0.158
72007-68-2	Perfluorononanoate		0.0196	J	0.158
754-91-6	Perfluorooctanesulfonamide		0.158	ÚJ	0.158
45298-90-6	Perfluorooctanesulfonate		0.0600	\mathbf{J}	0.158
45285-51-6	Perfluorooctanoate		0.158	ŬJ	0.158
2706-91-4	Perfluoropentanesulfonate		0.158	UJ	0.158
45167-47-3	Perfluoropentanoate		0.158	UJ	0.158
365971-87-5	Perfluorotetradecanoate		0.632	UJ	0.632
862374-87-6	Perfluorotridecanoate		0.632	UJ	0.632
NULL	Perfluoroundecanoate		0.052	\mathbf{J}	0.052
				ŭ	
Surrogate Reco	<u>overy:</u> Analyte	Sample Result	Spike Lavel	% Rec.	% Rec. Limits
			Level		
NULL	D3-N-MeFOSAA	0.814	2.85	29	20-200
NULL	D5-N-EtFOSAA	0.879	2.85	31	20-200
NULL NULL	M2-4:2 FTS	0.351	2.67	13	20-200
NULL NULL	M2-6:2 FTS M2-8:2 FTS	1.17 0.919	2.71 2.73	43 34	20-200 20-200
NULL	M2PFTeDA	1.07	2.73	38	20-200
NULL	M3PFBS	1.09	2.65	41	20-200
NULL	M3PFHxS	1.12	2.70	42	20-200
NULL	M4PFHpA	1.11	2.85	39	20-200
NULL	M5PFHxA	0.942	2.85	33	20-200
NULL	M5PFPeA	0.737	2.85	26	20-200
NULL	M6PFDA	1.03	2.85	36	20-200
NULL	M7PFUnA	1.04	2.85	37	20-200
NULL	M8FOSA	0.758	2.85	27	20-200
NULL	M8PFOA	1.29	2.85	45	20-200
NULL	M8PFOS	0.959	2.73	35	20-200
NULL	M9PFNA	1.09	2.85	38	20-200
NULL	MPFBA	1.21	2.85	43	20-200
NULL	MPFDoA	0.926	2.85	33	20-200
Authorized by	: Jeff Westerlund	Release Da	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40020-R1

Work Order: 2011020
Project Officer: Dutch, Margar

Project Officer: Dutch, Margaret

Initial Vol: 10.088 g Final Vol: 4.17 mL Lab ID #: 2011020-11 Collected: 4/16/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 74.53%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.555	UJ	0.555
425670-75-3	6:2 fluorotelomersulfonate		0.555	UJ	0.555
481071-78-7	8:2 fluorotelomersulfonate		0.555	UJ	0.555
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.139	UJ	0.139
NULL	N-methyl perfluorooctanesulfonamideacetate		0.139	UJ	0.139
45187-15-3	Perfluorobutanesulfonate		0.139	UJ	0.139
375-22-4	Perfluorobutanoate		0.139	UJ	0.139
335-77-3	Perfluorodecanesulfonate		0.139	UJ	0.139
73829-36-4	Perfluorodecanoate		0.0266	J	0.139
171978-95-3	Perfluorododecanoate		0.0144	J	0.277
375-92-8	Perfluoroheptanesulfonate		0.139	UJ	0.139
120885-29-2	Perfluoroheptanoate		0.139	UJ	0.139
108427-53-8	Perfluorohexanesulfonate		0.139	UJ	0.139
92612-52-7	Perfluorohexanoate		0.139	UJ	0.139
68259-12-1	Perfluorononanesulfonate		0.139	UJ	0.139
72007-68-2	Perfluorononanoate		0.0211	J	0.139
754-91-6	Perfluorooctanesulfonamide		0.139	ÚJ	0.139
45298-90-6	Perfluorooctanesulfonate		0.0510	J	0.139
45285-51-6	Perfluorooctanoate		0.139	ÚJ	0.139
2706-91-4	Perfluoropentanesulfonate		0.139	UJ	0.139
45167-47-3	Perfluoropentanoate		0.139	UJ	0.139
365971-87-5	Perfluorotetradecanoate		0.555	UJ	0.555
862374-87-6	Perfluorotridecanoate		0.0261	J	0.555
NULL	Perfluoroundecanoate		0.0438	J	0.139
Surrogate Rec	overv:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.82	2.66	68	20-200
NULL	D5-N-EtFOSAA	1.86	2.66	70	20-200
NULL	M2-4:2 FTS	0.525	2.50	21	20-200
NULL	M2-6:2 FTS	1.65	2.53	65	20-200
NULL	M2-8:2 FTS	1.74	2.55	68	20-200
NULL	M2PFTeDA	2.69	2.66	101	20-200
NULL	M3PFBS	1.24	2.48	50	20-200
NULL	M3PFHxS	2.07	2.52	82	20-200
NULL	M4PFHpA	1.47	2.66	55	20-200
NULL	M5PFHxA	1.13	2.66	43	20-200
NULL	M5PFPeA	1.04	2.66	39	20-200
NULL	M6PFDA	2.03	2.66	76	20-200
NULL	M7PFUnA	2.20	2.66	83	20-200
NULL	M8FOSA	1.88	2.66	71	20-200
NULL	M8PFOA	2.11 2.09	2.66 2.55	79 82	20-200 20-200
NULL	MODEANC		/ 77		/U=/UU
	M8PFOS MODENA				
NULL	M9PFNA	2.01	2.66	76	20-200
NULL NULL	M9PFNA MPFBA	2.01 1.41	2.66 2.66	76 53	20-200 20-200
NULL	M9PFNA MPFBA MPFDoA	2.01	2.66 2.66 2.66	76	20-200 20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 49-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.469 g Final Vol: 4 mL

Lab ID #: 2011020-12 Collected: 4/9/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 29.98%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/16/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.27	UJ	1.27
425670-75-3	6:2 fluorotelomersulfonate		1.27	UJ	1.27
481071-78-7	8:2 fluorotelomersulfonate		1.27	UJ	1.27
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.110	J	0.319
NULL	N-methyl perfluorooctanesulfonamideacetate		0.319	UJ	0.319
45187-15-3	Perfluorobutanesulfonate		0.319	UJ	0.319
375-22-4	Perfluorobutanoate		0.319	UJ	0.319
335-77-3	Perfluorodecanesulfonate		0.319	UJ	0.319
73829-36-4	Perfluorodecanoate		0.0306	J	0.319
171978-95-3	Perfluorododecanoate		0.637	UJ	0.637
375-92-8	Perfluoroheptanesulfonate		0.319	UJ	0.319
120885-29-2	Perfluoroheptanoate		0.319	UJ	0.319
108427-53-8	Perfluorohexanesulfonate		0.319	UJ	0.319
92612-52-7	Perfluorohexanoate		0.319	UJ	0.319
68259-12-1	Perfluorononanesulfonate		0.319	UJ	0.319
72007-68-2	Perfluorononanoate		0.319	UJ	0.319
754-91-6	Perfluorooctanesulfonamide		0.319	UJ	0.319
45298-90-6	Perfluorooctanesulfonate		0.136	J	0.319
45285-51-6	Perfluorooctanoate		0.319	ŬJ	0.319
2706-91-4	Perfluoropentanesulfonate		0.319	UJ	0.319
45167-47-3	Perfluoropentanoate		0.319	UJ	0.319
365971-87-5	Perfluorotetradecanoate		1.27	UJ	1.27
862374-87-6	Perfluorotridecanoate		0.0599	J	1.27
NULL	Perfluoroundecanoate		0.319	ŬJ	0.319
Surrogate Reco		Sample	Spike	0/ D	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.28	6.37	51	20-200
NULL	D5-N-EtFOSAA	3.67	6.37	58	20-200
NULL	M2-4:2 FTS	1.11	5.98	19	20-200
NULL	M2-6:2 FTS	3.66	6.06	60	20-200
NULL	M2-8:2 FTS	3.38	6.12	55 94	20-200
NULL NULL	M2PFTeDA M3PFBS	5.96 2.53	6.37 5.94	43	20-200 20-200
NULL	M3PFHxS	4.05	6.04	43 67	20-200
NULL	M4PFHpA	2.71	6.37	43	20-200
NULL	M5PFHxA	2.06	6.37	32	20-200
NULL	M5PFPeA	2.07	6.37	32	20-200
NULL	M6PFDA	4.21	6.37	66	20-200
NULL	M7PFUnA	4.39	6.37	69	20-200
NULL	M8FOSA	3.56	6.37	56	20-200
NULL	M8PFOA	4.47	6.37	70	20-200
NULL	M8PFOS	4.14	6.10	68	20-200
NULL	M9PFNA	4.03	6.37	63	20-200
NULL	MPFBA	2.52	6.37	40	20-200
NULL	MPFDoA	4.55	6.37	71	20-200
Authorized by	Jeff Westerlund	Release Dat	e:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 **Field ID: 305R-R1**

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.282 g Final Vol: 5.13 mL

Lab ID #: 2011020-14 **Collected: 5/2/2019**

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 23.80%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/16/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Analyte		Result	Qualifier	LLOQ
4:2 fluorotelomersulfonate		2.10	UJ	2.10
6:2 fluorotelomersulfonate		2.10	UJ	2.10
8:2 fluorotelomersulfonate		2.10	UJ	2.10
N-ethyl perfluorooctanesulfonamideacetate		0.524	UJ	0.524
N-methyl perfluorooctanesulfonamideacetate		0.524	UJ	0.524
Perfluorobutanesulfonate		0.524	UJ	0.524
Perfluorobutanoate		0.524	UJ	0.524
Perfluorodecanesulfonate		0.524	UJ	0.524
Perfluorodecanoate		0.524	UJ	0.524
Perfluorododecanoate		1.05	UJ	1.05
Perfluoroheptanesulfonate		0.524		0.524
•		0.524		0.524
				0.524
				0.524
				0.524
Perfluorononanoate				0.524
				0.524
				0.524
				0.524
				0.524
				0.524
				2.10
				2.10
				0.524
			0/2 D 0 0	% Rec. Limits
·				
				20-200
				20-200
				20-200 20-200
				20-200
				20-200
				20-200
				20-200
			45	20-200
				20-200
M5PFPeA	2.74	8.17	34	20-200
M6PFDA	4.24	8.17	52	20-200
M7PFUnA	4.00	8.17	49	20-200
M8FOSA	3.33	8.17	41	20-200
M8PFOA			61	20-200
				20-200
				20-200
				20-200
	4.03	8.17		20-200
: Jeff Westerlund	_ Release Dat	e:	2/2/.	2021
	4:2 fluorotelomersulfonate 6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorobutanoate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanoate Perfluorohexanesulfonate Perfluorohexanoate Perfluorononanoate Perfluorononanoate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorotridecanoate Perfluorotridecanoate Perfluoroundecanoate Perfluorotridecanoate Perfluoropentanoate Perfluoro	4:2 fluorotelomersulfonate 6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanoate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroneptanoate Perfluoronemanulfonate Perfluoronemanulfonate Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradesanoate Perfluorote	4:2 fluorotelomersulfonate	4:2 fluorotelomersulfonate 2.10 UJ 6:2 fluorotelomersulfonate 2.10 UJ 8:2 fluorotelomersulfonate 2.10 UJ 8:2 fluorotelomersulfonate 2.10 UJ 8:2 fluorotelomersulfonate 2.10 UJ 8:2 fluorotelomersulfonate 0.524 UJ N-ethyl perfluorooctanesulfonamideacetate 0.524 UJ Perfluorobutanoate 0.524 UJ Perfluorobutanoate 0.524 UJ Perfluorodecanesulfonate 0.524 UJ Perfluorodecanesulfonate 0.524 UJ Perfluorodecanoate 0.524 UJ Perfluorodecanoate 0.524 UJ Perfluorodecanoate 0.524 UJ Perfluoroheptanoate 0.524 UJ Perfluoroheptanoate 0.524 UJ Perfluorohexanoate 0.524 UJ Perfluoronexanoate 0.524 UJ Perfluoronenanesulfonate 0.524 UJ Perfluoronenanesulfonate 0.524 UJ Perfluoronenanesulfonate 0.524 UJ Perfluorocatanesulfonate 0.524 UJ Perfluorocatanesulfonate 0.524 UJ Perfluoropentanesulfonate 0.5

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 209R-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.165 g Final Vol: 4.35 mL Lab ID #: 2011020-16 Collected: 4/23/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 68.28%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.627	UJ	0.627
425670-75-3	6:2 fluorotelomersulfonate		0.627	UJ	0.627
481071-78-7	8:2 fluorotelomersulfonate		0.627	UJ	0.627
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.157	UJ	0.157
NULL	N-methyl perfluorooctanesulfonamideacetate		0.157	UJ	0.157
45187-15-3	Perfluorobutanesulfonate		0.157	UJ	0.157
375-22-4	Perfluorobutanoate		0.157	UJ	0.157
335-77-3	Perfluorodecanesulfonate		0.157	UJ	0.157
73829-36-4	Perfluorodecanoate		0.157	UJ	0.157
171978-95-3	Perfluorododecanoate		0.313	UJ	0.313
375-92-8	Perfluoroheptanesulfonate		0.157	UJ	0.157
120885-29-2	Perfluoroheptanoate		0.157	UJ	0.157
108427-53-8	Perfluorohexanesulfonate		0.157	UJ	0.157
92612-52-7	Perfluorohexanoate		0.157	UJ	0.157
68259-12-1	Perfluorononanesulfonate		0.157	UJ	0.157
72007-68-2	Perfluorononanoate		0.157	UJ	0.157
754-91-6	Perfluorooctanesulfonamide		0.157	UJ	0.157
	Perfluorooctanesulfonate		0.137	\mathbf{J}	0.157 0.157
45298-90-6	Perfluorooctanoate		0.0420	J UJ	0.157
45285-51-6	Perfluoropentanesulfonate		0.157	UJ	
2706-91-4	•		0.157		0.157
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate			UJ	0.157
365971-87-5			0.627	UJ	0.627
862374-87-6	Perfluorotridecanoate		0.627	UJ	0.627
NULL	Perfluoroundecanoate		0.157	UJ	0.157
Surrogate Rec	The state of the s	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	0.962	2.88	33	20-200
NULL	D5-N-EtFOSAA	1.04	2.88	36	20-200
NULL	M2-4:2 FTS	0.335	2.70	12	20-200
NULL	M2-6:2 FTS	1.09	2.74	40	20-200
NULL	M2-8:2 FTS	1.01	2.77	36	20-200
NULL	M2PFTeDA	1.27	2.88	44	20-200
NULL	M3PFBS	1.05	2.69	39	20-200
NULL	M3PFHxS	1.11	2.73	40 32	20-200
NULL NULL	M4PFHpA M5PFHxA	0.923 0.876	2.88 2.88	32	20-200 20-200
NULL NULL	M5PFPA	0.748	2.88	26	20-200
NULL	M6PFDA	1.19	2.88	41	20-200
NULL	M7PFUnA	1.19	2.88	41	20-200
NULL	M8FOSA	0.922	2.88	32	20-200
NULL	M8PFOA	1.37	2.88	47	20-200
NULL	M8PFOS	1.16	2.76	42	20-200
NULL	M9PFNA	1.26	2.88	44	20-200
NULL	MPFBA	1.27	2.88	44	20-200
NULL	MPFDoA	1.08	2.88	37	20-200
Authorized by	geff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: HCB003-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.196 g Final Vol: 5.13 mL

CAS#

Lab ID #: 2011020-17 Collected: 5/2/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 25.29%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/16/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

414911-30-1	4:2 fluorotelomersulfonate		1.99	UJ	1.99
425670-75-3	6:2 fluorotelomersulfonate		1.99	UJ	1.99
481071-78-7	8:2 fluorotelomersulfonate		1.99	UJ	1.99
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.497	UJ	0.497
NULL	N-methyl perfluorooctanesulfonamideacetate		0.497	UJ	0.497
45187-15-3	Perfluorobutanesulfonate		0.497	UJ	0.497
375-22-4	Perfluorobutanoate		0.497	UJ	0.497
335-77-3	Perfluorodecanesulfonate		0.497	UJ	0.497
73829-36-4	Perfluorodecanoate		0.135	J	0.497
171978-95-3	Perfluorododecanoate		0.995	UJ	0.995
375-92-8	Perfluoroheptanesulfonate		0.497	UJ	0.497
120885-29-2	Perfluoroheptanoate		0.497	UJ	0.497
108427-53-8	Perfluorohexanesulfonate		0.497	UJ	0.497
92612-52-7	Perfluorohexanoate		0.497	UJ	0.497
68259-12-1	Perfluorononanesulfonate		0.497	UJ	0.497
72007-68-2	Perfluorononanoate		0.141	J	0.497
754-91-6	Perfluorooctanesulfonamide		0.497	UJ	0.497
45298-90-6	Perfluorooctanesulfonate		0.368	J	0.497
45285-51-6	Perfluorooctanoate		0.497	ÚJ	0.497
2706-91-4	Perfluoropentanesulfonate		0.497	UJ	0.497
45167-47-3	Perfluoropentanoate		0.497	UJ	0.497
365971-87-5	Perfluorotetradecanoate		1.99	UJ	1.99
862374-87-6	Perfluorotridecanoate		1.99	UJ	1.99
NULL	Perfluoroundecanoate		0.207	J	0.497
NOLL	1 ci iiuoi ounuccunoucc		0.207	Ū	0.177
		~ -	~ ••		a
Surrogate Rec		Sample	Spike	9/. D oo	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
CAS# NULL	Analyte D3-N-MeFOSAA	Result 3.08	Level 7.76	40	20-200
CAS# NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA	3.08 3.33	7.76 7.76	40 43	20-200 20-200
CAS# NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS	3.08 3.33 0.861	7.76 7.76 7.27	40 43 12	20-200 20-200 20-200
CAS# NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS	3.08 3.33 0.861 3.75	7.76 7.76 7.27 7.38	40 43 12 51	20-200 20-200 20-200 20-200 20-200
CAS# NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS	3.08 3.33 0.861 3.75 3.47	7.76 7.76 7.27 7.38 7.44	40 43 12 51 47	20-200 20-200 20-200 20-200 20-200 20-200
CAS# NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA	3.08 3.33 0.861 3.75 3.47 4.24	7.76 7.76 7.27 7.38 7.44 7.76	40 43 12 51 47 55	20-200 20-200 20-200 20-200 20-200 20-200 20-200
CAS# NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS	3.08 3.33 0.861 3.75 3.47 4.24 3.29	7.76 7.76 7.27 7.38 7.44 7.76 7.23	40 43 12 51 47 55 46	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35	40 43 12 51 47 55 46 51	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
CAS# NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS	3.08 3.33 0.861 3.75 3.47 4.24 3.29	7.76 7.76 7.27 7.38 7.44 7.76 7.23	40 43 12 51 47 55 46	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76	40 43 12 51 47 55 46 51 38	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76	40 43 12 51 47 55 46 51 38 35	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76	40 43 12 51 47 55 46 51 38 35 29 50 49	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-6:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02 4.66	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39 60	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
CAS# NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02 4.66 3.83	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39 60 52	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-6:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02 4.66 3.83 4.09	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39 60 52 53	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-6:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA MPFBA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02 4.66 3.83 4.09 3.46	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39 60 52 53 45	20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-6:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA MPFBA MPFDoA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02 4.66 3.83 4.09	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39 60 52 53 45 47	20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	Analyte D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-6:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA MPFBA MPFDOA	3.08 3.33 0.861 3.75 3.47 4.24 3.29 3.73 2.93 2.69 2.24 3.90 3.79 3.02 4.66 3.83 4.09 3.46	7.76 7.76 7.27 7.38 7.44 7.76 7.23 7.35 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	40 43 12 51 47 55 46 51 38 35 29 50 49 39 60 52 53 45	20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 3-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.251 g Final Vol: 4.35 mL Lab ID #: 2011020-18 Collected: 4/30/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 44.60%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.952	UJ	0.952
425670-75-3	6:2 fluorotelomersulfonate		0.952	UJ	0.952
481071-78-7	8:2 fluorotelomersulfonate		0.952	UJ	0.952
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.238	UJ	0.238
NULL	N-methyl perfluorooctanesulfonamideacetate		0.238	UJ	0.238
45187-15-3	Perfluorobutanesulfonate		0.238	UJ	0.238
375-22-4	Perfluorobutanoate		0.238	UJ	0.238
335-77-3	Perfluorodecanesulfonate		0.238	UJ	0.238
73829-36-4	Perfluorodecanoate		0.0466	J	0.238
171978-95-3	Perfluorododecanoate		0.476	UJ	0.476
375-92-8	Perfluoroheptanesulfonate		0.238	UJ	0.238
120885-29-2	Perfluoroheptanoate		0.238	UJ	0.238
108427-53-8	Perfluorohexanesulfonate		0.238	UJ	0.238
92612-52-7	Perfluorohexanoate		0.238	UJ	0.238
68259-12-1	Perfluorononanesulfonate		0.238	UJ	0.238
72007-68-2	Perfluorononanoate		0.238	\mathbf{J}	0.238
754-91-6	Perfluorooctanesulfonamide		0.0028	UJ	0.238
45298-90-6	Perfluorooctanesulfonate		0.238	\mathbf{J}	0.238
	Perfluorooctanoate		0.103	UJ	0.238
45285-51-6			0.238	UJ	0.238
2706-91-4	Perfluoropentanesulfonate		0.238	UJ	
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate				0.238
365971-87-5			0.952	UJ	0.952
862374-87-6	Perfluorotridecanoate		0.952	UJ	0.952
NULL	Perfluoroundecanoate		0.0666	J	0.238
Surrogate Reco		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.10	4.37	48	20-200
NULL	D5-N-EtFOSAA	2.19	4.37	50	20-200
NULL	M2-4:2 FTS	0.825	4.10	20	20-200
NULL	M2-6:2 FTS	2.21	4.16	53	20-200
NULL	M2-8:2 FTS	2.27	4.20	54	20-200
NULL	M2PFTeDA	3.69	4.37	84	20-200
NULL	M3PFBS M3PFH-S	1.92	4.08	47	20-200
NULL NULL	M3PFHxS	2.31 1.71	4.15 4.37	56 39	20-200 20-200
NULL NULL	M4PFHpA M5PFHxA	1.71	4.37	39 36	20-200
NULL	M5PFPeA	1.38	4.37	33	20-200
NULL	M6PFDA	2.68	4.37	61	20-200
NULL	M7PFUnA	2.71	4.37	62	20-200
NULL	M8FOSA	2.07	4.37	47	20-200
NULL	M8PFOA	2.71	4.37	62	20-200
NULL	M8PFOS	2.67	4.19	64	20-200
NULL	M9PFNA	2.66	4.37	61	20-200
NULL	MPFBA	2.18	4.37	50	20-200
NULL	MPFDoA	2.65	4.37	61	20-200
Authorized by	: Jeff Westerlund	Release Da	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 4-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.058 g Final Vol: 5.26 mL

CAS#

Lab ID #: 2011020-19 Collected: 4/30/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 33.25%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/16/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

CILOII	Amaryte		ixcsuit	Quanner	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.57	UJ	1.57
425670-75-3	6:2 fluorotelomersulfonate		1.57	UJ	1.57
481071-78-7	8:2 fluorotelomersulfonate		1.57	UJ	1.57
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.393	UJ	0.393
NULL	N-methyl perfluorooctanesulfonamideacetate		0.393	UJ	0.393
45187-15-3	Perfluorobutanesulfonate		0.393	UJ	0.393
375-22-4	Perfluorobutanoate		0.393	UJ	0.393
335-77-3	Perfluorodecanesulfonate		0.393	UJ	0.393
	Perfluorodecanoate		0.393	UJ	0.393
73829-36-4					
171978-95-3	Perfluorododecanoate		0.786	UJ	0.786
375-92-8	Perfluoroheptanesulfonate		0.393	UJ	0.393
120885-29-2	Perfluoroheptanoate		0.393	UJ	0.393
108427-53-8	Perfluorohexanesulfonate		0.393	UJ	0.393
92612-52-7	Perfluorohexanoate		0.393	UJ	0.393
68259-12-1	Perfluorononanesulfonate		0.393	UJ	0.393
72007-68-2	Perfluorononanoate		0.0645	J	0.393
754-91-6	Perfluorooctanesulfonamide		0.393	UJ	0.393
45298-90-6	Perfluorooctanesulfonate		0.157	J	0.393
45285-51-6	Perfluorooctanoate		0.393	UJ	0.393
2706-91-4	Perfluoropentanesulfonate		0.393	UJ	0.393
45167-47-3	Perfluoropentanoate		0.393	UJ	0.393
365971-87-5	Perfluorotetradecanoate		1.57	UJ	1.57
862374-87-6	Perfluorotridecanoate		1.57	UJ	1.57
NULL	Perfluoroundecanoate		0.101	J	0.393
				· ·	
Surrogate Rec		Sample	Spike	0 / D	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.63	5.98	44	20-200
NULL	D5-N-EtFOSAA	3.08	5.98	52	20-200
NULL	M2-4:2 FTS	0.922	5.61	16	20-200
NULL	M2-6:2 FTS	3.26	5.69	57	20-200
NULL	M2-8:2 FTS	3.22	5.74	56	20-200
NULL	M2PFTeDA	4.15	5.98	69	20-200
NULL	M3PFBS	2.86	5.57	51	20-200
NULL	M3PFHxS	3.34	5.67	59	20-200
NULL	M4PFHpA	2.50	5.98	42	20-200
NULL	M5PFHxA	2.26	5.98	38	20-200
NULL	M5PFPeA	1.99	5.98	33	20-200
NULL	M6PFDA	3.65	5.98	61	20-200
NULL	M7PFUnA	3.66	5.98	61	20-200
NULL	M8FOSA	2.89	5.98	48	20-200
NULL	M8PFOA Meneog	4.18	5.98	70	20-200
NULL	M8PFOS MODENIA	3.63	5.73	63	20-200
NULL	M9PFNA	3.69	5.98	62 52	20-200
NULL	MPFBA	3.12	5.98	52 50	20-200
NULL	MPFDoA	3.51	5.98	59	20-200
Authorized by	<u>: </u>	Release Dat	e:	2/2/.	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 13-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.188 g Final Vol: 4 mL Lab ID #: 2011020-20 Collected: 4/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 64.97%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.604	UJ	0.604
425670-75-3	6:2 fluorotelomersulfonate		0.604	UJ	0.604
481071-78-7	8:2 fluorotelomersulfonate		0.604	UJ	0.604
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.151	UJ	0.151
NULL	N-methyl perfluorooctanesulfonamideacetate		0.151	UJ	0.151
45187-15-3	Perfluorobutanesulfonate		0.151	UJ	0.151
375-22-4	Perfluorobutanoate		0.151	UJ	0.151
335-77-3	Perfluorodecanesulfonate		0.151	UJ	0.151
73829-36-4	Perfluorodecanoate		0.0175	J	0.151
171978-95-3	Perfluorododecanoate		0.302	UJ	0.302
375-92-8	Perfluoroheptanesulfonate		0.151	UJ	0.151
120885-29-2	Perfluoroheptanoate		0.151	UJ	0.151
108427-53-8	Perfluorohexanesulfonate		0.151	UJ	0.151
92612-52-7	Perfluorohexanoate		0.151	UJ	0.151
68259-12-1	Perfluorononanesulfonate		0.151	UJ	0.151
72007-68-2	Perfluorononanoate		0.0212	J	0.151
754-91-6	Perfluorooctanesulfonamide		0.151	UJ	0.151
45298-90-6	Perfluorooctanesulfonate		0.0508	J	0.151
45285-51-6	Perfluorooctanoate		0.151	UJ	0.151
2706-91-4	Perfluoropentanesulfonate		0.151	UJ	0.151
45167-47-3	Perfluoropentanoate		0.151	UJ	0.151
365971-87-5	Perfluorotetradecanoate		0.604	UJ	0.604
862374-87-6	Perfluorotridecanoate		0.604	UJ	0.604
NULL	Perfluoroundecanoate		0.151	UJ	0.151
Surrogate Reco	overv:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.48	3.02	49	20-200
NULL	D5-N-EtFOSAA	1.85	3.02	61	20-200
NULL	M2-4:2 FTS	0.564	2.83	20	20-200
NULL	M2-6:2 FTS	1.38	2.87	48	20-200
NULL	M2-8:2 FTS	2.01	2.90	69	20-200
NULL NULL	M2PFTeDA	3.10 0.965	3.02 2.82	102 34	20-200
NULL	M3PFBS M3PFHxS	1.46	2.86	51	20-200 20-200
NULL	M4PFHpA	0.835	3.02	28	20-200
NULL	M5PFHxA	0.825	3.02	27	20-200
NULL	M5PFPeA	0.769	3.02	25	20-200
NULL	M6PFDA	2.20	3.02	73	20-200
NULL	M7PFUnA	2.21	3.02	73	20-200
NULL	M8FOSA	1.74	3.02	58	20-200
NULL	M8PFOA	1.72	3.02	57	20-200
NULL	M8PFOS	2.15	2.89	74	20-200
NULL	M9PFNA	1.95	3.02	64	20-200
NULL	MPFBA	1.19	3.02	39	20-200
NULL	MPFDoA	2.17	3.02	72	20-200
Authorized by	: Jeff Westerlund	Release Dat	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 19-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Project Officer: Dutch, Margaret Initial Vol: 10.115 g

Analyte

Final Vol: 10.115 g

CAS#

Lab ID #: 2011020-21 Collected: 4/22/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 34.07%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/16/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

CILDII	Maryte		IXCSUIT	Quanner	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.49	UJ	1.49
425670-75-3	6:2 fluorotelomersulfonate		1.49	UJ	1.49
481071-78-7	8:2 fluorotelomersulfonate		1.49	UJ	1.49
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.168	J	0.372
NULL	N-methyl perfluorooctanesulfonamideacetate		0.372	ÚJ	0.372
45187-15-3	Perfluorobutanesulfonate		0.372	UJ	0.372
375-22-4	Perfluorobutanoate		0.372	UJ	0.372
335-77-3	Perfluorodecanesulfonate		0.372	UJ	0.372
	Perfluorodecanoate		0.372	J	0.372
73829-36-4					0.372
171978-95-3	Perfluorododecanoate		0.0283	J	
375-92-8	Perfluoroheptanesulfonate		0.372	UJ	0.372
120885-29-2	Perfluoroheptanoate		0.372	UJ	0.372
108427-53-8	Perfluorohexanesulfonate		0.372	UJ	0.372
92612-52-7	Perfluorohexanoate		0.372	UJ	0.372
68259-12-1	Perfluorononanesulfonate		0.372	UJ	0.372
72007-68-2	Perfluorononanoate		0.0759	J	0.372
754-91-6	Perfluorooctanesulfonamide		0.372	UJ	0.372
45298-90-6	Perfluorooctanesulfonate		0.208	J	0.372
45285-51-6	Perfluorooctanoate		0.372	UJ	0.372
2706-91-4	Perfluoropentanesulfonate		0.372	UJ	0.372
45167-47-3	Perfluoropentanoate		0.372	UJ	0.372
365971-87-5	Perfluorotetradecanoate		1.49	UJ	1.49
862374-87-6	Perfluorotridecanoate		0.0759	J	1.49
NULL	Perfluoroundecanoate		0.140	J	0.372
				· ·	
Surrogate Rec		Sample	Spike	0/ 5	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.44	5.80	59	20-200
NULL	D5-N-EtFOSAA	3.90	5.80	67	20-200
NULL	M2-4:2 FTS	0.956	5.44	18	20-200
NULL	M2-6:2 FTS	3.23	5.52	59	20-200
NULL	M2-8:2 FTS	3.87	5.57	69	20-200
NULL	M2PFTeDA	5.64	5.80	97	20-200
NULL	M3PFBS	2.84	5.41	52	20-200
NULL	M3PFHxS	3.55	5.50	65	20-200
NULL	M4PFHpA	2.34	5.80	40	20-200
NULL	M5PFHxA	2.23	5.80	39	20-200
NULL	M5PFPeA	2.23	5.80	38	20-200
NULL	M6PFDA	4.65	5.80	80	20-200
NULL	M7PFUnA	4.77	5.80	82	20-200
NULL	M8FOSA	4.00	5.80	69	20-200
NULL	M8PFOA	4.28	5.80	74	20-200
NULL	M8PFOS MOPENA	4.74	5.56	85	20-200
NULL	M9PFNA	4.57	5.80	79 53	20-200
NULL		2.00	5.80	53	20-200
	MPFBA	3.09			
NULL	MPFBA MPFDoA	4.51	5.80	78	20-200
	MPFDoA Toff Worterdund		5.80		20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 29-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.091 g Final Vol: 4.88 mL

Lab ID #: 2011020-22 Collected: 4/16/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 33.82%

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/16/2020 Matrix: Sediment/Soil Units: ug/Kg dw

	1.43 1.43	UJ	1.43
	1 /12		
	1.43	UJ	1.43
	1.43	UJ	1.43
	0.107	J	0.357
	0.357	UJ	0.357
	0.0929	J	0.357
	0.715	UJ	0.715
	0.357	UJ	0.357
	0.0858	J	0.357
	0.357		0.357
			0.357
			0.357
			0.357
			0.357
			1.43
			1.43
	0.126	J	0.357
Sample	Spike		% Rec.
Result	Level	% Rec.	Limits
5.13	5.86	87	20-200
			20-200
			20-200
			20-200
			20-200
			20-200 20-200
			20-200
			20-200
			20-200
			20-200
			20-200
		108	20-200
5.18	5.86	88	20-200
5.13	5.86	88	20-200
5.92	5.61	105	20-200
5.72	5.86	98	20-200
3.31	5.86	57	20-200
6.15	5.86		20-200
Release Dat	e:	2/2/.	2021
	5.13 5.46 1.22 4.01 5.52 8.32 2.85 4.35 2.86 2.57 2.62 5.82 6.34 5.18 5.13 5.92 5.72 3.31 6.15	0.357 0.357 0.357 0.0929 0.715 0.357 0.357 0.357 0.357 0.357 0.357 0.0858 0.357 0.243 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.357 0.57 0.57 0.50643 0.126 Sample Result Level 5.13 5.86 5.46 5.86 1.22 5.50 4.01 5.57 5.52 5.63 8.32 5.86 2.85 5.46 4.35 5.56 2.86 5.86 2.57 5.86 2.85 5.46 4.35 5.56 2.86 5.86 2.57 5.86 2.62 5.86 5.82 5.86 5.82 5.86 5.82 5.86 5.83 5.86 5.13 5.86	0.357 UJ 0.357 UJ 0.357 UJ 0.0929 J 0.715 UJ 0.357 UJ 1.43 UJ 0.0643 J 0.126 J Sample Result Level % Rec. 5.13 5.86 87 5.46 5.86 93 1.22 5.50 22 4.01 5.57 72 5.52 5.63 98 8.32 5.86 142 2.85 5.46 52 4.35 5.56 78 2.86 5.86 49 2.57 5.86 44 2.62 5.86 49 2.57 5.86 44 2.62 5.86 49 2.57 5.86 44 2.62 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88 5.13 5.86 88

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 38-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.124 g Final Vol: 4.65 mL Lab ID #: 2011020-23 Collected: 4/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 24.54%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.87	UJ	1.87
425670-75-3	6:2 fluorotelomersulfonate		1.87	UJ	1.87
481071-78-7	8:2 fluorotelomersulfonate		1.87	UJ	1.87
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.326	J	0.468
NULL	N-methyl perfluorooctanesulfonamideacetate		0.468	UJ	0.468
45187-15-3	Perfluorobutanesulfonate		0.468	UJ	0.468
375-22-4	Perfluorobutanoate		0.468	UJ	0.468
335-77-3	Perfluorodecanesulfonate		0.159	J	0.468
73829-36-4	Perfluorodecanoate		0.131	J	0.468
171978-95-3	Perfluorododecanoate		0.0561	J	0.936
375-92-8	Perfluoroheptanesulfonate		0.468	UJ	0.468
120885-29-2	Perfluoroheptanoate		0.468	UJ	0.468
108427-53-8	Perfluorohexanesulfonate		0.468	UJ	0.468
92612-52-7	Perfluorohexanoate		0.468	UJ	0.468
68259-12-1	Perfluorononanesulfonate		0.468	UJ	0.468
72007-68-2	Perfluorononanoate		0.118	J	0.468
754-91-6	Perfluorooctanesulfonamide		0.468	U	0.468
45298-90-6	Perfluorooctanesulfonate		0.335	J	0.468
45285-51-6	Perfluorooctanoate		0.468	UJ	0.468
2706-91-4	Perfluoropentanesulfonate		0.468	UJ	0.468
45167-47-3	Perfluoropentanoate		0.468	UJ	0.468
365971-87-5	Perfluorotetradecanoate		1.87	UJ	1.87
862374-87-6	Perfluorotridecanoate		0.118	J	1.87
NULL	Perfluoroundecanoate		0.236	J	0.468
Surrogate Rec	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	6.55	8.05	81	20-200
NULL	D5-N-EtFOSAA	7.08	8.05	88	20-200
NULL	M2-4:2 FTS	1.73	7.55	23	20-200
NULL	M2-6:2 FTS	5.96	7.66	78	20-200
NULL	M2-8:2 FTS	7.58	7.73	98	20-200
NULL	M2PFTeDA	12.0	8.05	149	20-200
NULL	M3PFBS M3DEILES	4.03	7.50	54	20-200
NULL NULL	M3PFHxS M4PFHpA	6.43 4.07	7.63 8.05	84 51	20-200 20-200
NULL	M4PFHpA M5PFHxA	3.60	8.05	45	20-200
NULL	M5PFPeA	3.55	8.05	43	20-200
NULL	M6PFDA	8.28	8.05	103	20-200
NULL	M7PFUnA	8.87	8.05	110	20-200
NULL	M8FOSA	7.43	8.05	92	20-200
NULL	M8PFOA	7.54	8.05	94	20-200
NULL	M8PFOS	8.57	7.71	111	20-200
NULL	M9PFNA	8.13	8.05	101	20-200
NULL	MPFBA	4.34	8.05	54	20-200
NULL	MPFDoA	8.96	8.05	111	20-200
Authorized by	<u>:</u> Jeff Westerlund	Release Dat	e:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 **QC** Type: Method Blank

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10 g Final Vol: 4 mL

Lab ID #: B20L022-BLK1 Prep Method: AOAC2007.01 **Analysis Method: SW8327** Source Field ID: B20L022-BLK1

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil Units: ug/Kg dw

		Result	Qualifier	LLOQ
4:2 fluorotelomersulfonate		0.400	U	0.400
6:2 fluorotelomersulfonate		0.400	U	0.400
8:2 fluorotelomersulfonate		0.400	U	0.400
N-ethyl perfluorooctanesulfonamideacetate		0.100	U	0.100
N-methyl perfluorooctanesulfonamideaceta		0.100	U	0.100
Perfluorobutanesulfonate		0.100	U	0.100
Perfluorobutanoate		0.100	U	0.100
Perfluorodecanesulfonate		0.100	U	0.100
Perfluorodecanoate		0.100	U	0.100
Perfluorododecanoate				0.200
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
*				
				0.400
				0.400
		0.100	U	0.100
	Sample	Spike	0/ D	% Rec.
·				Limits
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200 20-200
				20-200
				20-200
				20-200
				20-200
				20-200
M8PFOA	0.653		33	20-200
M8PFOS	0.473	1.92	25	20-200
M9PFNA	0.541	2.00	27	20-200
MPFBA	0.692	2.00	35	20-200
MPFDoA	0.479	2.00	24	20-200
Jeff Westerlund	Release Da	te:	2/2/	2021
	6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetae N-methyl perfluorooctanesulfonamideaceta Perfluorobutanoate Perfluorobutanoate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanoate Perfluoroheptanoate Perfluorohexanoate Perfluorononanesulfonate Perfluorononanoate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanoate Perfluorooctanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluoropentanoate Perfluorotetradecanoate 6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideaceta Perfluorobutanoate Perfluorobutanoate Perfluorododeanoate Perfluorododeanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroneptanoate Perfluoroneptanoate Perfluoroneptanoate Perfluoroneptanoate Perfluoroneptanoate Perfluoronanoate Perfluorooctanoatlonate Perfluorooctanoatlonate Perfluorooctanoatlonate Perfluorooctanoate Perfluorooctanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluoropentanoate Perfluorotetradecanoate Perfluoropentanoate Perfluor	6.2 fluorotelomersulfonate 0.400 8.2 fluorotelomersulfonate 0.400 N-ethyl perfluorooctanesulfonamideaceta 0.100 N-methyl perfluorooctanesulfonate 0.100 Perfluorobutanesulfonate 0.100 Perfluorodecanesulfonate 0.100 Perfluorodecanoate 0.100 Perfluorodecanoate 0.200 Perfluoroheptanesulfonate 0.100 Perfluoroheptanosulfonate 0.100 Perfluorohexanosulfonate 0.100 Perfluorononanesulfonate 0.100 Perfluorononanesulfonate 0.100 Perfluorooctanesulfonamide 0.100 Perfluorooctanesulfonate 0.100 Perfluoropentanesulfonate 0.100 Perfluoropentanesulfonate 0.100 Perfluoropentanesulfonate 0.100 Perfluoropentanoate 0.400 Perfluorotridecanoate 0.400 Perfluorotridecanoate 0.400 Perfluorotridecanoate 0.400 Perfluorotridecanoate 0.50 Perfluorotridecanoate 0.50 Perflu	6:2 fluorotelomersulfonate 0.400 U 8:2 fluorotelomersulfonate 0.400 U N-ethyl perfluorocotanesulfonamideacetae 0.100 U N-methyl perfluorocotanesulfonate 0.100 U Perfluorobutanesulfonate 0.100 U Perfluorodecanosulfonate 0.100 U Perfluorodecanoate 0.100 U Perfluorodecanoate 0.100 U Perfluoroheptanoate 0.100 U Perfluoroheptanoate 0.100 U Perfluorohexanesulfonate 0.100 U Perfluorohexanesulfonate 0.100 U Perfluoronoanoate 0.100 U Perfluoronoanoate 0.100 U Perfluoroctanesulfonate 0.100 U Perfluoroctanesulfonate 0.100 U Perfluoropentanesulfonate 0.100 U Perfluorotetradecanoate 0.400 U Perfluorotetradecanoate 0.400 U Perfluorotetradecanoate 0.400 U <	

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: LCS

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10 g
Final Vol: 4 mL

Lab ID #: B20L022-BS1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L022-BS1 Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil

Units: %

			Units: %			
Analyte		Result	Spike Level	LLOQ	%Rec	%Rec Limits
4:2 fluorote	lomersulfonate	3.3	2.50	0.400	132	50-150
	elomersulfonate	2.6	2.50	0.400	103	50-150
	lomersulfonate	2.7	2.50	0.400	110	50-150
	fluorooctanesulfonamideacetate	2.5	2.50	0.100	99	50-150
	erfluorooctanesulfonamideacetate	2.6	2.50	0.100	103	50-150
	itanesulfonate	2.5	2.50	0.100	101	50-150
Perfluorobu		2.7	2.50	0.100	101	50-150
		3.1				
	canesulfonate		2.50	0.100	123	50-150
Perfluorode		2.6	2.50	0.100	102	50-150
Perfluorodo		2.7	2.50	0.200	106	50-150
	eptanesulfonate	2.9	2.50	0.100	116	50-150
Perfluorohe		2.6	2.50	0.100	103	50-150
	exanesulfonate	2.5	2.50	0.100	98	50-150
Perfluorohe	exanoate	2.4	2.50	0.100	97	50-150
Perfluorono	onanesulfonate	2.5	2.50	0.100	101	50-150
Perfluorono	onanoate	2.6	2.50	0.100	105	50-150
	tanesulfonamide	2.3	2.50	0.100	90	50-150
	etanesulfonate	2.5	2.50	0.100	99	50-150
Perfluorooc		2.5	2.50	0.100	100	50-150
	entanesulfonate	2.3	2.50	0.100	92	50-150
Perfluorope		2.6	2.50	0.100	102	50-150
	tradecanoate	2.8	2.50	0.100	111	50-150
		2.7				
Perfluorotri			2.50	0.400	108	50-150
Perfluoroun	ndecanoate	2.6	2.50	0.100	102	50-150
Surrogate l	Recovery:	S	ample S	Spike		% Rec.
CAS#	Analyte	F	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	(0.575	2.00	29	20-200
NULL	D5-N-EtFOSAA		0.616	2.00	31	20-200
NULL	M2-4:2 FTS		0.574	1.88	31	20-200
NULL	M2-6:2 FTS		0.746	1.90	39	20-200
NULL	M2-8:2 FTS		0.595	1.92	31	20-200
NULL	M2PFTeDA		0.744	2.00	37	20-200
NULL	M3PFBS		0.724	1.86	39	20-200
NULL	M3PFHxS		0.670	1.90	35	20-200
NULL	M4PFHpA		0.747	2.00	37	20-200
NULL	M5PFHxA		0.748	2.00	37	20-200
NULL	M5PFPeA		0.560	2.00	28	20-200
NULL	M6PFDA		0.651	2.00	33	20-200
NULL	M7PFUnA		0.673	2.00	34	20-200
NULL	M8FOSA		0.590	2.00	30	20-200
NULL	M8PFOA	(0.784	2.00	39	20-200
NULL	M8PFOS		0.595	1.92	31	20-200
NULL	M9PFNA	(0.669	2.00	33	20-200
NULL	MPFBA	(0.789	2.00	39	20-200
ATT IT T	MDED	,	1646	2.00	22	20, 200

Jeff Westerlund

MPFDoA

NULL

Authorized by:

2/2/2021

20-200

32

2.00

0.646

Release Date:

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: LCS Dup

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10 g Final Vol: 4 mL Lab ID #: B20L022-BSD1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L022-BSD1 Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	%Rec	RPD	%Rec Limits	RPD Limit
4:2 fluorotelomersulfonate	3.3	2.50	134	1	50-150	200
6:2 fluorotelomersulfonate	2.6	2.50	104	1	50-150	200
8:2 fluorotelomersulfonate	2.6	2.50	106	4	50-150	200
N-ethyl perfluorooctanesulfonamideacetate	2.6	2.50	104	4	50-150	40
N-methyl perfluorooctanesulfonamideacetate	2.6	2.50	103	0.3	50-150	40
Perfluorobutanesulfonate	2.5	2.50	102	1	50-150	40
Perfluorobutanoate	2.6	2.50	102	5	50-150	40
Perfluorodecanesulfonate	2.9	2.50	116	6	50-150	40
Perfluorodecanoate	2.6	2.50	104	2	50-150	40
Perfluorododecanoate	2.6	2.50	103	3	50-150	40
Perfluoroheptanesulfonate	2.8	2.50	114	2	50-150	40
Perfluoroheptanoate	2.5	2.50	100	3	50-150	40
Perfluorohexanesulfonate	2.5	2.50	101	3	50-150	40
Perfluorohexanoate	2.3	2.50	93	4	50-150	40
Perfluorononanesulfonate	2.5	2.50	98	3	50-150	40
Perfluorononanoate	2.7	2.50	106	2	50-150	40
Perfluorooctanesulfonamide	2.3	2.50	91	0.3	50-150	40
Perfluorooctanesulfonate	2.5	2.50	100	0.2	50-150	40
Perfluorooctanoate	2.5	2.50	100	0.5	50-150	40
Perfluoropentanesulfonate	2.3	2.50	94	2	50-150	40
Perfluoropentanoate	2.5	2.50	98	4	50-150	40
Perfluorotetradecanoate	2.7	2.50	109	1	50-150	40
Perfluorotridecanoate	2.6	2.50	104	4	50-150	40
Perfluoroundecanoate	2.6	2.50	102	0.3	50-150	40
Surrogate Recovery:		Sam	ınle Sn	ike		% Rec

Surrogate 1	Recovery:	Sample	Sample Spike		Sample Spike		% Rec.	
CAS#	Analyte	Result	Level	% Rec.	Limits			
NULL	D3-N-MeFOSAA	0.621	2.00	31	20-200			
NULL	D5-N-EtFOSAA	0.647	2.00	32	20-200			
NULL	M2-4:2 FTS	0.529	1.88	28	20-200			
NULL	M2-6:2 FTS	0.803	1.90	42	20-200			
NULL	M2-8:2 FTS	0.674	1.92	35	20-200			
NULL	M2PFTeDA	0.741	2.00	37	20-200			
NULL	M3PFBS	0.762	1.86	41	20-200			
NULL	M3PFHxS	0.691	1.90	36	20-200			
NULL	M4PFHpA	0.794	2.00	40	20-200			
NULL	M5PFHxA	0.810	2.00	41	20-200			
NULL	M5PFPeA	0.611	2.00	31	20-200			
NULL	M6PFDA	0.682	2.00	34	20-200			
NULL	M7PFUnA	0.698	2.00	35	20-200			
NULL	M8FOSA	0.608	2.00	30	20-200			
NULL	M8PFOA	0.825	2.00	41	20-200			
NULL	M8PFOS	0.622	1.92	32	20-200			
NULL	M9PFNA	0.702	2.00	35	20-200			
NULL	MPFBA	0.837	2.00	42	20-200			
NULL	MPFDoA	0.673	2.00	34	20-200			
Authorized	d by: Jeff Westerlund	Release Date	e:	2/2/2	2021			

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Duplicate

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10.151 g
Final Vol: 5.13 mL

Lab ID #: B20L022-DUP1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L022-DUP1 Source Lab ID #: 2011020-21

	Source Lab ID #: 2011020-21		Units: u	ıg/Kg dw	
Analyte	Sample Result	Sample Qual	Source Result	RPD	RPD Limit
4:2 fluorotelomersulfonate	1.48	UJ	1.48	NC	200
6:2 fluorotelomersulfonate	1.48	UJ	1.48	NC	200
8:2 fluorotelomersulfonate	1.48	UJ	1.48	NC	200
N-ethyl perfluorooctanesulfon	0.132	J	0.168	NC	40
N-methyl perfluorooctanesulfon	0.371	UJ	0.371	NC	40
Perfluorobutanesulfonate	0.371	UJ	0.371	NC	40
Perfluorobutanoate	0.371	UJ	0.371	NC	40
Perfluorodecanesulfonate	0.371	UJ	0.371	NC	40
Perfluorodecanoate	0.0846	J	0.0759	NC	40
Perfluorododecanoate	0.0208	J	0.0283	NC	40
Perfluoroheptanesulfonate	0.371	UJ	0.371	NC	40
Perfluoroheptanoate	0.371	UJ	0.371	NC	40
Perfluorohexanesulfonate	0.371	UJ	0.371	NC	40
Perfluorohexanoate	0.371	UJ	0.371	NC	40
Perfluorononanesulfonate	0.371	UJ	0.371	NC	40
Perfluorononanoate	0.0771	J	0.0759	NC	40
Perfluorooctanesulfonamide	0.371	ÚJ	0.371	NC	40
Perfluorooctanesulfonate	0.215	J	0.208	NC	40
Perfluorooctanoate	0.371	UJ	0.371	NC	40
Perfluoropentanesulfonate	0.371	UJ	0.371	NC	40
Perfluoropentaneaurionate Perfluoropentanoate	0.371	UJ	0.371	NC	40
Perfluorotetradecanoate	1.48	UJ	1.48	NC NC	40
	0.0846		0.0759	NC NC	40
Perfluorotridecanoate		J J	0.0759	NC NC	40
Perfluoroundecanoate	0.144	J	0.140	NC	40
Surrogate Recovery:		Sample	Spike		% Rec.
CAS# Analyte		Result	Level	% Rec.	Limits
NULL D3-N-MeFOSAA		5.07	5.78	88	20-200
NULL D5-N-EtFOSAA		5.87	5.78	101	20-200
NULL M2-4:2 FTS		1.15	5.43	21	20-200
NULL M2-6:2 FTS		3.78	5.50	69	20-200
NULL M2-8:2 FTS		4.98	5.55	90	20-200
NULL M2PFTeDA		8.25	5.78	143	20-200
NULL M3PFBS		3.12	5.39	58	20-200
NULL M3PFHxS		4.48	5.48	82	20-200
NULL M4PFHpA		2.74	5.78	47	20-200
NULL M5PFHxA		2.56	5.78	44	20-200
NULL M5PFPeA		2.52	5.78 5.78	44 104	20-200
NULL M6PFDA NULL M7PFUnA		6.03 6.62	5.78 5.78	104 115	20-200 20-200
NULL M8FOSA		5.83	5.78 5.78	101	20-200
NULL M8PFOA		5.12	5.78	88	20-200
NULL M8PFOS		6.26	5.78	113	20-200
NULL M9PFNA		5.79	5.78	100	20-200
NULL MPFBA		3.38	5.78	58	20-200
NULL MPFDoA		6.35	5.78	110	20-200
Toffilla	sterlund				/2021
Authorized by: Jen wes		Release Dat	e:	414	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 **QC** Type: Matrix Spike

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10.163 g Final Vol: 4.35 mL

Lab ID #: B20L022-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L022-MS1 Source Lab ID # 2011020-05

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil

Units: %

	Source Lab ID #: 201	1020-05		Units: %		
Analyte		Result	Spike Level	Source Result	%Rec	%Rec Limits
4:2 fluorotelomersulfonate		8.8	4.80	0.0	183	40-160
6:2 fluorotelomersulfonate		5.5	4.80	0.03	114	40-160
8:2 fluorotelomersulfonate		5.4	4.80	0.0	112	40-160
N-ethyl perfluorooctanesulfonamideaceta	ite	5.3	4.80	0.0	109	40-160
N-methyl perfluorooctanesulfonamideace		2.6	4.80	0.0	54	40-160
Perfluorobutanesulfonate		5.3	4.80	0.0	110	40-160
Perfluorobutanoate		5.4	4.80	0.0	112	40-160
Perfluorodecanesulfonate		6.0	4.80	0.3	121	40-160
Perfluorodecanoate		5.3	4.80	0.0	111	40-160
Perfluorododecanoate		5.5	4.80	0.0	114	40-160
Perfluoroheptanesulfonate		5.5	4.80	0.0	114	40-160
Perfluoroheptanoate		5.2	4.80	0.0	108	40-160
Perfluorohexanesulfonate		5.2	4.80	0.0	109	40-160
Perfluoronexanesumonate		3.4	4.80	0.0	70	40-160
Perfluoronexanoate Perfluorononanesulfonate		5.4	4.80	0.0	112	40-160
						40-160
Perfluorononanoate		5.3	4.80	0.0	110	
Perfluorooctanesulfonamide		4.8	4.80	0.0	100	40-160
Perfluorooctanesulfonate		4.9	4.80	0.0	102	40-160
Perfluorooctanoate		5.1	4.80	0.0	106	40-160
Perfluoropentanesulfonate		6.5	4.80	0.0	136	40-160
Perfluoropentanoate		5.1	4.80	0.0	107	40-160
Perfluorotetradecanoate		5.4	4.80	0.0	113	40-160
Perfluorotridecanoate		5.5	4.80	0.0	114	40-160
Perfluoroundecanoate		5.2	4.80	0.0	108	40-160
Surrogate Recovery:		S	ample	Spike		% Rec.
CAS# Analyte]	Result	Level	% Rec.	Limits
NULL D3-N-MeFOSAA			4.54	3.84	118	20-200
NULL D5-N-EtFOSAA			2.29	3.84	60	20-200
NULL M2-4:2 FTS			0.891	3.60	25	20-200
NULL M2-6:2 FTS			2.73	3.65	75	20-200
NULL M2-8:2 FTS			2.57	3.69	70	20-200
NULL M2PFTeDA			4.14	3.84	108	20-200
NULL M3PFBS			1.79	3.58	50	20-200
NULL M3PFHxS			2.80	3.64	77 5 0	20-200
NULL M4PFHpA			2.21	3.84	58	20-200
NULL M5PFHxA			1.67	3.84	43	20-200
NULL M5PFPeA			1.38	3.84	36 72	20-200
NULL M6PFDA			2.78	3.84	72 72	20-200
NULL M7PFUnA NULL M8FOSA			2.75	3.84 3.84	72 65	20-200 20-200
			2.51 2.96	3.84 3.84	65 77	20-200
NULL M8PFOA NULL M8PFOS			2.96	3.84	77	20-200
NULL M9PFNA			2.69	3.84	70	20-200
NULL MPFBA			2.05	3.84	53	20-200
NULL MPFDoA			3.27	3.84	85	20-200
			3.27	J.0 1	65	20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Matrix Spike Dup

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10.222 g Final Vol: 4.17 mL Lab ID #: B20L022-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L022-MSD1 Source Lab ID #: 2011020-05

Batch ID: B20L022 Prepared: 12/7/2020 Analyzed: 12/15/2020 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
4:2 fluorotelomersulfonate	10.8	4.77	0.0	227	21	40-160	200
6:2 fluorotelomersulfonate	5.3	4.77	0.03	110	4	40-160	200
8:2 fluorotelomersulfonate	5.3	4.77	0.0	110	3	40-160	200
N-ethyl perfluorooctanesulfonamideacetate	5.1	4.77	0.0	106	3	40-160	40
N-methyl perfluorooctanesulfonamideacetate	2.6	4.77	0.0	54	0.6	40-160	40
Perfluorobutanesulfonate	5.2	4.77	0.0	108	3	40-160	40
Perfluorobutanoate	5.2	4.77	0.0	109	3	40-160	40
Perfluorodecanesulfonate	5.8	4.77	0.3	116	5	40-160	40
Perfluorodecanoate	5.2	4.77	0.0	110	2	40-160	40
Perfluorododecanoate	5.5	4.77	0.0	115	0.4	40-160	40
Perfluoroheptanesulfonate	5.4	4.77	0.0	113	1	40-160	40
Perfluoroheptanoate	5.2	4.77	0.0	110	1	40-160	40
Perfluorohexanesulfonate	5.2	4.77	0.0	108	1	40-160	40
Perfluorohexanoate	3.1	4.77	0.0	65	9	40-160	40
Perfluorononanesulfonate	4.9	4.77	0.0	103	9	40-160	40
Perfluorononanoate	5.3	4.77	0.0	111	0.8	40-160	40
Perfluorooctanesulfonamide	4.6	4.77	0.0	96	5	40-160	40
Perfluorooctanesulfonate	4.8	4.77	0.0	100	2	40-160	40
Perfluorooctanoate	5.0	4.77	0.0	106	0.5	40-160	40
Perfluoropentanesulfonate	6.0	4.77	0.0	125	9	40-160	40
Perfluoropentanoate	4.7	4.77	0.0	98	10	40-160	40
Perfluorotetradecanoate	5.3	4.77	0.0	111	2	40-160	40
Perfluorotridecanoate	5.6	4.77	0.0	117	2	40-160	40
Perfluoroundecanoate	5.2	4.77	0.0	109	0.5	40-160	40

Surrogate I	Recovery:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.39	3.82	89	20-200
NULL	D5-N-EtFOSAA	1.67	3.82	44	20-200
NULL	M2-4:2 FTS	0.642	3.58	18	20-200
NULL	M2-6:2 FTS	2.12	3.63	58	20-200
NULL	M2-8:2 FTS	1.92	3.67	52	20-200
NULL	M2PFTeDA	2.85	3.82	75	20-200
NULL	M3PFBS	1.50	3.56	42	20-200
NULL	M3PFHxS	2.05	3.62	57	20-200
NULL	M4PFHpA	1.76	3.82	46	20-200
NULL	M5PFHxA	1.33	3.82	35	20-200
NULL	M5PFPeA	1.04	3.82	27	20-200
NULL	M6PFDA	2.04	3.82	53	20-200
NULL	M7PFUnA	1.94	3.82	51	20-200
NULL	M8FOSA	1.78	3.82	47	20-200
NULL	M8PFOA	2.27	3.82	59	20-200
NULL	M8PFOS	2.06	3.66	56	20-200
NULL	M9PFNA	2.02	3.82	53	20-200
NULL	MPFBA	1.76	3.82	46	20-200
NULL	MPFDoA	2.24	3.82	59	20-200
Authorized	I b <u>y:</u> Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 44-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.386 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-24 Collected: 4/10/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 70.28%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

Result

414911-30-1	4:2 fluorotelomersulfonate		0.548	UJ	0.548
425670-75-3	6:2 fluorotelomersulfonate		0.548	UJ	0.548
481071-78-7	8:2 fluorotelomersulfonate		0.548	UJ	0.548
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.137	UJ	0.137
NULL	N-methyl perfluorooctanesulfonamideacetate		0.137	UJ	0.137
45187-15-3	Perfluorobutanesulfonate		0.137	UJ	0.137
375-22-4	Perfluorobutanoate		0.137	UJ	0.137
335-77-3	Perfluorodecanesulfonate		0.137	UJ	0.137
73829-36-4	Perfluorodecanoate		0.137	UJ	0.137
171978-95-3	Perfluorododecanoate		0.274	UJ	0.274
375-92-8	Perfluoroheptanesulfonate		0.137	UJ	0.137
120885-29-2	Perfluoroheptanoate		0.137	UJ	0.137
108427-53-8	Perfluorohexanesulfonate		0.137	UJ	0.137
	Perfluorohexanoate		0.137	UJ	0.137
92612-52-7	Perfluorononanesulfonate		0.137	UJ	0.137
68259-12-1					
72007-68-2	Perfluorononanoate		0.137	UJ	0.137
754-91-6	Perfluorooctanesulfonamide	,	0.137	UJ	0.137
45298-90-6	Perfluorooctanesulfonate	•	0.00767	J	0.137
45285-51-6	Perfluorooctanoate		0.137	UJ	0.137
2706-91-4	Perfluoropentanesulfonate		0.137	UJ	0.137
45167-47-3	Perfluoropentanoate		0.274	UJ	0.274
365971-87-5	Perfluorotetradecanoate		0.548	UJ	0.548
862374-87-6	Perfluorotridecanoate		0.548	UJ	0.548
NULL	Perfluoroundecanoate		0.137	UJ	0.137
Surrogate Rec	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.19	2.74	80	20-200
NULL	D5-N-EtFOSAA	2.43	2.74	0.0	20-200
NULL	MO 4.2 ETC			89	
	M2-4:2 FTS	1.71	2.57	66	20-200
NULL	M2-6:2 FTS	1.71 2.65	2.57 2.61	66 102	20-200 20-200
NULL NULL	M2-6:2 FTS M2-8:2 FTS	1.71 2.65 2.22	2.57 2.61 2.63	66 102 84	20-200 20-200 20-200
NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA	1.71 2.65 2.22 2.51	2.57 2.61 2.63 2.74	66 102 84 91	20-200 20-200 20-200 20-200
NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS	1.71 2.65 2.22 2.51 2.89	2.57 2.61 2.63 2.74 2.55	66 102 84 91 113	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS	1.71 2.65 2.22 2.51 2.89 2.60	2.57 2.61 2.63 2.74 2.55 2.60	66 102 84 91 113 100	20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA	1.71 2.65 2.22 2.51 2.89 2.60 2.28	2.57 2.61 2.63 2.74 2.55 2.60 2.74	66 102 84 91 113 100 83	20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74	66 102 84 91 113 100 83 82	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2-PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51 2.61	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89 92	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51 2.61	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89 92 95 64	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51 2.61 1.75 2.52	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89 92 95 64	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOA M8PFOS	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51 2.61 1.75 2.52 2.50	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89 92 95 64	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51 2.61 1.75 2.52 2.50 2.16	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89 92 95 64 92 95	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL NULL NULL NULL	M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOA M8PFOS	1.71 2.65 2.22 2.51 2.89 2.60 2.28 2.25 2.45 2.51 2.61 1.75 2.52 2.50	2.57 2.61 2.63 2.74 2.55 2.60 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74	66 102 84 91 113 100 83 82 89 92 95 64	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 **Field ID: 52-R1**

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.348 g Final Vol: 5.56 mL

Lab ID #: 2011020-25 **Collected: 4/10/2019**

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 64.36%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.835	UJ	0.835
425670-75-3	6:2 fluorotelomersulfonate		0.835	UJ	0.835
481071-78-7	8:2 fluorotelomersulfonate		0.835	UJ	0.835
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.209	UJ	0.209
NULL	N-methyl perfluorooctanesulfonamideacetate		0.209	UJ	0.209
45187-15-3	Perfluorobutanesulfonate		0.209	UJ	0.209
375-22-4	Perfluorobutanoate		0.209	UJ	0.209
335-77-3	Perfluorodecanesulfonate		0.209	UJ	0.209
73829-36-4	Perfluorodecanoate		0.209	UJ	0.209
171978-95-3	Perfluorododecanoate		0.417	UJ	0.417
375-92-8	Perfluoroheptanesulfonate		0.209	UJ	0.209
120885-29-2	Perfluoroheptanoate		0.209	UJ	0.209
108427-53-8	Perfluorohexanesulfonate		0.209	UJ	0.209
92612-52-7	Perfluorohexanoate		0.209	UJ	0.209
68259-12-1	Perfluorononanesulfonate		0.209	UJ	0.209
72007-68-2	Perfluorononanoate		0.209	UJ	0.209
754-91-6	Perfluorooctanesulfonamide		0.209	UJ	0.209
45298-90-6	Perfluorooctanesulfonate		0.209	UJ	0.209
	Perfluorooctanoate		0.209	UJ	0.209
45285-51-6			0.209	UJ	0.209
2706-91-4	Perfluoropentanesulfonate				
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate		0.417	UJ	0.417
365971-87-5			0.835	UJ	0.835
862374-87-6	Perfluorotridecanoate		0.835	UJ	0.835
NULL	Perfluoroundecanoate		0.209	UJ	0.209
Surrogate Reco	<u>very:</u> Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
	·				
NULL	D3-N-MeFOSAA	4.51	3.00	150	20-200
NULL	D5-N-EtFOSAA	4.80	3.00	160	20-200
NULL	M2-4:2 FTS	3.15	2.82	112	20-200
NULL NULL	M2-6:2 FTS M2-8:2 FTS	4.36 4.03	2.86 2.88	153 140	20-200 20-200
NULL	M2PFTeDA	5.50	3.00	183	20-200
NULL	M3PFBS	5.75	2.80	205	20-200
NULL	M3PFHxS	5.01	2.85	176	20-200
NULL	M4PFHpA	3.88	3.00	129	20-200
NULL	M5PFHxA	4.06	3.00	135	20-200
NULL	M5PFPeA	4.75	3.00	158	20-200
NULL	M6PFDA	5.26	3.00	175	20-200
NULL	M7PFUnA	5.30	3.00	177	20-200
NULL	M8FOSA	3.86	3.00	129	20-200
NULL	M8PFOA	4.70	3.00	156	20-200
NULL	M8PFOS	4.95	2.88	172	20-200
NULL	M9PFNA	4.75	3.00	158	20-200
NULL	MPFBA	3.39	3.00	113	20-200
NULL	MPFDoA	4.89	3.00	163	20-200
Authorized by	Jeff Westerlund	Release Dat	e:	2/2/.	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 119-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.218 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-26 Collected: 5/15/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 26.23%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

CHSII	Maryce		IXCSUIT	Quanner	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.49	UJ	1.49
425670-75-3	6:2 fluorotelomersulfonate		1.49	UJ	1.49
481071-78-7	8:2 fluorotelomersulfonate		1.49	UJ	1.49
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.373	UJ	0.373
NULL	N-methyl perfluorooctanesulfonamideacetate		0.373	UJ	0.373
45187-15-3	Perfluorobutanesulfonate		0.373	UJ	0.373
375-22-4	Perfluorobutanoate		0.373	UJ	0.373
375-22- 4 335-77-3	Perfluorodecanesulfonate		0.373	UJ	0.373
	Perfluorodecanoate		0.373	UJ	0.373
73829-36-4					
171978-95-3	Perfluorododecanoate		0.746	UJ	0.746
375-92-8	Perfluoroheptanesulfonate		0.373	UJ	0.373
120885-29-2	Perfluoroheptanoate		0.373	UJ	0.373
108427-53-8	Perfluorohexanesulfonate		0.373	UJ	0.373
92612-52-7	Perfluorohexanoate		0.373	UJ	0.373
68259-12-1	Perfluorononanesulfonate		0.373	UJ	0.373
72007-68-2	Perfluorononanoate		0.373	UJ	0.373
754-91-6	Perfluorooctanesulfonamide		0.373	UJ	0.373
45298-90-6	Perfluorooctanesulfonate		0.373	UJ	0.373
45285-51-6	Perfluorooctanoate		0.373	UJ	0.373
2706-91-4	Perfluoropentanesulfonate		0.373	UJ	0.373
45167-47-3	Perfluoropentanoate		0.746	UJ	0.746
365971-87-5	Perfluorotetradecanoate		1.49	UJ	1.49
862374-87-6	Perfluorotridecanoate		1.49	UJ	1.49
NULL	Perfluoroundecanoate		0.373	UJ	0.373
Surrogate Rec		Sample	Spike	01.5	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	4.27	7.46	57	20-200
NULL	D5-N-EtFOSAA	4.55	7.46	61	20-200
NULL	M2-4:2 FTS	6.92	7.00	99	20-200
NULL	M2-6:2 FTS	4.71	7.10	66	20-200
NULL	M2-8:2 FTS	4.80	7.16	67	20-200
NULL	M2PFTeDA	2.82	7.46	38	20-200
NULL	M3PFBS	3.18	6.96	46	20-200
NULL	M3PFHxS	4.35	7.07	62	20-200
NULL	M4PFHpA	7.12	7.46	95	20-200
NULL	M5PFHxA	5.10	7.46	68	20-200
NULL	M5PFPeA	7.50	7.46	100	20-200
NULL	M6PFDA	3.80	7.46	51	20-200
NULL	M7PFUnA	3.56	7.46	48	20-200
NULL	M8FOSA	2.98	7.46	40	20-200
NULL	M8PFOA	4.36	7.46	58	20-200
NULL	M8PFOS	4.37	7.15	61	20-200
			1/16	5.1	20-200
NULL	M9PFNA	3.83	7.46	51	
NULL	MPFBA	3.73	7.46	50	20-200
NULL	MPFBA MPFDoA ToffWarterland	3.73	7.46 7.46	50	20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 **Field ID: 191-R1**

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.901 g Final Vol: 4 mL

Lab ID #: 2011020-27 **Collected: 4/12/2019**

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 37.10%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.989	UJ	0.989
425670-75-3	6:2 fluorotelomersulfonate		0.989	UJ	0.989
481071-78-7	8:2 fluorotelomersulfonate		0.989	UJ	0.989
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.247	UJ	0.247
NULL	N-methyl perfluorooctanesulfonamideacetate		0.247	UJ	0.247
45187-15-3	Perfluorobutanesulfonate		0.247	UJ	0.247
375-22-4	Perfluorobutanoate		0.247	UJ	0.247
335-77-3	Perfluorodecanesulfonate		0.247	UJ	0.247
73829-36-4	Perfluorodecanoate		0.247	UJ	0.247
171978-95-3	Perfluorododecanoate		0.495	UJ	0.495
375-92-8	Perfluoroheptanesulfonate		0.247	UJ	0.247
120885-29-2	Perfluoroheptanoate		0.247	UJ	0.247
108427-53-8	Perfluorohexanesulfonate		0.247	UJ	0.247
92612-52-7	Perfluorohexanoate		0.247	UJ	0.247
68259-12-1	Perfluorononanesulfonate		0.247	UJ	0.247
72007-68-2	Perfluorononanoate		0.247	UJ	0.247
754-91-6	Perfluorooctanesulfonamide		0.247	UJ	0.247
45298-90-6	Perfluorooctanesulfonate		0.247	UJ	0.247
45285-51-6	Perfluorooctanoate		0.247	UJ	0.247
2706-91-4	Perfluoropentanesulfonate		0.247	UJ	0.247
45167-47-3	Perfluoropentanoate		0.495	UJ	0.495
365971-87-5	Perfluorotetradecanoate		0.989	UJ	0.989
862374-87-6	Perfluorotridecanoate		0.989	UJ	0.989
NULL	Perfluoroundecanoate		0.247	UJ	0.247
Surrogate Rec	overv:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.21	4.95	65	20-200
NULL	D5-N-EtFOSAA	3.02	4.95	61	20-200
NULL	M2-4:2 FTS	3.47	4.64	75	20-200
NULL	M2-6:2 FTS	3.29	4.70	70	20-200
NULL	M2-8:2 FTS	3.07	4.75	65	20-200
NULL	M2PFTeDA	2.85	4.95	58	20-200
NULL	M3PFBS	2.80	4.61	61	20-200
NULL	M3PFHxS	3.42	4.69	73	20-200
NULL	M4PFHpA	4.67	4.95	94 77	20-200
NULL NULL	M5PFHxA M5PFPeA	3.83 5.52	4.95 4.95	77 112	20-200 20-200
NULL	M6PFDA	2.95	4.95	60	20-200
NULL	M7PFUnA	3.09	4.95	62	20-200
NULL	M8FOSA	2.34	4.95	47	20-200
NULL	M8PFOA	3.17	4.95	64	20-200
NULL	M8PFOS	3.28	4.74	69	20-200
NULL	M9PFNA	2.93	4.95	59	20-200
NULL	MPFBA	2.70	4.95	54	20-200
NULL	MPFDoA	2.66	4.95	54	20-200
Authorized by	: Jeff Westerlund	Release Dat	e:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 222-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.678 g Final Vol: 4 mL Lab ID #: 2011020-28 Collected: 4/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 43.09%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.869	UJ	0.869
425670-75-3	6:2 fluorotelomersulfonate		0.869	UJ	0.869
481071-78-7	8:2 fluorotelomersulfonate		0.869	UJ	0.869
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.217	UJ	0.217
NULL	N-methyl perfluorooctanesulfonamideacetate		0.217	UJ	0.217
45187-15-3	Perfluorobutanesulfonate		0.217	UJ	0.217
375-22-4	Perfluorobutanoate		0.217	UJ	0.217
335-77-3	Perfluorodecanesulfonate		0.217	UJ	0.217
73829-36-4	Perfluorodecanoate		0.217	UJ	0.217
171978-95-3	Perfluorododecanoate		0.435	UJ	0.435
375-92-8	Perfluoroheptanesulfonate		0.217	UJ	0.217
120885-29-2	Perfluoroheptanoate		0.217	UJ	0.217
108427-53-8	Perfluorohexanesulfonate		0.217	UJ	0.217
92612-52-7	Perfluorohexanoate		0.217	UJ	0.217
68259-12-1	Perfluorononanesulfonate		0.217	UJ	0.217
72007-68-2	Perfluorononanoate		0.217	UJ	0.217
754-91-6	Perfluorooctanesulfonamide		0.217	UJ	0.217
45298-90-6	Perfluorooctanesulfonate		0.0348	J	0.217
45285-51-6	Perfluorooctanoate		0.217	ÚJ	0.217
2706-91-4	Perfluoropentanesulfonate		0.217	UJ	0.217
45167-47-3	Perfluoropentanoate		0.435	UJ	0.435
365971-87-5	Perfluorotetradecanoate		0.869	UJ	0.869
862374-87-6	Perfluorotridecanoate		0.869	UJ	0.869
NULL	Perfluoroundecanoate		0.217	UJ	0.217
			0.217	03	
Surrogate Reco	<u>overy:</u> Analyte	Sample	Spike Level	% Rec.	% Rec.
	•	Result			Limits
NULL	D3-N-MeFOSAA	2.66	4.35	61	20-200
NULL	D5-N-EtFOSAA	2.49	4.35	57 70	20-200
NULL NULL	M2-4:2 FTS	3.20 3.23	4.08	79 78	20-200
NULL NULL	M2-6:2 FTS M2-8:2 FTS	3.23 2.96	4.13 4.17	78 71	20-200 20-200
NULL	M2PFTeDA	2.31	4.17	53	20-200
NULL	M3PFBS	2.72	4.05	67	20-200
NULL	M3PFHxS	3.17	4.12	77	20-200
NULL	M4PFHpA	3.50	4.35	80	20-200
NULL	M5PFHxA	3.45	4.35	79	20-200
NULL	M5PFPeA	5.00	4.35	115	20-200
NULL	M6PFDA	2.95	4.35	68	20-200
NULL	M7PFUnA	2.60	4.35	60	20-200
NULL	M8FOSA	1.93	4.35	44	20-200
NULL	M8PFOA	3.49	4.35	80	20-200
NULL	M8PFOS	2.98	4.16	72	20-200
NULL	M9PFNA	2.85	4.35	65	20-200
NULL	MPFBA	2.58	4.35	59 50	20-200
NULL	MPFDoA	2.54	4.35	58	20-200
Authorized by	. Jeff Westerlund	Release Dat	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 252-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.779 g Final Vol: 4 mL

Lab ID #: 2011020-29 **Collected: 4/10/2019**

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 65.10%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.570	UJ	0.570
425670-75-3	6:2 fluorotelomersulfonate		0.570	UJ	0.570
481071-78-7	8:2 fluorotelomersulfonate		0.570	UJ	0.570
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.143	UJ	0.143
NULL	N-methyl perfluorooctanesulfonamideacetate		0.143	UJ	0.143
45187-15-3	Perfluorobutanesulfonate		0.143	UJ	0.143
375-22-4	Perfluorobutanoate		0.143	UJ	0.143
335-77-3	Perfluorodecanesulfonate		0.143	UJ	0.143
73829-36-4	Perfluorodecanoate		0.143	UJ	0.143
171978-95-3	Perfluorododecanoate		0.285	UJ	0.285
375-92-8	Perfluoroheptanesulfonate		0.143	UJ	0.143
120885-29-2	Perfluoroheptanoate		0.143	UJ	0.143
108427-53-8	Perfluorohexanesulfonate		0.143	UJ	0.143
92612-52-7	Perfluorohexanoate		0.143	UJ	0.143
68259-12-1	Perfluorononanesulfonate		0.143	UJ	0.143
72007-68-2	Perfluorononanoate		0.143	UJ	0.143
	Perfluorooctanesulfonamide		0.143	UJ	0.143
754-91-6			0.143 0.0781	J	0.143 0.143
45298-90-6	Perfluorooctanesulfonate				
45285-51-6	Perfluorooctanoate		0.143	UJ	0.143
2706-91-4	Perfluoropentanesulfonate		0.143	UJ	0.143
45167-47-3	Perfluoropentanoate		0.285	UJ	0.285
365971-87-5	Perfluorotetradecanoate		0.570	UJ	0.570
862374-87-6	Perfluorotridecanoate		0.570	UJ	0.570
NULL	Perfluoroundecanoate		0.143	UJ	0.143
Surrogate Reco		Sample	Spike	0/ D	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.28	2.85	80	20-200
NULL	D5-N-EtFOSAA	2.43	2.85	85	20-200
NULL	M2-4:2 FTS	2.64	2.67	99	20-200
NULL	M2-6:2 FTS	2.91	2.71	107	20-200
NULL	M2-8:2 FTS	2.50	2.74	91 90	20-200
NULL NULL	M2PFTeDA M3PFBS	2.57 2.84	2.85 2.66	90 107	20-200 20-200
NULL	M3PFHxS	3.07	2.70	107	20-200
NULL	M4PFHpA	2.43	2.70	85	20-200
NULL	M5PFHxA	3.18	2.85	112	20-200
NULL	M5PFPeA	3.34	2.85	117	20-200
NULL	M6PFDA	2.70	2.85	95	20-200
NULL	M7PFUnA	2.56	2.85	90	20-200
NULL	M8FOSA	2.07	2.85	73	20-200
NULL	M8PFOA	3.02	2.85	106	20-200
NULL	M8PFOS	2.89	2.73	106	20-200
NULL	M9PFNA	2.67	2.85	94	20-200
NULL	MPFBA	1.93	2.85	68	20-200
NULL	MPFDoA	2.44	2.85	85	20-200
Authorized by	: Jeff Westerlund	Release Dat	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 265-R1

Work Order: 2011020
Project Officer: Dutch Marg

Project Officer: Dutch, Margaret Initial Vol: 10.517 g

Analyte

Final Vol: 4 mL

CAS#

Lab ID #: 2011020-30 Collected: 4/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 31.12%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

CHSII	Maryte		Result	Quanner	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.22	UJ	1.22
425670-75-3	6:2 fluorotelomersulfonate		1.22	UJ	1.22
481071-78-7	8:2 fluorotelomersulfonate		1.22	UJ	1.22
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.306	UJ	0.306
NULL	N-methyl perfluorooctanesulfonamideacetate		0.306	UJ	0.306
45187-15-3	Perfluorobutanesulfonate		0.306	UJ	0.306
375-22-4	Perfluorobutanoate		0.306	UJ	0.306
335-77-3	Perfluorodecanesulfonate		0.306	UJ	0.306
	Perfluorodecanoate		0.306	UJ	0.306
73829-36-4					
171978-95-3	Perfluorododecanoate		0.611	UJ	0.611
375-92-8	Perfluoroheptanesulfonate		0.306	UJ	0.306
120885-29-2	Perfluoroheptanoate		0.306	UJ	0.306
108427-53-8	Perfluorohexanesulfonate		0.306	UJ	0.306
92612-52-7	Perfluorohexanoate		0.306	UJ	0.306
68259-12-1	Perfluorononanesulfonate		0.306	UJ	0.306
72007-68-2	Perfluorononanoate		0.306	UJ	0.306
754-91-6	Perfluorooctanesulfonamide		0.306	UJ	0.306
45298-90-6	Perfluorooctanesulfonate		0.123	NJ	0.306
45285-51-6	Perfluorooctanoate		0.306	UJ	0.306
2706-91-4	Perfluoropentanesulfonate		0.306	UJ	0.306
45167-47-3	Perfluoropentanoate		0.611	UJ	0.611
365971-87-5	Perfluorotetradecanoate		1.22	UJ	1.22
862374-87-6	Perfluorotridecanoate		1.22	UJ	1.22
NULL	Perfluoroundecanoate		0.306	UJ	0.306
Surrogate Rec	OVORV!	Ca1a	C:1- a		% Rec.
CAS#	Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
NULL	D3-N-MeFOSAA	4.75	6.11	78	20-200
NULL	D5-N-EtFOSAA	4.76	6.11	78 78	20-200
NULL	M2-4:2 FTS	4.76	5.73	78 86	20-200
NULL	M2-6:2 FTS	6.19	5.81	106	20-200
NULL	M2-8:2 FTS	4.67	5.87	80	20-200
NULL	M2PFTeDA	5.51	6.11	90	20-200
NULL	M3PFBS	7.27	5.70	128	20-200
NULL	M3PFHxS	5.73	5.79	99	20-200
NULL	M4PFHpA	5.62	6.11	92	20-200
NULL	M5PFHxA	5.96	6.11	98	20-200
NULL	M5PFPeA	6.29	6.11	103	20-200
NULL	M6PFDA	5.40	6.11	88	20-200
NULL					20-200
	M/PFUnA	5.22	6.11	8.3	
NULL	M7PFUnA M8FOSA	5.22 4.39	6.11 6.11	85 72	
NULL NULL	M/PFUnA M8FOSA M8PFOA	4.39	6.11	72 103	20-200
NULL	M8FOSA M8PFOA	4.39 6.28	6.11 6.11	72	
NULL NULL	M8FOSA	4.39	6.11 6.11 5.85	72 103 102	20-200 20-200 20-200
NULL	M8FOSA M8PFOA M8PFOS	4.39 6.28 5.96	6.11 6.11	72 103	20-200 20-200
NULL NULL NULL	M8FOSA M8PFOA M8PFOS M9PFNA	4.39 6.28 5.96 5.37	6.11 6.11 5.85 6.11	72 103 102 88	20-200 20-200 20-200 20-200
NULL NULL NULL NULL	M8FOSA M8PFOA M8PFOS M9PFNA MPFBA MPFDoA	4.39 6.28 5.96 5.37 4.08	6.11 6.11 5.85 6.11 6.11	72 103 102 88 67	20-200 20-200 20-200 20-200 20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 281-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.39 g Final Vol: 4 mL Lab ID #: 2011020-31 Collected: 4/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 38.82%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.992	UJ	0.992
425670-75-3	6:2 fluorotelomersulfonate		0.992	UJ	0.992
481071-78-7	8:2 fluorotelomersulfonate		0.992	UJ	0.992
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.248	UJ	0.248
NULL	N-methyl perfluorooctanesulfonamideacetate		0.248	UJ	0.248
45187-15-3	Perfluorobutanesulfonate		0.248	UJ	0.248
375-22-4	Perfluorobutanoate		0.248	UJ	0.248
335-77-3	Perfluorodecanesulfonate		0.248	UJ	0.248
73829-36-4	Perfluorodecanoate		0.248	UJ	0.248
171978-95-3	Perfluorododecanoate		0.496	UJ	0.496
375-92-8	Perfluoroheptanesulfonate		0.248	UJ	0.248
120885-29-2	Perfluoroheptanoate		0.248	UJ	0.248
108427-53-8	Perfluorohexanesulfonate		0.248	UJ	0.248
92612-52-7	Perfluorohexanoate		0.248	UJ	0.248
68259-12-1	Perfluorononanesulfonate		0.248	UJ	0.248
72007-68-2	Perfluorononanoate		0.248	UJ	0.248
754-91-6	Perfluorooctanesulfonamide		0.248	UJ	0.248
45298-90-6	Perfluorooctanesulfonate		0.248	\mathbf{J}	0.248
4529 5 -90-0 45285-51-6	Perfluorooctanoate		0.0387	U J	0.248
	Perfluoropentanesulfonate		0.248	UJ	0.248
2706-91-4			0.248	UJ	0.496
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate		0.496	UJ	0.496
365971-87-5					
862374-87-6	Perfluorotridecanoate		0.992	UJ	0.992
NULL	Perfluoroundecanoate		0.248	UJ	0.248
Surrogate Rec		Sample	Spike	0.4 =	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.30	4.96	67	20-200
NULL	D5-N-EtFOSAA	3.44	4.96	69	20-200
NULL	M2-4:2 FTS	4.17	4.65	90	20-200
NULL	M2-6:2 FTS	4.38	4.72	93	20-200
NULL	M2-8:2 FTS	4.01	4.76	84	20-200
NULL	M2PFTeDA	3.51	4.96	71	20-200
NULL	M3PFBS	3.60 4.20	4.62 4.70	78 89	20-200
NULL NULL	M3PFHxS	4.20	4.70	89 86	20-200 20-200
NULL	M4PFHpA M5PFHxA	4.57	4.96	92	20-200
NULL	M5PFPeA	6.38	4.96	129	20-200
NULL	M6PFDA	4.15	4.96	84	20-200
NULL	M7PFUnA	3.86	4.96	78	20-200
NULL	M8FOSA	2.94	4.96	59	20-200
NULL	M8PFOA	4.67	4.96	94	20-200
NULL	M8PFOS	4.08	4.75	86	20-200
NULL	M9PFNA	3.63	4.96	73	20-200
NULL	MPFBA	2.90	4.96	59	20-200
NULL	MPFDoA	3.29	4.96	66	20-200
Authorized by	: Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: BLL009-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.753 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-32 Collected: 4/30/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 64.37%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

CASII	Maryce		Result	Quanner	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.578	UJ	0.578
425670-75-3	6:2 fluorotelomersulfonate		0.578	UJ	0.578
481071-78-7	8:2 fluorotelomersulfonate		0.578	UJ	0.578
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.144	UJ	0.144
NULL	N-methyl perfluorooctanesulfonamideacetate		0.144	UJ	0.144
45187-15-3	Perfluorobutanesulfonate		0.144	UJ	0.144
375-22-4	Perfluorobutanoate		0.144	UJ	0.144
	Perfluorodecanesulfonate		0.144		0.144
335-77-3				UJ	
73829-36-4	Perfluorodecanoate		0.144	UJ	0.144
171978-95-3	Perfluorododecanoate		0.289	UJ	0.289
375-92-8	Perfluoroheptanesulfonate		0.144	UJ	0.144
120885-29-2	Perfluoroheptanoate		0.144	UJ	0.144
108427-53-8	Perfluorohexanesulfonate		0.144	UJ	0.144
92612-52-7	Perfluorohexanoate		0.144	UJ	0.144
68259-12-1	Perfluorononanesulfonate		0.144	UJ	0.144
72007-68-2	Perfluorononanoate		0.144	UJ	0.144
754-91-6	Perfluorooctanesulfonamide		0.144	UJ	0.144
45298-90-6	Perfluorooctanesulfonate		0.144	UJ	0.144
45285-51-6	Perfluorooctanoate		0.144	UJ	0.144
2706-91-4	Perfluoropentanesulfonate		0.144	UJ	0.144
45167-47-3	Perfluoropentanoate		0.289	UJ	0.289
	Perfluorotetradecanoate		0.289	UJ	0.239
365971-87-5	Perfluorotridecanoate		0.578	UJ	0.578
862374-87-6					
NULL	Perfluoroundecanoate		0.144	UJ	0.144
Surrogate Reco		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.91	2.89	66	20-200
NULL	D5-N-EtFOSAA	1.97	2.89	68	20-200
NULL	M2-4:2 FTS	2.16	2.71	80	20-200
NULL	M2-6:2 FTS	1.97	2.75	72	20-200
NULL	M2-8:2 FTS	2.19	2.77	79	20-200
NULL	M2PFTeDA	1.35	2.89	47	20-200
NULL	M3PFBS	1.42	2.69	53	20-200
NULL	M3PFHxS	2.41	2.74	88	20-200
NULL	M4PFHpA	2.52	2.89	87	20-200
NULL	M5PFHxA	2.18	2.89	76	20-200
NULL	M5PFPeA	3.00	2.89	104	20-200
NULL	M6PFDA	1.82	2.89	63	20-200
NULL	M7DELL. A	4 60	2 00	50	20-200
	M7PFUnA	1.69	2.89	59	
NULL	M8FOSA	1.53	2.89	53	20-200
NULL NULL	M8FOSA M8PFOA	1.53 2.03	2.89 2.89		20-200 20-200
NULL NULL NULL	M8FOSA M8PFOA M8PFOS	1.53 2.03 2.05	2.89 2.89 2.77	53 70 74	20-200 20-200 20-200
NULL NULL NULL NULL	M8FOSA M8PFOA M8PFOS M9PFNA	1.53 2.03 2.05 1.66	2.89 2.89 2.77 2.89	53 70 74 57	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	M8FOSA M8PFOA M8PFOS M9PFNA MPFBA	1.53 2.03 2.05 1.66 1.36	2.89 2.89 2.77 2.89 2.89	53 70 74 57 47	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL NULL	M8FOSA M8PFOA M8PFOS M9PFNA	1.53 2.03 2.05 1.66	2.89 2.89 2.77 2.89	53 70 74 57	20-200 20-200 20-200 20-200
NULL NULL NULL NULL NULL	M8FOSA M8PFOA M8PFOS M9PFNA MPFBA MPFDoA	1.53 2.03 2.05 1.66 1.36	2.89 2.89 2.77 2.89 2.89 2.89	53 70 74 57 47	20-200 20-200 20-200 20-200 20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40005-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.281 g

Initial Vol: 10.281 g Final Vol: 4 mL

CAS#

NULL

NULL

NULL

Authorized by:

Lab ID #: 2011020-33 Collected: 5/1/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 35.30%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

Result

414911-30-1	4:2 fluorotelomersulfonate		1.10	UJ	1.10
425670-75-3	6:2 fluorotelomersulfonate		1.10	UJ	1.10
481071-78-7	8:2 fluorotelomersulfonate		1.10	UJ	1.10
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.276	UJ	0.276
NULL	N-methyl perfluorooctanesulfonamideacetate		0.276	UJ	0.276
45187-15-3	Perfluorobutanesulfonate		0.276	UJ	0.276
375-22-4	Perfluorobutanoate		0.276	UJ	0.276
335-77-3	Perfluorodecanesulfonate		0.276	UJ	0.276
73829-36-4	Perfluorodecanoate		0.276	UJ	0.276
171978-95-3	Perfluorododecanoate		0.551	UJ	0.551
375-92-8	Perfluoroheptanesulfonate		0.276	UJ	0.276
120885-29-2	Perfluoroheptanoate		0.276	UJ	0.276
108427-53-8	Perfluorohexanesulfonate		0.276	UJ	0.276
92612-52-7	Perfluorohexanoate		0.276	UJ	0.276
68259-12-1	Perfluorononanesulfonate		0.276	UJ	0.276
72007-68-2	Perfluorononanoate		0.276	UJ	0.276
754-91-6	Perfluorooctanesulfonamide		0.276	UJ	0.276
45298-90-6	Perfluorooctanesulfonate		0.276	UJ	0.276
45285-51-6	Perfluorooctanoate		0.276	UJ	0.276
2706-91-4	Perfluoropentanesulfonate		0.276	UJ	0.276
45167-47-3	Perfluoropentanoate		0.551	UJ	0.551
365971-87-5	Perfluorotetradecanoate		1.10	UJ	1.10
862374-87-6	Perfluorotridecanoate		1.10	UJ	1.10
NULL	Perfluoroundecanoate		0.276	UJ	0.276
Surrogate Rec	covery:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	5.59	5.51	101	20-200
NULL	D5-N-EtFOSAA	5.48	5.51	99	20-200
NULL	M2-4:2 FTS	5.35	5.17	103	20-200
NULL	M2-6:2 FTS	5.02	5.24	96	20-200
NULL	M2-8:2 FTS	4.89	5.29	92	20-200
NULL	M2PFTeDA	3.60	5.51	65	20-200
NULL	M3PFBS	3.83	5.14	75	20-200
NULL	M3PFHxS	6.06	5.22	116	20-200
NULL	A CAMPATA A	4.0-		0.0	
3 TT TT T	M4PFHpA	4.83	5.51	88	20-200
NULL	M5PFHxA	5.22	5.51	95	20-200
NULL	M5PFHxA M5PFPeA	5.22 7.67	5.51 5.51	95 139	20-200 20-200
NULL NULL	M5PFHxA M5PFPeA M6PFDA	5.22 7.67 3.95	5.51 5.51 5.51	95 139 72	20-200 20-200 20-200
NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA	5.22 7.67 3.95 3.83	5.51 5.51 5.51 5.51	95 139 72 69	20-200 20-200 20-200 20-200
NULL NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA	5.22 7.67 3.95 3.83 3.97	5.51 5.51 5.51 5.51 5.51	95 139 72 69 72	20-200 20-200 20-200 20-200 20-200
NULL NULL NULL	M5PFHxA M5PFPeA M6PFDA M7PFUnA	5.22 7.67 3.95 3.83	5.51 5.51 5.51 5.51	95 139 72 69	20-200 20-200 20-200 20-200

Jeff Westerlund

M9PFNA

MPFDoA

MPFBA

2/2/2021

20-200

20-200

20-200

69

62

63

3.83

3.42

3.48

Release Date:

5.51

5.51

5.51

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40006-R1

Work Order: 2011020
Project Officer: Dutch Marg

Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.842 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-34 Collected: 4/15/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 74.14%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

CAS#	Analyte		Result	Quaimer	LLUQ
414911-30-1	4:2 fluorotelomersulfonate		0.498	UJ	0.498
425670-75-3	6:2 fluorotelomersulfonate		0.498	UJ	0.498
481071-78-7	8:2 fluorotelomersulfonate		0.498	UJ	0.498
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.124	UJ	0.124
NULL	N-methyl perfluorooctanesulfonamideacetate		0.124	UJ	0.124
45187-15-3	Perfluorobutanesulfonate		0.124	UJ	0.124
375-22-4	Perfluorobutanoate		0.124	UJ	0.124
335-77-3	Perfluorodecanesulfonate		0.124	UJ	0.124
73829-36-4	Perfluorodecanoate		0.124	UJ	0.124
	Perfluorododecanoate		0.124	UJ	0.124
171978-95-3			0.249	UJ	0.249
375-92-8	Perfluoroheptanesulfonate				
120885-29-2	Perfluoroheptanoate		0.124	UJ	0.124
108427-53-8	Perfluorohexanesulfonate		0.124	UJ	0.124
92612-52-7	Perfluorohexanoate		0.124	UJ	0.124
68259-12-1	Perfluorononanesulfonate		0.124	UJ	0.124
72007-68-2	Perfluorononanoate		0.124	UJ	0.124
754-91-6	Perfluorooctanesulfonamide		0.124	UJ	0.124
45298-90-6	Perfluorooctanesulfonate		0.124	UJ	0.124
45285-51-6	Perfluorooctanoate		0.124	UJ	0.124
2706-91-4	Perfluoropentanesulfonate		0.124	UJ	0.124
45167-47-3	Perfluoropentanoate		0.249	UJ	0.249
365971-87-5	Perfluorotetradecanoate		0.498	UJ	0.498
862374-87-6	Perfluorotridecanoate		0.498	UJ	0.498
NULL	Perfluoroundecanoate		0.124	UJ	0.124
Surrogate Rec	overv:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.71	2.49	69	20-200
NULL	D5-N-EtFOSAA	1.86	2.49	75	20-200
NULL	M2-4:2 FTS	1.68	2.33	72	20-200
NULL	M2-6:2 FTS	1.91	2.37	81	20-200
NULL	M2-8:2 FTS	1.60	2.39	67	20-200
NULL	M2PFTeDA	1.33	2.49	54	20-200
NULL	M3PFBS	1.59	2.32	68	20-200
NULL	M3PFHxS	2.10	2.36	89	20-200
NULL	M4PFHpA	2.27	2.49	91	20-200
NULL	M5PFHxA	2.43	2.49	98	20-200
NULL	M5PFPeA	2.79	2.49	112	20-200
NULL	M6PFDA	1.71	2.49	69	20-200
NULL	M7PFUnA	1.57	2.49	63	20-200
NULL	M8FOSA	1.35	2.49	54	20-200
ATT IT T	MODEOA	1.78	2.49	72	20-200
NULL	M8PFOA				
NULL	M8PFOS	1.86	2.38	78	20-200
NULL NULL	M8PFOS M9PFNA	1.86 1.51	2.49	78 61	20-200
NULL NULL NULL	M8PFOS M9PFNA MPFBA	1.86 1.51 1.45	2.49 2.49	78 61 58	20-200 20-200
NULL NULL	M8PFOS M9PFNA	1.86 1.51	2.49	78 61	20-200
NULL NULL NULL	M8PFOS M9PFNA MPFBA MPFDoA	1.86 1.51 1.45	2.49 2.49 2.49	78 61 58	20-200 20-200 20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40007-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.274 g Final Vol: 4 mL Lab ID #: 2011020-35 Collected: 4/23/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 69.46%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.561	UJ	0.561
425670-75-3	6:2 fluorotelomersulfonate		0.561	UJ	0.561
481071-78-7	8:2 fluorotelomersulfonate		0.561	UJ	0.561
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.140	UJ	0.140
NULL	N-methyl perfluorooctanesulfonamideacetate		0.140	UJ	0.140
45187-15-3	Perfluorobutanesulfonate		0.140	UJ	0.140
375-22-4	Perfluorobutanoate		0.140	UJ	0.140
335-77-3	Perfluorodecanesulfonate		0.140	UJ	0.140
73829-36-4	Perfluorodecanoate		0.140	UJ	0.140
171978-95-3	Perfluorododecanoate		0.280	UJ	0.280
375-92-8	Perfluoroheptanesulfonate		0.140	UJ	0.140
120885-29-2	Perfluoroheptanoate		0.140	UJ	0.140
108427-53-8	Perfluorohexanesulfonate		0.140	UJ	0.140
92612-52-7	Perfluorohexanoate		0.140	UJ	0.140
68259-12-1	Perfluorononanesulfonate		0.140	UJ	0.140
72007-68-2	Perfluorononanoate		0.140	UJ	0.140
754-91-6	Perfluorooctanesulfonamide		0.140	UJ	0.140
45298-90-6	Perfluorooctanesulfonate		0.140	UJ	0.140
45285-51-6	Perfluorooctanoate		0.140	UJ	0.140
2706-91-4	Perfluoropentanesulfonate		0.140	UJ	0.140
45167-47-3	Perfluoropentanoate		0.140	UJ	0.140
	Perfluorotetradecanoate		0.280	UJ	0.280
365971-87-5	Perfluorotridecanoate		0.561	UJ	0.561
862374-87-6	Perfluoroundecanoate Perfluoroundecanoate		0.361	UJ	0.361
NULL			0.140	OJ	0.140
Surrogate Rec		Sample	Spike	0/ 5	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.65	2.80	59	20-200
NULL	D5-N-EtFOSAA	1.61	2.80	58	20-200
NULL	M2-4:2 FTS	1.98	2.63	75	20-200
NULL	M2-6:2 FTS	1.78	2.67	67	20-200
NULL	M2-8:2 FTS	1.58	2.69	59	20-200
NULL	M2PFTeDA	1.20 1.42	2.80	43 54	20-200
NULL NULL	M3PFBS M3PFHxS	1.42	2.61 2.66	70	20-200 20-200
NULL	M4PFHpA	2.83	2.80	101	20-200
NULL	M5PFHxA	2.08	2.80	74	20-200
NULL	M5PFPeA	3.08	2.80	110	20-200
NULL	M6PFDA	1.55	2.80	55	20-200
NULL	M7PFUnA	1.44	2.80	51	20-200
NULL	M8FOSA	1.17	2.80	42	20-200
NULL	M8PFOA	1.68	2.80	60	20-200
NULL	M8PFOS	1.84	2.68	68	20-200
NULL	M9PFNA	1.40	2.80	50	20-200
NULL	MPFBA	1.44	2.80	51	20-200
NULL	MPFDoA	1.25	2.80	44	20-200
Authorized by	: Jeff Westerlund	Release Da	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40008-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.674 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-36 Collected: 4/11/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 26.91%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

	<u> </u>				
414911-30-1	4:2 fluorotelomersulfonate		1.39	UJ	1.39
425670-75-3	6:2 fluorotelomersulfonate		1.39	UJ	1.39
481071-78-7	8:2 fluorotelomersulfonate		1.39	UJ	1.39
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.348	UJ	0.348
NULL	N-methyl perfluorooctanesulfonamideacetate		0.348	UJ	0.348
45187-15-3	Perfluorobutanesulfonate		0.348	UJ	0.348
375-22-4	Perfluorobutanoate		0.348	UJ	0.348
335-77-3	Perfluorodecanesulfonate		0.348	UJ	0.348
73829-36-4	Perfluorodecanoate		0.348	UJ	0.348
	Perfluorododecanoate		0.696	UJ	0.696
171978-95-3			0.348	UJ	
375-92-8	Perfluoroheptanesulfonate				0.348
120885-29-2	Perfluoroheptanoate		0.348	UJ	0.348
108427-53-8	Perfluorohexanesulfonate		0.348	UJ	0.348
92612-52-7	Perfluorohexanoate		0.348	UJ	0.348
68259-12-1	Perfluorononanesulfonate		0.348	UJ	0.348
72007-68-2	Perfluorononanoate		0.348	UJ	0.348
754-91-6	Perfluorooctanesulfonamide		0.348	UJ	0.348
45298-90-6	Perfluorooctanesulfonate		0.125	J	0.348
45285-51-6	Perfluorooctanoate		0.348	UJ	0.348
2706-91-4	Perfluoropentanesulfonate		0.348	UJ	0.348
45167-47-3	Perfluoropentanoate		0.696	UJ	0.696
365971-87-5	Perfluorotetradecanoate		1.39	UJ	1.39
862374-87-6	Perfluorotridecanoate		1.39	UJ	1.39
NULL	Perfluoroundecanoate		0.348	UJ	0.348
Surrogate Rec	overv:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	6.03	6.96	87	20-200
NULL	D5-N-EtFOSAA	6.13	6.96	88	20-200
NULL	M2-4:2 FTS	4.65	6.53	71	20-200
NULL	M2-6:2 FTS	6.25	6.62	94	20-200
NULL	M2-8:2 FTS	6.30	6.68	94	20-200
NULL	M2PFTeDA	6.80	6.96	98	20-200
NULL	M3PFBS	7.02	6.49	108	20-200
NULL	M3PFHxS	7.37	6.60	112	20-200
NULL	M4PFHpA	6.30	6.96	91	20-200
NULL	M5PFHxA	7.59	6.96	109	20-200
NULL	M5PFPeA	7.40	6.96	106	20-200
NULL	M6PFDA	7.13	6.96	102	20-200
NULL	M7PFUnA	7.06	6.96	101	20-200
NULL	M8FOSA	5.05	6.96	73	20-200
NULL	M8PFOA	6.64	6.96	95	20-200
NULL	M8PFOS	7.11	6.67	107	20-200
NULL	M9PFNA	5.97	6.96	86	20-200
NULL	MPFBA	4.69	6.96	67	20-200
NULL	MPFDoA	6.11	6.96	88	20-200

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40009-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.292 g
Final Vol: 4 mL

Analyte

CAS#

Lab ID #: 2011020-37 Collected: 4/29/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 70.30%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

NULL NULL NULL NULL NULL Authorized by	M8PFOS M9PFNA MPFBA MPFDoA	2.59 2.25 1.84 1.92 Release Date	2.65 2.76 2.76 2.76	98 81 66 70 2/2/ 2	20-200 20-200 20-200 20-200 20-21
NULL NULL NULL	M8PFOS M9PFNA MPFBA MPFDoA	2.25 1.84	2.76 2.76	81 66 70	20-200 20-200 20-200
NULL NULL NULL	M8PFOS M9PFNA MPFBA	2.25 1.84	2.76 2.76	81 66	20-200 20-200
NULL NULL	M8PFOS M9PFNA	2.25	2.76	81	20-200
NULL	M8PFOS				
		2.50	2.65	QQ	20_200
NHHI	1V101 1 O/A				
NULL	M8FOSA M8PFOA	1.85 2.74	2.76 2.76	67 99	20-200
NULL	M7PFUnA	2.26	2.76	82 67	20-200 20-200
NULL	M6PFDA	2.31	2.76	84	20-200
NULL	M5PFPeA	3.30	2.76	119	20-200
NULL	M5PFHxA	2.76	2.76	100	20-200
NULL	M4PFHpA	2.26	2.76	82	20-200
NULL	M3PFHxS	2.72	2.62	104	20-200
NULL	M3PFBS	2.53	2.58	98	20-200
NULL	M2PFTeDA	1.96	2.76	71	20-200
NULL	M2-8:2 FTS	2.52	2.65	95	20-200
NULL	M2-6:2 FTS	2.74	2.63	104	20-200
NULL	M2-4:2 FTS	2.11	2.59	82	20-200
NULL	D5-N-EtFOSAA	2.54	2.76	92	20-200
NULL	D3-N-MeFOSAA	2.45	2.76	89	20-200
CAS#	Analyte	Result	Level	% Rec.	Limits
Surrogate Reco		Sample	Spike		% Rec.
NULL	Perfluoroundecanoate		0.138	UJ	0.138
862374-87-6	Perfluorotridecanoate		0.553	UJ	0.553
365971-87-5			0.553		0.553
45167-47-3	Perfluoropentanoate Perfluorotetradecanoate			UJ UJ	0.276
2706-91-4	Perfluoropentanesulfonate		0.138		
45285-51-6			0.138	UJ	0.138
45298-90-6 45295-51-6	Perfluorooctanesullonate Perfluorooctanoate		0.138	UJ	0.138
	Perfluorooctanesulfonate		0.138	UJ	0.138
72007-08-2 754-91-6	Perfluorooctanesulfonamide		0.138	UJ	0.138
08239-12-1 72007-68-2	Perfluorononanoate		0.138	UJ	0.138
68259-12-1	Perfluoronoanesulfonate		0.138	UJ	0.138
92612-52-7	Perfluorohexanoate		0.138	UJ	0.138
108427-53-8	Perfluorohexanesulfonate		0.138	UJ	0.138
120885-29-2	Perfluoroheptanoate		0.138	UJ	0.138
375-92-8	Perfluoroheptanesulfonate		0.138	UJ	0.138
171978-95-3	Perfluorododecanoate		0.276	UJ	0.136
73829-36-4	Perfluorodecanoate		0.138	UJ	0.138
335-77-3	Perfluorodecanesulfonate		0.138	UJ	0.138
375-22-4	Perfluorobutanoate		0.138	UJ	0.138
45187-15-3	Perfluorobutanesulfonate		0.138	UJ	0.138
NULL	N-methyl perfluorooctanesulfonamideacetate		0.138	UJ	0.138
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.138	UJ	0.138
481071-78-7	8:2 fluorotelomersulfonate		0.553	UJ	0.553
425670-75-3	6:2 fluorotelomersulfonate		0.553	UJ	0.553
414911-30-1	4:2 fluorotelomersulfonate		0.553	UJ	0.553
	1.2 fluoratalamarculfanata		0.552	TIT	0.5

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40010-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.803 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-38 Collected: 5/2/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 36.91%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

NULL	MPFDoA	3.24	3.02	03	20 200
		3.24	5.02	65	20-200
NULL	MPFBA	3.01	5.02	60	20-200
NULL NULL	M8PFOS M9PFNA	3.95 3.52	4.80 5.02	82 70	20-200 20-200
NULL	M8PFOA	3.86	5.02	77 82	20-200
NULL	M8FOSA	2.79	5.02	56	20-200
NULL	M7PFUnA	3.54	5.02	71	20-200
NULL	M6PFDA	3.91	5.02	78	20-200
NULL	M5PFPeA	7.13	5.02	142	20-200
NULL	M5PFHxA	4.86	5.02	97	20-200
NULL	M4PFHpA	4.88	5.02	97	20-200
NULL	M3PFHxS	4.27	4.75	90	20-200
NULL	M3PFBS	3.75	4.67	80	20-200
NULL	M2PFTeDA	3.06	5.02	61	20-200
NULL	M2-8:2 FTS	3.73	4.81	77	20-200
NULL	M2-6:2 FTS	4.09	4.77	86	20-200
NULL	M2-4:2 FTS	4.06	4.70	86	20-200
NULL	D5-N-METOSAA D5-N-EtFOSAA	3.75	5.02	75	20-200
NULL	D3-N-MeFOSAA	3.55	5.02	71	20-200
CAS#	Analyte	Result	Spike Level	% Rec.	Limits
Surrogate Reco		Sample		-	% Rec.
NULL	Perfluoroundecanoate		0.251	UJ	0.251
862374-87-6	Perfluorotridecanoate		1.00	UJ	1.00
365971-87-5	Perfluorotetradecanoate		1.00	UJ	1.00
45167-47-3	Perfluoropentanoate		0.502	UJ	0.502
2706-91-4	Perfluoropentanesulfonate		0.251	UJ	0.251
45285-51-6	Perfluorooctanoate		0.251	UJ	0.251
45298-90-6	Perfluorooctanesulfonate		0.251	UJ	0.251
754-91-6	Perfluorooctanesulfonamide		0.251	UJ	0.251
72007-68-2	Perfluorononanoate		0.251	UJ	0.251
68259-12-1	Perfluorononanesulfonate		0.251	UJ	0.251
92612-52-7	Perfluorohexanoate		0.251	UJ	0.251
108427-53-8	Perfluorohexanesulfonate		0.251	UJ	0.251
120885-29-2	Perfluoroheptanoate		0.251	UJ	0.251
375-92-8	Perfluoroheptanesulfonate		0.251	UJ	0.251
171978-95-3	Perfluorododecanoate		0.502	UJ	0.502
73829-36-4	Perfluorodecanoate		0.251	UJ	0.251
335-77-3	Perfluorodecanesulfonate		0.251	UJ	0.251
375-22-4					
	Perfluorobutanoate		0.251	UJ	0.251
45187-15-3	Perfluorobutanesulfonate		0.251	UJ	0.251
NULL	N-methyl perfluorooctanesulfonamideacetate		0.251	UJ	0.251
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.251	UJ	0.251
481071-78-7	8:2 fluorotelomersulfonate		1.00	UJ	1.00
425670-75-3	6:2 fluorotelomersulfonate		1.00	UJ	1.00
414911-30-1	4:2 fluorotelomersulfonate		1.00	UJ	1.00

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40011-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.828 g Final Vol: 4 mL Lab ID #: 2011020-39 Collected: 4/16/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 40.92%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.903	UJ	0.903
425670-75-3	6:2 fluorotelomersulfonate		0.903	UJ	0.903
481071-78-7	8:2 fluorotelomersulfonate		0.903	UJ	0.903
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.226	UJ	0.226
NULL	N-methyl perfluorooctanesulfonamideacetate		0.226	UJ	0.226
45187-15-3	Perfluorobutanesulfonate		0.226	UJ	0.226
375-22-4	Perfluorobutanoate		0.226	UJ	0.226
335-77-3	Perfluorodecanesulfonate		0.226	UJ	0.226
73829-36-4	Perfluorodecanoate		0.226	UJ	0.226
171978-95-3	Perfluorododecanoate		0.451	UJ	0.451
375-92-8	Perfluoroheptanesulfonate		0.226	UJ	0.226
120885-29-2	Perfluoroheptanoate		0.226	UJ	0.226
108427-53-8	Perfluorohexanesulfonate		0.226	UJ	0.226
92612-52-7	Perfluorohexanoate		0.226	UJ	0.226
68259-12-1	Perfluorononanesulfonate		0.226	UJ	0.226
72007-68-2	Perfluorononanoate		0.226	UJ	0.226
754-91-6	Perfluorooctanesulfonamide		0.226	UJ	0.226
45298-90-6	Perfluorooctanesulfonate		0.0641	J	0.226
45285-51-6	Perfluorooctanoate		0.226	ŬJ	0.226
2706-91-4	Perfluoropentanesulfonate		0.226	UJ	0.226
45167-47-3	Perfluoropentanoate		0.451	UJ	0.451
365971-87-5	Perfluorotetradecanoate		0.903	UJ	0.903
862374-87-6	Perfluorotridecanoate		0.903	UJ	0.903
NULL	Perfluoroundecanoate		0.226	UJ	0.226
Surrogate Rec CAS#	overy: Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
NULL	D3-N-MeFOSAA	3.53	4.51	78	20-200
NULL NULL	D5-N-EtFOSAA M2-4:2 FTS	3.70 3.67	4.51 4.23	82 87	20-200 20-200
NULL	M2-6:2 FTS	4.38	4.23	102	20-200
NULL	M2-8:2 FTS	3.73	4.23	86	20-200
NULL	M2PFTeDA	3.74	4.51	83	20-200
NULL	M3PFBS	4.93	4.21	117	20-200
NULL	M3PFHxS	4.02	4.28	94	20-200
NULL	M4PFHpA	3.93	4.51	87	20-200
NULL	M5PFHxA	5.18	4.51	115	20-200
NULL	M5PFPeA	4.52	4.51	100	20-200
NULL	M6PFDA	3.70	4.51	82	20-200
NULL	M7PFUnA	3.69	4.51	82	20-200
NULL	M8FOSA	2.86	4.51	63	20-200
NULL	M8PFOA	4.55	4.51	101	20-200
NULL	M8PFOS	3.88	4.32	90	20-200
NULL	M9PFNA	3.93	4.51	87	20-200
NULL	MPFB.	3.18	4.51	70	20-200
NULL	MPFDoA	3.46	4.51	77	20-200
Authorized by	: Jeff Westerlund	Release Dat	e:	2/2/.	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40012-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.996 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-40 Collected: 4/12/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 69.57%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

•				
4:2 fluorotelomersulfonate		0.523	UJ	0.523
6:2 fluorotelomersulfonate		0.523	UJ	0.523
8:2 fluorotelomersulfonate		0.523	UJ	0.523
N-ethyl perfluorooctanesulfonamideacetate		0.131	UJ	0.131
		0.131	UJ	0.131
				0.131
				0.131
				0.131
				0.131
				0.131
				0.201
				0.131
				0.131
				0.131
				0.131
				0.131
				0.131
		0.131	UJ	0.131
Perfluorooctanoate		0.131	UJ	0.131
Perfluoropentanesulfonate		0.131	UJ	0.131
Perfluoropentanoate		0.261	UJ	0.261
Perfluorotetradecanoate		0.523	UJ	0.523
Perfluorotridecanoate				0.523
Perfluoroundecanoate		0.131	UJ	0.131
overv•	Sampla	Cnilco		% Rec.
			% Rec.	Limits
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
M5PFHxA			96	20-200
			120	20-200
M6PFDA			70	20-200
M7PFUnA	1.79		68	20-200
M8FOSA	1.46	2.61	56	20-200
M8PFOA	2.08	2.61	80	20-200
M8PFOS	2.11	2.50	84	20-200
M9PFNA	1.74	2.61	67	20-200
M9PFNA MPFBA	1.74 1.45	2.61 2.61	67 55	20-200
	6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorodecanesulfonate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluorohexanesulfonate Perfluorohexanoate Perfluorononanesulfonate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluoroundecanoate Perfluoroundecanoate Perfluorobertanesulfonate Perfluorotetradecanoate Perfl	6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluorohexanesulfonate Perfluorohexanesulfonate Perfluoronexanoate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluoropentanesulfonate Perfluoropentanes	6:2 fluorotelomersulfonate 0.523 8:2 fluorotelomersulfonate 0.523 N-ethyl perfluorooctanesulfonamideacetate 0.131 N-methyl perfluorooctanesulfonate 0.131 Perfluorobutanesulfonate 0.131 Perfluorobutanoate 0.131 Perfluorodecanesulfonate 0.131 Perfluorodecanoate 0.131 Perfluoroheptanoate 0.131 Perfluoroheptanoate 0.131 Perfluorohexanesulfonate 0.131 Perfluorohexanoate 0.131 Perfluoronoanesulfonate 0.131 Perfluoronoanesulfonate 0.131 Perfluorooctanesulfonate 0.131 Perfluorooctanesulfonate 0.131 Perfluoropentanesulfonate 0.131 Perfluoropentanesulfonate 0.131 Perfluoropentanesulfonate 0.261 Perfluorotetradecanoate 0.523 Perfluorotetradecanoate 0.523 Perfluoroundecanoate 0.523 Perfluoroundecanoate 0.523 PerfluorobexA 1.95 Analyte S	6:2 fluorotelomersulfonate 0.523 UJ 8:2 fluorotelomersulfonate 0.523 UJ N-ethyl perfluorooctanesulfonamideacetate 0.131 UJ N-methyl perfluorobutanesulfonate 0.131 UJ Perfluorobutanoate 0.131 UJ Perfluorodecanesulfonate 0.131 UJ Perfluorodecanoate 0.131 UJ Perfluorodecanoate 0.261 UJ Perfluoroheptanesulfonate 0.131 UJ Perfluoroheptanesulfonate 0.131 UJ Perfluoroheptanesulfonate 0.131 UJ Perfluorohexanesulfonate 0.131 UJ Perfluorohexanesulfonate 0.131 UJ Perfluoroonanacet 0.131 UJ Perfluorooctanesulfonate 0.131 UJ Perfluorooctanesulfonate 0.131 UJ Perfluoropentancate 0.131 UJ Perfluoropentancate 0.523 UJ Perfluorotridecanoate 0.523 UJ Perfluorotridecanoate 0.523

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40021-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.17 g Final Vol: 4 mL

Lab ID #: 2011020-41 Collected: 4/23/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 39.35%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.00	UJ	1.00
425670-75-3	6:2 fluorotelomersulfonate		1.00	UJ	1.00
481071-78-7	8:2 fluorotelomersulfonate		1.00	UJ	1.00
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.250	UJ	0.250
NULL	N-methyl perfluorooctanesulfonamideacetate		0.250	UJ	0.250
45187-15-3	Perfluorobutanesulfonate		0.250	UJ	0.250
375-22-4	Perfluorobutanoate		0.250	UJ	0.250
335-77-3	Perfluorodecanesulfonate		0.250	UJ	0.250
73829-36-4	Perfluorodecanoate		0.250	UJ	0.250
171978-95-3	Perfluorododecanoate		0.500	UJ	0.500
375-92-8	Perfluoroheptanesulfonate		0.250	UJ	0.250
120885-29-2	Perfluoroheptanoate		0.250	UJ	0.250
108427-53-8	Perfluorohexanesulfonate		0.250	UJ	0.250
92612-52-7	Perfluorohexanoate		0.250	UJ	0.250
68259-12-1	Perfluorononanesulfonate		0.250	UJ	0.250
72007-68-2	Perfluorononanoate		0.250	UJ	0.250
754-91-6	Perfluorooctanesulfonamide		0.250	UJ	0.250
	Perfluorooctanesulfonate		0.230	J	0.250 0.250
45298-90-6	Perfluorooctanesunonate		0.0100	J UJ	0.250
45285-51-6					
2706-91-4	Perfluoropentanesulfonate		0.250	UJ	0.250
45167-47-3	Perfluoropentanoate		0.500	UJ	0.500
365971-87-5	Perfluorotetradecanoate		1.00	UJ	1.00
862374-87-6	Perfluorotridecanoate		1.00	UJ	1.00
NULL	Perfluoroundecanoate		0.250	UJ	0.250
Surrogate Reco		Sample	Spike	0/ D	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	3.67	5.00	73	20-200
NULL	D5-N-EtFOSAA	3.49	5.00	70	20-200
NULL	M2-4:2 FTS	3.83	4.69	82	20-200
NULL	M2-6:2 FTS	3.67	4.75	77	20-200
NULL	M2-8:2 FTS	4.33	4.80	90	20-200
NULL	M2PFTeDA	2.32	5.00	46 64	20-200
NULL	M3PFBS M3DEU ₂ S	3.00	4.66	64 89	20-200
NULL NULL	M3PFHxS M4PFHpA	4.21 4.69	4.74 5.00	89 94	20-200 20-200
NULL	M5PFHxA	4.04	5.00	94 81	20-200
NULL	M5PFPeA	5.74	5.00	115	20-200
NULL	M6PFDA	3.14	5.00	63	20-200
NULL	M7PFUnA	2.95	5.00	59	20-200
NULL	M8FOSA	2.62	5.00	52	20-200
NULL	M8PFOA	3.60	5.00	72	20-200
NULL	M8PFOS	3.86	4.79	81	20-200
NULL	M9PFNA	3.34	5.00	67	20-200
NULL	MPFBA	2.82	5.00	56	20-200
NULL	MPFDoA	2.63	5.00	53	20-200
Authorized by	: Jeff Westerlund	Release Dat	e:	2/2/.	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40022-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.587 g
Final Vol: 4 mL

Lab ID #: 2011020-42 Collected: 4/15/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 27.30%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.38	UJ	1.38
425670-75-3	6:2 fluorotelomersulfonate		1.38	UJ	1.38
481071-78-7	8:2 fluorotelomersulfonate		1.38	UJ	1.38
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.346	UJ	0.346
NULL	N-methyl perfluorooctanesulfonamideacetate		0.346	UJ	0.346
45187-15-3	Perfluorobutanesulfonate		0.346	UJ	0.346
375-22-4	Perfluorobutanoate		0.346	UJ	0.346
335-77-3	Perfluorodecanesulfonate		0.346	UJ	0.346
73829-36-4	Perfluorodecanoate		0.346	UJ	0.346
171978-95-3	Perfluorododecanoate		0.692	UJ	0.692
375-92-8	Perfluoroheptanesulfonate		0.346	UJ	0.346
120885-29-2	Perfluoroheptanoate		0.346	UJ	0.346
108427-53-8	Perfluorohexanesulfonate		0.346	UJ	0.346
92612-52-7	Perfluorohexanoate		0.346	UJ	0.346
68259-12-1	Perfluorononanesulfonate		0.346	UJ	0.346
72007-68-2	Perfluorononanoate		0.346	UJ	0.346
754-91-6	Perfluorooctanesulfonamide		0.346	UJ	0.346
45298-90-6	Perfluorooctanesulfonate		0.126	J	0.346
45285-51-6	Perfluorooctanoate		0.346	ÚJ	0.346
2706-91-4	Perfluoropentanesulfonate		0.346	UJ	0.346
45167-47-3	Perfluoropentanoate		0.692	UJ	0.692
365971-87-5	Perfluorotetradecanoate		1.38	UJ	1.38
862374-87-6	Perfluorotridecanoate		1.38	UJ	1.38
NULL	Perfluoroundecanoate		0.346	UJ	0.346
Surrogate Reco	werv.	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	5.91	6.92	85	20-200
NULL	D5-N-EtFOSAA	5.75	6.92	83	20-200
NULL	M2-4:2 FTS	5.09	6.49	78	20-200
NULL	M2-6:2 FTS	5.80	6.58	88	20-200
NULL	M2-8:2 FTS	6.48	6.64	98	20-200
NULL	M2PFTeDA	4.86	6.92	70	20-200
NULL	M3PFBS	5.34	6.45	83	20-200
NULL	M3PFHxS	6.03	6.56	92	20-200
NULL	M4PFHpA	6.26	6.92	90	20-200
NULL	M5PFHxA M5PFPeA	6.11 8.06	6.92 6.92	88 120	20-200 20-200
NULL NULL	M6PFDA	8.96 5.42	6.92	129 78	20-200
NULL	M7PFUnA	5.21	6.92	78 75	20-200
NULL	M8FOSA	3.78	6.92	55	20-200
NULL	M8PFOA	5.71	6.92	83	20-200
NULL	M8PFOS	6.08	6.63	92	20-200
NULL	M9PFNA	4.99	6.92	72	20-200
NULL	MPFBA	4.47	6.92	65	20-200
NULL	MPFDoA	4.92	6.92	71	20-200
Authorized by	Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40025-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.927 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-43 Collected: 4/24/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 41.74%

Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

4:2 fluorotelomersulfonate		0.877	UJ III	0.877 0.877
				0.877
				0.219
				0.219
				0.219
				0.219
				0.219
				0.219
Perfluorododecanoate		0.438	UJ	0.438
Perfluoroheptanesulfonate		0.219	UJ	0.219
Perfluoroheptanoate		0.219	UJ	0.219
Perfluorohexanesulfonate		0.219	UJ	0.219
Perfluorohexanoate		0.219	UJ	0.219
Perfluorononanesulfonate		0.219	UJ	0.219
Perfluorononanoate		0.219	UJ	0.219
				0.219
				0.219
				0.219
				0.219
				0.438
				0.438
				0.877
		0.219	UJ	0.219
		Spike		% Rec.
			0/ D	
Analyte	Result	Level	% Rec.	Limits
D3-N-MeFOSAA	3.12	4.38	71	20-200
D3-N-MeFOSAA D5-N-EtFOSAA	3.12 2.90	4.38 4.38	71 66	20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS	3.12 2.90 3.38	4.38 4.38 4.11	71 66 82	20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS	3.12 2.90 3.38 3.21	4.38 4.38 4.11 4.17	71 66 82 77	20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS	3.12 2.90 3.38 3.21 3.83	4.38 4.38 4.11 4.17 4.21	71 66 82 77 91	20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA	3.12 2.90 3.38 3.21 3.83 2.34	4.38 4.38 4.11 4.17 4.21 4.38	71 66 82 77 91 53	20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS	3.12 2.90 3.38 3.21 3.83 2.34 2.85	4.38 4.38 4.11 4.17 4.21 4.38 4.09	71 66 82 77 91 53 70	20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16	71 66 82 77 91 53 70 83	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38	71 66 82 77 91 53 70 83 86	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38	71 66 82 77 91 53 70 83 86 78	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72 2.20	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62 50	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72 2.20 3.01	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62 50 69	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPAA M6PFDA M7PFUnA M8FOSA M8PFOS	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72 2.20 3.01 3.64	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62 50 69 87	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPAA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72 2.20 3.01 3.64 2.61	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62 50 69 87 60	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPeA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA MPFBA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72 2.20 3.01 3.64 2.61 2.42	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62 50 69 87	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
D3-N-MeFOSAA D5-N-EtFOSAA M2-4:2 FTS M2-6:2 FTS M2-8:2 FTS M2PFTeDA M3PFBS M3PFHxS M4PFHpA M5PFHxA M5PFPAA M6PFDA M7PFUnA M8FOSA M8PFOS M9PFNA	3.12 2.90 3.38 3.21 3.83 2.34 2.85 3.43 3.78 3.42 4.57 3.03 2.72 2.20 3.01 3.64 2.61	4.38 4.38 4.11 4.17 4.21 4.38 4.09 4.16 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38	71 66 82 77 91 53 70 83 86 78 104 69 62 50 69 87 60 55	20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200 20-200
<u></u>	Perfluoroheptanoate Perfluorohexanesulfonate Perfluorohexanoate Perfluorononanesulfonate Perfluorononanoate Perfluorooctanesulfonamide Perfluorooctanesulfonate Perfluorooctanoate Perfluoropentanesulfonate Perfluoropentanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluoroundecanoate	8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorodecanesulfonate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanoate Perfluoroheptanoate Perfluorohexanesulfonate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanoate Perfluoropentanoate Perfluorotetradecanoate Perfluorotridecanoate Perfluoroundecanoate Perfluoroundecanoate Sample	8:2 fluorotelomersulfonate 0.877 N-ethyl perfluorooctanesulfonamideacetate 0.219 N-methyl perfluorooctanesulfonamideacetate 0.219 Perfluorobutanesulfonate 0.219 Perfluorodecanesulfonate 0.219 Perfluorodecanoate 0.219 Perfluorodecanoate 0.219 Perfluorodecanoate 0.219 Perfluoroheptanesulfonate 0.219 Perfluorohexanesulfonate 0.219 Perfluorohexanoate 0.219 Perfluorononanesulfonate 0.219 Perfluorononanoate 0.219 Perfluorooctanesulfonatide 0.219 Perfluorooctanesulfonate 0.219 Perfluoropentanesulfonate 0.219 Perfluoropentanesulfonate 0.219 Perfluoropentanesulfonate 0.219 Perfluorotetradecanoate 0.877 Perfluorotridecanoate 0.877 Perfluoroundecanoate 0.219 Oxery: Sample Spike	8:2 fluorotelomersulfonate 0.877 UJ N-ethyl perfluorooctanesulfonamideacetate 0.219 UJ N-methyl perfluorooctanesulfonate 0.219 UJ Perfluorobutanesulfonate 0.219 UJ Perfluorobutanoate 0.219 UJ Perfluorodecanesulfonate 0.219 UJ Perfluorodecanoate 0.219 UJ Perfluorododecanoate 0.219 UJ Perfluoroheptanesulfonate 0.219 UJ Perfluoroheptanoate 0.219 UJ Perfluorohexanoate 0.219 UJ Perfluorohexanoate 0.219 UJ Perfluorononanosulfonate 0.219 UJ Perfluorooctanesulfonate 0.219 UJ Perfluorooctanesulfonate 0.219 UJ Perfluoropentanesulfonate 0.219 UJ Perfluoropentanoate 0.219 UJ Perfluorotetradecanoate 0.877 UJ Perfluoroundecanoate 0.219 UJ Perfluoroundecanoate 0.219 UJ

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Method Blank

Work Order: Batch QC Project Officer: Dutch, Margaret Initial Vol: 10 g

Final Vol: 4 mL

Lab ID #: B20L087-BLK1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L087-BLK1

			Qualifier	LLOQ
4:2 fluorotelomersulfonate		0.400	U	0.400
6:2 fluorotelomersulfonate		0.400	U	0.400
8:2 fluorotelomersulfonate		0.400	U	0.400
N-ethyl perfluorooctanesulfonamideaceta		0.0540	J	0.100
		0.0720		0.100
Perfluorobutanesulfonate				0.100
Perfluorobutanoate				0.100
				0.100
				0.100
				0.200
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.100
				0.200
				0.400
				0.400
Perfluoroundecanoate		0.100	U	0.100
overy:	Sample	Spike		% Rec.
Analyte	Result	Level	% Rec.	Limits
D3-N-MeFOSAA	1.92	2.00	96	20-200
D5-N-EtFOSAA	1.99	2.00	100	20-200
			70	20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200 20-200
				20-200
				20-200
				20-200
				20-200
				20-200
			104	20-200
: Jeff Westerlund				2021
	6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacets N-methyl perfluorooctanesulfonamideacets Perfluorobutanesulfonate Perfluorobutanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluorohexanoate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorodetradecanoate Perfluorotetradecanoate Perfluoroundecanoate Perfluoropentanoate Perfluoropenta	6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacets N-methyl perfluorooctanesulfonamideacet Perfluorobutanosulfonate Perfluorododeanoate Perfluorododeanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroneptanoate Perfluorononanoate Perfluorononanoate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanoate 6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideact: N-ethyl perfluorooctanesulfonamideact N-methyl perfluorooctanesulfonamideac Perfluorobutanoate Perfluorobutanoate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanoate Perfluorohexanoate Perfluorohexanoate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonamide Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluoropentanoate Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluorooctanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoronaneate Perfluorona	6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 0.0540 J. N-methyl perfluorooctanesulfonamideacet 0.0720 Perfluorobutanesulfonate 0.100 U Perfluorodudecanoate 0.100 U Perfluorodecanoate 0.100 U Perfluorododecanoate 0.100 U Perfluoroheptanesulfonate 0.100 U Perfluoroheptanesulfonate 0.100 U Perfluorohexanoate 0.100 U Perfluorohexanoate 0.100 U Perfluorohexanoate 0.100 U Perfluorocomoanesulfonate 0.100 U Perfluorocotanesulfonate 0.100 U Perfluoroctanesulfonate 0.100 U Perfluorotetradecanoate 0.200 U Perfluorotetradecanoate 0.200 U Perfluorotetradecanoate 0.100 U Perfluorote	

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: LCS

Work Order: Batch QC Project Officer: Dutch, Margaret

Project Officer: Dutch, Marga Initial Vol: 10 g Final Vol: 4 mL Lab ID #: B20L087-BS1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L087-BS1 Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil

Units: %

	Units: %				
Analyte	Resul	Spike t Level		%Rec	%Rec Limits
4:2 fluorotelomersulfonate	2.9	2.50	0.400	116	0-200
6:2 fluorotelomersulfonate	3.2	2.50	0.400	127	0-200
8:2 fluorotelomersulfonate	3.2	2.50	0.400	128	0-200
N-ethyl perfluorooctanesulfonamideacetate	2.9	2.50	0.100	115	50-150
N-methyl perfluorooctanesulfonamideacetate	2.9	2.50	0.100	117	50-150
Perfluorobutanesulfonate	2.8	2.50	0.100	111	50-150
Perfluorobutanoate	3.4	2.50	0.100	137	50-150
Perfluorodecanesulfonate	2.8	2.50	0.100	114	50-150
Perfluorodecanoate	2.8	2.50	0.100	113	50-150
Perfluorododecanoate	3.1	2.50	0.200	123	50-150
Perfluoroheptanesulfonate	3.1	2.50	0.100	123	50-150
Perfluoroheptanoate	2.9	2.50	0.100	117	50-150
Perfluorohexanesulfonate	2.9	2.50	0.100	116	50-150
Perfluorohexanoate	2.1	2.50	0.100	85	50-150
Perfluorononanesulfonate	2.9	2.50	0.100	115	50-150
Perfluorononanoate	3.0	2.50	0.100	122	50-150
Perfluorooctanesulfonamide	2.9	2.50	0.100	115	50-150
Perfluorooctanesulfonate	2.9	2.50	0.100	117	50-150
Perfluorooctanoate	2.7	2.50	0.100	109	50-150
Perfluoropentanesulfonate	2.9	2.50	0.100	114	50-150
Perfluoropentanoate	3.1	2.50	0.200	123	50-150
Perfluorotetradecanoate	3.2	2.50	0.400	130	50-150
Perfluorotridecanoate	3.1	2.50	0.400	123	50-150
Perfluoroundecanoate	2.9	2.50	0.100	117	50-150
Surrogate Recovery:		Sample	Spike	0/ 5	% Rec.
CAS# Analyte		Result	Level	% Rec.	Limits

Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.82	2.00	91	20-200
NULL	D5-N-EtFOSAA	1.83	2.00	91	20-200
NULL	M2-4:2 FTS	1.89	1.88	101	20-200
NULL	M2-6:2 FTS	1.82	1.90	96	20-200
NULL	M2-8:2 FTS	1.70	1.92	89	20-200
NULL	M2PFTeDA	1.81	2.00	90	20-200
NULL	M3PFBS	1.77	1.86	95	20-200
NULL	M3PFHxS	1.83	1.90	97	20-200
NULL	M4PFHpA	1.73	2.00	86	20-200
NULL	M5PFHxA	2.15	2.00	108	20-200
NULL	M5PFPeA	2.40	2.00	120	20-200
NULL	M6PFDA	1.85	2.00	92	20-200
NULL	M7PFUnA	1.83	2.00	91	20-200
NULL	M8FOSA	1.47	2.00	74	20-200
NULL	M8PFOA	1.80	2.00	90	20-200
NULL	M8PFOS	1.84	1.92	96	20-200
NULL	M9PFNA	1.59	2.00	80	20-200
NULL	MPFBA	1.23	2.00	62	20-200
NULL	MPFDoA	1.85	2.00	92	20-200
Authorized by	: Jeff Westerlund	Release Date	:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: LCS Dup

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10 g Final Vol: 4 mL Lab ID #: B20L087-BSD1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L087-BSD1 Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/23/2020 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	%Rec	RPD	%Rec Limits	RPD Limit
4:2 fluorotelomersulfonate	3.7	2.50	147	23	0-200	200
6:2 fluorotelomersulfonate	3.1	2.50	125	2	0-200	200
8:2 fluorotelomersulfonate	3.2	2.50	128	0.1	0-200	200
N-ethyl perfluorooctanesulfonamideacetate	3.2	2.50	128	11	50-150	40
N-methyl perfluorooctanesulfonamideacetate	2.8	2.50	112	4	50-150	40
Perfluorobutanesulfonate	2.7	2.50	107	4	50-150	40
Perfluorobutanoate	3.4	2.50	134	2	50-150	40
Perfluorodecanesulfonate	2.8	2.50	111	3	50-150	40
Perfluorodecanoate	2.8	2.50	111	2	50-150	40
Perfluorododecanoate	3.2	2.50	126	2	50-150	40
Perfluoroheptanesulfonate	3.0	2.50	122	1	50-150	40
Perfluoroheptanoate	2.8	2.50	113	4	50-150	40
Perfluorohexanesulfonate	2.8	2.50	111	4	50-150	40
Perfluorohexanoate	2.2	2.50	89	4	50-150	40
Perfluorononanesulfonate	3.0	2.50	122	6	50-150	40
Perfluorononanoate	3.0	2.50	122	0.07	50-150	40
Perfluorooctanesulfonamide	2.8	2.50	112	3	50-150	40
Perfluorooctanesulfonate	2.7	2.50	109	7	50-150	40
Perfluorooctanoate	2.7	2.50	109	0.3	50-150	40
Perfluoropentanesulfonate	2.7	2.50	109	5	50-150	40
Perfluoropentanoate	2.8	2.50	111	10	50-150	40
Perfluorotetradecanoate	3.1	2.50	122	6	50-150	40
Perfluorotridecanoate	2.9	2.50	116	5	50-150	40
Perfluoroundecanoate	2.9	2.50	118	0.8	50-150	40
Surrogate Recovery		Sam	nlo Sn	ilzo		0/2 Dog

Surrogate l	Recovery:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.79	2.00	90	20-200
NULL	D5-N-EtFOSAA	1.67	2.00	83	20-200
NULL	M2-4:2 FTS	1.60	1.88	85	20-200
NULL	M2-6:2 FTS	1.76	1.90	93	20-200
NULL	M2-8:2 FTS	1.72	1.92	89	20-200
NULL	M2PFTeDA	1.76	2.00	88	20-200
NULL	M3PFBS	1.82	1.86	98	20-200
NULL	M3PFHxS	1.88	1.90	99	20-200
NULL	M4PFHpA	1.88	2.00	94	20-200
NULL	M5PFHxA	2.11	2.00	106	20-200
NULL	M5PFPeA	2.56	2.00	128	20-200
NULL	M6PFDA	1.81	2.00	91	20-200
NULL	M7PFUnA	1.72	2.00	86	20-200
NULL	M8FOSA	1.48	2.00	74	20-200
NULL	M8PFOA	1.71	2.00	86	20-200
NULL	M8PFOS	1.84	1.92	96	20-200
NULL	M9PFNA	1.55	2.00	77	20-200
NULL	MPFBA	1.15	2.00	58	20-200
NULL	MPFDoA	1.69	2.00	85	20-200
Authorized	I by: Jeff Westerlund	Release Date	e :	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type : Duplicate

Work Order: Batch QC

Project Officer: Dutch, Margaret Initial Vol: 10.221 g

Final Vol: 4 mL

Lab ID #: B20L087-DUP1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L087-DUP1

riliai voi: 4	IIIL	Source Lab ID #: 2011020-37			Seaiment/s ig/Kg dw	5011	
Analyte			Sample Result	Sample Qual	Source Result	RPD	RPD Limit
4:2 fluorotelor	mersulfonate		0.557	UJ	0.557	NC	200
6:2 fluorotelor	mersulfonate		0.557	UJ	0.557	NC	200
8:2 fluorotelor	mersulfonate		0.557	UJ	0.557	NC	200
N-ethyl perflu	orooctanesulfonar		0.139	UJ	0.139	NC	40
	luorooctanesulfon		0.139	UJ	0.139	NC	40
Perfluorobutar			0.139	UJ	0.139	NC	40
Perfluorobutar			0.139	UJ	0.139	NC	40
Perfluorodeca			0.139	UJ	0.139	NC	40
Perfluorodecar			0.139	UJ	0.139	NC	40
Perfluorodode			0.278	UJ	0.278	NC	40
Perfluorohepta			0.139	UJ	0.139	NC	40
Perfluorohepta			0.139	UJ	0.139	NC	40
Perfluorohexa			0.139	UJ	0.139	NC	40
Perfluorohexa			0.139	UJ	0.139	NC	40
Perfluoronona			0.139	UJ	0.139	NC	40
Perfluoronona Perfluoronona			0.139	UJ	0.139	NC NC	40
Perfluoronona Perfluorooctar			0.139	UJ	0.139	NC NC	40
			0.139	UJ	0.139	NC NC	40
Perfluorooctar							
Perfluorooctar			0.139	UJ	0.139	NC	40
Perfluoropenta			0.139	UJ	0.139	NC	40
Perfluoropenta			0.278	UJ	0.278	NC	40
Perfluorotetra			0.557	UJ	0.557	NC	40
Perfluorotride			0.557	UJ	0.557	NC	40
Perfluorounde	canoate		0.139	UJ	0.139	NC	40
Surrogate Re				Sample	Spike		% Rec.
CAS#	Analyte			Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA			1.70	2.78	61	20-200
NULL	D5-N-EtFOSAA			1.64	2.78	59	20-200
NULL	M2-4:2 FTS			2.00	2.61	76	20-200
NULL	M2-6:2 FTS			1.70	2.65	64	20-200
NULL	M2-8:2 FTS			1.76	2.67	66	20-200
NULL	M2PFTeDA			1.29	2.78	46	20-200
NULL	M3PFBS			1.62	2.59	63	20-200
NULL NULL	M3PFHxS M4PFHpA			1.92 2.55	2.64 2.78	73 92	20-200 20-200
NULL	M4PFHpA M5PFHxA			2.33	2.78	92 81	20-200
NULL	M5PFPeA			2.20	2.78	104	20-200
NULL	M6PFDA			1.71	2.78	61	20-200
NULL	M7PFUnA			1.60	2.78	58	20-200
NULL	M8FOSA			1.21	2.78	44	20-200
NULL	M8PFOA			1.92	2.78	69	20-200
NULL	M8PFOS			1.79	2.67	67	20-200
NULL	M9PFNA			1.64	2.78	59	20-200
NULL	MPFBA			1.55	2.78	56	20-200
NULL	MPFDoA			1.43	2.78	51	20-200
Authorized b	$T_{\alpha}(\mathcal{L})_{A}$	Pesterlund	1	Release Dat			/2021
. rumon izeu D	'J.•			in the second			

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Matrix Spike

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10.211 g Final Vol: 4 mL Lab ID #: B20L087-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L087-MS1 Source Lab ID #: 2011020-42 Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil

Units: %

Analyte	Result	Spike Level	Source Result	%Rec	%Rec Limits
4:2 fluorotelomersulfonate	9.0	8.97	0.0	100	0-200
6:2 fluorotelomersulfonate	11.3	8.97	0.0	126	0-200
8:2 fluorotelomersulfonate	11.2	8.97	0.0	125	0-200
N-ethyl perfluorooctanesulfonamideacetate	10.7	8.97	0.0	120	40-160
N-methyl perfluorooctanesulfonamideaceta	7.9	8.97	0.0	89	40-160
Perfluorobutanesulfonate	9.5	8.97	0.0	106	40-160
Perfluorobutanoate	13.5	8.97	0.0	150	40-160
Perfluorodecanesulfonate	8.7	8.97	0.0	97	40-160
Perfluorodecanoate	9.7	8.97	0.0	108	40-160
Perfluorododecanoate	10.8	8.97	0.0	120	40-160
Perfluoroheptanesulfonate	10.4	8.97	0.0	116	40-160
Perfluoroheptanoate	9.7	8.97	0.0	109	40-160
Perfluorohexanesulfonate	9.8	8.97	0.0	109	40-160
Perfluorohexanoate	8.3	8.97	0.0	92	40-160
Perfluorononanesulfonate	9.3	8.97	0.0	103	40-160
Perfluorononanoate	10.4	8.97	0.0	116	40-160
Perfluorooctanesulfonamide	9.8	8.97	0.0	109	40-160
Perfluorooctanesulfonate	9.5	8.97	0.1	104	40-160
Perfluorooctanoate	8.5	8.97	0.0	95	40-160
Perfluoropentanesulfonate	9.7	8.97	0.0	108	40-160
Perfluoropentanoate	9.4	8.97	0.0	105	40-160
Perfluorotetradecanoate	10.4	8.97	0.0	116	40-160
Perfluorotridecanoate	10.5	8.97	0.0	117	40-160
Perfluoroundecanoate	10.2	8.97	0.0	113	40-160
Supposeta Dagayanya	C -	1.	C • 1		0/ D

Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	5.38	7.18	75	20-200
NULL	D5-N-EtFOSAA	5.33	7.18	74	20-200
NULL	M2-4:2 FTS	5.62	6.73	84	20-200
NULL	M2-6:2 FTS	5.69	6.82	83	20-200
NULL	M2-8:2 FTS	6.13	6.89	89	20-200
NULL	M2PFTeDA	5.16	7.18	72	20-200
NULL	M3PFBS	4.94	6.69	74	20-200
NULL	M3PFHxS	5.84	6.80	86	20-200
NULL	M4PFHpA	6.12	7.18	85	20-200
NULL	M5PFHxA	6.16	7.18	86	20-200
NULL	M5PFPeA	8.09	7.18	113	20-200
NULL	M6PFDA	5.39	7.18	75	20-200
NULL	M7PFUnA	5.39	7.18	75	20-200
NULL	M8FOSA	4.43	7.18	62	20-200
NULL	M8PFOA	5.31	7.18	74	20-200
NULL	M8PFOS	5.48	6.87	80	20-200
NULL	M9PFNA	4.66	7.18	65	20-200
NULL	MPFBA	4.57	7.18	64	20-200
NULL	MPFDoA	5.12	7.18	71	20-200
Authorized by	<u>y:</u> Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Matrix Spike Dup

Work Order: Batch QC

Project Officer: Dutch, Margaret Initial Vol: 10.81 g

Initial Vol: 10.81 g Final Vol: 4 mL Lab ID #: B20L087-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L087-MSD1 Source Lab ID #: 2011020-42 Batch ID: B20L087 Prepared: 12/15/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil

Units: %

Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
4:2 fluorotelomersulfonate	10.3	8.47	0.0	122	14	0-200	200
6:2 fluorotelomersulfonate	11.3	8.47	0.0	134	0.03	0-200	200
8:2 fluorotelomersulfonate	10.6	8.47	0.0	125	5	0-200	200
N-ethyl perfluorooctanesulfonamideacetate	9.9	8.47	0.0	116	8	40-160	40
N-methyl perfluorooctanesulfonamideacetate	10.3	8.47	0.0	122	26	40-160	40
Perfluorobutanesulfonate	9.3	8.47	0.0	109	3	40-160	40
Perfluorobutanoate	12.5	8.47	0.0	148	7	40-160	40
Perfluorodecanesulfonate	8.6	8.47	0.0	101	2	40-160	40
Perfluorodecanoate	9.4	8.47	0.0	111	3	40-160	40
Perfluorododecanoate	10.5	8.47	0.0	124	2	40-160	40
Perfluoroheptanesulfonate	10.3	8.47	0.0	122	0.8	40-160	40
Perfluoroheptanoate	9.8	8.47	0.0	115	0.5	40-160	40
Perfluorohexanesulfonate	7.8	8.47	0.0	92	22	40-160	40
Perfluorohexanoate	7.3	8.47	0.0	86	12	40-160	40
Perfluorononanesulfonate	8.7	8.47	0.0	102	7	40-160	40
Perfluorononanoate	10.0	8.47	0.0	117	5	40-160	40
Perfluorooctanesulfonamide	8.7	8.47	0.0	103	11	40-160	40
Perfluorooctanesulfonate	9.7	8.47	0.1	113	2	40-160	40
Perfluorooctanoate	8.9	8.47	0.0	105	4	40-160	40
Perfluoropentanesulfonate	9.0	8.47	0.0	106	8	40-160	40
Perfluoropentanoate	9.2	8.47	0.0	109	3	40-160	40
Perfluorotetradecanoate	10.3	8.47	0.0	122	1	40-160	40
Perfluorotridecanoate	10.7	8.47	0.0	127	2	40-160	40
Perfluoroundecanoate	9.2	8.47	0.0	108	10	40-160	40

Surrogate I	Recovery:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	10.2	6.78	150	20-200
NULL	D5-N-EtFOSAA	10.1	6.78	149	20-200
NULL	M2-4:2 FTS	5.31	6.36	84	20-200
NULL	M2-6:2 FTS	10.8	6.45	167	20-200
NULL	M2-8:2 FTS	11.6	6.51	178	20-200
NULL	M2PFTeDA	9.75	6.78	144	20-200
NULL	M3PFBS	9.33	6.32	148	20-200
NULL	M3PFHxS	11.0	6.43	172	20-200
NULL	M4PFHpA	5.78	6.78	85	20-200
NULL	M5PFHxA	11.6	6.78	172	20-200
NULL	M5PFPeA	15.3	6.78	226	20-200
NULL	M6PFDA	10.2	6.78	150	20-200
NULL	M7PFUnA	10.2	6.78	150	20-200
NULL	M8FOSA	8.37	6.78	124	20-200
NULL	M8PFOA	10.0	6.78	148	20-200
NULL	M8PFOS	10.3	6.49	159	20-200
NULL	M9PFNA	8.80	6.78	130	20-200
NULL	MPFBA	8.63	6.78	127	20-200
NULL	MPFDoA	9.68	6.78	143	20-200
Authorized	I b <u>y:</u> Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40026-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.28 g
Final Vol: 4 mL

Lab ID #: 2011020-44 Collected: 5/2/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 19.36%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		2.01	UJ	2.01
425670-75-3	6:2 fluorotelomersulfonate		3.01	UJ	2.01
481071-78-7	8:2 fluorotelomersulfonate		2.01	UJ	2.01
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.503	UJ	0.503
NULL	N-methyl perfluorooctanesulfonamideacetate		0.503	UJ	0.503
45187-15-3	Perfluorobutanesulfonate		0.503	UJ	0.503
375-22-4	Perfluorobutanoate		0.503	UJ	0.503
335-77-3	Perfluorodecanesulfonate		0.503	UJ	0.503
73829-36-4	Perfluorodecanoate		0.503	UJ	0.503
171978-95-3	Perfluorododecanoate		1.01	UJ	1.01
375-92-8	Perfluoroheptanesulfonate		0.503	UJ	0.503
120885-29-2	Perfluoroheptanoate		0.503	UJ	0.503
108427-53-8	Perfluorohexanesulfonate		0.503	UJ	0.503
92612-52-7	Perfluorohexanoate		0.503	UJ	0.503
68259-12-1	Perfluorononanesulfonate		0.503	UJ	0.503
72007-68-2	Perfluorononanoate		0.503	UJ	0.503
754-91-6	Perfluorooctanesulfonamide		0.503	UJ	0.503
45298-90-6	Perfluorooctanesulfonate		0.127	\mathbf{J}	0.503
45285-51-6	Perfluorooctanoate		0.503	ŬJ	0.503
2706-91-4	Perfluoropentanesulfonate		0.503	UJ	0.503
45167-47-3	Perfluoropentanoate		1.01	UJ	1.01
365971-87-5	Perfluorotetradecanoate		2.01	UJ	2.01
862374-87-6	Perfluorotridecanoate		2.01	UJ	2.01
NULL	Perfluoroundecanoate		0.503	UJ	0.503
				0.5	
Surrogate Rec CAS#		Sample	Spike	% Rec.	% Rec.
	Analyte	Result	Level		Limits
NULL	D3-N-MeFOSAA	8.24	10.1	82	20-200
NULL	D5-N-EtFOSAA	8.09	10.1	80	20-200
NULL	M2-4:2 FTS	7.69	9.43	82	20-200
NULL NULL	M2-6:2 FTS	8.13 9.09	9.56	85 94	20-200 20-200
NULL NULL	M2-8:2 FTS M2PFTeDA	9.09 6.05	9.65 10.1	60	20-200
NULL	M3PFBS	7.30	9.37	78	20-200
NULL	M3PFHxS	10.3	9.53	108	20-200
NULL	M4PFHpA	8.62	10.1	86	20-200
NULL	M5PFHxA	9.43	10.1	94	20-200
NULL	M5PFPeA	12.7	10.1	126	20-200
NULL	M6PFDA	8.49	10.1	84	20-200
NULL	M7PFUnA	7.46	10.1	74	20-200
NULL	M8FOSA	6.30	10.1	63	20-200
NULL	M8PFOA	8.48	10.1	84	20-200
NULL	M8PFOS	8.54	9.63	89	20-200
NULL	M9PFNA	6.93	10.1	69	20-200
NULL	MPFBA	6.02	10.1	60	20-200
NULL	MPFDoA	6.52	10.1	65	20-200
Authorized by	: Jeff Westerlund	Release Da	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40027-R1

Work Order: 2011020 Lab ID #: 2011020-45 Project Officer: Dutch, Margaret Collected: 4/22/2019

Initial Vol: 10.4 g Prep Method: AOAC2007.01 Final Vol: 4 mL Analysis Method: SW8327

% Solids: 68.81%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.559	UJ	0.559
425670-75-3	6:2 fluorotelomersulfonate		0.559	UJ	0.559
481071-78-7	8:2 fluorotelomersulfonate		0.559	UJ	0.559
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.140	UJ	0.140
NULL	N-methyl perfluorooctanesulfonamideacetate		0.140	UJ	0.140
45187-15-3	Perfluorobutanesulfonate		0.140	UJ	0.140
375-22-4	Perfluorobutanoate		0.140	UJ	0.140
335-77-3	Perfluorodecanesulfonate		0.140	UJ	0.140
73829-36-4	Perfluorodecanoate		0.140	UJ	0.140
171978-95-3	Perfluorododecanoate		0.279	UJ	0.279
375-92-8	Perfluoroheptanesulfonate		0.140	UJ	0.140
120885-29-2	Perfluoroheptanoate		0.140	UJ	0.140
108427-53-8	Perfluorohexanesulfonate		0.140	UJ	0.140
92612-52-7	Perfluorohexanoate		0.140	UJ	0.140
68259-12-1	Perfluorononanesulfonate		0.140	UJ	0.140
72007-68-2	Perfluorononanoate		0.140	UJ	0.140
754-91-6	Perfluorooctanesulfonamide		0.140	UJ	0.140
45298-90-6	Perfluorooctanesulfonate		0.140	UJ	0.140
45285-51-6	Perfluorooctanoate		0.140	UJ	0.140
2706-91-4	Perfluoropentanesulfonate		0.140	UJ	0.140
	Perfluoropentanoate		0.140	UJ	0.140
45167-47-3	Perfluorotetradecanoate		0.279	UJ	0.279
365971-87-5	Perfluorotridecanoate		0.559	UJ	0.559
862374-87-6	Perfluoroundecanoate Perfluoroundecanoate		0.339	UJ	
NULL			0.140	O ₃	0.140
Surrogate Rec		Sample	Spike	0/ 5	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.80	2.79	100	20-200
NULL	D5-N-EtFOSAA	3.30	2.79	118	20-200
NULL	M2-4:2 FTS	4.00	2.62	NC	20-200
NULL	M2-6:2 FTS	1.90	2.66	71	20-200
NULL	M2-8:2 FTS	2.97	2.68	111	20-200
NULL	M2PFTeDA	2.81	2.79	100 38	20-200
NULL NULL	M3PFBS M3PFHxS	0.982 2.41	2.60 2.65	38 91	20-200 20-200
NULL	M4PFHpA	2.41	2.63	85	20-200
NULL	M5PFHxA	1.58	2.79	57	20-200
NULL	M5PFPeA	1.32	2.79	47	20-200
NULL	M6PFDA	2.59	2.79	93	20-200
NULL	M7PFUnA	2.63	2.79	94	20-200
NULL	M8FOSA	1.88	2.79	67	20-200
NULL	M8PFOA	1.66	2.79	59	20-200
NULL	M8PFOS	2.41	2.68	90	20-200
NULL	M9PFNA	1.52	2.79	54	20-200
NULL	MPFBA	1.07	2.79	38	20-200
NULL	MPFDoA	2.29	2.79	82	20-200
Authorized by	: Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40028-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.109 g Final Vol: 4 mL

Lab ID #: 2011020-46 Collected: 4/9/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 24.02%

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Analyte		Result	Qualifier	LLOQ
4:2 fluorotelomersulfonate		1.65	UJ	1.65
6:2 fluorotelomersulfonate		1.98	UJ	1.65
8:2 fluorotelomersulfonate		1.65	UJ	1.65
N-ethyl perfluorooctanesulfonamideacetate		0.412	UJ	0.412
N-methyl perfluorooctanesulfonamideacetate		0.412	UJ	0.412
Perfluorobutanesulfonate		0.412	UJ	0.412
Perfluorobutanoate		0.412	UJ	0.412
Perfluorodecanesulfonate		0.412	UJ	0.412
Perfluorodecanoate		0.412	UJ	0.412
Perfluorododecanoate		0.824	UJ	0.824
				0.412
•				0.412
				0.412
				0.412
				0.412
				0.412
				0.412
				0.412
				0.412
				0.412
				0.824
				1.65
				1.65
				0.412
			% P ec	% Rec. Limits
·				
				20-200
				20-200 20-200
				20-200
				20-200
				20-200
				20-200
				20-200
M4PFHpA	7.18	8.24	87	20-200
M5PFHxA	7.62	8.24	93	20-200
M5PFPeA	9.68	8.24	118	20-200
M6PFDA	7.26	8.24	88	20-200
M7PFUnA	6.44	8.24	78	20-200
M8FOSA	6.34		77	20-200
				20-200
				20-200
				20-200
				20-200
	6.63	8.24		20-200
Jeff Westerlund	Release Dat	e:	2/2/	2021
	4:2 fluorotelomersulfonate 6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanoate Perfluorodecanoate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoronanesulfonate Perfluorohexanoate Perfluoronanesulfonate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorotenanoate Perfluorotenanoate Perfluorotenanoate Perfluoroteradecanoate Perfluorotridecanoate	4:2 fluorotelomersulfonate 6:2 fluorotelomersulfonate 8:2 fluorotelomersulfonate 8:2 fluorotelomersulfonamideacetate N-ethyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorobutanoate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluoronoananesulfonate Perfluoronoananesulfonate Perfluoronoananesulfonate Perfluoronoananesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanoate Perfluorooctanoate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanoate Perfluorope	4:2 fluorotelomersulfonate	4.2 fluorotelomersulfonate

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40029-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.222 g Final Vol: 4 mL

Lab ID #: 2011020-47 Collected: 4/30/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 40.60%

4:2 fluorotelomersulfonate		0.964	UJ	0.964
6:2 fluorotelomersulfonate		1.38	UJ	0.964
8:2 fluorotelomersulfonate		0.964	UJ	0.964
N-ethyl perfluorooctanesulfonamideacetate		0.241	UJ	0.241
		0.241	UJ	0.241
				0.241
				0.241
				0.241
				0.241
				0.482
				0.241
				0.241
				0.241
				0.241
				0.241
				0.241
				0.241
				0.241
				0.241
				0.241
				0.482
				0.964
				0.964
Perfluoroundecanoate		0.241	UJ	0.241
overy:	Sample	Spike		% Rec.
Analyte	Result	Level	% Rec.	Limits
D3-N-MeFOSAA	4.21	4.82	87	20-200
D5-N-EtFOSAA				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
				20-200
M4PFHpA				20-200
				20-200
				20-200
				20-200
				20-200 20-200
				20-200
				20-200
				20-200
				20-200
MPFDoA	3.04	4.82	63	20-200
: Jeff Westerlund				2021
	8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorodecanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluorodeptanesulfonate Perfluoroheptanoate Perfluoroheptanoate Perfluoroheptanoate Perfluorohexanoate Perfluorohexanoate Perfluorononanoate Perfluorooctanesulfonamide Perfluorooctanesulfonamide Perfluorooctanesulfonate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluoropentanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluorotetradecanoate Perfluoropentanoate Perfluor	8:2 fluorotelomersulfonate N-ethyl perfluorooctanesulfonamideacetate N-methyl perfluorooctanesulfonamideacetate Perfluorobutanesulfonate Perfluorodecanoate Perfluorodecanoate Perfluorodecanoate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluoroheptanesulfonate Perfluorohexanesulfonate Perfluorohexanesulfonate Perfluorononanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluorooctanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentaneate Perfluoropentaneate Perfluoroundecanoate Perfluorotetradecanoate Perfluoroundecanoate Perfluorotetradecanoate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentanesulfonate Perfluoropentaneate Perflu	8:2 fluorotelomersulfonate 0.964 N-ethyl perfluorooctanesulfonamideacetate 0.241 N-methyl perfluorooctanesulfonate 0.241 Perfluorobutanoate 0.241 Perfluorodecanesulfonate 0.241 Perfluorodecanoate 0.241 Perfluorodecanoate 0.482 Perfluoroheptanoate 0.241 Perfluorohexanosulfonate 0.241 Perfluorohexanosulfonate 0.241 Perfluorohexanosulfonate 0.241 Perfluorononanesulfonate 0.241 Perfluorononanosulfonate 0.241 Perfluorooctanesulfonamide 0.241 Perfluorooctanesulfonate 0.241 Perfluoropentanesulfonate 0.241 Perfluoropentanoate 0.241 Perfluoropentanoate 0.241 Perfluoroteridecanoate 0.964 Perfluoroteridecanoate 0.964 Perfluoroteridecanoate 0.964 Perfluoroteridecanoate 0.241 Perfluoroteridecanoate 0.964 Perfluoroteridecanoate 0.964 Perfluoroteridecanoate 0.964 Perfluoroteridecanoate	8:2 fluorotelomersulfonate 0.964 UJ N-ethyl perfluoroctanesulfonamideacetate 0.241 UJ N-methyl perfluoroctanesulfonate 0.241 UJ Perfluorobutanesulfonate 0.241 UJ Perfluorodecanesulfonate 0.241 UJ Perfluorodecanoate 0.241 UJ Perfluorodecanoate 0.241 UJ Perfluoroheptanesulfonate 0.241 UJ Perfluoroheptanesulfonate 0.241 UJ Perfluoroheptanesulfonate 0.241 UJ Perfluorohexanosulfonate 0.241 UJ Perfluorohexanoate 0.241 UJ Perfluorononanoate 0.241 UJ Perfluoroctanesulfonate 0.241 UJ Perfluoroctanesulfonate 0.241 UJ Perfluoropentanesulfonate 0.241 UJ Perfluorotetradecanoate 0.964 UJ Perfluorotetradecanoate 0.964 UJ Perfluorotetradecanoate 0.964 UJ Perfluorotetradecanoate 0.964

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40030-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.547 g Final Vol: 4 mL Lab ID #: 2011020-48 Collected: 4/15/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 22.92%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.65	UJ	1.65
425670-75-3	6:2 fluorotelomersulfonate		1.87	UJ	1.65
481071-78-7	8:2 fluorotelomersulfonate		1.65	UJ	1.65
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.414	UJ	0.414
NULL	N-methyl perfluorooctanesulfonamideacetate		0.414	UJ	0.414
45187-15-3	Perfluorobutanesulfonate		0.414	UJ	0.414
375-22-4	Perfluorobutanoate		0.414	UJ	0.414
335-77-3	Perfluorodecanesulfonate		0.414	UJ	0.414
73829-36-4	Perfluorodecanoate		0.414	UJ	0.414
171978-95-3	Perfluorododecanoate		0.827	UJ	0.827
375-92-8	Perfluoroheptanesulfonate		0.414	UJ	0.414
120885-29-2	Perfluoroheptanoate		0.414	UJ	0.414
108427-53-8	Perfluorohexanesulfonate		0.414	UJ	0.414
92612-52-7	Perfluorohexanoate		0.414	UJ	0.414
68259-12-1	Perfluorononanesulfonate		0.414	UJ	0.414
72007-68-2	Perfluorononanoate		0.414	UJ	0.414
754-91-6	Perfluorooctanesulfonamide		0.414	UJ	0.414
45298-90-6	Perfluorooctanesulfonate		0.478	J	0.414
45285-51-6	Perfluorooctanoate		0.414	UJ	0.414
2706-91-4	Perfluoropentanesulfonate		0.414	UJ	0.414
45167-47-3	Perfluoropentanoate		0.827	UJ	0.827
365971-87-5	Perfluorotetradecanoate		1.65	UJ	1.65
862374-87-6	Perfluorotridecanoate		1.65	UJ	1.65
NULL	Perfluoroundecanoate		0.414	UJ	0.414
		G .			
Surrogate Reco	<u>overy:</u> Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
NULL	D3-N-MeFOSAA	7.30	8.27	88	20-200
NULL	D5-N-EtFOSAA	7.30 7.60	8.27	92	20-200
NULL	M2-4:2 FTS	6.50	7.76	84	20-200
NULL	M2-6:2 FTS	7.86	7.87	100	20-200
NULL	M2-8:2 FTS	7.76	7.94	98	20-200
NULL	M2PFTeDA	5.91	8.27	71	20-200
NULL	M3PFBS	6.51	7.71	84	20-200
NULL	M3PFHxS	9.20	7.84	117	20-200
NULL	M4PFHpA	6.48	8.27	78	20-200
NULL	M5PFHxA	8.21	8.27	99	20-200
NULL	M5PFPeA	10.1	8.27	122	20-200
NULL	M6PFDA	7.31	8.27	88	20-200
NULL	M7PFUnA	6.33	8.27	76	20-200
NULL	M8FOSA	5.24	8.27	63	20-200
NULL	M8PFOA	7.86	8.27	95 07	20-200
NULL NULL	M8PFOS M9PFNA	7.72 5.47	7.93 8.27	97 66	20-200 20-200
NULL NULL	MPFBA	3.47 4.68	8.27 8.27	57	20-200
NULL	MPFDoA	5.87	8.27	71	20-200
	Toff Wastardund			2/2/2	
Authorized by	: Jej wester with	Release Dat	e:	4141	

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40032-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.623 g Final Vol: 4 mL Lab ID #: 2011020-49 Collected: 4/10/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 58.58%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.643	UJ	0.643
425670-75-3	6:2 fluorotelomersulfonate		0.826	UJ	0.643
481071-78-7	8:2 fluorotelomersulfonate		0.643	UJ	0.643
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.161	UJ	0.161
NULL	N-methyl perfluorooctanesulfonamideacetate		0.161	UJ	0.161
45187-15-3	Perfluorobutanesulfonate		0.161	UJ	0.161
375-22-4	Perfluorobutanoate		0.161	UJ	0.161
335-77-3	Perfluorodecanesulfonate		0.161	UJ	0.161
73829-36-4	Perfluorodecanoate		0.161	UJ	0.161
171978-95-3	Perfluorododecanoate		0.321	UJ	0.321
375-92-8	Perfluoroheptanesulfonate		0.161	UJ	0.161
120885-29-2	Perfluoroheptanoate		0.161	UJ	0.161
108427-53-8	Perfluorohexanesulfonate		0.161	UJ	0.161
92612-52-7	Perfluorohexanoate		0.161	UJ	0.161
68259-12-1	Perfluorononanesulfonate		0.161	UJ	0.161
72007-68-2	Perfluorononanoate		0.161	UJ	0.161
754-91-6	Perfluorooctanesulfonamide		0.161	UJ	0.161
45298-90-6	Perfluorooctanesulfonate		0.161	UJ	0.161
45285-51-6	Perfluorooctanoate		0.161	UJ	0.161
2706-91-4	Perfluoropentanesulfonate		0.161	UJ	0.161
45167-47-3	Perfluoropentanoate		0.321	UJ	0.321
365971-87-5	Perfluorotetradecanoate		0.643	UJ	0.643
862374-87-6	Perfluorotridecanoate		0.643	UJ	0.643
NULL	Perfluoroundecanoate		0.161	UJ	0.161
Surrogate Rec	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.30	3.21	72	20-200
NULL	D5-N-EtFOSAA	2.29	3.21	71	20-200
NULL	M2-4:2 FTS	2.12	3.01	70	20-200
NULL	M2-6:2 FTS	3.10	3.06	101	20-200
NULL	M2-8:2 FTS	2.39	3.09	78	20-200
NULL	M2PFTeDA	2.38	3.21	74	20-200
NULL	M3PFBS	2.85	3.00	95	20-200
NULL NULL	M3PFHxS	2.68 2.80	3.05	88 87	20-200 20-200
NULL	M4PFHpA M5PFHxA	2.84	3.21 3.21	88	20-200
NULL	M5PFPeA	2.85	3.21	89	20-200
NULL	M6PFDA	2.60	3.21	81	20-200
NULL	M7PFUnA	2.49	3.21	78	20-200
NULL	M8FOSA	1.92	3.21	60	20-200
NULL	M8PFOA	2.95	3.21	92	20-200
NULL	M8PFOS	2.67	3.08	87	20-200
NULL	M9PFNA	2.46	3.21	76	20-200
NULL	MPFBA	1.99	3.21	62	20-200
NULL	MPFDoA	2.43	3.21	75	20-200
Authorized by	<u>:</u> Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40034-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.19 g
Final Vol: 4 mL

Lab ID #: 2011020-50 Collected: 5/1/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 76.47%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.513	UJ	0.513
425670-75-3	6:2 fluorotelomersulfonate		0.745	UJ	0.513
481071-78-7	8:2 fluorotelomersulfonate		0.513	UJ	0.513
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.128	UJ	0.128
NULL	N-methyl perfluorooctanesulfonamideacetate		0.128	UJ	0.128
45187-15-3	Perfluorobutanesulfonate		0.128	UJ	0.128
375-22-4	Perfluorobutanoate		0.128	UJ	0.128
335-77-3	Perfluorodecanesulfonate		0.128	UJ	0.128
73829-36-4	Perfluorodecanoate		0.128	UJ	0.128
171978-95-3	Perfluorododecanoate		0.257	UJ	0.257
375-92-8	Perfluoroheptanesulfonate		0.128	UJ	0.128
120885-29-2	Perfluoroheptanoate		0.128	UJ	0.128
108427-53-8	Perfluorohexanesulfonate		0.128	UJ	0.128
92612-52-7	Perfluorohexanoate		0.128	UJ	0.128
68259-12-1	Perfluorononanesulfonate		0.128	UJ	0.128
72007-68-2	Perfluorononanoate		0.128	UJ	0.128
754-91-6	Perfluorooctanesulfonamide		0.128	UJ	0.128
45298-90-6	Perfluorooctanesulfonate		0.128	UJ	0.128
45285-51-6	Perfluorooctanoate		0.128	UJ	0.128
2706-91-4	Perfluoropentanesulfonate		0.128	UJ	0.128
45167-47-3	Perfluoropentanoate		0.128	UJ	0.128
	Perfluorotetradecanoate		0.237	UJ	0.237
365971-87-5	Perfluorotridecanoate		0.513	UJ	0.513
862374-87-6	Perfluoroundecanoate		0.313	UJ	0.313
NULL	remuoroundecanoate		0.126	OJ.	0.128
Surrogate Reco		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.11	2.57	82	20-200
NULL	D5-N-EtFOSAA	1.81	2.57	71	20-200
NULL	M2-4:2 FTS	1.97	2.41	82	20-200
NULL	M2-6:2 FTS	1.94	2.44	80	20-200
NULL	M2-8:2 FTS	1.76	2.46	71 52	20-200
NULL NULL	M2PFTeDA M3PFBS	1.36 1.64	2.57 2.39	53 69	20-200 20-200
NULL	M3PFHxS	2.14	2.39	88	20-200
NULL	M4PFHpA	2.17	2.43	85	20-200
NULL	M5PFHxA	2.10	2.57	82	20-200
NULL	M5PFPeA	3.11	2.57	121	20-200
NULL	M6PFDA	1.93	2.57	75	20-200
NULL	M7PFUnA	1.81	2.57	71	20-200
NULL	M8FOSA	1.27	2.57	50	20-200
NULL	M8PFOA	2.20	2.57	86	20-200
NULL	M8PFOS	2.01	2.46	82	20-200
NULL	M9PFNA	1.74	2.57	68	20-200
NULL	MPFBA	1.74	2.57	68	20-200
NULL	MPFDoA	1.58	2.57	61	20-200
Authorized by	: Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40036-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.079 g Final Vol: 4 mL

Lab ID #: 2011020-51 Collected: 4/12/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 72.09%

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.551	UJ	0.551
425670-75-3	6:2 fluorotelomersulfonate		0.629	UJ	0.551
481071-78-7	8:2 fluorotelomersulfonate		0.551	UJ	0.551
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.138	UJ	0.138
NULL	N-methyl perfluorooctanesulfonamideacetate		0.138	UJ	0.138
45187-15-3	Perfluorobutanesulfonate		0.138	UJ	0.138
375-22-4	Perfluorobutanoate		0.138	UJ	0.138
335-77-3	Perfluorodecanesulfonate		0.138	UJ	0.138
73829-36-4	Perfluorodecanoate		0.138	UJ	0.138
171978-95-3	Perfluorododecanoate		0.275	UJ	0.275
375-92-8	Perfluoroheptanesulfonate		0.138	UJ	0.138
120885-29-2	Perfluoroheptanoate		0.138	UJ	0.138
108427-53-8	Perfluorohexanesulfonate		0.138	UJ	0.138
	Perfluorohexanoate		0.138	UJ	0.138
92612-52-7 68259-12-1	Perfluoronoanesulfonate		0.138	UJ	0.138
	Perfluorononanoate		0.138	UJ	0.138
72007-68-2	Perfluorononanoate Perfluorooctanesulfonamide		0.138	UJ	0.138
754-91-6					
45298-90-6	Perfluorooctanesulfonate		0.138	UJ	0.138
45285-51-6	Perfluorooctanoate		0.138	UJ	0.138
2706-91-4	Perfluoropentanesulfonate		0.138	UJ	0.138
45167-47-3	Perfluoropentanoate		0.275	UJ	0.275
365971-87-5	Perfluorotetradecanoate		0.551	UJ	0.551
862374-87-6	Perfluorotridecanoate		0.551	UJ	0.551
NULL	Perfluoroundecanoate		0.138	UJ	0.138
Surrogate Reco		Sample	Spike	0/ D	% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.28	2.75	83	20-200
NULL	D5-N-EtFOSAA	2.27	2.75	82	20-200
NULL	M2-4:2 FTS	1.56	2.58	60	20-200
NULL	M2-6:2 FTS	2.11	2.62	81	20-200
NULL	M2-8:2 FTS	2.30	2.64	87	20-200
NULL	M2PFTeDA	1.82	2.75	66	20-200
NULL	M3PFBS	2.31	2.57	90	20-200
NULL NULL	M3PFHxS	2.63	2.61 2.75	101 88	20-200
	M4PFHpA	2.42			20-200
NULL NULL	M5PFHxA M5PFPeA	2.56 2.98	2.75 2.75	93 108	20-200 20-200
NULL	M6PFDA	2.37	2.75	86	20-200
NULL NULL	M7PFUnA	2.16	2.75	78	20-200
NULL	M8FOSA	1.66	2.75	60	20-200
NULL	M8PFOA	2.29	2.75	83	20-200
NULL	M8PFOS	2.42	2.64	92	20-200
NULL	M9PFNA	1.98	2.75	72	20-200
NULL	MPFBA	1.80	2.75	65	20-200
NULL	MPFDoA	2.00	2.75	73	20-200
Authorized by	: Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40037-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.027 g Final Vol: 4 mL

Lab ID #: 2011020-52 Collected: 4/23/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 29.31%

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

414911-30-1 4:2 fluorotelomersulfonate 425670-75-3 6:2 fluorotelomersulfonate 481071-78-7 8:2 fluorotelomersulfonate NULL N-ethyl perfluorooctanesulfonamideacetate NULL N-methyl perfluorooctanesulfonamideacetate 45187-15-3 Perfluorobutanesulfonate 375-22-4 Perfluorobutanoate 335-77-3 Perfluorodecanesulfonate	1 0. 0. 0. 0. 0.	.36 .69 .36 .340 .340 .340 .340 .340 .340	UJ UJ UJ UJ UJ UJ UJ	1.36 1.36 1.36 0.340 0.340 0.340 0.340
481071-78-7 8:2 fluorotelomersulfonate NULL N-ethyl perfluorooctanesulfonamideacetate NULL N-methyl perfluorooctanesulfonamideacetate 45187-15-3 Perfluorobutanesulfonate 375-22-4 Perfluorobutanoate	1 0. 0. 0. 0. 0.	.36 .340 .340 .340 .340	UJ UJ UJ UJ	1.36 0.340 0.340 0.340
NULLN-ethyl perfluorooctanesulfonamideacetateNULLN-methyl perfluorooctanesulfonamideacetate45187-15-3Perfluorobutanesulfonate375-22-4Perfluorobutanoate	0. 0. 0. 0. 0.	.340 .340 .340 .340 .340	UJ UJ UJ	0.340 0.340 0.340
NULL N-methyl perfluorooctanesulfonamideacetate 45187-15-3 Perfluorobutanesulfonate 375-22-4 Perfluorobutanoate	0. 0. 0. 0.	.340 .340 .340 .340	UJ UJ UJ	0.340 0.340
45187-15-3 Perfluorobutanesulfonate 375-22-4 Perfluorobutanoate	0. 0. 0.	.340 .340 .340	UJ UJ	0.340
375-22-4 Perfluorobutanoate	0. 0. 0.	.340 .340	UJ	
576 == .	0. 0.	.340		0.340
335-77-3 Perfluorodecanesulfonate	0.		III	
335 11 3		240	O3	0.340
73829-36-4 Perfluorodecanoate	0.	.540	UJ	0.340
171978-95-3 Perfluorododecanoate		.681	UJ	0.681
375-92-8 Perfluoroheptanesulfonate	0.	.340	UJ	0.340
120885-29-2 Perfluoroheptanoate	0.	.340	UJ	0.340
108427-53-8 Perfluorohexanesulfonate	0.	.340	UJ	0.340
92612-52-7 Perfluorohexanoate	0.	.340	UJ	0.340
68259-12-1 Perfluorononanesulfonate	0.	.340	UJ	0.340
72007-68-2 Perfluorononanoate	0.	.340	UJ	0.340
754-91-6 Perfluorooctanesulfonamide		.340	UJ	0.340
45298-90-6 Perfluorooctanesulfonate	0.0	0490	J	0.340
45285-51-6 Perfluorooctanoate	0.	.340	UJ	0.340
2706-91-4 Perfluoropentanesulfonate	0.	.340	UJ	0.340
45167-47-3 Perfluoropentanoate		.681	UJ	0.681
365971-87-5 Perfluorotetradecanoate		.36	UJ	1.36
862374-87-6 Perfluorotridecanoate		.36	UJ	1.36
NULL Perfluoroundecanoate		.340	UJ	0.340
	mple	Spike		% Rec.
CAS# Analyte R	esult	Level	% Rec.	Limits
	5.64	6.81	83	20-200
	5.41	6.81	80	20-200
	5.00	6.38	78	20-200
	5.81	6.47	90	20-200
	5.28	6.53	96 57	20-200
	3.85 5.17	6.81 6.34	57 81	20-200 20-200
	5.17 5.39	6.45	81 99	20-200
	5.28	6.81	99 92	20-200
	5.91	6.81	87	20-200
	7.92	6.81	116	20-200
	5.35	6.81	79	20-200
	4.91	6.81	72	20-200
	3.71	6.81	54	20-200
	5.84	6.81	86	20-200
	5.28	6.52	81	20-200
	1.86	6.81	71	20-200
	3.97	6.81	58	20-200
	1.35	6.81	64	20-200
Authorized by: Jeff Westerlund Relea	ase Date:		2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 40038-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.093 g
Final Vol: 4 mL

Lab ID #: 2011020-53 Collected: 4/16/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 36.37%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.09	UJ	1.09
425670-75-3	6:2 fluorotelomersulfonate		1.58	UJ	1.09
481071-78-7	8:2 fluorotelomersulfonate		1.09	UJ	1.09
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.272	UJ	0.272
NULL	N-methyl perfluorooctanesulfonamideacetate		0.272	UJ	0.272
45187-15-3	Perfluorobutanesulfonate		0.0251	J	0.272
375-22-4	Perfluorobutanoate		0.272	UJ	0.272
335-77-3	Perfluorodecanesulfonate		0.272	UJ	0.272
73829-36-4	Perfluorodecanoate		0.272	UJ	0.272
171978-95-3	Perfluorododecanoate		0.545	UJ	0.545
375-92-8	Perfluoroheptanesulfonate		0.272	UJ	0.272
120885-29-2	Perfluoroheptanoate		0.272	UJ	0.272
108427-53-8	Perfluorohexanesulfonate		0.272	UJ	0.272
92612-52-7	Perfluorohexanoate		0.272	UJ	0.272
68259-12-1	Perfluorononanesulfonate		0.272	UJ	0.272
72007-68-2	Perfluorononanoate		0.272	UJ	0.272
754-91-6	Perfluorooctanesulfonamide		0.272	UJ	0.272
45298-90-6	Perfluorooctanesulfonate		0.0719	NJ	0.272
45285-51-6	Perfluorooctanoate		0.272	UJ	0.272
2706-91-4	Perfluoropentanesulfonate		0.272	UJ	0.272
45167-47-3	Perfluoropentanoate		0.545	UJ	0.545
365971-87-5	Perfluorotetradecanoate		1.09	UJ	1.09
862374-87-6	Perfluorotridecanoate		1.09	UJ	1.09
NULL	Perfluoroundecanoate		0.272	UJ	0.272
		6 1	a		A/ P
Surrogate Reco	<u>vvery:</u> Analyte	Sample Result	Spike Level	% Rec.	% Rec. Limits
NULL	·	4.85		89	
NULL	D3-N-MeFOSAA D5-N-EtFOSAA	4.42	5.45 5.45	89 81	20-200 20-200
NULL	M2-4:2 FTS	4.38	5.11	86	20-200
NULL	M2-6:2 FTS	4.42	5.18	85	20-200
NULL	M2-8:2 FTS	5.27	5.23	101	20-200
NULL	M2PFTeDA	3.02	5.45	55	20-200
NULL	M3PFBS	3.84	5.08	76	20-200
NULL	M3PFHxS	5.04	5.16	98	20-200
NULL	M4PFHpA	5.05	5.45	93	20-200
NULL	M5PFHxA	4.89	5.45	90	20-200
NULL	M5PFPeA	5.94	5.45	109	20-200
NULL	M6PFDA	4.23	5.45	78	20-200
NULL	M7PFUnA	3.71	5.45	68	20-200
NULL	M8FOSA	3.25	5.45	60	20-200
NULL	M8PFOA	4.40	5.45	81	20-200
NULL NULL	M8PFOS M9PFNA	4.74 3.65	5.22 5.45	91 67	20-200 20-200
NULL NULL	MPFBA	3.35	5.45 5.45	62	20-200
NULL	MPFDoA	3.27	5.45	60	20-200
	Toff Wastardund			2/2/2	
Authorized by	jeji westerum	_ Release Date	e:	2/2/	<u> </u>

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: PSUW116-R1

Work Order: 2011020 Lab ID
Project Officer: Dutch, Margaret Collecte

Initial Vol: 10.279 g Final Vol: 4 mL Lab ID #: 2011020-80 Collected: 6/17/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 26.27%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.48	UJ	1.48
425670-75-3	6:2 fluorotelomersulfonate		1.62	UJ	1.48
481071-78-7	8:2 fluorotelomersulfonate		1.48	UJ	1.48
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.370	UJ	0.370
NULL	N-methyl perfluorooctanesulfonamideacetate		0.370	UJ	0.370
45187-15-3	Perfluorobutanesulfonate		0.370	UJ	0.370
375-22-4	Perfluorobutanoate		0.370	UJ	0.370
335-77-3	Perfluorodecanesulfonate		0.370	UJ	0.370
73829-36-4	Perfluorodecanoate		0.370	UJ	0.370
171978-95-3	Perfluorododecanoate		0.741	UJ	0.741
375-92-8	Perfluoroheptanesulfonate		0.370	UJ	0.370
120885-29-2	Perfluoroheptanoate		0.370	UJ	0.370
108427-53-8	Perfluorohexanesulfonate		0.370	UJ	0.370
92612-52-7	Perfluorohexanoate		0.370	UJ	0.370
68259-12-1	Perfluorononanesulfonate		0.370	UJ	0.370
72007-68-2	Perfluorononanoate		0.370	UJ	0.370
754-91-6	Perfluorooctanesulfonamide		0.370	UJ	0.370
45298-90-6	Perfluorooctanesulfonate		0.181	NJ	0.370
45285-51-6	Perfluorooctanoate		0.370	UJ	0.370
2706-91-4	Perfluoropentanesulfonate		0.370	UJ	0.370
45167-47-3	Perfluoropentanoate		0.741	UJ	0.741
365971-87-5	Perfluorotetradecanoate		1.48	UJ	1.48
862374-87-6	Perfluorotridecanoate		1.48	UJ	1.48
NULL	Perfluoroundecanoate		0.370	UJ	0.370
NULL	1 Ci ildol odildecalioate		0.570	OJ	0.570
Surrogate Reco		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	5.86	7.41	79	20-200
NULL	D5-N-EtFOSAA	5.56	7.41	75 27	20-200
NULL	M2-4:2 FTS	6.03	6.95	87	20-200
NULL	M2-6:2 FTS	7.19	7.04	102 82	20-200
NULL NULL	M2-8:2 FTS M2PFTeDA	5.85 4.57	7.11 7.41	62	20-200 20-200
NULL	M3PFBS	4.37 5.48	6.90	79	20-200
NULL	M3PFHxS	6.49	7.02	92	20-200
NULL	M4PFHpA	6.69	7.41	90	20-200
NULL	M5PFHxA	7.33	7.41	99	20-200
NULL	M5PFPeA	9.68	7.41	131	20-200
NULL	M6PFDA	6.10	7.41	82	20-200
NULL	M7PFUnA	5.23	7.41	71	20-200
NULL	M8FOSA	3.92	7.41	53	20-200
NULL	M8PFOA	6.58	7.41	89	20-200
NULL	M8PFOS	6.59	7.09	93	20-200
NULL	M9PFNA	5.60	7.41	76	20-200
NULL	MPFBA	4.91	7.41	66	20-200
NULL	MPFDoA	5.07	7.41	68	20-200
Authorized by	: Jeff Westerlund	Release Dat	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 41871-R1

Work Order: 2011020 Lab ID #: 2011020-81 Project Officer: Dutch, Margaret Collected: 6/13/2019

Initial Vol: 10.1 g Prep Method: AOAC2007.01 Final Vol: 4 mL Analysis Method: SW8327

% Solids: 34.89%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.13	UJ	1.13
425670-75-3	6:2 fluorotelomersulfonate		1.37	UJ	1.13
481071-78-7	8:2 fluorotelomersulfonate		1.13	UJ	1.13
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.284	UJ	0.284
NULL	N-methyl perfluorooctanesulfonamideacetate		0.284	UJ	0.284
45187-15-3	Perfluorobutanesulfonate		0.284	UJ	0.284
375-22-4	Perfluorobutanoate		0.284	UJ	0.284
335-77-3	Perfluorodecanesulfonate		0.284	UJ	0.284
73829-36-4	Perfluorodecanoate		0.284	UJ	0.284
171978-95-3	Perfluorododecanoate		0.567	UJ	0.567
375-92-8	Perfluoroheptanesulfonate		0.284	UJ	0.284
120885-29-2	Perfluoroheptanoate		0.284	UJ	0.284
108427-53-8	Perfluorohexanesulfonate		0.284	UJ	0.284
92612-52-7	Perfluorohexanoate		0.284	UJ	0.284
	Perfluoronoanesulfonate		0.284	UJ	0.284
68259-12-1	Perfluorononanoate		0.284	UJ	0.284
72007-68-2					
754-91-6	Perfluorooctanesulfonamide		0.284	UJ	0.284
45298-90-6	Perfluorooctanesulfonate		0.284	UJ	0.284
45285-51-6	Perfluorooctanoate		0.284	UJ	0.284
2706-91-4	Perfluoropentanesulfonate		0.284	UJ	0.284
45167-47-3	Perfluoropentanoate		0.567	UJ	0.567
365971-87-5	Perfluorotetradecanoate		1.13	UJ	1.13
862374-87-6	Perfluorotridecanoate		1.13	UJ	1.13
NULL	Perfluoroundecanoate		0.284	UJ	0.284
Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	4.97	5.67	88	20-200
NULL	D5-N-EtFOSAA	4.87	5.67	86	20-200
NULL	M2-4:2 FTS	4.03	5.32	76	20-200
NULL	M2-6:2 FTS	5.19	5.40	96	20-200
NULL	M2-8:2 FTS	4.90	5.45	90	20-200
NULL	M2PFTeDA	4.50	5.67	79	20-200
NULL	M3PFBS	5.03	5.29	95	20-200
NULL	M3PFHxS	5.64	5.38	105	20-200
NULL	M4PFHpA	5.13	5.67	90	20-200
NULL	M5PFHxA	5.67	5.67	100	20-200
NULL	M5PFPeA	6.64	5.67	117	20-200
NULL	M6PFDA	5.07	5.67	89	20-200
NULL	M7PFUnA	4.74	5.67	83	20-200
NULL	M8FOSA M8PFOA	3.71	5.67	65 86	20-200
NULL		4.90	5.67 5.44	86 07	20-200 20-200
NULL NULL	M8PFOS M9PFNA	5.30 4.47	5.44 5.67	97 79	20-200
NULL NULL	MPFBA	4.47 3.79	5.67	79 67	20-200
NULL	MPFDoA	4.50	5.67	79	20-200
	Toff Wastardund				20-200
Authorized by: Jeff Westerturu		_ Release Date: 2/2/20			

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 42739-R1

Work Order: 2011020

Project Officer: Dutch, Margaret

Initial Vol: 10.115 g Final Vol: 4 mL Lab ID #: 2011020-82 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 30.51%

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.30	UJ	1.30
425670-75-3	6:2 fluorotelomersulfonate		1.35	UJ	1.30
481071-78-7	8:2 fluorotelomersulfonate		1.30	UJ	1.30
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.324	UJ	0.324
NULL	N-methyl perfluorooctanesulfonamideacetate		0.324	UJ	0.324
45187-15-3	Perfluorobutanesulfonate		0.324	UJ	0.324
375-22-4	Perfluorobutanoate		0.324	UJ	0.324
335-77-3	Perfluorodecanesulfonate		0.324	UJ	0.324
73829-36-4	Perfluorodecanoate		0.324	UJ	0.324
171978-95-3	Perfluorododecanoate		0.648	UJ	0.648
375-92-8	Perfluoroheptanesulfonate		0.324	UJ	0.324
120885-29-2	Perfluoroheptanoate		0.324	UJ	0.324
108427-53-8	Perfluorohexanesulfonate		0.324	UJ	0.324
92612-52-7	Perfluorohexanoate		0.324	UJ	0.324
68259-12-1	Perfluorononanesulfonate		0.324	UJ	0.324
72007-68-2	Perfluorononanoate		0.324	UJ	0.324
754-91-6	Perfluorooctanesulfonamide		0.324	UJ	0.324
45298-90-6	Perfluorooctanesulfonate		0.0518	J	0.324
45285-51-6	Perfluorooctanoate		0.324	UJ	0.324
2706-91-4	Perfluoropentanesulfonate		0.324	UJ	0.324
45167-47-3	Perfluoropentanoate		0.648	UJ	0.648
365971-87-5	Perfluorotetradecanoate		1.30	UJ	1.30
862374-87-6	Perfluorotridecanoate		1.30	UJ	1.30
NULL	Perfluoroundecanoate		0.324	UJ	0.324
Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	6.23	6.48	96	20-200
NULL	D5-N-EtFOSAA	5.81	6.48	90	20-200
NULL	M2-4:2 FTS	4.93	6.08	81	20-200
NULL	M2-6:2 FTS	6.03	6.16	98	20-200
NULL NULL	M2-8:2 FTS M2PFTeDA	6.89 4.76	6.22 6.48	111 73	20-200 20-200
NULL NULL	M3PFBS	5.18	6.48	73 86	20-200
NULL	M3PFHxS	6.74	6.14	110	20-200
NULL	M4PFHpA	5.78	6.48	89	20-200
NULL	M5PFHxA	6.29	6.48	97	20-200
NULL	M5PFPeA	7.70	6.48	119	20-200
NULL	M6PFDA	5.85	6.48	90	20-200
NULL	M7PFUnA	5.18	6.48	80	20-200
NULL	M8FOSA	4.30	6.48	66	20-200
NULL	M8PFOA	5.63	6.48	87	20-200
NULL	M8PFOS	6.40	6.21	103	20-200
NULL	M9PFNA	4.89	6.48	75	20-200
NULL	MPFBA	4.40	6.48	68	20-200
NULL	MPFDoA	4.96	6.48	76	20-200
Authorized by:	Jeff Westerlund	Release Dat	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: PSUW116-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Analyte

Initial Vol: 10.1 g Final Vol: 4 mL

CAS#

Lab ID #: 2011020-90 Collected: 6/17/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 26.25%

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

Qualifier

LLOQ

Result

Authorized by: Jeff Westerlund				2/2/2	
NULL NULL	MPFBA MPFDoA	5.15 4.83	7.54 7.54	68 64	20-200 20-200
NULL	M9PFNA	5.40	7.54	72	20-200
NULL	M8PFOS	8.19	7.23	113	20-200
NULL	M8PFOA	6.42	7.54	85	20-200
NULL	M8FOSA	5.52	7.54	73	20-200
NULL	M7PFUnA	5.69	7.54	75	20-200
NULL	M6PFDA	6.67	7.54	88	20-200
NULL	M5PFPeA	8.19	7.54	109	20-200
NULL	M5PFHxA	6.78	7.54	90	20-200
NULL	M4PFHpA	6.73	7.54	89	20-200
NULL	M3PFHxS	8.92	7.03	125	20-200
NULL	M3PFBS	5.59	7.34	80	20-200
NULL	M2PFTeDA	7.98 5.16	7.24 7.54	68	20-200
NULL NULL	M2-6:2 FTS M2-8:2 FTS	6.58 7.98	7.17 7.24	92 110	20-200 20-200
NULL	M2-4:2 FTS	4.58	7.08	65	20-200
NULL	D5-N-EtFOSAA	7.02	7.54	93	20-200
NULL	D3-N-MeFOSAA	7.19	7.54	95	20-200
	Analyte	Result	Level		Limits
Surrogate Rec CAS#		Sample Posult	Spike Lovel	% Rec.	% Rec.
NULL	Perfluoroundecanoate		0.377	UJ	0.377
862374-87-6	Perfluorotridecanoate		1.51	UJ	1.51
365971-87-5	Perfluorotetradecanoate		1.51	UJ	1.51
45167-47-3	Perfluoropentanoate		0.754	UJ	0.754
2706-91-4	Perfluoropentanesulfonate		0.377	UJ	0.377
45285-51-6	Perfluorooctanoate		0.377	UJ	0.377
45298-90-6	Perfluorooctanesulfonate		0.192	J	0.377
754-91-6	Perfluorooctanesulfonamide		0.377	UJ	0.377
72007-68-2					
	Perfluorononanoate		0.377	UJ	0.377
68259-12-1	Perfluorononanesulfonate		0.377	UJ	0.377
92612-52-7	Perfluorohexanoate		0.377	UJ	0.377
108427-53-8	Perfluorohexanesulfonate		0.377	UJ	0.377
120885-29-2	Perfluoroheptanoate		0.377	UJ	0.377
375-92-8	Perfluoroheptanesulfonate		0.377	UJ	0.377
171978-95-3	Perfluorododecanoate		0.754	UJ	0.754
73829-36-4	Perfluorodecanoate		0.377	UJ	0.377
335-77-3	Perfluorodecanesulfonate		0.377	UJ	0.377
375-22-4	Perfluorobutanoate		0.377	UJ	0.377
45187-15-3	Perfluorobutanesulfonate		0.377	UJ	0.377
NULL	N-methyl perfluorooctanesulfonamideacetate		0.377	UJ	0.377
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.377	UJ	0.377
481071-78-7	8:2 fluorotelomersulfonate		1.51	UJ	1.51
425670-75-3	6:2 fluorotelomersulfonate		2.03	UJ	1.51
414911-30-1	4:2 fluorotelomersulfonate		1.51	UJ	1.51

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 41871-R1

Work Order: 2011020 Project Officer: Dutch, Margaret

Initial Vol: 10.344 g Final Vol: 4 mL

Lab ID #: 2011020-91 Collected: 6/13/2019

Prep Method: AOAC2007.01 **Analysis Method: SW8327**

% Solids: 34.41%

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

	1.12 1.13 1.12 0.281 0.281	UJ UJ UJ	1.12 1.12 1.12
	1.12 0.281	UJ	
	0.281		1.12
		TIT	1.12
	0.281	UJ	0.281
	0.201	UJ	0.281
	0.281	UJ	0.281
	0.562	UJ	0.562
	0.281	UJ	0.281
	0.0854	J	0.281
	0.281	UJ	0.281
	0.281	UJ	0.281
	0.562	UJ	0.562
	1.12	UJ	1.12
	1.12	UJ	1.12
	0.281	UJ	0.281
Sample	Spike		% Rec.
Result	Level	% Rec.	Limits
5.40	5.62	96	20-200
			20-200
			20-200
			20-200
			20-200 20-200
			20-200
			20-200
			20-200
			20-200
4.21	5.62	75	20-200
5.79	5.62	103	20-200
5.30	5.62	94	20-200
4.19	5.62	75	20-200
4.93			20-200
			20-200
			20-200
			20-200
4.81	3.62		20-200
Release Date: 2/2/2021			
	5.40 5.40 5.40 3.89 5.33 6.25 4.84 5.22 5.85 5.18 4.93 4.21 5.79 5.30 4.19 4.93 6.04 4.32 3.97 4.81	0.281 0.281 0.562 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.562 1.12 1.12 0.281 Sample Result Level 5.40 5.62 5.40 5.62 3.89 5.27 5.33 5.34 6.25 5.39 4.84 5.62 5.22 5.24 5.85 5.33 5.18 5.62 4.93 5.62 4.93 5.62 4.91 5.62 5.79 5.62 5.30 5.62 4.19 5.62 4.93 5.62 5.62 5.99 5.62 5.90 5.62	0.281 UJ 0.282 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.281 UJ 0.562 UJ 1.12 UJ 1.12 UJ 1.12 UJ 1.12 UJ 1.12 UJ 0.281 UJ 0.281 UJ 0.562 UJ 1.10 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ 1.11 UJ 0.562 UJ

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 Field ID: 42739-R1

Work Order: 2011020 Lab ID
Project Officer: Dutch, Margaret Collect

Initial Vol: 10.049 g Final Vol: 4 mL Lab ID #: 2011020-92 Collected: 6/13/2019

Prep Method: AOAC2007.01 Analysis Method: SW8327

% Solids: 30.93%

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		1.29	UJ	1.29
425670-75-3	6:2 fluorotelomersulfonate		1.29	UJ	1.29
481071-78-7	8:2 fluorotelomersulfonate		1.29	UJ	1.29
NULL	N-ethyl perfluorooctanesulfonamideacetate		0.322	UJ	0.322
NULL	N-methyl perfluorooctanesulfonamideacetate		0.322	UJ	0.322
45187-15-3	Perfluorobutanesulfonate		0.322	UJ	0.322
375-22-4	Perfluorobutanoate		0.322	UJ	0.322
335-77-3	Perfluorodecanesulfonate		0.322	UJ	0.322
73829-36-4	Perfluorodecanoate		0.322	UJ	0.322
171978-95-3	Perfluorododecanoate		0.643	UJ	0.643
375-92-8	Perfluoroheptanesulfonate		0.322	UJ	0.322
120885-29-2	Perfluoroheptanoate		0.322	UJ	0.322
108427-53-8	Perfluorohexanesulfonate		0.322	UJ	0.322
92612-52-7	Perfluorohexanoate		0.322	UJ	0.322
68259-12-1	Perfluorononanesulfonate		0.322	UJ	0.322
72007-68-2	Perfluorononanoate		0.322	UJ	0.322
754-91-6	Perfluorooctanesulfonamide		0.322	UJ	0.322
45298-90-6	Perfluorooctanesulfonate		0.0746	J	0.322
45285-51-6	Perfluorooctanoate		0.322	UJ	0.322
2706-91-4	Perfluoropentanesulfonate		0.322	UJ	0.322
45167-47-3	Perfluoropentanoate		0.643	UJ	0.643
365971-87-5	Perfluorotetradecanoate		1.29	UJ	1.29
862374-87-6	Perfluorotridecanoate		1.29	UJ	1.29
NULL	Perfluoroundecanoate		0.322	UJ	0.322
Surrogate Reco	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	6.33	6.43	98	20-200
NULL	D5-N-EtFOSAA	5.82	6.43	91	20-200
NULL	M2-4:2 FTS	4.74	6.03	78	20-200
NULL	M2-6:2 FTS	6.59	6.12	108	20-200
NULL	M2-8:2 FTS	6.34	6.18	103	20-200
NULL	M2PFTeDA	6.10	6.43	95	20-200
NULL	M3PFBS	6.67	6.00	111	20-200
NULL	M3PFHxS	6.79	6.10	111	20-200
NULL NULL	M4PFHpA M5PFHxA	5.31	6.43	82 91	20-200
NULL NULL	M5PFPeA	5.84 5.82	6.43 6.43	91	20-200 20-200
NULL	M6PFDA	6.44	6.43	100	20-200
NULL	M7PFUnA	6.16	6.43	96	20-200
NULL	M8FOSA	4.72	6.43	73	20-200
NULL	M8PFOA	6.22	6.43	97	20-200
NULL	M8PFOS	6.40	6.16	104	20-200
NULL	M9PFNA	5.45	6.43	85	20-200
NULL	MPFBA	4.46	6.43	69	20-200
NULL	MPFDoA	5.77	6.43	90	20-200
Authorized by	: Jeff Westerlund	Release Dat	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Method Blank

Work Order: Batch QC Project Officer: Dutch, Margaret Initial Vol: 10 g

Final Vol: 4 mL

Lab ID #: B20L097-BLK1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L097-BLK1 Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

CAS#	Analyte		Result	Qualifier	LLOQ
414911-30-1	4:2 fluorotelomersulfonate		0.400	U	0.400
425670-75-3	6:2 fluorotelomersulfonate		0.666		0.400
481071-78-7	8:2 fluorotelomersulfonate		0.400	U	0.400
NULL	N-ethyl perfluorooctanesulfonamideaceta		0.196		0.100
NULL	N-methyl perfluorooctanesulfonamideaco		0.216		0.100
45187-15-3	Perfluorobutanesulfonate		0.100	U	0.100
375-22-4	Perfluorobutanoate		0.100	U	0.100
335-77-3	Perfluorodecanesulfonate		0.100	Ü	0.100
73829-36-4	Perfluorodecanoate		0.100	U	0.100
171978-95-3	Perfluorododecanoate		0.100	\mathbf{J}	0.100
375-92-8	Perfluoroheptanesulfonate		0.100	U	0.100
			0.100	U	0.100
120885-29-2	Perfluoroheptanoate Perfluorohexanesulfonate		0.100	U	
108427-53-8					0.100
92612-52-7	Perfluorohexanoate		0.100	U	0.100
68259-12-1	Perfluorononanesulfonate		0.100	U	0.100
72007-68-2	Perfluorononanoate		0.100	U	0.100
754-91-6	Perfluorooctanesulfonamide		0.100	J	0.100
45298-90-6	Perfluorooctanesulfonate		0.100	U	0.100
45285-51-6	Perfluorooctanoate		0.100	U	0.100
2706-91-4	Perfluoropentanesulfonate		0.100	U	0.100
45167-47-3	Perfluoropentanoate		0.200	U	0.200
365971-87-5	Perfluorotetradecanoate		0.400	U	0.400
862374-87-6	Perfluorotridecanoate		0.0116	J	0.400
NULL	Perfluoroundecanoate		0.00720	J	0.100
Surrogate Rec	overy:	Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.62	2.00	81	20-200
NULL	D5-N-EtFOSAA	1.55	2.00	77	20-200
NULL	M2-4:2 FTS	1.69	1.88	90	20-200
NULL	M2-6:2 FTS	1.69	1.90	89	20-200
NULL	M2-8:2 FTS	1.64	1.92	85	20-200
NULL	M2PFTeDA	1.12	2.00	56	20-200
NULL	M3PFBS	1.16	1.86	62	20-200
NULL	M3PFHxS	1.58	1.90	83	20-200
NULL	M4PFHpA	1.76	2.00	88	20-200
NULL	M5PFHxA	1.79	2.00	89	20-200
NULL	M5PFPeA	2.66	2.00	133	20-200
NULL	M6PFDA	1.60	2.00	80	20-200
NULL	M7PFUnA	1.33	2.00	66	20-200
NULL	M8FOSA	1.08	2.00	54	20-200
NULL	M8PFOA	1.66	2.00	83	20-200
NULL	M8PFOS	1.62	1.92	84	20-200
NULL	M9PFNA	1.43	2.00	72	20-200
NULL	MPFBA	1.20	2.00	60	20-200
NULL	MPFDoA	1.21	2.00	60	20-200
Authorized by	: JeffWesterlund	Release Da	te:	2/2/	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 **QC Type: LCS**

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10 g Final Vol: 4 mL Lab ID #: B20L097-BS1 Prep Method: AOAC2007.01 **Analysis Method: SW8327** Source Field ID: B20L097-BS1 **Batch ID: B20L097** Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil

		Source Field ID. D20L077-D51	Units: %				
Analyte		Resu	Spik lt Leve		%Rec	%Rec Limits	
4:2 fluorote	lomersulfonate	3.1	2.50	0.400	123	50-150	
6:2 fluorote	lomersulfonate	3.9	2.50	0.400	155	50-150	
8:2 fluorote	lomersulfonate	2.8	2.50	0.400	112	50-150	
N-ethyl peri	fluorooctanesulfonamideacetate	3.1	2.50	0.100	124	50-150	
N-methyl pe	erfluorooctanesulfonamideacetate	3.0	2.50	0.100	118	50-150	
Perfluorobu	tanesulfonate	2.6	2.50	0.100	104	50-150	
Perfluorobu	tanoate	3.2	2.50	0.100	129	50-150	
Perfluorode	canesulfonate	2.4	2.50	0.100	97	50-150	
Perfluorode	canoate	2.8	2.50	0.100	113	50-150	
Perfluorodo	decanoate	3.1	2.50	0.200	122	50-150	
Perfluorohe	ptanesulfonate	3.0	2.50	0.100	118	50-150	
Perfluorohe		2.8	2.50	0.100	113	50-150	
	xanesulfonate	2.8	2.50	0.100	110	50-150	
Perfluorohe		2.0	2.50	0.100	79	50-150	
Perfluorono	nanesulfonate	2.6	2.50	0.100	106	50-150	
Perfluorono	onanoate	2.8	2.50	0.100	112	50-150	
	tanesulfonamide	2.7	2.50		109	50-150	
	tanesulfonate	2.7	2.50	0.100	109	50-150	
Perfluorooc		2.5	2.50	0.100	101	50-150	
	ntanesulfonate	2.5	2.50	0.100	98	50-150	
Perfluorope		3.0	2.50		119	50-150	
	radecanoate	3.0	2.50		120	50-150	
Perfluorotri		2.7	2.50	0.400	110	50-150	
Perfluoroun		2.8	2.50		114	50-150	
Surrogate l	Recovery:		Sample	Spike		% Rec.	
CAS#			Result	Level	% Rec.	Limits	
NULL	D3-N-MeFOSAA		1.69	2.00	85	20-200	
NULL	D5-N-EtFOSAA		1.55	2.00	77	20-200	
NULL	M2-4:2 FTS		1.36	1.88	72	20-200	
NULL	M2-6:2 FTS		1.79	1.90	94	20-200	
NULL	M2-8:2 FTS		1.86	1.92	97	20-200	
NULL	M2PFTeDA		1.08	2.00	54	20-200	
NULL	M3PFBS		1.17	1.86	63	20-200	
NULL	M3PFHxS		1.66	1.90	88	20-200	
NULL	M4PFHpA		1.82	2.00	91	20-200	
NULL	M5PFHxA		1.65	2.00	83	20-200	
NULL	M5PFPeA		2.29	2.00	114	20-200	
NULL	M6PFDA		1.38	2.00	69	20-200	

1.33

1.12

1.62

1.52

1.39

1.13

1.13

Release Date:

2.00

2.00

2.00

1.92

2.00

2.00

2.00

Jeff Westerlund

M7PFUnA

M8FOSA

M8PFOA

M8PFOS

M9PFNA

MPFDoA

MPFBA

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Authorized by:

2/2/2021

20-200

20-200

20-200

20-200

20-200

20-200

20-200

66

56

81

79

70

57

57

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: LCS Dup

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10 g Final Vol: 4 mL Lab ID #: B20L097-BSD1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L097-BSD1 Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 1/13/2021 Matrix: Sediment/Soil

				/111650 / 0		
Analyte	Sample Result	Spike Level	%Rec	RPD	%Rec Limits	RPD Limit
4:2 fluorotelomersulfonate	2.8	2.50	112	10	0-200	200
6:2 fluorotelomersulfonate	3.0	2.50	120	25	0-200	200
8:2 fluorotelomersulfonate	3.3	2.50	133	17	0-200	200
N-ethyl perfluorooctanesulfonamideacetate	3.4	2.50	134	8	50-150	40
N-methyl perfluorooctanesulfonamideacetate	2.9	2.50	115	3	50-150	40
Perfluorobutanesulfonate	2.5	2.50	100	3	50-150	40
Perfluorobutanoate	3.7	2.50	148	13	50-150	40
Perfluorodecanesulfonate	2.4	2.50	97	0.2	50-150	40
Perfluorodecanoate	2.8	2.50	113	0.4	50-150	40
Perfluorododecanoate	3.1	2.50	124	1	50-150	40
Perfluoroheptanesulfonate	2.7	2.50	106	11	50-150	40
Perfluoroheptanoate	2.8	2.50	111	2	50-150	40
Perfluorohexanesulfonate	2.6	2.50	106	4	50-150	40
Perfluorohexanoate	1.7	2.50	69	14	50-150	40
Perfluorononanesulfonate	2.6	2.50	104	1	50-150	40
Perfluorononanoate	2.9	2.50	116	3	50-150	40
Perfluorooctanesulfonamide	2.7	2.50	109	0.1	50-150	40
Perfluorooctanesulfonate	2.5	2.50	102	7	50-150	40
Perfluorooctanoate	2.5	2.50	101	0.06	50-150	40
Perfluoropentanesulfonate	2.8	2.50	112	14	50-150	40
Perfluoropentanoate	2.3	2.50	91	27	50-150	40
Perfluorotetradecanoate	3.1	2.50	123	2	50-150	40
Perfluorotridecanoate	2.7	2.50	108	2	50-150	40
Perfluoroundecanoate	2.9	2.50	116	2	50-150	40
Surrogate Recovery:		Sam	ple Sp	oike		% Rec.
Surrogate Recovery:		Sam	iple Sp	oike	0/ D	% Rec.

Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	1.50	2.00	75	20-200
NULL	D5-N-EtFOSAA	1.31	2.00	65	20-200
NULL	M2-4:2 FTS		1.88	NC	20-200
NULL	M2-6:2 FTS	0.962	1.90	51	20-200
NULL	M2-8:2 FTS	1.54	1.92	80	20-200
NULL	M2PFTeDA	1.03	2.00	51	20-200
NULL	M3PFBS	0.422	1.86	23	20-200
NULL	M3PFHxS	1.20	1.90	63	20-200
NULL	M4PFHpA	1.71	2.00	86	20-200
NULL	M5PFHxA	0.728	2.00	36	20-200
NULL	M5PFPeA	1.03	2.00	51	20-200
NULL	M6PFDA	1.28	2.00	64	20-200
NULL	M7PFUnA	1.23	2.00	62	20-200
NULL	M8FOSA	1.01	2.00	50	20-200
NULL	M8PFOA	0.759	2.00	38	20-200
NULL	M8PFOS	1.25	1.92	65	20-200
NULL	M9PFNA	0.689	2.00	34	20-200
NULL	MPFBA	0.475	2.00	24	20-200
NULL	MPFDoA	1.12	2.00	56	20-200
Authorized	by: Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type : Duplicate

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10.086 g Final Vol: 4 mL Lab ID #: B20L097-DUP1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L097-DUP1 Source Lab ID #: 2011020-50

Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil Units: ug/Kg dw

	Source Lab ID #: 20	011020-50		Units: u	ıg/Kg dw	
Analyte		Sample Result	Sample Qual	Source Result	RPD	RPD Limit
4:2 fluorotelomersulfonate		0.519	UJ	0.519	NC	200
6:2 fluorotelomersulfonate		0.519	UJ	0.745	13	200
8:2 fluorotelomersulfonate		0.519	UJ	0.519	NC	200
N-ethyl perfluorooctanesulfonar		0.130	UJ	0.130	NC	40
N-methyl perfluorooctanesulfon		0.130	UJ	0.130	NC	40
Perfluorobutanesulfonate		0.130	UJ	0.130	NC	40
Perfluorobutanoate		0.130	UJ	0.130	NC	40
Perfluorodecanesulfonate		0.130	UJ	0.130	NC	40
Perfluorodecanoate		0.130	UJ	0.130	NC	40
Perfluorododecanoate		0.259	UJ	0.259	NC	40
Perfluoroheptanesulfonate		0.130	UJ	0.130	NC	40
Perfluoroheptanoate		0.130	UJ	0.130	NC	40
Perfluorohexanesulfonate		0.130	UJ	0.130	NC	40
Perfluorohexanoate		0.130	UJ	0.130	NC	40
Perfluorononanesulfonate		0.130	UJ	0.130	NC	40
Perfluorononanoate		0.130	UJ	0.130	NC	40
Perfluorooctanesulfonamide		0.130	UJ	0.130	NC	40
Perfluorooctanesulfonate		0.130	UJ	0.130	NC	40
Perfluorooctanoate		0.130	UJ	0.130	NC	40
Perfluoropentanesulfonate		0.130	UJ	0.130	NC	40
Perfluoropentanoate		0.150	UJ	0.150	NC	40
Perfluorotetradecanoate		0.239	UJ	0.239	NC	40
Perfluorotridecanoate		0.519	UJ	0.519	NC NC	40
		0.319	UJ	0.319	NC NC	40
Perfluoroundecanoate		0.130	OJ	0.130	NC	40
Surrogate Recovery:			Sample	Spike	A/ 5	% Rec.
CAS# Analyte			Result	Level	% Rec.	Limits
NULL D3-N-MeFOSAA			2.30	2.59	89	20-200
NULL D5-N-EtFOSAA			2.16	2.59	83	20-200
NULL M2-4:2 FTS			1.80	2.43	74	20-200
NULL M2-6:2 FTS			2.45	2.47	99	20-200
NULL M2-8:2 FTS			2.14	2.49	86	20-200
NULL M2PFTeDA			1.76	2.59	68	20-200
NULL M3PFBS			2.23	2.42	92	20-200
NULL M3PFHxS			2.40	2.46	98 85	20-200
NULL M4PFHpA NULL M5PFHxA			2.19 2.42	2.59 2.59	85 93	20-200 20-200
NULL M5PFPeA			2.42	2.59	95 85	20-200
NULL M6PFDA			2.20	2.59	83 82	20-200
NULL M7PFUnA			1.91	2.59	74	20-200
NULL M8FOSA			1.57	2.59	61	20-200
NULL M8PFOA			2.44	2.59	94	20-200
NULL M8PFOS			2.34	2.48	94	20-200
NULL M9PFNA			2.02	2.59	78	20-200
NULL MPFBA			1.77	2.59	68	20-200
NULL MPFDoA			1.78	2.59	69	20-200
Authorized by: Jeff	^f Westerlund	1	Release Dat	e:	2/2	/2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Matrix Spike

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 10.259 g Final Vol: 4 mL Lab ID #: B20L097-MS1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L097-MS1 Source Lab ID #: 2011020-51 Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil

Analyte	Result	Spike Level	Source Result	%Rec	%Rec Limits
4:2 fluorotelomersulfonate	4.9	3.38	0.0	144	0-200
6:2 fluorotelomersulfonate	4.9	3.38	0.6	125	0-200
8:2 fluorotelomersulfonate	4.0	3.38	0.0	119	0-200
N-ethyl perfluorooctanesulfonamideacetate	3.8	3.38	0.0	113	40-160
N-methyl perfluorooctanesulfonamideaceta	3.4	3.38	0.0	101	40-160
Perfluorobutanesulfonate	3.6	3.38	0.0	107	40-160
Perfluorobutanoate	4.9	3.38	0.0	146	40-160
Perfluorodecanesulfonate	2.9	3.38	0.0	86	40-160
Perfluorodecanoate	3.5	3.38	0.0	105	40-160
Perfluorododecanoate	4.1	3.38	0.0	123	40-160
Perfluoroheptanesulfonate	3.8	3.38	0.0	114	40-160
Perfluoroheptanoate	3.9	3.38	0.0	115	40-160
Perfluorohexanesulfonate	3.6	3.38	0.0	105	40-160
Perfluorohexanoate	3.1	3.38	0.0	92	40-160
Perfluorononanesulfonate	3.1	3.38	0.0	93	40-160
Perfluorononanoate	3.8	3.38	0.0	111	40-160
Perfluorooctanesulfonamide	3.4	3.38	0.0	102	40-160
Perfluorooctanesulfonate	3.5	3.38	0.0	105	40-160
Perfluorooctanoate	3.5	3.38	0.0	103	40-160
Perfluoropentanesulfonate	3.5	3.38	0.0	102	40-160
Perfluoropentanoate	3.3	3.38	0.0	98	40-160
Perfluorotetradecanoate	4.3	3.38	0.0	126	40-160
Perfluorotridecanoate	3.9	3.38	0.0	116	40-160
Perfluoroundecanoate	3.7	3.38	0.0	109	40-160
Surrogate Recovery:	Sa	mple	Spike		% Rec.

Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.76	2.70	102	20-200
NULL	D5-N-EtFOSAA	2.33	2.70	86	20-200
NULL	M2-4:2 FTS	1.54	2.54	61	20-200
NULL	M2-6:2 FTS	2.51	2.57	98	20-200
NULL	M2-8:2 FTS	2.88	2.60	111	20-200
NULL	M2PFTeDA	1.56	2.70	58	20-200
NULL	M3PFBS	1.82	2.52	72	20-200
NULL	M3PFHxS	2.73	2.56	106	20-200
NULL	M4PFHpA	2.31	2.70	85	20-200
NULL	M5PFHxA	2.16	2.70	80	20-200
NULL	M5PFPeA	3.02	2.70	112	20-200
NULL	M6PFDA	2.07	2.70	77	20-200
NULL	M7PFUnA	1.79	2.70	66	20-200
NULL	M8FOSA	1.70	2.70	63	20-200
NULL	M8PFOA	2.34	2.70	86	20-200
NULL	M8PFOS	2.58	2.59	100	20-200
NULL	M9PFNA	1.90	2.70	70	20-200
NULL	MPFBA	1.65	2.70	61	20-200
NULL	MPFDoA	1.63	2.70	60	20-200
Authorized b	y: Jeff Westerlund	Release Date	e:	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Matrix Spike Dup

Work Order: Batch QC Project Officer: Dutch, Margaret

Project Officer: Dutch Initial Vol: 10.301 g Final Vol: 4 mL Lab ID #: B20L097-MSD1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L097-MSD1 Source Lab ID #: 2011020-51 Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 12/24/2020 Matrix: Sediment/Soil

Analyte	Sample Result	Spike Level	Source Result	%Rec	RPD	%Rec Limits	RPD Limit
4:2 fluorotelomersulfonate	3.9	3.37	0.0	114	23	0-200	200
6:2 fluorotelomersulfonate	4.7	3.37	0.6	122	3	0-200	200
8:2 fluorotelomersulfonate	4.0	3.37	0.0	120	0.2	0-200	200
N-ethyl perfluorooctanesulfonamideacetate	4.0	3.37	0.0	117	3	40-160	40
N-methyl perfluorooctanesulfonamideacetate	3.8	3.37	0.0	114	12	40-160	40
Perfluorobutanesulfonate	3.5	3.37	0.0	104	4	40-160	40
Perfluorobutanoate	4.7	3.37	0.0	141	4	40-160	40
Perfluorodecanesulfonate	2.9	3.37	0.0	87	0.2	40-160	40
Perfluorodecanoate	3.6	3.37	0.0	107	2	40-160	40
Perfluorododecanoate	3.7	3.37	0.0	109	13	40-160	40
Perfluoroheptanesulfonate	3.7	3.37	0.0	109	5	40-160	40
Perfluoroheptanoate	3.6	3.37	0.0	106	8	40-160	40
Perfluorohexanesulfonate	3.6	3.37	0.0	107	0.7	40-160	40
Perfluorohexanoate	2.5	3.37	0.0	74	21	40-160	40
Perfluorononanesulfonate	3.3	3.37	0.0	98	5	40-160	40
Perfluorononanoate	3.6	3.37	0.0	107	4	40-160	40
Perfluorooctanesulfonamide	3.4	3.37	0.0	101	1	40-160	40
Perfluorooctanesulfonate	3.3	3.37	0.0	99	6	40-160	40
Perfluorooctanoate	3.2	3.37	0.0	95	8	40-160	40
Perfluoropentanesulfonate	3.2	3.37	0.0	96	6	40-160	40
Perfluoropentanoate	3.4	3.37	0.0	102	4	40-160	40
Perfluorotetradecanoate	4.1	3.37	0.0	123	3	40-160	40
Perfluorotridecanoate	3.4	3.37	0.0	101	14	40-160	40
Perfluoroundecanoate	3.8	3.37	0.0	113	3	40-160	40

Surrogate Recovery:		Sample	Spike		% Rec.
CAS#	Analyte	Result	Level	% Rec.	Limits
NULL	D3-N-MeFOSAA	2.20	2.69	82	20-200
NULL	D5-N-EtFOSAA	2.00	2.69	74	20-200
NULL	M2-4:2 FTS	1.80	2.53	71	20-200
NULL	M2-6:2 FTS	2.45	2.56	96	20-200
NULL	M2-8:2 FTS	2.74	2.59	106	20-200
NULL	M2PFTeDA	1.54	2.69	57	20-200
NULL	M3PFBS	1.94	2.51	77	20-200
NULL	M3PFHxS	2.50	2.55	98	20-200
NULL	M4PFHpA	2.28	2.69	85	20-200
NULL	M5PFHxA	2.69	2.69	100	20-200
NULL	M5PFPeA	3.02	2.69	112	20-200
NULL	M6PFDA	2.11	2.69	78	20-200
NULL	M7PFUnA	1.81	2.69	67	20-200
NULL	M8FOSA	1.66	2.69	62	20-200
NULL	M8PFOA	2.33	2.69	87	20-200
NULL	M8PFOS	2.44	2.58	95	20-200
NULL	M9PFNA	1.90	2.69	70	20-200
NULL	MPFBA	1.78	2.69	66	20-200
NULL	MPFDoA	1.83	2.69	68	20-200
Authorized 1	b <u>y:</u> Jeff Westerlund	Release Date	e :	2/2/2	2021

Per- and polyfluoroalkyl substances by LCMSMS

Project: PSEMP - 2020 QC Type: Reference

Work Order: Batch QC Project Officer: Dutch, Margaret

Initial Vol: 1.921 g Final Vol: 4 mL Lab ID #: B20L097-SRM1 Prep Method: AOAC2007.01 Analysis Method: SW8327 Source Field ID: B20L097-SRM1 Batch ID: B20L097 Prepared: 12/17/2020 Analyzed: 1/13/2021 Matrix: Sediment/Soil

Analyte		Result	Spike Level		%Rec	%Rec Limits
4:2 fluorotelon	nersulfonate	37.1	22.2	2.08	167	60-140
6:2 fluorotelon		35.5	15.2	2.08	233	60-140
8:2 fluorotelon	nersulfonate	39.2	18.7	2.08	210	60-140
	prooctanesulfon	22.5	18.0	0.521	125	60-140
	luorooctanesulfo	20.3	14.3	0.521	142	60-140
Perfluorobuta		24.4	20.6	0.521	119	60-140
Perfluorobuta		38.0	21.1	0.521	180	60-140
Perfluorodeca	nesulfonate	27.1	21.4	0.521	127	60-140
Perfluorodeca		32.8	22.6	0.521	145	60-140
Perfluorodode	canoate	19.5	13.8	1.04	141	60-140
Perfluorohepta		19.0	13.3	0.521	143	60-140
Perfluorohepta		15.3	13.3	0.521	115	60-140
Perfluorohexa		21.8	18.5	0.521	118	60-140
Perfluorohexa		12.9	16.3	0.521	79	60-140
Perfluoronona		32.3	17.8	0.521	182	60-140
Perfluoronona		26.5	19.3	0.521	138	60-140
Perfluorooctar		28.2	22.0	0.521	128	60-140
Perfluorooctar		18.1	15.3	0.521	118	60-140
Perfluorooctar		30.9	23.8	0.521	130	60-140
Perfluoropenta		28.8	22.3	0.521	129	60-140
Perfluoropenta		24.4	19.3	1.04	127	60-140
Perfluorotetra		29.1	18.5	2.08	157	60-140
Perfluorotride		18.9	15.0	2.08	126	60-140
Perfluorounde		30.5	22.3	0.521	137	60-140
Surrogate Rec						% Rec.
CAS#	Analyte		mple esult	Spike Level	% Rec.	% Rec. Limits
NULL	·		.84	10.4	7 5	20-200
NULL NULL	D3-N-MeFOSAA D5-N-EtFOSAA		.84 .56	10.4	73 73	20-200
NULL	M2-4:2 FTS	/	.50	9.77	NC	20-200
NULL	M2-6:2 FTS	5	.22	9.90	53	20-200
NULL	M2-8:2 FTS		.25	9.99	83	20-200
NULL	M2PFTeDA		.34	10.4	51	20-200
NULL	M3PFBS		.31	9.70	24	20-200
NULL	M3PFHxS		.16	9.87	62	20-200
NULL	M4PFHpA		.45	10.4	91	20-200
NULL	M5PFHxA	4	.12	10.4	40	20-200
NULL	M5PFPeA		.59	10.4	44	20-200
NULL	M6PFDA		.81	10.4	65	20-200
NULL	M7PFUnA		.78	10.4	65	20-200
NULL	M8FOSA		.18	10.4	50	20-200
NULL	M8PFOA M8PFOS		.98	10.4	38	20-200
NULL NULL	M8PFOS M9PFNA		.08	9.97	61 36	20-200
LINULAL		•	.72	10.4	36	20-200
				10.4	24	20_200
NULL	MPFBA	2	.51	10.4 10.4	24 62	20-200 20-200
	MPFBA MPFDoA	2 6		10.4 10.4	62	20-200 20-200 / 2 <i>0</i> 21

Appendix A **Sample Correlation Table**

Batch ID: B20L022 Prep Method: AOAC2007.01

Prepared: 12/7/2020 **Analysis Method:** SW8327

Field ID	MEL ID
34-R1	2011020-01
40-R1	2011020-03
21-R1	2011020-04
40013-R1	2011020-05
40015-R1	2011020-06
40016-R1	2011020-07
40017-R1	2011020-08
40018-R1	2011020-09
40019-R1	2011020-10
40020-R1	2011020-11
49-R1	2011020-12
305R-R1	2011020-14
209R-R1	2011020-16
HCB003-R1	2011020-17
3-R1	2011020-18
4-R1	2011020-19
13-R1	2011020-20
19-R1	2011020-21
29-R1	2011020-22
38-R1	2011020-23
Blank	B20L022-BLK1
LCS	B20L022-BS1
LCS Dup	B20L022-BSD1
Duplicate (19-R1)	B20L022-DUP1
Matrix Spike (40013-R1)	B20L022-MS1
Matrix Spike Dup (40013-R1)	B20L022-MSD1

Appendix A **Sample Correlation Table**

Batch ID: B20L087 Prep Method: AOAC2007.01

Prepared: 12/15/2020 **Analysis Method:** SW8327

Field ID	MEL ID
44-R1	2011020-24
52-R1	2011020-25
119-R1	2011020-26
191-R1	2011020-27
222-R1	2011020-28
252-R1	2011020-29
265-R1	2011020-30
281-R1	2011020-31
BLL009-R1	2011020-32
40005-R1	2011020-33
40006-R1	2011020-34
40007-R1	2011020-35
40008-R1	2011020-36
40009-R1	2011020-37
40010-R1	2011020-38
40011-R1	2011020-39
40012-R1	2011020-40
40021-R1	2011020-41
40022-R1	2011020-42
40025-R1	2011020-43
Blank	B20L087-BLK1
LCS	B20L087-BS1
LCS Dup	B20L087-BSD1
Duplicate (40009-R1)	B20L087-DUP1
Matrix Spike (40022-R1)	B20L087-MS1
Matrix Spike Dup (40022-R1)	B20L087-MSD1

Appendix A **Sample Correlation Table**

Batch ID: B20L097 Prep Method: AOAC2007.01

Prepared: 12/17/2020 **Analysis Method:** SW8327

Field ID	MEL ID
40026-R1	2011020-44
40027-R1	2011020-45
40028-R1	2011020-46
40029-R1	2011020-47
40030-R1	2011020-48
40032-R1	2011020-49
40034-R1	2011020-50
40036-R1	2011020-51
40037-R1	2011020-52
40038-R1	2011020-53
PSUW116-R1	2011020-80
41871-R1	2011020-81
42739-R1	2011020-82
PSUW116-R1	2011020-90
41871-R1	2011020-91
42739-R1	2011020-92
Blank	B20L097-BLK1
LCS	B20L097-BS1
LCS Dup	B20L097-BSD1
Duplicate (40034-R1)	B20L097-DUP1
Matrix Spike (40036-R1)	B20L097-MS1
Matrix Spike Dup (40036-R1)	B20L097-MSD1
Reference	B20L097-SRM1

WO: 2011020 Analysis: PFAS (Anions)

Reported result is estimated; Prep and/or analytical holdtime expired.

Perfluorodecanesulfonate J: 2011020-05,

Perfluorooctanesulfonate J: 2011020-01, 2011020-48,

```
Analyte was not detected at or above the estimated MRL; prep and/or analytical holdtime expired.
```

```
4:2 fluorotelomersulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07,
2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17,
2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25,
2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33,
2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41,
2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49,
2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90,
2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,
```

6:2 fluorotelomersulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-45, B20L022-DUP1, B20L087-DUP1,

8:2 fluorotelomersulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,

N-ethyl perfluorooctanesulfonamideacetate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L087-DUP1, B20L097-DUP1,

N-methyl perfluorooctanesulfonamideacetate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,

WO: OC Analysis: PFAS (Anions) Perfluorobutanesulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluorobutanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluorodecanesulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluorodecanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-07, 2011020-08, 2011020-10, 2011020-14, 2011020-16, 2011020-19, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L087-DUP1, B20L097-DUP1, Perfluorododecanoate UJ: 2011020-01, 2011020-05, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-22, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L087-DUP1, B20L097-DUP1, Perfluoroheptanesulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90,

2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,

```
WO: OC
                                               Analysis: PFAS (Anions)
    Perfluoroheptanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07,
2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17,
2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25,
2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33,
2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41,
2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49,
2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90,
2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,
    Perfluorohexanesulfonate UJ: 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08,
2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18,
2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26,
2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34,
2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42,
2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50,
2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91,
2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,
    Perfluorohexanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07,
2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17,
2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25,
2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33,
2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41,
2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49,
2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90,
2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,
    Perfluorononanesulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07,
2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17,
2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25,
2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33,
2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41,
2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49,
2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90,
2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,
    Perfluorononanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-08, 2011020-12,
2011020-14, 2011020-16, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29,
2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37,
2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45,
2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53,
2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L087-DUP1, B20L097-DUP1,
    Perfluorooctanesulfonamide UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-07,
2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17,
2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-24, 2011020-25, 2011020-26,
2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34,
2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42,
2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50,
2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91,
2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1,
```

WO: OC Analysis: PFAS (Anions) Perfluorooctanesulfonate UJ: 2011020-05, 2011020-25, 2011020-26, 2011020-27, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-37, 2011020-38, 2011020-40, 2011020-43, 2011020-45, 2011020-47, 2011020-49, 2011020-50, 2011020-51, 2011020-81, B20L087-DUP1, B20L097-DUP1, Perfluorooctanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluoropentanesulfonate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluoropentanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07. 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluorotetradecanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-06, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-11, 2011020-12, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-21, 2011020-22, 2011020-23, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L022-DUP1, B20L087-DUP1, B20L097-DUP1, Perfluorotridecanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-07, 2011020-08, 2011020-09, 2011020-10, 2011020-14, 2011020-16, 2011020-17, 2011020-18, 2011020-19, 2011020-20, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L087-DUP1, B20L097-DUP1,

WO: OC Analysis: PFAS (Anions)

Perfluoroundecanoate UJ: 2011020-01, 2011020-03, 2011020-04, 2011020-05, 2011020-07, 2011020-08, 2011020-12, 2011020-14, 2011020-16, 2011020-20, 2011020-24, 2011020-25, 2011020-26, 2011020-27, 2011020-28, 2011020-29, 2011020-30, 2011020-31, 2011020-32, 2011020-33, 2011020-34, 2011020-35, 2011020-36, 2011020-37, 2011020-38, 2011020-39, 2011020-40, 2011020-41, 2011020-42, 2011020-43, 2011020-44, 2011020-45, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L087-DUP1, B20L097-DUP1,

MRL raised due to background; analyte was not detected at or above the estimated reported result.

6:2 fluorotelomersulfonate UJ; 2011020-44, 2011020-46, 2011020-47, 2011020-48, 2011020-49, 2011020-50, 2011020-51, 2011020-52, 2011020-53, 2011020-80, 2011020-81, 2011020-82, 2011020-90, 2011020-91, 2011020-92, B20L097-DUP1,

Analyte is tentatively identified and associated numerical value represents its approximate concentration; qualitative criteria exceeded QC limits.

Perfluorooctanesulfonate NJ: 2011020-30, 2011020-53, 2011020-80,

Appendix C Data Qualifier Definitions

- E Reported result is an estimate because it exceeds the calibration range.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- NAF Not analyzed for.
- NC Not calculated.
- REJ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- U The analyte was not detected at or above the reported sample quantitation limit.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately measure the analyte in the sample.
- The analyte was present in the sample. (Visual aid to locate detected compounds on the bold analytical report.)

Appendix D QC Exceptions Report

Lab ID	Analyte	Exception
2011020-06	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-07	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-08	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-09	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-10	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-12	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-14	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-16	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-17	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-19	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-20	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-21	surr: M2-4:2 FTS	Exceeds lower control limit
2011020-25	surr: M3PFBS	Exceeds upper control limit
B20L022-BLK1	Perfluorooctanoate	Blank > MDL
B20L022-MS1	4:2 fluorotelomersulfonate	Exceeds upper control limit
B20L022-MSD1	4:2 fluorotelomersulfonate	Exceeds upper control limit
B20L022-MSD1	surr: M2-4:2 FTS	Exceeds lower control limit
B20L087-BLK1	N-ethyl perfluorooctanesulfonamideacetate	Blank > MDL
B20L087-BLK1	N-methyl perfluorooctanesulfonamideacetate	Blank > MDL
B20L087-MSD1	surr: M5PFPeA	Exceeds upper control limit
B20L097-BLK1	6:2 fluorotelomersulfonate	Blank > MRL
B20L097-BLK1	N-ethyl perfluorooctanesulfonamideacetate	Blank > MRL
B20L097-BLK1	N-methyl perfluorooctanesulfonamideacetate	Blank > MRL
B20L097-BLK1	Perfluorododecanoate	Blank > MDL
B20L097-BLK1	Perfluorotridecanoate	Blank > MDL
B20L097-BLK1	Perfluoroundecanoate	Blank > MDL
B20L097-BS1	6:2 fluorotelomersulfonate	Exceeds upper control limit
B20L097-SRM1	4:2 fluorotelomersulfonate	Exceeds upper control limit
B20L097-SRM1	6:2 fluorotelomersulfonate	Exceeds upper control limit
B20L097-SRM1	8:2 fluorotelomersulfonate	Exceeds upper control limit
B20L097-SRM1	N-methyl perfluorooctanesulfonamideacetate	Exceeds upper control limit
B20L097-SRM1	Perfluorobutanoate	Exceeds upper control limit
B20L097-SRM1	Perfluorodecanoate	Exceeds upper control limit
B20L097-SRM1	Perfluorododecanoate	Exceeds upper control limit
B20L097-SRM1	Perfluoroheptanesulfonate	Exceeds upper control limit
B20L097-SRM1	Perfluorononanesulfonate	Exceeds upper control limit
B20L097-SRM1	Perfluorotetradecanoate	Exceeds upper control limit
S205106-CCV1	Perfluorotridecanoate	Exceeds lower control limit
S205106-CCV1	surr: M2PFTeDA	Exceeds lower control limit
S205201-ICV1	surr: M2PFTeDA	Exceeds lower control limit
S210201-ICV1	surr: M6PFDA	Exceeds lower control limit
S210501-CCV1	Perfluorodecanesulfonate	Exceeds lower control limit
S210501-CCV1	Perfluorohexanoate	Exceeds lower control limit
S210501-CCV1	Perfluorotridecanoate	Exceeds lower control limit
S210501-CCV1	surr: D3-N-MeFOSAA	Exceeds upper control limit
S210501-CCV1	surr: D5-N-EtFOSAA	Exceeds upper control limit
S210501-CCV1	surr: M2-4:2 FTS	Exceeds upper control limit
S210501-CCV1	surr: M2PFTeDA	Exceeds lower control limit

Appendix D **QC** Exceptions Report

Lab ID	Analyte	Exception
S210501-CCV1	surr: MPFDoA	Exceeds lower control limit

Appendix E Initial Calibration Exceptions Report

Calibration ID:	B0L2202	Analysis: PFAS (Anions)
LabNumber	Analyte	QC Exception
S205201-CAL4	surr: M2PFTeDA	Exceeds lower control limit
S205201-CAL6 S205201-ICV1	surr: M2PFTeDA surr: M2PFTeDA	Exceeds lower control limit Exceeds lower control limit
S205201-ICV1	Perfluorononanesulfonate	Exceeds upper control limit

Appendix E Initial Calibration Exceptions Report

Calibration ID:	B1A0501	Analysis: PFAS (Anions)
LabNumber	Analyte	QC Exception
S210201-ICV1	surr: M6PFDA	Exceeds lower control limit
S210201-ICV1 S210201-ICV1	N-methyl perfluorooctanesulfonamideacetate Perfluorononanesulfonate	Exceeds upper control limit Exceeds upper control limit