## Appendix B. Watershed and Open Boundary Condition Updates

This appendix includes:

- Appendix B1: Updates to Watershed Delineations as well as Freshwater Flows, Water Quality Data, and Regressions
- Appendix B2: Changes to Watershed Loading due to Updates
- Appendix B3: Time Series Plots of Flow and Water Quality for Watersheds
- Appendix B4: Evaluation of Inorganic Nitrogen Watershed Regressions on Continuous Data
- Appendix B5: Open Boundary Tides and Water Quality

#### ADA Accessibility

This appendix may contain tables, graphics, and images that may not meet accessibility standards. The Department of Ecology is committed to providing people with disabilities access to information and services by meeting or exceeding the requirements of the Americans with Disabilities Act (ADA), Sections 504 and 508 of the Rehabilitation Act, and Washington State Policy #188. To request an ADA accommodation, contact the Environmental Assessment Program Publications Coordinator at <u>EAPPubs@ecy.wa.gov</u> or call 564-669-3028. For Washington Relay Service or TTY call 711 or 877-833-6341. Visit <u>Ecology's website</u> for more information.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> https://ecology.wa.gov/about-us/accessibility-equity/accessibility

## **Table of Contents**

| Appendix B1. Updates to Watershed Delineations, Freshwater Flows, Water C<br>Data, and Regressions.                                                                                                                                                                  | Quality<br>2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Updates to watershed delineations<br>Updates to watershed regression & data sources<br>References (Appendix B1)                                                                                                                                                      | 2<br>6<br>80 |
| Appendix B2. Changes to Watershed Loadings                                                                                                                                                                                                                           | 81           |
| Flow changes<br>Total nitrogen load changes<br>Total organic carbon load changes<br>References (Appendix B2)                                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                      |              |
| Appendix B3. Time Series Plots of Flow and Water Quality for Watersheds                                                                                                                                                                                              | 92           |
| Appendix B3. Time Series Plots of Flow and Water Quality for Watersheds<br>Appendix B4. Evaluation of Inorganic Nitrogen Watershed Regressions on<br>Continuous Data                                                                                                 | 92<br>93     |
| Appendix B3. Time Series Plots of Flow and Water Quality for Watersheds<br>Appendix B4. Evaluation of Inorganic Nitrogen Watershed Regressions on<br>Continuous Data<br>Background<br>References (Appendix B4)                                                       |              |
| Appendix B3. Time Series Plots of Flow and Water Quality for Watersheds<br>Appendix B4. Evaluation of Inorganic Nitrogen Watershed Regressions on<br>Continuous Data<br>Background<br>References (Appendix B4)<br>Appendix B5. Open Boundary Tides and Water Quality |              |

### Appendix B1. Updates to Watershed Delineations, Freshwater Flows, Water Quality Data, and Regressions

### Updates to watershed delineations

Since the Optimization Phase 1 (Opt1) Technical Memo (Ahmed et al. 2021), various updates were made to watershed inputs to the Salish Sea Model for this phase of the study, defined as Optimization Phase 2 (Opt2). These included updates to watershed delineations, flows, and the water quality data used to estimate daily inputs for rivers and streams entering the model domain.

Several watershed delineations used in the Optimization Phase 1 (Opt1) scenario runs included hydrologically disconnected regions as a portion of the drainage area. Since the excess drainage area assigned to these watersheds could impact the stream nutrient inputs to the Salish Sea Model, we refined watershed delineations so that most hydrologic units within a given watershed are connected.

Where needed, to improve watershed delineations, we aggregated hydrologically connected sub-watersheds within Hydrologic Unit Code (HUC 12) delineations. Watersheds in the South Sound, as well as Main Basin islands, however, were already delineated at a finer resolution than HUC 12, and therefore, we did not make delineation changes in those areas. Callam Bay and North Olympic watersheds do not have enough water quality data available to derive freshwater water quality regressions for these regions at finer HUC resolution, so no changes were made in those areas either. Additionally, we did not make any changes to the delineations of Canadian watersheds in the Salish Sea Model domain, as these watersheds are not a primary focus of our analysis.

National Hydrography Dataset (NHD) medium resolution (1:100,000 scale) flowlines were used to determine which HUC 12 sub-watersheds should be combined. If an NHD reach crossed several HUC 12 watersheds, then each of the intersected watersheds would be combined. Using the Skokomish and Hamma Hamma watersheds as an example (Figure B1-1A), we can see several changes from the Opt1 delineations. Most notably, we see in Figure B1-1B that the Hamma Hamma watershed was divided into five HUC 12 watersheds and that a portion of the previously delineated Skokomish watershed was reallocated to one of the five Hamma Hamma watersheds. The separation of larger, hydrologically disconnected watersheds into hydrologically distinct watersheds resulted in an increase in the number of Washington watersheds in our domain from 135 in Opt1 to 162 in Opt2.

Resolution at HUC 12, however, was not always sufficient, and as a result, 44 of the 162 Washington SSM watersheds still contain portions of hydrologically disconnected drainage area. All areas are used to represent inflows, whether connected or not. This is particularly the case for island watersheds in the Strait of Georgia, Strait of Juan de Fuca, and even in some locations within the Puget Sound Main Basin and Whidbey Basin, where watershed resolution is finer than HUC-12.



Figure B1-1. (A) Opt1 delineations of Skokomish and Hamma Hamma watersheds. (B) Differences between Opt1 delineations of Skokomish and Hamma Hamma watersheds and aggregated HUC-12 watersheds that are hydrologically connected (Opt2 delineations).

(B) shows that Hamma Hamma was split into 5 watersheds, that a portion of Skokomish was reallocated to Hamma Hamma (3), and that an additional drainage area was added to the Opt1 delineation of Hamma Hamma (5).

Updated watershed delineations are shown in Figure B1-2. The most frequent update consists of dividing Opt1 watersheds into two or more hydrologically distinct sub-watersheds (Figure B1-2 and Table B1-1). About half of the delineation changes occurred in the Olympic region. In that region, aside from the Hamma Hamma example mentioned above, Discovery Bay now contains 3 watersheds, Quilcene was split into two watersheds (Little and Big Quilcene), Sequim Bay was divided into 3 watersheds, and the Port Townsend watershed became two watersheds (Port Townsend East and Port Townsend West). As a result of the refinements to Opt1 watersheds, we increased the number of Washington watershed inputs into the model. Including the Canadian watersheds, which were not changed, we now have a total of 193 watersheds.. The Northern Bays are another region with a large number of changes in delineations. A list of all major changes between Opt1 and Opt2 watersheds can be found in Table B1-2.



## Figure B1-2. Watershed delineations that were updated since the Optimization Scenarios Phase 1 (Opt1) Report.

Areas shown in green indicate that no changes were made to the delineation, and red means that delineations were updated according to HUC12 watersheds shapefiles.

| Watershed Number<br>(as labeled in Figure B1-2) | Opt1 Name              | Opt2 Name                      |  |
|-------------------------------------------------|------------------------|--------------------------------|--|
| 1                                               | Hamma Hamma            | Hamma Hamma                    |  |
| 2                                               | Hamma Hamma            | Lilliwaup Creek                |  |
| 3                                               | Hamma Hamma /Skokomish | Finch Creek                    |  |
| 4                                               | Hamma Hamma            | Eagle Creek                    |  |
| 5                                               | Hamma Hamma            | Fulton Creek                   |  |
| 6                                               | Dosewallips            | Lower Dosewallips <sup>1</sup> |  |
| 7                                               | Dabob Bay              | Spencer Creek                  |  |
| 8                                               | Quilcene               | Big Quilcene                   |  |
| 9                                               | Quilcene               | Little Quilcene                |  |
| 10                                              | NW Hood                | Chimacum Valley                |  |
| 11                                              | Port Townsend          | Port Townsend W                |  |
| 12                                              | Port Townsend          | Port Townsend E                |  |
| 13                                              | Discovery Bay          | Discovery Bay 3                |  |
| 14                                              | Discovery Bay          | Discovery Bay 1                |  |
| 15                                              | Discovery Bay          | Discovery Bay 2                |  |
| 16                                              | Sequim Bay             | Sequim Bay E                   |  |
| 17                                              | Sequim Bay             | Sequim Bay S                   |  |
| 18                                              | Sequim Bay             | Sequim Bay W                   |  |
| 19                                              | Dungeness              | Cassalery Creek                |  |
| 20                                              | Port Angeles           | Port Angeles                   |  |
| 21                                              | Elwha R                | Elwha R                        |  |
| 22                                              | Snohomish              | Possession Sound               |  |
| 23                                              | Snohomish              | Quilceda Creek                 |  |
| 24                                              | Snohomish              | Tulalip Creek                  |  |
| 25                                              | Samish/Bell South      | Joe Leary                      |  |
| 26                                              | Whatcom/Bell North     | Colony Creek                   |  |
| 27                                              | Whatcom/Bell North     | Chuckanut/Padden Creek         |  |
| 28                                              | Whatcom/Bell North     | Whatcom Creek                  |  |
| 29                                              | Whatcom/Bell North     | Squalicum Creek                |  |
| 30                                              | Nooksack R             | Silver Creek                   |  |
| 31                                              | Birch Bay              | Drayton Harbor                 |  |
| 32                                              | Birch Bay              | Birch Bay                      |  |
| 33                                              | Samish/Bell South      | Fidalgo Island N               |  |
| 34                                              | Samish/Bell South      | Fidalgo Island S               |  |
| 35                                              | Whidbey E              | Whidbey NE                     |  |
| 36                                              | Whidbey W              | Whidbey NW                     |  |
| 37                                              | Whidbey E              | Whidbey E                      |  |
| 38                                              | Whidbey E              | Whidbey S                      |  |

 Table B1-1. Changes between Opt1 and Opt2 watersheds.

Watershed Number corresponds to values shown in Figure B1-3.

<sup>1</sup> Dosewallips still exists in Opt2 but was split into Dosewallips and Lower Dosewallips.

| Opt1 Name          | Opt2 Change                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------|
| Birch Bay          | Split into Drayton Harbor and Birch Bay                                                                      |
| Discovery Bay      | Split into Discovery Bay 1-3                                                                                 |
| Dosewallips        | A portion of the mouth of Opt1 Dosewallips watershed was reallocated to Dabob Bay                            |
| Dungeness R.       | Cassalery Creek removed and made into its own watershed.                                                     |
| Hamma Hamma        | Divided into 5 watersheds                                                                                    |
| Nooksack R.        | Silver Creek removed and made into its own watershed.                                                        |
| Port Townsend      | Split into Port Townsend East and West                                                                       |
| Quilcene           | Split into Little and Big Quilcene                                                                           |
| Samish/Bell South  | Divided into Samish Bell/South (smaller<br>subsection), Joe Leary Slough, Fidalgo Island<br>North, and South |
| Sequim Bay         | Divided into 3 watersheds                                                                                    |
| Stillaguamish R.   | Camano Island removed and made into its own watershed.                                                       |
| Whatcom/Bell North | Divided into 4 watersheds.                                                                                   |

 Table B1-2. Major changes made from Opt1 to Opt2 Watersheds.

#### Updates to watershed regression & data sources

In this section, we present updates to the watershed regressions used in Opt1. We focus on new data sources that were used to build the watershed regressions and assess the performance of Opt2 watershed regressions using recently available data to get an indication of the differences between our current and previous watershed regression models. An outline of the regression update process is shown in Figure B1-3.





#### **Data sources**

In the Opt1 technical memorandum (Ahmed et al. 2021), we identified several watersheds that were lacking sufficient data required for a watershed regression. For these watersheds, we used the regression of a neighboring watershed (Ahmed et al. 2021; Figure A-1) when data were insufficient. Using the terminology from the Opt1 report, watersheds with enough data for regression are referred to as "site-specific regressions," while watersheds that borrow regressions from another are called "neighboring watershed regressions." For Opt2, we

reduced the number of neighboring watershed regressions as much as possible. Previously, we only considered Ecology's Freshwater Monitoring Unit's long-term ambient water quality data and the 2006 South Puget Sound Dissolved Oxygen Study's (SPSDO) water quality data as potential inputs to our watershed regressions. We expanded freshwater data sources for Opt2 scenarios to include all freshwater water quality sites in Ecology's Environmental Information Management Database (EIM) from 1999 to 2021, and additionally to include quality-assured data from cities, counties, and Tribes. Data sources for Opt2 watershed regressions includes: EIM, King County, Pierce County, Thurston County, Jefferson County, Squaxin Island Tribe, City of Bellingham, US EPA Water Quality Exchange (WQX) data, which includes tribal water quality data, USGS National Water Information System (NWIS) data and Environment Canada (Table B1-3).

| Data Source           | Data URL                                                                                                                                | Entities                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| EIM                   | https://ecyeim/search/Default.aspx                                                                                                      | Ecology                    |
| WQX/NWIS              | Water Quality Data <sup>2</sup>                                                                                                         | EPA, Local<br>Tribes, USGS |
| King County           | https://catalog.data.gov/dataset/water-quality                                                                                          | King County                |
| Pierce<br>County      | https://waterquality.piercecountywa.org/                                                                                                | Pierce<br>County           |
| Thurston<br>County    | https://www.co.thurston.wa.us/health_fpforms/ehswat/swdata.html                                                                         | Thurston<br>County         |
| Jefferson<br>County   | https://www.co.jefferson.wa.us/1580/Water-Quality-<br>Monitoring                                                                        | Jefferson<br>County        |
| Environment<br>Canada | <u>https://data-</u><br><u>donnees.az.ec.gc.ca/data/substances/monitor/national-long-</u><br><u>term-water-quality-monitoring-data/</u> | Environment<br>Canada      |

We improved the flow and water quality coverage for watersheds in the U.S portion of the SSM domain following Opt1. In Opt1, 22% of the total watershed area was ungauged and borrowed flow data from neighboring watersheds (Figure B1-4). Currently, in Opt2, 18% of the total watershed area is ungauged, and 55% of the ungauged watershed drainage area (10% of total

<sup>2</sup> 

https://www.waterqualitydata.us/#countrycode=US&statecode=US%3A53&siteType=Stream&siteType=Aggregate %20surface-water-use&startDateLo=01-01-2005&startDateHi=01-01-

<sup>2022&</sup>amp;sampleMedia=Water&characteristicType=Nutrient&characteristicType=Organics%2C%20Other&mimeType= csv&sorted=no&providers=NWIS&providers=STORET

watersheds) now use National Oceanic and Atmospheric Administration (NOAA) Weather Research Forecast (WRF) Hydro (Gochis et al. 2020) streamflow predictions. Accordingly, the percentage of total watershed area borrowing flow data from neighboring watersheds has dropped from 22% to 8%. Most of the usage of WRF-Hydro by drainage area is in Hood Canal (34%), Strait of Georgia (24%), and Strait of Juan de Fuca (18%) (Figure B1-5A). Island watersheds that exclusively borrowed flow from neighboring watersheds in Opt1 account for approximately 33% of WRF-Hydro usage.

The increase in gauged watershed coverage was more subtle, with 76% of total watershed area now being gauged compared to previous gauge coverage of 72% in Opt1. In total, gauge data were made available to 18 additional watersheds since Opt1. These watersheds, however, were on average considerably smaller (59 Km<sup>2</sup>) than the domain-wide average watershed size (229 Km<sup>2</sup>) and therefore, had minor impacts on gauged watershed coverage with respect to the total drainage area of all U.S Salish Sea watersheds.



# Figure B1-4. Differences in the proportions of flow data sources used for SSM watersheds between Opt1 and Opt2.

'Other' refers to flow-controlled watersheds such as Lake Washington and Deschutes/Capitol Lake.



Figure B1-5. (A) Current status of flow data availability for Opt2 watersheds.

Additional flow data has been acquired since (Ahmed et al. 2021), which includes more gauged watersheds and the use of National Oceanic and Atmospheric Administration (NOAA) Weather Research Forecast (WRF) Hydro data (green). (B) Current status of water quality availability for Opt2 watersheds. The "Other" category refers to flow-controlled watersheds such as Lake Washington and Deschutes/Capitol Lake.

Site-specific watershed water quality coverage increased from 72% of the total watershed area in Opt1 to 81% in Opt2 (Figure B1-6). A majority of the new site-specific water quality data were found within small watersheds, which had a lower drainage area than the average size of 229 Km<sup>2</sup>.

The total number of watersheds with site-specific water quality data increased. Of the 162 Opt2 Washington watersheds, 39 have new site-specific water quality data and are primarily located in South Puget Sound (38%), Main Basin (28%), and Hood Canal (18%). We used additional data for most of the Opt1 Washington watersheds. We obtained supplementary data for all but 5 of 33 watersheds from Opt1. The 5 watersheds that are using the same data as Opt1 were all part of 2006/2007 SPSDO Study and include Burley Creek, Chambers Creek, Minter Creek, McLane Creek, and Kennedy Creek. A complete overview of changes in data availability from Opt1 and Opt2 can be found in Table B1-4.



Figure B1-6. Differences in the proportions of water quality data sources used for SSM watersheds between Opt1 and Opt2.

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Anderson West    | NH4                              | ND                              | ND                      | 02/2017–<br>06/2021                | 49                             | ND                            |
| Anderson West    | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 44                             | ND                            |
| Anderson West    | DO                               | ND                              | ND                      | 11/2016–<br>07/2021                | 57                             | ND                            |
| Anderson West    | Temp                             | ND                              | ND                      | 11/2016–<br>03/2020                | 37                             | ND                            |
| Anderson West    | рН                               | ND                              | ND                      | 11/2016–<br>07/2021                | 57                             | ND                            |
| Anderson West    | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2016–<br>06/2021                | 51                             | ND                            |
| Anderson West    | OP                               | ND                              | ND                      | 11/2016–<br>06/2021                | 54                             | ND                            |
| Anderson West    | ТР                               | ND                              | ND                      | 11/2016–<br>06/2021                | 54                             | ND                            |
| Anderson West    | TPN                              | ND                              | ND                      | 02/2017–<br>06/2021                | 49                             | ND                            |
| Artondale Creek  | NH <sub>4</sub>                  | ND                              | ND                      | 01/2017–<br>06/2021                | 47                             | ND                            |
| Artondale Creek  | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| Artondale Creek  | DO                               | ND                              | ND                      | 01/2016–<br>07/2021                | 69                             | ND                            |
| Artondale Creek  | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 45                             | ND                            |
| Artondale Creek  | рН                               | ND                              | ND                      | 01/2016–<br>07/2021                | 68                             | ND                            |
| Artondale Creek  | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>06/2021                | 60                             | ND                            |
| Artondale Creek  | OP                               | ND                              | ND                      | 02/2016–<br>06/2021                | 62                             | ND                            |
| Artondale Creek  | ТР                               | ND                              | ND                      | 01/2016–<br>06/2021                | 62                             | ND                            |
| Artondale Creek  | TPN                              | ND                              | ND                      | 01/2017–<br>06/2021                | 46                             | ND                            |
| Big Beef Creek   | NH4                              | 08/2006 –9/2011                 | 62                      | 11/2000–<br>09/2011                | 97                             | 20                            |
| Big Beef Creek   | DOC                              | ND                              | ND                      | 04/2007–<br>06/2015                | 9                              | ND                            |
| Big Beef Creek   | тос                              | ND                              | ND                      | 10/2004–<br>02/2011                | 16                             | ND                            |

 Table B1-4. Differences in data availability between Opt1 and Opt2.

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Big Beef Creek   | DO                               | 08/2006–9/2011                  | 62                      | 01/2006–<br>09/2011                | 69                             | ND                            |
| Big Beef Creek   | Temp                             | 08/2006–9/2011                  | 60                      | 01/2006–<br>09/2011                | 67                             | ND                            |
| Big Beef Creek   | рН                               | 08/2006–9/2011                  | 59                      | 01/2006–<br>09/2011                | 66                             | ND                            |
| Big Beef Creek   | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–9/2011                  | 62                      | 10/2000–<br>06/2015                | 104                            | 21                            |
| Big Beef Creek   | OP                               | 08/2006–9/2011                  | 62                      | 10/2000–<br>06/2015                | 97                             | 27                            |
| Big Beef Creek   | ТР                               | 08/2006–9/2011                  | 62                      | 10/2000–<br>06/2015                | 102                            | 22                            |
| Big Beef Creek   | TPN                              | 08/2006–9/2011                  | 62                      | 11/2000–<br>09/2011                | 88                             | 29                            |
| Big Quilcene     | NH <sub>4</sub>                  | ND                              | ND                      | 01/1999–<br>09/2010                | 44                             | ND                            |
| Big Quilcene     | DO                               | ND                              | ND                      | 01/1999–<br>12/2015                | 58                             | ND                            |
| Big Quilcene     | Temp                             | ND                              | ND                      | 01/1999–<br>12/2015                | 58                             | ND                            |
| Big Quilcene     | рН                               | ND                              | ND                      | 01/1999–<br>12/2015                | 58                             | ND                            |
| Big Quilcene     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/1999–<br>09/2010                | 45                             | ND                            |
| Big Quilcene     | OP                               | ND                              | ND                      | 01/1999–<br>09/2010                | 44                             | ND                            |
| Big Quilcene     | ТР                               | ND                              | ND                      | 01/1999–<br>09/2010                | 44                             | ND                            |
| Big Quilcene     | TPN                              | ND                              | ND                      | 01/1999–<br>09/2010                | 44                             | ND                            |
| Blackjack Cr     | NH4                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Blackjack Cr     | DOC                              | ND                              | ND                      | 05/2008–<br>12/2015                | 14                             | ND                            |
| Blackjack Cr     | DO                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Blackjack Cr     | Temp                             | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Blackjack Cr     | рН                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Blackjack Cr     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 05/2008–<br>12/2015                | 14                             | ND                            |
| Blackjack Cr     | OP                               | ND                              | ND                      | 05/2008–<br>12/2015                | 14                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Blackjack Cr     | ТР                               | ND                              | ND                      | 05/2008–<br>12/2015                | 14                             | ND                            |
| Blackjack Cr     | TPN                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Burley Creek     | NH4                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | OP                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | ТР                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Burley Creek     | TPN                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Butler Creek     | NH <sub>4</sub>                  | ND                              | ND                      | 01/1996–<br>10/2007                | 25                             | ND                            |
| Butler Creek     | DOC                              | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Butler Creek     | тос                              | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Butler Creek     | DO                               | ND                              | ND                      | 01/1996–<br>10/2007                | 22                             | ND                            |
| Butler Creek     | Temp                             | ND                              | ND                      | 01/1996–<br>10/2007                | 35                             | ND                            |
| Butler Creek     | рН                               | ND                              | ND                      | 01/1996–<br>10/2007                | 56                             | ND                            |
| Butler Creek     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/1996–<br>10/2007                | 25                             | ND                            |
| Butler Creek     | OP                               | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Butler Creek     | ТР                               | ND                              | ND                      | 01/1996–<br>10/2007                | 25                             | ND                            |
| Butler Creek     | TPN                              | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Chambers Creek   | NH4                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | OP                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | ТР                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Chambers Creek   | TPN                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>06/2015                | 22                             | ND                            |
| Coulter Creek    | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 18                             | ND                            |
| Coulter Creek    | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006-10/2007                 | 14                      | 08/2006–<br>06/2015                | 22                             | ND                            |
| Coulter Creek    | OP                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>06/2015                | 22                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Coulter Creek    | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | ТР                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>06/2015                | 22                             | ND                            |
| Coulter Creek    | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Coulter Creek    | TPN                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Cranberry Creek  | NH4                              | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | DOC                              | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | тос                              | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | DO                               | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | Temp                             | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | OP                               | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | ТР                               | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Cranberry Creek  | TPN                              | ND                              | ND                      | 03/1999–<br>10/2007                | 11                             | ND                            |
| Dabob Bay        | NH <sub>4</sub>                  | ND                              | ND                      | 10/2006–<br>08/2021                | 38                             | ND                            |
| Dabob Bay        | DOC                              | ND                              | ND                      | 10/2019–<br>08/2021                | 14                             | ND                            |
| Dabob Bay        | тос                              | ND                              | ND                      | 10/2020–<br>08/2021                | 10                             | ND                            |
| Dabob Bay        | DO                               | ND                              | ND                      | 10/2006–<br>08/2021                | 28                             | ND                            |
| Dabob Bay        | Temp                             | ND                              | ND                      | 10/2006–<br>08/2021                | 28                             | ND                            |
| Dabob Bay        | рН                               | ND                              | ND                      | 11/2006–<br>08/2021                | 25                             | ND                            |
| Dabob Bay        | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 10/2006–<br>08/2021                | 38                             | ND                            |
| Dabob Bay        | ОР                               | ND                              | ND                      | 10/2006–<br>08/2021                | 26                             | ND                            |
| Dabob Bay        | ТР                               | ND                              | ND                      | 10/2006–<br>08/2021                | 38                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                                     | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Dabob Bay        | TPN                              | ND                                                                  | ND                      | 10/2006–<br>08/2021                | 27                             | ND                            |
| Des Moines Cr    | NH4                              | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 35                             | ND                            |
| Des Moines Cr    | DO                               | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 35                             | ND                            |
| Des Moines Cr    | Temp                             | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 36                             | ND                            |
| Des Moines Cr    | рН                               | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 36                             | ND                            |
| Des Moines Cr    | NO <sub>3</sub> -NO <sub>2</sub> | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 35                             | ND                            |
| Des Moines Cr    | OP                               | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 35                             | ND                            |
| Des Moines Cr    | ТР                               | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 35                             | ND                            |
| Des Moines Cr    | TPN                              | ND                                                                  | ND                      | 10/2003–<br>09/2021                | 35                             | ND                            |
| Deschutes R.     | NH <sub>4</sub>                  | 08/2006–12/2018                                                     | 149                     | 01/1999–<br>08/2021                | 208                            | 49                            |
| Deschutes R.     | DOC                              | 08/2006–10/2007,<br>2010 (2 mo),<br>2011 (4mo),<br>10/2017–12/2018  | 36                      | 03/1999–<br>08/2021                | 67                             | ND                            |
| Deschutes R.     | тос                              | 08/2006–10/2007,<br>2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 34                      | 03/1999–<br>08/2021                | 53                             | ND                            |
| Deschutes R.     | DO                               | 08/2006–12/2018                                                     | 150                     | 01/2006–<br>02/2019                | 127                            | 32                            |
| Deschutes R.     | Temp                             | 08/2006–12/2018                                                     | 148                     | 01/2006–<br>01/2019                | 131                            | 26                            |
| Deschutes R.     | рН                               | 08/2006–12/2018                                                     | 147                     | 01/2006–<br>02/2019                | 124                            | 31                            |
| Deschutes R.     | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                                     | 475                     | 02/1999–<br>08/2021                | 356                            | 83                            |
| Deschutes R.     | ОР                               | 08/2006–12/2018                                                     | 148                     | 01/1999–<br>08/2021                | 216                            | 41                            |
| Deschutes R.     | DTP                              | 08/2006–10/2007                                                     | 15                      | 07/2006–<br>10/2007                | 16                             | ND                            |
| Deschutes R.     | ТР                               | 08/2006–12/2018                                                     | 149                     | 03/1999–<br>08/2021                | 205                            | 52                            |
| Deschutes R.     | DTPN                             | 08/2006–10/2007,<br>07/2009–10/2009                                 | 19                      | ND                                 | ND                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Deschutes R.     | TPN                              | 08/2006–12/2018                 | 150                     | 01/1999–<br>07/2021                | 199                            | 64                            |
| Discovery Bay 1  | NH4                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | DOC                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | DO                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | Temp                             | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | рН                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | OP                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | ТР                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Discovery Bay 1  | TPN                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Dosewallips      | NH <sub>4</sub>                  | ND                              | ND                      | 11/2017–<br>10/2018                | 21                             | ND                            |
| Dosewallips      | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2017–<br>10/2018                | 21                             | ND                            |
| Dosewallips      | ТР                               | ND                              | ND                      | 11/2017–<br>10/2018                | 21                             | ND                            |
| Dosewallips      | TPN                              | ND                              | ND                      | 11/2017–<br>10/2018                | 21                             | ND                            |
| Drayton Harbor   | NH <sub>4</sub>                  | ND                              | ND                      | 01/2004–<br>07/2006                | 26                             | ND                            |
| Drayton Harbor   | DO                               | ND                              | ND                      | 06/2002–<br>12/2008                | 92                             | ND                            |
| Drayton Harbor   | Temp                             | ND                              | ND                      | 06/2002–<br>12/2008                | 91                             | ND                            |
| Drayton Harbor   | рН                               | ND                              | ND                      | 01/2004–<br>12/2008                | 48                             | ND                            |
| Drayton Harbor   | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2004–<br>07/2006                | 26                             | ND                            |
| Drayton Harbor   | OP                               | ND                              | ND                      | 01/2004–<br>07/2006                | 26                             | ND                            |
| Drayton Harbor   | ТР                               | ND                              | ND                      | 01/2004–<br>07/2006                | 26                             | ND                            |
| Drayton Harbor   | TPN                              | ND                              | ND                      | 01/2004–<br>07/2006                | 26                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Duckabush        | NH4                              | 08/2006–12/2018                                 | 147                     | 01/1999–<br>08/2021                | 204                            | 54                            |
| Duckabush        | DOC                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>09/2019                | 31                             | ND                            |
| Duckabush        | тос                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 21                      | 07/2010–<br>09/2018                | 21                             | ND                            |
| Duckabush        | DO                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 124                            | 31                            |
| Duckabush        | Temp                             | 08/2006–12/2018                                 | 143                     | 01/2006–<br>02/2019                | 124                            | 28                            |
| Duckabush        | рН                               | 08/2006–12/2018                                 | 143                     | 01/2006–<br>02/2019                | 120                            | 31                            |
| Duckabush        | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 146                     | 02/1999–<br>07/2021                | 205                            | 54                            |
| Duckabush        | ОР                               | 08/2006–12/2018                                 | 145                     | 01/1999–<br>08/2021                | 205                            | 51                            |
| Duckabush        | ТР                               | 08/2006–12/2018                                 | 145                     | 01/1999–<br>08/2021                | 205                            | 52                            |
| Duckabush        | TPN                              | 08/2006–12/2018                                 | 144                     | 01/1999–<br>08/2021                | 212                            | 45                            |
| Dungeness        | NH4                              | ND                                              | ND                      | 11/1999–<br>03/2014                | 105                            | 29                            |
| Dungeness        | DOC                              | ND                                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Dungeness        | тос                              | ND                                              | ND                      | 11/2021–<br>03/2022                | 5                              | ND                            |
| Dungeness        | DO                               | ND                                              | ND                      | 10/2000–<br>09/2006                | 72                             | ND                            |
| Dungeness        | Temp                             | ND                                              | ND                      | 10/2000–<br>09/2006                | 72                             | ND                            |
| Dungeness        | рН                               | ND                                              | ND                      | 10/2000–<br>09/2006                | 72                             | ND                            |
| Dungeness        | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 11/1999–<br>03/2014                | 112                            | 27                            |
| Dungeness        | OP                               | ND                                              | ND                      | 11/1999–<br>03/2014                | 91                             | 23                            |
| Dungeness        | ТР                               | ND                                              | ND                      | 11/1999–<br>03/2014                | 117                            | 23                            |
| Dungeness        | TPN                              | ND                                              | ND                      | 11/1999–<br>03/2014                | 98                             | 19                            |
| Dutcher Creek    | NH <sub>4</sub>                  | ND                                              | ND                      | 01/2017–<br>06/2021                | 51                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Dutcher Creek    | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| Dutcher Creek    | DO                               | ND                              | ND                      | 01/2016–<br>07/2021                | 68                             | ND                            |
| Dutcher Creek    | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 44                             | ND                            |
| Dutcher Creek    | рН                               | ND                              | ND                      | 01/2016–<br>07/2021                | 67                             | ND                            |
| Dutcher Creek    | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>06/2021                | 63                             | ND                            |
| Dutcher Creek    | OP                               | ND                              | ND                      | 02/2016–<br>06/2021                | 63                             | ND                            |
| Dutcher Creek    | ТР                               | ND                              | ND                      | 01/2016–<br>06/2021                | 64                             | ND                            |
| Dutcher Creek    | TPN                              | ND                              | ND                      | 01/2017–<br>06/2021                | 50                             | ND                            |
| Dyes Inlet       | NH4                              | ND                              | ND                      | 10/2007–<br>02/2020                | 17                             | ND                            |
| Dyes Inlet       | DO                               | ND                              | ND                      | 10/2007–<br>06/2020                | 18                             | ND                            |
| Dyes Inlet       | Temp                             | ND                              | ND                      | 10/2007–<br>06/2020                | 17                             | ND                            |
| Dyes Inlet       | рН                               | ND                              | ND                      | 10/2007–<br>06/2020                | 18                             | ND                            |
| Dyes Inlet       | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 10/2007–<br>02/2020                | 17                             | ND                            |
| Dyes Inlet       | OP                               | ND                              | ND                      | 10/2007–<br>02/2020                | 17                             | ND                            |
| Dyes Inlet       | ТР                               | ND                              | ND                      | 10/2007–<br>02/2020                | 17                             | ND                            |
| Dyes Inlet       | TPN                              | ND                              | ND                      | 10/2007–<br>02/2020                | 17                             | ND                            |
| Ellis Creek      | NH4                              | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Ellis Creek      | DOC                              | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Ellis Creek      | тос                              | ND                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Ellis Creek      | DO                               | ND                              | ND                      | 12/2002–<br>09/2012                | 79                             | ND                            |
| Ellis Creek      | Temp                             | ND                              | ND                      | 12/2002–<br>09/2012                | 73                             | 21                            |
| Ellis Creek      | рН                               | ND                              | ND                      | 12/2002–<br>09/2012                | 80                             | 35                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Ellis Creek      | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 01/2003–<br>08/2012                | 67                             | 16                            |
| Ellis Creek      | OP                               | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Ellis Creek      | ТР                               | ND                                              | ND                      | 12/2002–<br>08/2012                | 66                             | 17                            |
| Ellis Creek      | TPN                              | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Ellisport        | NH4                              | ND                                              | ND                      | 02/2007–<br>12/2017                | 79                             | 19                            |
| Ellisport        | DO                               | ND                                              | ND                      | 12/2006–<br>11/2017                | 69                             | 28                            |
| Ellisport        | Temp                             | ND                                              | ND                      | 12/2006–<br>11/2017                | 78                             | 20                            |
| Ellisport        | рН                               | ND                                              | ND                      | 12/2006–<br>11/2017                | 83                             | 15                            |
| Ellisport        | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 12/2006–<br>12/2017                | 78                             | 20                            |
| Ellisport        | ОР                               | ND                                              | ND                      | 12/2006–<br>12/2017                | 77                             | 21                            |
| Ellisport        | ТР                               | ND                                              | ND                      | 12/2006–<br>12/2017                | 84                             | 14                            |
| Ellisport        | TPN                              | ND                                              | ND                      | 12/2006–<br>12/2017                | 81                             | 17                            |
| Elwha            | NH <sub>4</sub>                  | 08/2006–12/2018                                 | 147                     | 01/1999–<br>08/2021                | 211                            | 51                            |
| Elwha            | DOC                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 07/2010–<br>08/2021                | 46                             | ND                            |
| Elwha            | тос                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 07/2010–<br>08/2021                | 31                             | ND                            |
| Elwha            | DO                               | 08/2006–12/2018                                 | 147                     | 01/2006–<br>02/2019                | 137                            | 19                            |
| Elwha            | Temp                             | 08/2006–12/2018                                 | 145                     | 01/2006–<br>02/2019                | 124                            | 30                            |
| Elwha            | рН                               | 08/2006–12/2018                                 | 143                     | 01/2006–<br>02/2019                | 139                            | 13                            |
| Elwha            | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 146                     | 01/1999–<br>07/2021                | 209                            | 52                            |
| Elwha            | OP                               | 08/2006–12/2018                                 | 146                     | 01/1999–<br>08/2021                | 199                            | 61                            |
| Elwha            | ТР                               | 08/2006–12/2018                                 | 145                     | 01/1999–<br>08/2021                | 213                            | 47                            |

| River Regression    | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|---------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Elwha               | TPN                              | 08/2006–12/2018                 | 147                     | 01/1999–<br>08/2021                | 212                            | 50                            |
| False Bay Creek     | NH4                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| False Bay Creek     | DOC                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| False Bay Creek     | DO                               | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| False Bay Creek     | Temp                             | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| False Bay Creek     | рН                               | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| False Bay Creek     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| False Bay Creek     | ОР                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| False Bay Creek     | ТР                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| False Bay Creek     | TPN                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Federal Way         | $NH_4$                           | ND                              | ND                      | 10/2010–<br>12/2015                | 24                             | ND                            |
| Federal Way         | DOC                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Federal Way         | DO                               | ND                              | ND                      | 10/2010–<br>12/2015                | 25                             | ND                            |
| Federal Way         | Temp                             | ND                              | ND                      | 10/2010–<br>12/2015                | 25                             | ND                            |
| Federal Way         | рН                               | ND                              | ND                      | 10/2010–<br>12/2015                | 25                             | ND                            |
| Federal Way         | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 10/2010–<br>12/2015                | 24                             | ND                            |
| Federal Way         | OP                               | ND                              | ND                      | 10/2010–<br>12/2015                | 24                             | ND                            |
| Federal Way         | ТР                               | ND                              | ND                      | 10/2010–<br>12/2015                | 24                             | ND                            |
| Federal Way         | TPN                              | ND                              | ND                      | 10/2010–<br>12/2015                | 24                             | ND                            |
| Fraser <sup>3</sup> | NH4                              | ND                              | ND                      | 05/2011–<br>10/2018                | 92                             | 22                            |
| Fraser <sup>3</sup> | DOC                              | 08/2006-12/2018                 | 258                     | 09/2008-<br>11/2018                | 122                            | 25                            |
| Fraser <sup>3</sup> | DO                               | 08/2006–12/2018                 | 235                     | 09/2008–<br>08/2018                | 73                             | ND                            |

| River Regression      | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|-----------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Fraser <sup>3</sup>   | Temp                             | 08/2006–05/2015                 | 193                     | 09/2008–<br>05/2015                | 76                             | ND                            |
| Fraser <sup>3</sup>   | рН                               | 08/2006–12/2018                 | 261                     | 09/2008-<br>11/2018                | 123                            | 24                            |
| Fraser <sup>3</sup>   | NO <sub>3</sub> -NO <sub>2</sub> | 09/2006–12/2018                 | 235                     | 09/2008–<br>11/2018                | 122                            | 25                            |
| Fraser <sup>3</sup>   | DTP                              | 08/2006–12/2018                 | 257                     | 09/2008-<br>11/2018                | 122                            | ND                            |
| Fraser <sup>3</sup>   | ТР                               | 08/2006–12/2018                 | 251                     | 09/2008-<br>11/2018                | 115                            | 25                            |
| Fraser <sup>3</sup>   | DTPN                             | 09/2006–12/2018                 | 253                     | 10/2008–<br>10/2018                | 118                            | 27                            |
| Fraser <sup>3</sup>   | TPN                              | 09/2006–12/2018                 | 211                     | 05/2009–<br>11/2018                | 110                            | 26                            |
| Gig Harbor            | NH <sub>4</sub>                  | ND                              | ND                      | 01/2017–<br>12/2020                | 40                             | ND                            |
| Gig Harbor            | DOC                              | ND                              | ND                      | 04/2015–<br>06/2015                | 10                             | ND                            |
| Gig Harbor            | тос                              | ND                              | ND                      | 10/2017–<br>12/2020                | 39                             | ND                            |
| Gig Harbor            | DO                               | ND                              | ND                      | 01/2016–<br>12/2020                | 62                             | ND                            |
| Gig Harbor            | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 46                             | ND                            |
| Gig Harbor            | рН                               | ND                              | ND                      | 01/2016–<br>12/2020                | 61                             | ND                            |
| Gig Harbor            | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 12/2013–<br>12/2020                | 63                             | ND                            |
| Gig Harbor            | OP                               | ND                              | ND                      | 04/2015–<br>12/2020                | 67                             | ND                            |
| Gig Harbor            | ТР                               | ND                              | ND                      | 08/2012–<br>12/2020                | 70                             | 15                            |
| Gig Harbor            | TPN                              | ND                              | ND                      | 01/2017–<br>12/2020                | 39                             | ND                            |
| Goldsborough<br>Creek | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 01/1999–<br>12/2015                | 35                             | ND                            |
| Goldsborough<br>Creek | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>12/2015                | 26                             | ND                            |
| Goldsborough<br>Creek | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Goldsborough<br>Creek | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Goldsborough<br>Creek | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |

| River Regression      | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|-----------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Goldsborough<br>Creek | рН                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Goldsborough<br>Creek | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                                 | 14                      | 01/1999–<br>12/2015                | 35                             | ND                            |
| Goldsborough<br>Creek | OP                               | 08/2006–10/2007                                 | 14                      | 01/1999–<br>12/2015                | 35                             | ND                            |
| Goldsborough<br>Creek | DTP                              | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Goldsborough<br>Creek | ТР                               | 08/2006–10/2007                                 | 14                      | 01/1999–<br>12/2015                | 35                             | ND                            |
| Goldsborough<br>Creek | DTPN                             | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Goldsborough<br>Creek | TPN                              | 08/2006–10/2007                                 | 14                      | 01/1999–<br>12/2015                | 35                             | ND                            |
| Green Cove            | DO                               | ND                                              | ND                      | 01/1999–<br>09/2012                | 96                             | 34                            |
| Green Cove            | Temp                             | ND                                              | ND                      | 01/1999–<br>09/2012                | 95                             | 39                            |
| Green Cove            | рН                               | ND                                              | ND                      | 01/1999–<br>08/2012                | 108                            | 26                            |
| Green Cove            | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 02/1999–<br>08/2012                | 109                            | 25                            |
| Green Cove            | ТР                               | ND                                              | ND                      | 01/1999–<br>09/2012                | 105                            | 29                            |
| Green River           | NH <sub>4</sub>                  | 08/2006–12/2018                                 | 147                     | 01/1999–<br>09/2021                | 207                            | 55                            |
| Green River           | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 37                      | 07/2006–<br>10/2021                | 62                             | ND                            |
| Green River           | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 34                      | 07/2006–<br>10/2021                | 46                             | ND                            |
| Green River           | DO                               | 08/2006–12/2018                                 | 148                     | 01/2006–<br>02/2019                | 121                            | 36                            |
| Green River           | Temp                             | 08/2006–12/2018                                 | 147                     | 01/2006–<br>11/2018                | 128                            | 28                            |
| Green River           | рН                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 121                            | 34                            |
| Green River           | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 149                     | 01/1999–<br>10/2021                | 210                            | 56                            |
| Green River           | OP                               | 08/2006–12/2018                                 | 147                     | 02/1999–<br>09/2021                | 205                            | 54                            |
| Green River           | DTP                              | 08/2006–10/2007                                 | 15                      | 11/2001–<br>10/2007                | 17                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Green River      | ТР                               | 08/2006–12/2018                 | 148                     | 01/1999–<br>10/2021                | 202                            | 62                            |
| Green River      | DTPN                             | 08/2006–09/2009                 | 19                      | 11/2001–<br>10/2009                | 5                              | ND                            |
| Green River      | TPN                              | 08/2006–12/2018                 | 149                     | 03/1999–<br>09/2021                | 217                            | 47                            |
| Green Valley Cr  | NH <sub>4</sub>                  | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | DO                               | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | Temp                             | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | рН                               | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | OP                               | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | ТР                               | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Green Valley Cr  | TPN                              | ND                              | ND                      | 11/2006–<br>12/2007                | 14                             | ND                            |
| Hamma Hamma      | NH <sub>4</sub>                  | ND                              | ND                      | 11/2010–<br>09/2019                | 80                             | 21                            |
| Hamma Hamma      | DOC                              | ND                              | ND                      | 10/2010–<br>09/2019                | 29                             | ND                            |
| Hamma Hamma      | тос                              | ND                              | ND                      | 10/2010–<br>08/2018                | 18                             | ND                            |
| Hamma Hamma      | DO                               | ND                              | ND                      | 10/2010–<br>02/2019                | 77                             | 19                            |
| Hamma Hamma      | Temp                             | ND                              | ND                      | 10/2010–<br>02/2019                | 68                             | 24                            |
| Hamma Hamma      | рН                               | ND                              | ND                      | 10/2010–<br>02/2019                | 73                             | 19                            |
| Hamma Hamma      | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 10/2010–<br>09/2019                | 77                             | 22                            |
| Hamma Hamma      | OP                               | ND                              | ND                      | 10/2010–<br>09/2019                | 86                             | 16                            |
| Hamma Hamma      | ТР                               | ND                              | ND                      | 10/2010–<br>08/2019                | 84                             | 15                            |
| Hamma Hamma      | TPN                              | ND                              | ND                      | 10/2010–<br>09/2019                | 77                             | 22                            |
| Herron Creek     | NH <sub>4</sub>                  | ND                              | ND                      | 01/2017–<br>08/2017                | 8                              | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Herron Creek     | DO                               | ND                              | ND                      | 01/2016–<br>09/2017                | 22                             | ND                            |
| Herron Creek     | Temp                             | ND                              | ND                      | 01/2016–<br>09/2017                | 22                             | ND                            |
| Herron Creek     | рН                               | ND                              | ND                      | 01/2016–<br>09/2017                | 22                             | ND                            |
| Herron Creek     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>08/2017                | 20                             | ND                            |
| Herron Creek     | OP                               | ND                              | ND                      | 02/2016–<br>09/2017                | 16                             | ND                            |
| Herron Creek     | ТР                               | ND                              | ND                      | 01/2016–<br>09/2017                | 17                             | ND                            |
| Herron Creek     | TPN                              | ND                              | ND                      | 01/2017–<br>08/2017                | 8                              | ND                            |
| Hylebos Cr       | NH <sub>4</sub>                  | ND                              | ND                      | 07/2007–<br>12/2015                | 28                             | ND                            |
| Hylebos Cr       | DOC                              | ND                              | ND                      | 07/2007–<br>12/2015                | 16                             | ND                            |
| Hylebos Cr       | DO                               | ND                              | ND                      | 07/2007–<br>12/2015                | 29                             | ND                            |
| Hylebos Cr       | Temp                             | ND                              | ND                      | 07/2007–<br>12/2015                | 29                             | ND                            |
| Hylebos Cr       | рН                               | ND                              | ND                      | 07/2007–<br>12/2015                | 29                             | ND                            |
| Hylebos Cr       | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 07/2007–<br>12/2015                | 28                             | ND                            |
| Hylebos Cr       | OP                               | ND                              | ND                      | 07/2007–<br>12/2015                | 28                             | ND                            |
| Hylebos Cr       | ТР                               | ND                              | ND                      | 07/2007–<br>12/2015                | 28                             | ND                            |
| Hylebos Cr       | TPN                              | ND                              | ND                      | 07/2007–<br>12/2015                | 28                             | ND                            |
| Hylebos Cr       | NH4                              | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Hylebos Cr       | DOC                              | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Hylebos Cr       | тос                              | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Hylebos Cr       | рН                               | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Hylebos Cr       | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Hylebos Cr       | OP                               | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Hylebos Cr       | ТР                               | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Hylebos Cr       | TPN                              | ND                              | ND                      | 03/2016–<br>04/2017                | 18                             | ND                            |
| Judd Cr          | NH4                              | ND                              | ND                      | 11/2006–<br>11/2017                | 98                             | 34                            |
| Judd Cr          | DOC                              | ND                              | ND                      | 07/2007–<br>09/2012                | 37                             | ND                            |
| Judd Cr          | тос                              | ND                              | ND                      | 07/2007–<br>09/2012                | 37                             | ND                            |
| Judd Cr          | DO                               | ND                              | ND                      | 12/2006–<br>12/2017                | 110                            | 23                            |
| Judd Cr          | Temp                             | ND                              | ND                      | 11/2006–<br>12/2017                | 117                            | 16                            |
| Judd Cr          | рН                               | ND                              | ND                      | 11/2006–<br>12/2017                | 109                            | 24                            |
| Judd Cr          | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2006–<br>12/2017                | 101                            | 32                            |
| Judd Cr          | OP                               | ND                              | ND                      | 11/2006–<br>12/2017                | 94                             | 39                            |
| Judd Cr          | ТР                               | ND                              | ND                      | 12/2006–<br>12/2017                | 108                            | 25                            |
| Judd Cr          | TPN                              | ND                              | ND                      | 11/2006–<br>12/2017                | 110                            | 23                            |
| Kennedy Creek    | $NH_4$                           | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | OP                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | ТР                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Kennedy Creek    | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Kennedy Creek    | TPN                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Liberty Bay      | NH4                              | ND                              | ND                      | 12/2006–<br>06/2015                | 14                             | ND                            |
| Liberty Bay      | DOC                              | ND                              | ND                      | 12/2006–<br>06/2015                | 15                             | ND                            |
| Liberty Bay      | DO                               | ND                              | ND                      | 10/2002–<br>09/2006                | 41                             | ND                            |
| Liberty Bay      | Temp                             | ND                              | ND                      | 10/2002–<br>09/2006                | 42                             | ND                            |
| Liberty Bay      | рН                               | ND                              | ND                      | 10/2002–<br>09/2006                | 39                             | ND                            |
| Liberty Bay      | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 12/2006–<br>06/2015                | 14                             | ND                            |
| Liberty Bay      | OP                               | ND                              | ND                      | 12/2006–<br>06/2015                | 14                             | ND                            |
| Liberty Bay      | ТР                               | ND                              | ND                      | 12/2006–<br>06/2015                | 14                             | ND                            |
| Liberty Bay      | TPN                              | ND                              | ND                      | 12/2006–<br>06/2015                | 14                             | ND                            |
| Little Quilcene  | NH <sub>4</sub>                  | ND                              | ND                      | 11/2016–<br>10/2017                | 36                             | ND                            |
| Little Quilcene  | DO                               | ND                              | ND                      | 10/2012–<br>12/2015                | 25                             | ND                            |
| Little Quilcene  | Temp                             | ND                              | ND                      | 10/2012–<br>12/2015                | 25                             | ND                            |
| Little Quilcene  | рН                               | ND                              | ND                      | 10/2012–<br>12/2015                | 25                             | ND                            |
| Little Quilcene  | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2016–<br>10/2017                | 36                             | ND                            |
| Little Quilcene  | ТР                               | ND                              | ND                      | 11/2016–<br>10/2017                | 36                             | ND                            |
| Lynch Cove       | $NH_4$                           | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |
| Lynch Cove       | DO                               | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |
| Lynch Cove       | Temp                             | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |
| Lynch Cove       | рН                               | ND                              | ND                      | 01/1999–<br>09/2003                | 23                             | ND                            |
| Lynch Cove       | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Lynch Cove       | ОР                               | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |
| Lynch Cove       | ТР                               | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |
| Lynch Cove       | TPN                              | ND                              | ND                      | 01/1999–<br>09/2003                | 24                             | ND                            |
| Magnolia Bch     | NH <sub>4</sub>                  | ND                              | ND                      | 01/2007–<br>12/2015                | 69                             | 22                            |
| Magnolia Bch     | DOC                              | ND                              | ND                      | 01/2010–<br>09/2012                | 33                             | ND                            |
| Magnolia Bch     | тос                              | ND                              | ND                      | 01/2010–<br>09/2012                | 33                             | ND                            |
| Magnolia Bch     | DO                               | ND                              | ND                      | 11/2006–<br>12/2015                | 73                             | 18                            |
| Magnolia Bch     | Temp                             | ND                              | ND                      | 11/2006–<br>12/2015                | 74                             | 17                            |
| Magnolia Bch     | рН                               | ND                              | ND                      | 12/2006–<br>10/2015                | 69                             | 22                            |
| Magnolia Bch     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2006–<br>12/2015                | 68                             | 23                            |
| Magnolia Bch     | OP                               | ND                              | ND                      | 11/2006–<br>12/2015                | 70                             | 21                            |
| Magnolia Bch     | ТР                               | ND                              | ND                      | 12/2006–<br>12/2015                | 71                             | 20                            |
| Magnolia Bch     | TPN                              | ND                              | ND                      | 11/2006–<br>12/2015                | 75                             | 16                            |
| McAllister Creek | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 04/2001–<br>10/2007                | 25                             | ND                            |
| McAllister Creek | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McAllister Creek | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McAllister Creek | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McAllister Creek | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McAllister Creek | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McAllister Creek | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 04/2001–<br>10/2007                | 25                             | ND                            |
| McAllister Creek | ОР                               | 08/2006–10/2007                 | 14                      | 07/2002–<br>10/2007                | 22                             | ND                            |
| McAllister Creek | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| McAllister Creek | ТР                               | 08/2006–10/2007                 | 14                      | 04/2001–<br>10/2007                | 25                             | ND                            |
| McAllister Creek | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McAllister Creek | TPN                              | 08/2006–10/2007                 | 14                      | 04/2001–<br>10/2007                | 25                             | ND                            |
| McCorkmick Creek | NH <sub>4</sub>                  | ND                              | ND                      | 01/2017–<br>06/2021                | 51                             | ND                            |
| McCorkmick Creek | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| McCorkmick Creek | DO                               | ND                              | ND                      | 01/2016–<br>07/2021                | 70                             | ND                            |
| McCorkmick Creek | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 46                             | ND                            |
| McCorkmick Creek | рН                               | ND                              | ND                      | 01/2016–<br>07/2021                | 69                             | ND                            |
| McCorkmick Creek | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>06/2021                | 63                             | ND                            |
| McCorkmick Creek | OP                               | ND                              | ND                      | 02/2016–<br>06/2021                | 63                             | ND                            |
| McCorkmick Creek | ТР                               | ND                              | ND                      | 01/2016–<br>06/2021                | 63                             | ND                            |
| McCorkmick Creek | TPN                              | ND                              | ND                      | 01/2017–<br>06/2021                | 50                             | ND                            |
| McLane Creek     | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | OP                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | ТР                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| McLane Creek     | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| McLane Creek     | TPN                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Mill Creek       | NH4                              | ND                              | ND                      | 03/1999–<br>12/2015                | 19                             | ND                            |
| Mill Creek       | DOC                              | ND                              | ND                      | 03/1999–<br>12/2015                | 19                             | ND                            |
| Mill Creek       | DO                               | ND                              | ND                      | 03/1999–<br>12/2015                | 20                             | ND                            |
| Mill Creek       | Temp                             | ND                              | ND                      | 03/1999–<br>12/2015                | 20                             | ND                            |
| Mill Creek       | рН                               | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Mill Creek       | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 03/1999–<br>12/2015                | 19                             | ND                            |
| Mill Creek       | OP                               | ND                              | ND                      | 03/1999–<br>12/2015                | 19                             | ND                            |
| Mill Creek       | ТР                               | ND                              | ND                      | 03/1999–<br>12/2015                | 19                             | ND                            |
| Mill Creek       | TPN                              | ND                              | ND                      | 03/1999–<br>12/2015                | 19                             | ND                            |
| Miller Ck        | NH4                              | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | DOC                              | ND                              | ND                      | 07/2006–<br>09/2019                | 19                             | ND                            |
| Miller Ck        | DO                               | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | Temp                             | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | рН                               | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | OP                               | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | ТР                               | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Miller Ck        | TPN                              | ND                              | ND                      | 10/2003–<br>09/2019                | 40                             | ND                            |
| Minter Creek     | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Minter Creek     | тос                              | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | DO                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | Temp                             | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | рН                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | OP                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | DTP                              | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | ТР                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | DTPN                             | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Minter Creek     | TPN                              | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Moxlie Creek     | $NH_4$                           | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Moxlie Creek     | DOC                              | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Moxlie Creek     | тос                              | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Moxlie Creek     | DO                               | ND                                              | ND                      | 11/1996–<br>09/2012                | 34                             | ND                            |
| Moxlie Creek     | Temp                             | ND                                              | ND                      | 11/1996–<br>09/2012                | 36                             | ND                            |
| Moxlie Creek     | рН                               | ND                                              | ND                      | 07/2003–<br>09/2012                | 19                             | ND                            |
| Moxlie Creek     | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Moxlie Creek     | OP                               | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Moxlie Creek     | ТР                               | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Moxlie Creek     | TPN                              | ND                                              | ND                      | 10/2004–<br>10/2007                | 8                              | ND                            |
| Nisqually River  | NH <sub>4</sub>                  | 08/2006–12/2018                                 | 147                     | 01/1999–<br>10/2021                | 225                            | 39                            |
| Nisqually River  | DOC                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 35                      | 03/1999–<br>10/2021                | 68                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Nisqually River  | тос                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 37                      | 03/1999–<br>10/2021                | 71                             | ND                            |
| Nisqually River  | DO                               | 08/2006–12/2018                                 | 147                     | 01/2006–<br>02/2019                | 122                            | 34                            |
| Nisqually River  | Temp                             | 08/2006–12/2018                                 | 145                     | 01/2006–<br>01/2019                | 125                            | 29                            |
| Nisqually River  | рН                               | 08/2006–12/2018                                 | 141                     | 03/2006–<br>02/2019                | 122                            | 27                            |
| Nisqually River  | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 147                     | 02/1999–<br>10/2021                | 217                            | 44                            |
| Nisqually River  | OP                               | 08/2006–12/2018                                 | 145                     | 02/1999–<br>10/2021                | 203                            | 57                            |
| Nisqually River  | DTP                              | 08/2006–10/2007                                 | 15                      | 07/2006–<br>10/2007                | 15                             | ND                            |
| Nisqually River  | ТР                               | 08/2006–12/2018                                 | 146                     | 02/1999–<br>08/2021                | 215                            | 48                            |
| Nisqually River  | DTPN                             | 08/2006-10/2009                                 | 19                      | ND                                 | ND                             | ND                            |
| Nisqually River  | TPN                              | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 213                            | 52                            |
| Nooksack River   | NH <sub>4</sub>                  | 08/2006–12/2018                                 | 147                     | 02/1999–<br>10/2021                | 198                            | 64                            |
| Nooksack River   | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>10/2021                | 48                             | ND                            |
| Nooksack River   | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>08/2021                | 47                             | ND                            |
| Nooksack River   | DO                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 133                            | 21                            |
| Nooksack River   | Temp                             | 08/2006–12/2018                                 | 147                     | 01/2006–<br>02/2019                | 129                            | 27                            |
| Nooksack River   | рН                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 121                            | 33                            |
| Nooksack River   | NO <sub>3</sub> -NO <sub>2</sub> | 09/2006–12/2018                                 | 147                     | 01/1999–<br>10/2021                | 219                            | 45                            |
| Nooksack River   | OP                               | 09/2006–12/2018                                 | 146                     | 01/1999–<br>09/2021                | 197                            | 64                            |
| Nooksack River   | ТР                               | 09/2006–12/2018                                 | 141                     | 01/1999–<br>10/2021                | 209                            | 46                            |
| Nooksack River   | TPN                              | 09/2006–12/2018                                 | 147                     | 02/1999–<br>10/2021                | 207                            | 58                            |
| Olalla Cr        | NH <sub>4</sub>                  | ND                                              | ND                      | 10/2002–<br>10/2007                | 16                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Olalla Cr        | DOC                              | ND                              | ND                      | 03/2007–<br>06/2015                | 18                             | ND                            |
| Olalla Cr        | тос                              | ND                              | ND                      | 03/2007–<br>10/2007                | 8                              | ND                            |
| Olalla Cr        | DO                               | ND                              | ND                      | 10/2002–<br>10/2007                | 16                             | ND                            |
| Olalla Cr        | Temp                             | ND                              | ND                      | 10/2002–<br>10/2007                | 16                             | ND                            |
| Olalla Cr        | рН                               | ND                              | ND                      | 10/2002–<br>10/2007                | 16                             | ND                            |
| Olalla Cr        | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 10/2002–<br>06/2015                | 30                             | ND                            |
| Olalla Cr        | OP                               | ND                              | ND                      | 10/2002–<br>06/2015                | 30                             | ND                            |
| Olalla Cr        | ТР                               | ND                              | ND                      | 10/2002–<br>06/2015                | 30                             | ND                            |
| Olalla Cr        | TPN                              | ND                              | ND                      | 10/2002–<br>10/2007                | 16                             | ND                            |
| Perry Creek      | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 01/1999–<br>10/2007                | 24                             | ND                            |
| Perry Creek      | DOC                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>10/2007                | 22                             | ND                            |
| Perry Creek      | тос                              | 08/2006–10/2007                 | 14                      | 01/1999–<br>10/2007                | 24                             | ND                            |
| Perry Creek      | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Perry Creek      | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Perry Creek      | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Perry Creek      | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 01/1999–<br>10/2007                | 24                             | ND                            |
| Perry Creek      | OP                               | 08/2006–10/2007                 | 14                      | 01/1999–<br>10/2007                | 23                             | ND                            |
| Perry Creek      | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Perry Creek      | ТР                               | 08/2006–10/2007                 | 14                      | 01/1999–<br>10/2007                | 24                             | ND                            |
| Perry Creek      | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Perry Creek      | TPN                              | 08/2006–10/2007                 | 14                      | 01/1999–<br>10/2007                | 24                             | ND                            |
| Purdy Creek      | NH <sub>4</sub>                  | ND                              | ND                      | 01/2017–<br>06/2021                | 50                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Purdy Creek      | тос                              | ND                                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| Purdy Creek      | DO                               | ND                                              | ND                      | 01/2016–<br>07/2021                | 70                             | ND                            |
| Purdy Creek      | Temp                             | ND                                              | ND                      | 01/2016–<br>09/2019                | 46                             | ND                            |
| Purdy Creek      | рН                               | ND                                              | ND                      | 01/2016–<br>07/2021                | 70                             | ND                            |
| Purdy Creek      | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 01/2016–<br>06/2021                | 62                             | ND                            |
| Purdy Creek      | OP                               | ND                                              | ND                      | 02/2016–<br>06/2021                | 63                             | ND                            |
| Purdy Creek      | ТР                               | ND                                              | ND                      | 01/2016–<br>06/2021                | 63                             | ND                            |
| Purdy Creek      | TPN                              | ND                                              | ND                      | 01/2017–<br>06/2021                | 49                             | ND                            |
| Puyallup River   | NH4                              | 08/2006–12/2018                                 | 149                     | 01/1999–<br>09/2021                | 216                            | 47                            |
| Puyallup River   | DOC                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 36                      | 03/1999–<br>10/2021                | 70                             | ND                            |
| Puyallup River   | тос                              | 2010 (2 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 37                      | 03/1999–<br>10/2021                | 64                             | ND                            |
| Puyallup River   | DO                               | 08/2006–12/2018                                 | 149                     | 01/2006–<br>02/2019                | 126                            | 32                            |
| Puyallup River   | Temp                             | 08/2006–12/2018                                 | 148                     | 01/2006–<br>02/2019                | 121                            | 36                            |
| Puyallup River   | рН                               | 08/2006–12/2018                                 | 144                     | 01/2006–<br>02/2019                | 120                            | 31                            |
| Puyallup River   | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 148                     | 02/1999–<br>10/2021                | 206                            | 59                            |
| Puyallup River   | OP                               | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 212                            | 52                            |
| Puyallup River   | DTP                              | 08/2006–10/2007                                 | 15                      | 12/2001–<br>10/2007                | 17                             | 0                             |
| Puyallup River   | ТР                               | 08/2006–12/2018                                 | 148                     | 02/1999–<br>10/2021                | 202                            | 57                            |
| Puyallup River   | DTPN                             | 08/2006–10/2009                                 | 19                      | 12/2001–<br>10/2009                | 6                              | ND                            |
| Puyallup River   | TPN                              | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 208                            | 56                            |
| Ray Nash Creek   | NH <sub>4</sub>                  | ND                                              | ND                      | 01/2017–<br>06/2021                | 49                             | ND                            |
| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Ray Nash Creek   | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| Ray Nash Creek   | DO                               | ND                              | ND                      | 01/2016–<br>07/2021                | 69                             | ND                            |
| Ray Nash Creek   | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 45                             | ND                            |
| Ray Nash Creek   | рН                               | ND                              | ND                      | 01/2016–<br>07/2021                | 68                             | ND                            |
| Ray Nash Creek   | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>06/2021                | 61                             | ND                            |
| Ray Nash Creek   | OP                               | ND                              | ND                      | 02/2016–<br>06/2021                | 64                             | ND                            |
| Ray Nash Creek   | ТР                               | ND                              | ND                      | 01/2016–<br>06/2021                | 64                             | ND                            |
| Ray Nash Creek   | TPN                              | ND                              | ND                      | 01/2017–<br>06/2021                | 48                             | ND                            |
| Rocky Creek      | NH4                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>06/2021                | 46                             | ND                            |
| Rocky Creek      | DOC                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Rocky Creek      | тос                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>06/2021                | 54                             | ND                            |
| Rocky Creek      | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>07/2021                | 48                             | ND                            |
| Rocky Creek      | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>09/2019                | 26                             | ND                            |
| Rocky Creek      | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>07/2021                | 48                             | ND                            |
| Rocky Creek      | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 03/1999–<br>06/2021                | 46                             | ND                            |
| Rocky Creek      | OP                               | 08/2006–10/2007                 | 14                      | 03/1999–<br>06/2021                | 48                             | ND                            |
| Rocky Creek      | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Rocky Creek      | ТР                               | 08/2006–10/2007                 | 14                      | 03/1999–<br>06/2021                | 48                             | ND                            |
| Rocky Creek      | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Rocky Creek      | TPN                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>06/2021                | 46                             | ND                            |
| Saltwater St Pk  | NH <sub>4</sub>                  | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Saltwater St Pk  | DOC                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Saltwater St Pk  | DO                               | ND                                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Saltwater St Pk  | Temp                             | ND                                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Saltwater St Pk  | рН                               | ND                                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Saltwater St Pk  | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Saltwater St Pk  | OP                               | ND                                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Saltwater St Pk  | ТР                               | ND                                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Saltwater St Pk  | TPN                              | ND                                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Samish River     | NH <sub>4</sub>                  | 08/2006–12/2018                                 | 148                     | 02/1999–<br>10/2021                | 216                            | 51                            |
| Samish River     | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>10/2021                | 50                             | ND                            |
| Samish River     | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>08/2021                | 38                             | ND                            |
| Samish River     | DO                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 113                            | 42                            |
| Samish River     | Temp                             | 08/2006–12/2018                                 | 148                     | 01/2006–<br>02/2019                | 130                            | 27                            |
| Samish River     | рН                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 125                            | 30                            |
| Samish River     | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 148                     | 01/1999–<br>09/2021                | 213                            | 54                            |
| Samish River     | OP                               | 08/2006–12/2018                                 | 147                     | 01/1999–<br>08/2021                | 207                            | 59                            |
| Samish River     | ТР                               | 08/2006–12/2018                                 | 148                     | 01/1999–<br>09/2021                | 207                            | 59                            |
| Samish River     | TPN                              | 08/2006–12/2018                                 | 147                     | 01/1999–<br>10/2021                | 211                            | 55                            |
| Sequim Bay S     | NH4                              | ND                                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sequim Bay S     | DO                               | ND                                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sequim Bay S     | Temp                             | ND                                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sequim Bay S     | рН                               | ND                                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Sequim Bay S     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sequim Bay S     | OP                               | ND                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sequim Bay S     | ТР                               | ND                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sequim Bay S     | TPN                              | ND                              | ND                      | 11/1999–<br>09/2001                | 23                             | ND                            |
| Sherwood Creek   | NH4                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>09/2013                | 33                             | ND                            |
| Sherwood Creek   | DOC                              | 08/2006–10/2007                 | 15                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Sherwood Creek   | тос                              | 08/2006–10/2007                 | 15                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Sherwood Creek   | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>09/2013                | 26                             | ND                            |
| Sherwood Creek   | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>09/2013                | 26                             | ND                            |
| Sherwood Creek   | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>09/2013                | 26                             | ND                            |
| Sherwood Creek   | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 03/1999–<br>09/2013                | 33                             | ND                            |
| Sherwood Creek   | OP                               | 08/2006–10/2007                 | 14                      | 03/1999–<br>09/2013                | 33                             | ND                            |
| Sherwood Creek   | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Sherwood Creek   | ТР                               | 08/2006–10/2007                 | 14                      | 03/1999–<br>09/2013                | 33                             | ND                            |
| Sherwood Creek   | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Sherwood Creek   | TPN                              | 08/2006–10/2007                 | 14                      | 03/1999–<br>09/2013                | 33                             | ND                            |
| Shingle Mill Cr  | NH4                              | ND                              | ND                      | 12/2006–<br>09/2015                | 74                             | 21                            |
| Shingle Mill Cr  | DOC                              | ND                              | ND                      | 07/2007–<br>09/2012                | 37                             | ND                            |
| Shingle Mill Cr  | тос                              | ND                              | ND                      | 07/2007–<br>09/2012                | 37                             | ND                            |
| Shingle Mill Cr  | DO                               | ND                              | ND                      | 11/2006–<br>12/2015                | 80                             | 15                            |
| Shingle Mill Cr  | Temp                             | ND                              | ND                      | 11/2006–<br>12/2015                | 81                             | 14                            |
| Shingle Mill Cr  | рН                               | ND                              | ND                      | 11/2006–<br>12/2015                | 80                             | 15                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Shingle Mill Cr  | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 12/2006–<br>12/2015                | 77                             | 18                            |
| Shingle Mill Cr  | OP                               | ND                                              | ND                      | 11/2006–<br>12/2015                | 73                             | 22                            |
| Shingle Mill Cr  | ТР                               | ND                                              | ND                      | 11/2006–<br>12/2015                | 76                             | 19                            |
| Shingle Mill Cr  | TPN                              | ND                                              | ND                      | 12/2006–<br>12/2015                | 81                             | 14                            |
| Skagit           | NH4                              | 08/2006–12/2018                                 | 145                     | 01/1999–<br>09/2021                | 199                            | 57                            |
| Skagit           | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>10/2021                | 47                             | ND                            |
| Skagit           | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>08/2021                | 46                             | ND                            |
| Skagit           | DO                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 127                            | 28                            |
| Skagit           | Temp                             | 08/2006–12/2018                                 | 148                     | 01/2006–<br>02/2019                | 132                            | 25                            |
| Skagit           | рН                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 128                            | 25                            |
| Skagit           | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 206                            | 60                            |
| Skagit           | ОР                               | 08/2006–12/2018                                 | 147                     | 02/1999–<br>10/2021                | 216                            | 50                            |
| Skagit           | ТР                               | 08/2006–12/2018                                 | 145                     | 01/1999–<br>10/2021                | 201                            | 63                            |
| Skagit           | TPN                              | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 207                            | 59                            |
| Skokomish        | NH <sub>4</sub>                  | 08/2006–10/2018                                 | 140                     | 01/1999–<br>07/2021                | 214                            | 45                            |
| Skokomish        | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–10/2018 | 19                      | 02/1996–<br>09/2019                | 68                             | ND                            |
| Skokomish        | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–10/2018 | 20                      | 02/1996–<br>09/2018                | 51                             | ND                            |
| Skokomish        | DO                               | 08/2006–10/2018                                 | 141                     | 01/2006–<br>02/2019                | 136                            | 19                            |
| Skokomish        | Temp                             | 08/2006–10/2018                                 | 137                     | 01/2006–<br>02/2019                | 132                            | 19                            |
| Skokomish        | рН                               | 08/2006–10/2018                                 | 136                     | 01/2006–<br>02/2019                | 134                            | 16                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Skokomish        | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2018                                 | 139                     | 03/1999–<br>07/2021                | 195                            | 62                            |
| Skokomish        | OP                               | 08/2006–10/2018                                 | 140                     | 01/1999–<br>08/2021                | 204                            | 54                            |
| Skokomish        | ТР                               | 08/2006–10/2018                                 | 140                     | 02/1999–<br>08/2021                | 208                            | 51                            |
| Skokomish        | TPN                              | 08/2006–10/2018                                 | 140                     | 01/1999–<br>08/2021                | 203                            | 56                            |
| Skookum Creek    | NH4                              | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Skookum Creek    | DOC                              | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Skookum Creek    | тос                              | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Skookum Creek    | DO                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Skookum Creek    | Temp                             | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Skookum Creek    | рН                               | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Skookum Creek    | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Skookum Creek    | OP                               | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Skookum Creek    | DTP                              | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Skookum Creek    | ТР                               | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Skookum Creek    | DTPN                             | 08/2006–10/2007                                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Skookum Creek    | TPN                              | 08/2006–10/2007                                 | 14                      | 03/1999–<br>10/2007                | 21                             | ND                            |
| Snohomish        | NH4                              | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 217                            | 49                            |
| Snohomish        | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>10/2021                | 46                             | ND                            |
| Snohomish        | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>10/2021                | 45                             | ND                            |
| Snohomish        | DO                               | 08/2006–12/2018                                 | 145                     | 01/2006–<br>02/2019                | 125                            | 29                            |
| Snohomish        | Temp                             | 08/2006–12/2018                                 | 148                     | 01/2006–<br>02/2019                | 130                            | 27                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range                 | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|-------------------------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Snohomish        | рН                               | 08/2006–12/2018                                 | 146                     | 01/2006–<br>02/2019                | 134                            | 21                            |
| Snohomish        | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 213                            | 52                            |
| Snohomish        | OP                               | 08/2006–12/2018                                 | 145                     | 01/1999–<br>10/2021                | 216                            | 47                            |
| Snohomish        | ТР                               | 08/2006–12/2018                                 | 146                     | 03/1999–<br>10/2021                | 201                            | 63                            |
| Snohomish        | TPN                              | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 199                            | 66                            |
| Squalicum Creek  | NH4                              | ND                                              | ND                      | 03/2015–<br>09/2015                | 14                             | ND                            |
| Squalicum Creek  | DOC                              | ND                                              | ND                      | 04/2015–<br>09/2015                | 13                             | ND                            |
| Squalicum Creek  | NO <sub>3</sub> -NO <sub>2</sub> | ND                                              | ND                      | 03/2015–<br>09/2015                | 14                             | ND                            |
| Squalicum Creek  | ОР                               | ND                                              | ND                      | 03/2015–<br>09/2015                | 14                             | ND                            |
| Squalicum Creek  | ТР                               | ND                                              | ND                      | 03/2015–<br>09/2015                | 14                             | ND                            |
| Squalicum Creek  | TPN                              | ND                                              | ND                      | 03/2015–<br>09/2015                | 14                             | ND                            |
| Stillaguamish    | NH4                              | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 223                            | 46                            |
| Stillaguamish    | DOC                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>10/2021                | 50                             | ND                            |
| Stillaguamish    | тос                              | 2010 (3 mo),<br>2011 (4 mo),<br>10/2017–12/2018 | 22                      | 08/2010–<br>08/2021                | 49                             | ND                            |
| Stillaguamish    | DO                               | 08/2006–12/2018                                 | 143                     | 01/2006–<br>02/2019                | 118                            | 34                            |
| Stillaguamish    | Temp                             | 08/2006–12/2018                                 | 147                     | 01/2006–<br>02/2019                | 122                            | 34                            |
| Stillaguamish    | рН                               | 08/2006–12/2018                                 | 147                     | 01/2006–<br>02/2019                | 123                            | 33                            |
| Stillaguamish    | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–12/2018                                 | 149                     | 01/1999–<br>10/2021                | 226                            | 43                            |
| Stillaguamish    | ОР                               | 08/2006–12/2018                                 | 148                     | 01/1999–<br>10/2021                | 214                            | 55                            |
| Stillaguamish    | ТР                               | 08/2006–12/2018                                 | 146                     | 03/1999–<br>10/2021                | 209                            | 57                            |
| Stillaguamish    | TPN                              | 08/2006–12/2018                                 | 149                     | 01/1999–<br>10/2021                | 231                            | 37                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Tahlequah        | NH4                              | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | DO                               | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | Temp                             | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | рН                               | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | OP                               | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | ТР                               | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahlequah        | TPN                              | ND                              | ND                      | 11/2006–<br>12/2015                | 35                             | ND                            |
| Tahuya           | NH4                              | ND                              | ND                      | 10/2007–<br>09/2008                | 12                             | ND                            |
| Tahuya           | DO                               | ND                              | ND                      | 10/2007–<br>09/2008                | 12                             | ND                            |
| Tahuya           | Temp                             | ND                              | ND                      | 10/2007–<br>09/2008                | 12                             | ND                            |
| Tahuya           | рН                               | ND                              | ND                      | 10/2007–<br>09/2008                | 12                             | ND                            |
| Tahuya           | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 03/2004–<br>09/2008                | 20                             | ND                            |
| Tahuya           | OP                               | ND                              | ND                      | 10/2007–<br>09/2008                | 12                             | ND                            |
| Tahuya           | ТР                               | ND                              | ND                      | 03/2004–<br>09/2008                | 20                             | ND                            |
| Tahuya           | TPN                              | ND                              | ND                      | 10/2007–<br>09/2008                | 12                             | ND                            |
| Vaughn Creek     | NH4                              | ND                              | ND                      | 01/2017–<br>06/2021                | 55                             | ND                            |
| Vaughn Creek     | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| Vaughn Creek     | DO                               | ND                              | ND                      | 01/2016–<br>07/2021                | 68                             | ND                            |
| Vaughn Creek     | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 44                             | ND                            |
| Vaughn Creek     | рН                               | ND                              | ND                      | 01/2016–<br>07/2021                | 67                             | ND                            |
| Vaughn Creek     | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>06/2021                | 67                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Vaughn Creek     | OP                               | ND                              | ND                      | 02/2016–<br>06/2021                | 61                             | ND                            |
| Vaughn Creek     | ТР                               | ND                              | ND                      | 01/2016–<br>06/2021                | 63                             | ND                            |
| Vaughn Creek     | TPN                              | ND                              | ND                      | 01/2017–<br>06/2021                | 54                             | ND                            |
| Whatcom Creek    | NH <sub>4</sub>                  | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Whatcom Creek    | DOC                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Whatcom Creek    | DO                               | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Whatcom Creek    | Temp                             | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Whatcom Creek    | рН                               | ND                              | ND                      | 01/2015–<br>12/2015                | 13                             | ND                            |
| Whatcom Creek    | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Whatcom Creek    | OP                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Whatcom Creek    | ТР                               | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Whatcom Creek    | TPN                              | ND                              | ND                      | 01/2015–<br>12/2015                | 12                             | ND                            |
| Whitman Creek    | NH <sub>4</sub>                  | ND                              | ND                      | 01/2017–<br>06/2021                | 51                             | ND                            |
| Whitman Creek    | DOC                              | ND                              | ND                      | 08/2018–<br>12/2018                | 5                              | ND                            |
| Whitman Creek    | тос                              | ND                              | ND                      | 10/2017–<br>06/2021                | 45                             | ND                            |
| Whitman Creek    | DO                               | ND                              | ND                      | 01/2016–<br>07/2021                | 69                             | ND                            |
| Whitman Creek    | Temp                             | ND                              | ND                      | 01/2016–<br>09/2019                | 46                             | ND                            |
| Whitman Creek    | рН                               | ND                              | ND                      | 01/2016–<br>07/2021                | 68                             | ND                            |
| Whitman Creek    | NO <sub>3</sub> -NO <sub>2</sub> | ND                              | ND                      | 01/2016–<br>06/2021                | 63                             | ND                            |
| Whitman Creek    | OP                               | ND                              | ND                      | 02/2016–<br>06/2021                | 65                             | ND                            |
| Whitman Creek    | ТР                               | ND                              | ND                      | 01/2016–<br>06/2021                | 66                             | ND                            |
| Whitman Creek    | TPN                              | ND                              | ND                      | 01/2017–<br>06/2021                | 50                             | ND                            |

| River Regression | Variable                         | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------------------------------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Woodard Creek    | NH <sub>4</sub>                  | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 20                             | ND                            |
| Woodard Creek    | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodard Creek    | тос                              | 08/2006–10/2007                 | 15                      | 08/2006–<br>05/2010                | 15                             | ND                            |
| Woodard Creek    | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodard Creek    | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodard Creek    | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodard Creek    | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 20                             | ND                            |
| Woodard Creek    | OP                               | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 18                             | ND                            |
| Woodard Creek    | DTP                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodard Creek    | ТР                               | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 18                             | ND                            |
| Woodard Creek    | DTPN                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodard Creek    | TPN                              | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 20                             | ND                            |
| Woodland Creek   | $NH_4$                           | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 28                             | ND                            |
| Woodland Creek   | DOC                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>06/2015                | 28                             | ND                            |
| Woodland Creek   | тос                              | 08/2006–10/2007                 | 14                      | 08/2006–<br>06/2014                | 19                             | ND                            |
| Woodland Creek   | DO                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodland Creek   | Temp                             | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodland Creek   | рН                               | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodland Creek   | NO <sub>3</sub> -NO <sub>2</sub> | 08/2006–10/2007                 | 14                      | 06/2003–<br>06/2015                | 42                             | ND                            |
| Woodland Creek   | OP                               | 08/2006–10/2007                 | 14                      | 06/2003–<br>06/2015                | 40                             | ND                            |
| Woodland Creek   | DTP                              | 08/2006-10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodland Creek   | ТР                               | 08/2006–10/2007                 | 14                      | 06/2003–<br>06/2015                | 40                             | ND                            |

| River Regression | Variable | Opt 1 Regression—<br>Date Range | Opt 1<br>N <sup>1</sup> | Opt 2<br>Regression—<br>Date Range | Opt 2—<br>Train N <sup>2</sup> | Opt 2—<br>Test N <sup>2</sup> |
|------------------|----------|---------------------------------|-------------------------|------------------------------------|--------------------------------|-------------------------------|
| Woodland Creek   | DTPN     | 08/2006–10/2007                 | 14                      | 08/2006–<br>10/2007                | 14                             | ND                            |
| Woodland Creek   | TPN      | 08/2006–10/2007                 | 14                      | 06/2003–<br>10/2007                | 28                             | ND                            |

Note. In Opt2, parameters with at least 80 samples were split into testing (Test N) and training (Train N) sets, while in Opt1, regressions were fit using the entire data set.

<sup>1</sup>Hourly averaged samples.

<sup>2</sup> Daily averaged samples.

<sup>3</sup> Switched from Fraser at Hope (Opt 1) to Fraser at Gravesend Reach (Opt 2) to account for tidal influence.

ND=no data; NH<sub>4</sub>=ammonium; DOC=dissolved organic carbon; TOC=total organic carbon; DO=dissolved oxygen; Temp= temperature; NO<sub>3</sub>-NO<sub>2</sub>=nitrate + nitrite; DTP= dissolved total phosphorus; TP=total phosphorus; OP=Orthophosphate; DTPN=dissolved total persulfate nitrogen; TPN=total persulfate nitrogen.

## Sample site selection

Water quality site selection for each watershed followed a general set of criteria for establishing how representative the water quality data would be for the given watershed. Ideal candidate sites were those that were closest to the mouth of the watershed but did not exhibit saltwater influence (salinity of less than 0.5 parts per thousand), had a streamflow gauge nearby, and had at least 8 or more samples available for each water quality parameter. An example of this scenario can be seen in (Figure B1-7A). As shown in (Figure B1-7A), one of the sites selected was near the mouth (including a coincident streamflow gauge). The site is an Ecology long-term monitoring station (18A050) and had plenty of data for all variables except for Dissolved Organic Carbon (DOC).

DOC data are limited for many watersheds. As a result, even if DOC data came from a site greater than 2 miles upstream of the primary site, the data were considered as more representative than borrowing DOC data from a neighboring watershed. In the example mentioned above, blue colored sites shown in Figure B1-7A were not used, as none of them had any DOC data. Since a sufficient amount of data for other parameters was obtained from 18A050, and because no other sites within 2 miles of it had DOC data, we used the closest site to it with available data. In this case, DOC data were available at the confluence of Caraco Creek and Dungeness, 5 miles upstream of the Ecology gauge and water quality station 18A050 (Figure B1-7A).

Matching all the criteria listed above for an ideal candidate water quality site was not usually possible. For watersheds with limited or less frequent water quality monitoring, locations with the most data were generally prioritized over sites with closer proximity to the mouth of the watershed, with the condition that the site occurs on a reach of the same stream order as the watershed and downstream of all confluences. These criteria were met with only a few exceptions, including Hylebos Creek and Whatcom Creek, which used DOC from an upstream location of a lower stream order, and McAllister Creek, which only had sufficient data for all parameters on the 2<sup>nd</sup>-order portion of the 3<sup>rd</sup>-order stream. McAllister Creek sites were additionally the only locations that we used where brackish conditions were observed (salinity of around 2 parts per thousand), which introduces limitations with regard to our representation of river inputs to the Salish Sea Model for this watershed.

For Goldsborough Creek (Figure B1-7B), all three of the available water quality sites were selected. The sites were all within 2 miles of each other, and all occurred on a reach of the same order. Three sites were needed for Goldsborough due to the low number of data points in each one (Table B1-4). The most upstream site near the confluence of Coffee Creek with Goldsborough was also included as it contained as much data as the two downstream sites combined, including DOC data.

In general, upstream sites from a lower order reach were not used unless DOC data were only available at these locations. Except for McAllister Creek, if a lower-order reach were used, it would only be used for DOC, with data for other parameters coming from downstream

locations in the watershed. Big Beef Creek (Figure B1-7C) had an adequate number of samples for most parameters but had the bare minimum number of samples to build a regression model for DOC. Upstream sites for Big Beef Creek (in blue) were not selected as they were on a lower order reach, and none of the parameters collected for either of these sites were for DOC (Figure B1-7C).



Figure B1-7. Examples of WQ site selection criteria applied to (A) Dungeness River, (B) Goldsborough Creek, and (C) Big Beef Creek.

## Flow updates

Flow data were obtained using continuous gauge data (Ecology, USGS, County, City, or Tribe) when possible. When gauge data were unavailable for watersheds, WRF-Hydro modeled streamflow data were used if no dams or significant diversions were present. If such modifications were present, we did not use WRF-Hydro flow hindcast predictions because hydrologic modifications are currently not accounted for in the WRF-Hydro version we used (2.1) (B. Cosgrove, Pers. Comm., 2021). If WRF-Hydro was considered unsuitable for use in an ungauged watershed, then flow was borrowed from a neighboring watershed.

If discrete flow measurements were available, then they were compared with the continuous flow data used for the watershed (gauge, WRF-Hydro, or neighboring watershed gauge) and tested for congruency. When comparing discrete and continuous flow measurements, both data sets were first normalized by their respective drainage area to ensure that flows that were not co-located could be compared on a similar scale. We considered discrete and continuous flow pairs to be incongruent if there was a normalized root mean square error (NRMSE) of 1 or greater. An NRMSE of 1 or greater signals a less representative estimate than the mean of observations (Jolliff et al. 2009; USECos Team 2008).

Discrete and continuous flow pairs were assessed visually using Taylor (2001) and target diagrams (Jolliff et al. 2009; Pederzoli et al. 2012). Target diagrams consist of centered normalized root mean square difference (CNRMSD) (eq. B1-1) on the x-axis and normalized bias (eq. B1-2) on the y-axis. Negative values for CNRMSD are assigned when predictions have lower variance than observations. In target plots, the NRMSE is the radius (eq. B1-3) of the diagram, and therefore, values that fall outside of the unit circle have an NRMSE greater than 1. For Taylor diagrams, centered and normalized centered RMSE (same as CNRMSD) and correlation statistics are plotted. Values close to the bottom center of the Taylor diagram indicate low CNRMSE and high correlation.

For the 13 watersheds with NRMSE greater than 1, we bias adjusted, which resulted in achieving an NRMSE for all cases below 1. WRF-Hydro or neighboring watershed continuous streamflow that had an NRMSE of 1 or more was bias adjusted to discrete measurements using the monthly average ratio between the two. As shown in Figure B1-8, 13 out of 50 of the watersheds tested were outside the unit circle in the target diagram (NRMSE>1). However, with the exception of Sequim Bay S, Sherwood Creek, and Hamma Hamma, which had low correlation, the plurality of correlations was around 0.9.

## **Discrete Vs. Continuous Flow**



#### Figure B1-8. Taylor and target diagram of discrete vs. continuous flow measurements.

Values that are outside of the unit circle in the target diagram (on the left) reveal that a simple average would match better than the continuous flow used. In these cases, we bias-corrected the flows. Values within the Taylor diagram (on the right) are considered in good agreement if they have high correlation, low RMSD, and low normalized standard deviation.

$$CNRMSD (eq. 1) = \frac{\sqrt{\frac{1}{N} \Sigma ((Predicted - \overline{Predicted}) - (Observed - \overline{Observed}))^2}}{standard \ deviation_{observed}}$$
$$NBias (eq. 2) = \frac{Mean(Predicted) - Mean(Observed)}{standard \ deviation_{observed}}$$

NRMSE (eq. 3) = 
$$\frac{\sqrt{\frac{1}{N}\Sigma(\text{Predicted} - \text{Observed})^2}}{\text{standard deviation}_{\text{observed}}} = \sqrt{\text{NBias}^2 + \text{CNRMSD}^2}$$

Table B1-5. Monthly Bias-adjusted watershed flows.

| Watershed Name  | Discrete Flow N | Continuous Flow<br>Station Location | Continuous<br>Flow Source | NRMSE | Bias Adjusted<br>NRMSE |
|-----------------|-----------------|-------------------------------------|---------------------------|-------|------------------------|
| Burley Creek    | 13              | Adjacent WS                         | Gauge                     | 1.31  | 0.1                    |
| Butler Creek    | 57              | Adjacent WS                         | Gauge                     | 1.01  | 0.49                   |
| Blackjack Creek | 12              | Inside WS                           | WRF-Hydro                 | 1.99  | 0.17                   |
| Federal Way     | 13              | Inside WS                           | WRF-Hydro                 | 4.38  | 0.004                  |
| Hamma Hamma     | 51              | Inside WS                           | WRF-Hydro                 | 1.60  | 0.90                   |
| Hylebos Creek   | 17              | Inside WS                           | WRF-Hydro                 | 4.90  | 0.41                   |
| Moxlie Creek    | 430             | Adjacent WS                         | Gauge                     | 1.19  | 0.70                   |
| Rocky Creek     | 20              | Adjacent WS                         | Gauge                     | 1.10  | 0.16                   |
| Saltwater St Pk | 13              | Inside WS                           | WRF-Hydro                 | 2.30  | 0.008                  |
| Sequim Bay S    | 23              | Adjacent WS                         | Gauge                     | 3.63  | 0.43                   |
| Sherwood Creek  | 21              | Inside WS                           | Gauge                     | 2.77  | —                      |
| Woodard Creek   | 13              | Adjacent WS                         | Gauge                     | 1.73  | 0.006                  |
| Woodland Creek  | 36              | Adjacent WS                         | Gauge                     | 2.61  | 0.79                   |

For the flow comparison, an example of good performance for WRF-Hydro was False Bay Creek, while an example of bad performance was Hamma Hamma (Figure B1-9). Hamma Hamma had poor performance initially with an NRMSE of 1.6 and an R-square of 0.05. Following monthly bias adjustment, however, performance improved with NRMSE dropping to 0.9 and R-squared increasing to 0.4. Hamma Hamma WRF-Hydro predictions tended to perform well during baseflow periods and performed poorly during peak flow events, where it exclusively overpredicted flow.

Watersheds borrowing flow generally require bias adjustment. However, Green Cove is an example where no bias adjustment was needed (Figure B1-10). On the other hand, Moxlie Creek required bias adjustment, which greatly reduced NRMSE from 1.19 to 0.7 but had minimal impact on R-squared (Figure B1-10).



#### Testing Congruency of WRF-Hydro Flow Predictions with Discrete Flow Measurements

# Figure B1-9. Comparison of discrete flow measurements (from ungauged watershed) with WRF-Hydro continuous flow predictions for the ungauged watershed.

Flow measurements were normalized by the drainage area at the given flow location of interest. WRF-Hydro flow in the above comparison was compared against discrete flow from matching locations, and as a result, both WRF-Hydro and discrete flow measurements were normalized by the same drainage area. False Bay Creek (N=12) performed very well (NRMSE=0.29, R2=0.95). Hamma Hamma (N=51) had very poor performance initially (NRMSE= 1.6, R2=0.05), and adequate performance following bias correction (NRMSE =0.9, R2=0.4).



#### Testing Congruency of Adjacent WS Gauge Flow with Discrete Flow Measurements

## Figure B1-10. Comparison of discrete flow measurements (from an ungauged watershed) with continuous flow borrowed from an adjacent watershed.

Flow measurements were normalized to the drainage area at the given flow location of interest. Using Green Cove as an example, discrete flow measurements were normalized by their corresponding drainage area (8.5 Km<sup>2</sup>), and continuous flow borrowed from an adjacent watershed (Goldborough) was normalized by the drainage area of the gauge (142 Km<sup>2</sup>). Green Cove (N=134) performed fairly well (NMRSE=0.74, R2=0.77) but showed signs of over-predicting peak flow events. Moxlie Creek (N=430) initially performed poorly (NRMSE=1.19, R2=0.56) but showed adequate improvement following bias correction (NRMSE=0.7, R2=0.57).

Gauged flow data were sometimes missing for the period of interest and required either interpolation or another method of approximation. Excluding flow interpolations previously performed in Opt1 (Ahmed et al. 2021), four gauges required some level of interpolation. Of these four gauges, three were only missing 5 – 18 days for the years 1999 – 2022. For these three gauges, linear interpolation was used to impute missing values. The King County gauge 42a at Miller Creek, however, was missing flow data from November of 2010 until December of 2012 and thus required a more sophisticated interpolation scheme. Missing flow at Miller Creek was imputed using the R imputeTS package function na.seasplit, which splits the flow time series into seasons and performs linear interpolation for each season (Chandrasekaran et al. 2016). The interpolated values appear to follow the general characteristics of other years in the hydrograph (Figure B1-11) with the caveat of potentially underpredicting peak flow events.

## Imputation of Missing Flows at Miller Creek



#### Figure B1-11. Imputation of Missing Flows at Miller Creek.

Flow missing from 11/13/2010 to 12/13/2012 was imputed using the "imputeTS" R package function na.seasplit, which splits the hydrograph into seasons and performs linear interpolation for each season.

## Water quality updates

We updated our water quality regressions used to estimate daily concentrations for water quality parameters using data from cities, counties, tribes, USGS, and Ecology's EIM database (Table B1-3) for the years 1999 – 2022. Water quality data that was flagged as poor quality was not included in our updated regressions (Figure B1-3). This had an impact primarily on dissolved total persulfate nitrogen (DTPN) data for Deschutes River, Green River, Nisqually River, and Puyallup River (Table B1-4). Pierce County data collected prior to 2016 was additionally discarded as there were no formal measurement quality objectives in place until 2015 (S. Groce, Pers. Comm., 2022). Water quality data were limited for DOC, DTPN, and dissolved total phosphorus (DTP). As a result, some assumptions had to be made to extrapolate missing data for these parameters.

It was very common for a given watershed to only have data for TOC or DOC, but not both. To extrapolate data for the missing organic carbon parameter, we used the average ratio of TOC to DOC from the nearest watershed (Table B1-6). In calculating TOC/DOC ratios, we did not include cases where both TOC and DOC were non-detects. Further, we did not include cases where DOC concentrations were reported as greater than TOC, as this makes no physical sense and is likely either a measurement or reporting error. TOC/DOC ratios were usually borrowed from adjacent watersheds, but in some circumstances, they were instead derived using data from the watershed of interest. Dungeness, for example, had 5 TOC samples. That was an insufficient amount to build a regression, but it was adequate for determining the TOC/DOC ratio for the watershed. The TOC/DOC ratio could then be applied to the available parameter to extrapolate data for the missing parameter. Using Dungeness as an example, we approximated TOC data by multiplying the available DOC data by the determined TOC/DOC ratio (Table B1-6). The TOC/DOC ratios shown in Table B1-6 did not vary significantly and had a range of 1.03 to 1.27 (TOC 3%–27% greater than DOC).

| River<br>Regression<br>Name | SSM<br>Watershed<br>Basin | Organic<br>Carbon<br>Variable<br>Available | Missing<br>Organic<br>Carbon<br>Variable | Adjacent<br>Watershed<br>TOC/DOC<br>Ratio | Watershed Used   | Comment                                                                                                                                                                                     |
|-----------------------------|---------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anderson West               | South Sound               | тос                                        | DOC                                      | 1.2                                       | McAllister Creek | DOC= (1/1.2) *TOC                                                                                                                                                                           |
| Artondale Creek             | South Sound               | тос                                        | DOC                                      | 1.27                                      | Goodnough Creek  | DOC= (1/1.27) *TOC                                                                                                                                                                          |
| Blackjack Creek             | Main Basin                | DOC                                        | TOC                                      | 1.08                                      | Minter Creek     | TOC= 1.08 * DOC                                                                                                                                                                             |
| Des Moines<br>Creek         | Main Basin                | DOC                                        | тос                                      | 1.07                                      | Green River      | TOC = 1.07 * DOC                                                                                                                                                                            |
| Discovery Bay 1             | Strait of<br>Juan de Fuca | DOC                                        | тос                                      | 1.03                                      | Dabob Bay        | TOC = 1.03 * DOC                                                                                                                                                                            |
| Dungeness                   | Strait of<br>Juan de Fuca | DOC                                        | тос                                      | 1.02                                      | Dungeness        | TOC= 1.02 * DOC.<br>Dungeness had Insufficient DOC data for regression.<br>Data were used to determine TOC/DOC ratio.                                                                       |
| Dutcher Creek               | South Sound               | тос                                        | DOC                                      | 1.13                                      | Rocky Creek      | DOC = (1/1.13) * TOC                                                                                                                                                                        |
| False Bay Creek             | Strait of<br>Georgia      | DOC                                        | тос                                      | 1.03                                      | North Olympic    | TOC = 1.03 * DOC                                                                                                                                                                            |
| Federal Way                 | Main Basin                | DOC                                        | TOC                                      | 1.15                                      | Liberty Bay      | TOC = 1.15 * DOC                                                                                                                                                                            |
| Herron Creek                | South Sound               | тос                                        | DOC                                      | 1.13                                      | Rocky Creek      | DOC = (1/1.13) * TOC                                                                                                                                                                        |
| Liberty Bay                 | Main Basin                | DOC                                        | РОС                                      | 1.15                                      | Liberty Bay      | TOC = 1.15 * DOC<br>POC was used to calculate TOC (DOC +POC at<br>coincident times).<br>Liberty Bay had Insufficient TOC data for regression.<br>Data were used to determine TOC/DOC ratio. |
| McCormick<br>Creek          | South Sound               | тос                                        | DOC                                      | 1.27                                      | Goodnough Creek  | DOC= (1/1.27) *TOC                                                                                                                                                                          |
| Mill Creek                  | South Sound               | DOC                                        | тос                                      | 1.08                                      | Mill Creek       | TOC=1.08*DOC. Mill Creek had Insufficient TOC data<br>for regression. Data were used to determine<br>TOC/DOC ratio.                                                                         |
| Miller Creek                | Main Basin                | DOC                                        | ТОС                                      | 1.07                                      | Green River      | TOC = 1.07 * DOC                                                                                                                                                                            |
| Purdy Creek                 | South Sound               | ТОС                                        | DOC                                      | 1.08                                      | Burley Creek     | DOC= (1/1.08) *TOC                                                                                                                                                                          |
| Ray Nash Creek              | South Sound               | ТОС                                        | DOC                                      | 1.08                                      | Minter Creek     | DOC= (1/1.08) *TOC                                                                                                                                                                          |
| Saltwater St Pk             | Main Basin                | DOC                                        | ТОС                                      | 1.07                                      | Green River      | TOC=1.07 * DOC                                                                                                                                                                              |

| Table B1-6. Extrapolation of | f DOC and TOC using the | • TOC/DOC ratio from | the nearest watershed. |
|------------------------------|-------------------------|----------------------|------------------------|
|                              |                         |                      |                        |

| River<br>Regression<br>Name | SSM<br>Watershed<br>Basin | Organic<br>Carbon<br>Variable<br>Available | Missing<br>Organic<br>Carbon<br>Variable | Adjacent<br>Watershed<br>TOC/DOC<br>Ratio | Watershed Used | Comment                                                                                                                      |
|-----------------------------|---------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|
| Sequim Bay S                | Strait of<br>Juan de Fuca | DOC                                        | тос                                      | 1.02                                      | Dungeness      | TOC=1.02 * DOC                                                                                                               |
| Squalicum<br>Creek          | Strait of<br>Georgia      | DOC                                        | тос                                      | 1.1                                       | Lake Whatcom   | TOC=1.1 * DOC                                                                                                                |
| Vaughn Creek                | South Sound               | ТОС                                        | DOC                                      | 1.13                                      | Rocky Creek    | DOC= (1/1.13) * TOC                                                                                                          |
| Whatcom Creek               | South Sound               | DOC                                        | ТОС                                      | 1.1                                       | Lake Whatcom   | TOC=1.1 * DOC                                                                                                                |
| Whitman Creek               | Strait of<br>Georgia      | тос                                        | DOC                                      | 1.05                                      | Whitman Creek  | DOC= (1/1.05) * TOC Whitman Creek had Insufficient<br>DOC data for regression. Data were used to<br>determine TOC/DOC ratio. |

Note. DTPN and DTP data were only available for 18 of the 63 Washington SSM watersheds for which regressions were built (Table B1-7). DTPN and DTP are required for calculating particulate organic nitrogen (PON), dissolved organic nitrogen (DON), or particulate organic phosphorus (POP), and dissolved organic phosphorus (DOP) data, respectively. Due to a lack of DTPN and DTP data for a majority of SSM watersheds, we assumed equal fractions. Total organic nitrogen was split equally between PON and DON if DTPN data were not available. Total organic phosphorus was split equally between POP and DOP if DTP was unavailable (Table B1-7).

| River Regression Name | SSM Watershed Basin | DTPN and TPN<br>Data? | TP and DTP<br>Data? | Comment                                                              |
|-----------------------|---------------------|-----------------------|---------------------|----------------------------------------------------------------------|
| Burley Creek          | South Sound         | Yes                   | Yes                 | -                                                                    |
| Chambers Creek        | South Sound         | Yes                   | Yes                 | -                                                                    |
| Coulter Creek         | South Sound         | Yes                   | Yes                 | -                                                                    |
| Deschutes River       | South Sound         | No                    | Yes                 | Has TPN data. DTPN data are also available, but were flagged as REJ. |
| Fraser                | Strait of Georgia   | Yes                   | Yes                 | -                                                                    |
| Goldsborough Creek    | South Sound         | Yes                   | Yes                 | -                                                                    |
| Green River           | Main Basin          | Yes                   | Yes                 | Only has 5 DTPN samples.                                             |
| Kennedy Creek         | South Sound         | Yes                   | Yes                 | -                                                                    |
| McAllister Creek      | South Sound         | Yes                   | Yes                 | -                                                                    |
| McLane Creek          | South Sound         | Yes                   | Yes                 | -                                                                    |
| Minter Creek          | South Sound         | Yes                   | Yes                 | -                                                                    |
| Nisqually River       | South Sound         | No                    | Yes                 | Has TPN data. DTPN data are also available, but were flagged as REJ. |
| Perry Creek           | South Sound         | Yes                   | Yes                 | -                                                                    |
| Puyallup River        | Main Basin          | Yes                   | Yes                 | Only has 6 DTPN samples.                                             |
| Rocky Creek           | South Sound         | Yes                   | Yes                 | -                                                                    |
| Sherwood Creek        | South Sound         | Yes                   | Yes                 | DON regression NRMSE >0.894, so monthly time series used.            |
| Skookum Creek         | South Sound         | Yes                   | Yes                 | -                                                                    |
| Woodard Creek         | South Sound         | Yes                   | Yes                 | -                                                                    |
| Woodland Creek        | South Sound         | Yes                   | Yes                 | -                                                                    |

#### Table B1-7. Watershed inventory of DTP and DTPN data.

"—"=No comment

<sup>1</sup> If TP and DTP available: POP = TP - DTP and DOP = DTP - PO4

<sup>2</sup> If DTP is unavailable: POP = DOP = 0.5\*(TP - PO4)

<sup>3</sup> If TPN and DTPN available: PON = TPN - DTPN and DON = DTPN - (NO<sub>3</sub>-NO<sub>2</sub> + NH<sub>4</sub>)

<sup>4</sup> If DTPN is unavailable: PON = DON =  $0.5^{*}$ (TPN - NO<sub>3</sub>-NO<sub>2</sub> - NH<sub>4</sub>)

## Water quality regressions

#### Data preprocessing and regression formulation

To prepare for building regression models, continuous daily flows were matched with corresponding water quality samples. Daily averages were calculated for water quality parameters to match the temporal scale of flow data. This differs from Opt1, where coincident discrete flow data were used, when possible, and averages were only calculated for duplicates rather than for an entire day. In Opt2, we decided not to build regressions using discrete flow data and instead use only continuous flow data to be consistent with our application of the regressions to loading scenarios, which use continuous flow data.

Even after an exhaustive search for additional data, limitations still exist. Water quality parameters that had fewer than 8 samples for a given watershed were not used to build regressions, and instead, regressions were built using data borrowed from a neighboring watershed (Figure B1-3). When borrowing water quality data from another watershed, we examined not only the proximity of the watersheds but also looked for similar land use and stream order. There are 90 small or very small (54 Km<sup>2</sup>) watersheds that have no water quality data. Excluding watersheds that completely lacked data, those that borrowed almost exclusively did so specifically for DOC. The only exceptions are Dosewallips, Moxlie Creek, and Squalicum Creek, which all borrowed data for Dissolved Oxygen (DO), Temperature, and pH, and for Green Cove, which borrowed data for pH, ammonium-ammonia, and TPN.

We split the data into training and testing sets for parameters with 80 or more samples for a given watershed. Data that met this criterion were grouped into a single aggregated data set. Testing data were randomly assigned using 20 percent of the data for a given parameter from the aggregated data set, with the remaining 80 percent reserved for training. This resulted in, on average, approximately 20 percent (generally within 3 percent) of the data being allocated to the testing set for each parameter and watershed. There were, however, extreme cases, including Judd Creek and Elwha River, where as little as 12 percent and as much as 32 percent of temperature data, respectively, were allocated to the testing set. If there were fewer than 80 samples available for a parameter in a watershed, then we did not set aside any data for testing performance and used all available data for training the model (Figure B1-3).

We fit regression models for 12 distinct water quality parameters (Table B1-4), including temperature, DO, pH, ammonium-ammonia, nitrate-nitrite, TPN, DTPN, orthophosphate, total phosphorus, DTP, DOC, and TOC. Sufficient data were available to establish regressions for 76 SSM watersheds, with most of these watersheds having data for 9 or 10 of the 12 water quality parameters. Regressions were fit for water quality parameters using (eq. B1-4), which is a statistical approach that relates concentrations to flow patterns and time of year based on the sediment discharge relationship found by Cohn et al. (1989, 1992) and adapted by Mohamedali et al. (2011).

 $log_{10}C = b_1 + b_2 log_{10}(Q/A) + b_3 log_{10}(Q/A)^2 + b_4 \sin 2\pi f_y + b_5 \cos 2\pi f_y + b_6 \sin 4\pi f_y + b_7 \cos 4\pi f_y$  (eq. B1-4)

(Mohamedali et al. 2011, based on Cohn et al. 1989, 1992).

Where:

C is the observed parameter concentration (mg/L).

Q is the daily averaged streamflow (cubic meters per second).

A is the watershed drainage area at the sampling location of water quality data (Km<sup>2</sup>)

 $f_{\rm y}$  is the year fraction (dimensionless, varies from 0 to 1).

b<sub>i</sub> are the best-fit regression coefficients.

#### Limitations

The regression approach based on Cohn et al. (1989, 1992) and Mohamedali et al. (2011) provides a practical framework for estimating constituent concentrations (generally sediment or nutrients), but it has limitations. Cohn et al. (1992) found that these regression models often had substantial serial correlation in the residuals (model error), which violates the assumptions of independence and constant variance of residuals for linear and log-linear regression models.

Serial correlation suggests that certain dynamics affecting the system are not being represented in the model. In this case, the serial correlation likely reflects the absence of representation of lag effects (Cohn et al. 1992) inherent in freshwater systems such as storage, travel time, and constituent remobilization. Despite these limitations, Cohn et al. (1992) found that the regression-based constituent estimates generally aligned well with observed data, and that nutrient estimates were less affected by the omission of lag effects compared to sediment. The application of these regression models to discrete monthly data, as in this study, is unlikely to capture fine-scale daily variability but has been found to reflect general seasonal trends when fit with monthly data (Cohn et al. 1992). Although our data has both spatial and temporal limitations (discussed in Sample Site Selection and in Data Preprocessing and Regression Formulation), these regressions offer a reasonable method of estimating water quality for watersheds in our domain.

### **Regression fitting process**

The process of fitting regressions was an iterative process, and models were run several times using different schemes to optimize performance. Major decisions that were made prior to achieving the final fit for regressions included determining how to treat variable non-detects, if outliers should be removed, how outliers should be handled, and whether or not regressions should use ridge regression over ordinary multivariable linear regression.

Regressions were initially run using the ordinary least squares approach. The fitted model was assessed using a stepwise reduction approach as was done by Mohamedali et al. 2011. If the p-value of the model was less than 0.05, then no model terms were dropped. A maximum of two

model coefficients were dropped iteratively until the model p-value was less than 0.05. If the model was unable to attain a p-value less than 0.05 after dropping two terms, then the full model was retained, and no terms were dropped. Once initial regression models were fit, we assessed the magnitude of each coefficient. We found in general that coefficients greater than 4 and less than -4 resulted in unrealistic spikes in regression predictions. Any watershed regression models with coefficients outside the range (-4,4) were refit using ridge regression to minimize the magnitude of the coefficients.

In Opt1, we did not analyze the influence of non-detect values. In Opt2, we explored different approaches for handling non-detects. Detection limits were found to slightly differ for any given parameter among the agencies from which we obtained data. Further, we found that detection limits changed over time, with lower limits becoming available in more recent years. Regression performance was assessed with and without standardizing non-detect values, and it was found that regressions actually performed worse when non-detect values were standardized by using the lowest reporting limit of all data sets. In light of this result, we did not make any changes to how non-detects were handled between Opt1 and Opt2.

## **Regression performance**

Regression performance was determined primarily using NRMSE, R-squared, and, to a lesser extent, normalized bias. We employed a conservative NRMSE threshold of 0.894, instead of 1, to segregate between acceptable and unacceptable model performance. This threshold was based on an internal review of an extensive number of time series performance plots, which indicated a breakdown in performance above an NRMSE of 0.894. Models with unacceptable performance (NRMSE>0.894) were substituted with average monthly time series based on observational data.

In total, we fit 750 regression models for SSM watersheds, with 11% exhibiting an NRMSE exceeding 0.894. After a lot of trial and error, we decided that watersheds not meeting the NRMSE criteria would be fit following the removal of outliers, where outliers were considered to be values three standard deviations above or below the mean. This approach tended to only modestly improve performance for most watersheds but had a sizeable impact on the TPN regression model for Green River, where R-squared increased from 0.36 to 0.46.

For most variables, with the exception of ammonium-ammonia, pH, and total phosphorus, regressions exhibited good performance with R-squared values ranging from 0.6 (total organic carbon) to 0.87 (temperature). NRMSE statistics followed an almost identical trend to R-squared, with ammonium-ammonia, pH, and total phosphorus regressions performing adequately, though with lower skill (NRMSE ranged from 0.67 to 0.61). DOC, dissolved total phosphorus, DO, DTPN, and temperature regressions performed really well with NRMSE ranging from 0.53 to 0.35, respectively (Figure B1-12).

Ammonium-ammonia tended to perform the worst relative to other parameters, with an average NRMSE of 0.672 and average R-squared of 0.52 (Figure B1-12). Approximately a third of

the 76 watersheds had an NRMSE greater than 0.894 for ammonium-ammonia (Figure B1-13). In these cases, regressions were substituted for monthly average values. The high prevalence of non-detects for ammonium-ammonia likely hampered the nutrient discharge regression relationship for most watersheds.

Nitrate-nitrite regression performance was found to be generally good. As shown in Figure B1-14, only 5 watersheds with an NRMSE greater than 0.894 were tabulated for that parameter. In addition, we found that regressions exhibited desired performance with respect to bias, normalized bias for nitrate-nitrite, and all other variables, with the exception of temperature for a couple of watersheds that were very close to zero. Correlations for nitrate-nitrite were high, with values ranging from 0.7 to 1 (Figure B1-14).

In several instances, orthophosphate and total persulfate nitrogen regressions (Figure B1-12) had NRMSE greater than 0.894. As in all other instances where this criterion was not met, we substituted these regressions with monthly averages.



Evaluation of Regression Model Performance on Training Data by SSM Region

Figure B1-12. Diagnostic plots of model performance on the training data set for all variables and SSM basins.

Boxplots, which are arranged from best to worst performance, show the median NRMSE for each variable and SSM basin, while the jitter plot shows the distribution of NRMSE and R-squared for all watersheds within a given basin. The red dashed line represents an NRMSE of 0.894. Models with an NRMSE at or above this threshold were considered to have inadequate performance and were substituted with monthly time series based on observations.



**Figure B1-13. Taylor and target diagram assessing model performance on the training data set for ammonium-ammonia.** We used a more conservative NRMSE threshold of 0.894 rather than 1 to distinguish good and poor performance. The legend consists of all watersheds for which regressions were not used because they had an NRMSE of 0.894 or greater (considered poor performance).



## Nitrate-Nitrite Model Performance with Training Data

**Figure B1-14. Taylor and target diagram assessing model performance on the training data set for nitrate-nitrite.** We used a more conservative NRMSE threshold of 0.894 rather than 1 to distinguish good and poor performance. The legend consists of all watersheds for which regressions were not used because they had an NRMSE of 0.894 or greater (considered poor performance). Watersheds that had 80 or more samples for a given parameter were assessed for how well the regression model generalizes by comparing performance on the training and testing sets, respectively. Dissolved oxygen and temperature, in particular, both behaved very similarly in the training and testing sets, indicating that the regression models for these parameters are near optimal (Figure B1-15). Other parameters were, for the most part, similar between the training and testing data sets; however, performance tended to be slightly worse on the testing set.

In certain cases, NRMSE values exceeded 0.894 for the testing set but not for the training set. Notable watersheds that exhibited this behavior for more than one variable include: Big Beef Creek, Dungeness, Ellisport, Hamma Hamma, and Nisqually River (Figure B1-15) and (Figure B1-16). With the exception of Nisqually River, the other 3 watersheds listed all had a relatively low testing data set size of around 20 samples. We tested the impact of testing data set sample size on model performance and found that, with the exception of pH and orthophosphate, which had essentially no relationship, other variables displayed a negative correlation between NRMSE and testing data set sample size (Figure B1-17). These findings indicate that testing sets with smaller sample sizes may have less adequate error statistics, which is likely due to differences in the distribution of values between testing and training data sets. Overall, the general agreement between training and testing data set model performance, coupled with the relatively few regression models surpassing an NRMSE of 0.894, underscores the robustness of the models.





Only watersheds that had sufficient data for both training and testing data sets are plotted above. The red dashed line represents an NRMSE of 0.894, which is the threshold that we used to distinguish good from poor performance.



**Figure B1-16. Comparison of model performance (NRMSE) on training and testing data sets for nitrate-nitrite, total persulfate nitrogen, orthophosphate, and total phosphorus.** Only watersheds that had sufficient data for both training and testing data sets are plotted above. The red dashed line represents an NRMSE of 0.894, which is the threshold that we used to distinguish good from poor performance. Fraser River (not plotted above) is the only watershed that had enough DOC data for training and testing. NRMSE for Fraser DOC was nearly identical for training (0.737) and testing (0.733).



**Figure B1-17. Relationship between testing data set performance and sample size.** Testing data set evaluation was only assessed for regression models that met performance criteria (NRMSE<0.894) for training data. Results are qualitative but show that there is a negative relationship between model performance on the testing set and the sample size. These findings indicate that testing sets with smaller sample sizes may have less adequate error statistics. Additionally, we examined if there was a noticeable difference in performance when regressions were evaluated on data with a greater range than they were trained on. This is represented in the legend where "No" means that regressions were evaluated on data within a similar range to the data that they were trained on, and "Yes" means that they were evaluated on data with a greater range than they were evaluated on data with a greater range than they were evaluated on data with a greater range than they were evaluated on data with a greater range to the data that they were trained on.
#### **Association changes**

Regression associations used in Opt1 for unmonitored watersheds were updated in Opt2 for 32 out of the 162 Washington SSM watersheds (Table B1-8). Due to refinements in watershed delineations since Opt1, several new watersheds have had changes in the water quality regressions that they are associated with. Out of the 32 watersheds with regression association changes, 18 of them were new watersheds resulting from the disaggregation of non-hydrologically connected watersheds in Opt1. For example, as previously mentioned, Hamma Hamma in Opt2 was split into 5 watersheds consisting of Hamma Hamma, Finch Creek, Lilliwaup Creek, Fulton Creek, and Eagle Creek. These watersheds were previously using regressions from Skokomish River to represent water quality; however, now that Hamma Hamma has water quality data, Finch Creek, Lilliwaup Creek, Fulton Creek, and Eagle Creek. These Mater Sheds were previously using all associated with the Hamma Hamma regression instead of Skokomish River (Table B1-8).

Water quality regression associations for unmonitored watersheds were changed in Opt2 based on similarities in the 2019 National Land Cover Database land use and, to a lesser extent, drainage area between the unmonitored watershed of interest and the monitored watershed that it is associated with for water quality. A complete overview of changes in regression association changes from Opt1 to Opt2 can be found in Table B1-8.

# Table B1-8. Summary of changes made to regression associations used to estimate water quality concentrations at select unmonitored watersheds.

| Watershed Name  | SSM<br>Watershed<br>Basin | Original WQ regression association | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                                                              | Flow<br>Association<br>Change | Comment                                                                                                                 |
|-----------------|---------------------------|------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Agate East      | South_Sound               | Skookum Creek                      | Mill Cr                                 | Mill Cr land use (urban, Forested,<br>and agricultural) has greater<br>similarity to Agate East, despite<br>Skookum being closer in<br>drainage area.                                          | No                            | _                                                                                                                       |
| Agate West      | South_Sound               | Skookum Creek                      | Mill Cr                                 | Mill Cr land use (urban, forested,<br>and agricultural) has greater<br>similarity to Agate West, despite<br>Skookum being closer in<br>drainage area.                                          | No                            | _                                                                                                                       |
| Anderson east   | South_Sound               | Woodland Creek                     | Anderson West                           | Anderson West is more<br>representative of Anderson East<br>due to similarity in drainage area<br>and land use (mostly forested)<br>compared to Woodland Creek,<br>which is heavily urbanized. | No                            | _                                                                                                                       |
| Birch Bay       | SOG                       | Nooksack River                     | Drayton Harbor                          | Drayton Harbor and Birch Bay<br>have similar land use<br>distributions and drainage areas<br>compared to Nooksack River                                                                        | Yes                           | In Opt1, it was<br>included in<br>Drayton Harbor<br>drainage area<br>despite not being<br>hydrologically<br>connected.  |
| Cassalery Creek | SJF                       | Elwha River                        | Dungeness                               | Dungeness WQ sites are in a<br>region with primarily agricultural<br>and urban land use, which<br>matches the land use in<br>Cassalery Creek. Elwha is<br>primarily forested.                  | No                            | In Opt1, it was<br>included in<br>Dungeness River<br>drainage area<br>despite not being<br>hydrologically<br>connected. |

| Watershed Name            | SSM<br>Watershed<br>Basin | Original WQ regression association                  | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                                                                                               | Flow<br>Association<br>Change | Comment                                                                                                               |
|---------------------------|---------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Chuckanut_Padden<br>Creek | Bellingham_Bay            | Samish River                                        | Whatcom Creek                           | Whatcom Creek and<br>Chucknut_Padden Creek have<br>similar land use distribution<br>(urban and forested), while<br>Samish River is mixed land use.                                                                              | Yes                           | In Opt1, it was<br>included in<br>Whatcom Creek<br>drainage area<br>despite not being<br>hydrologically<br>connected. |
| Cypress_Guemes Is         | SOG                       | Samish River                                        | False Bay Creek                         | False Bay Creek (forested and<br>agricultural) is closer in size to<br>Cypress_Guemes Is (forested<br>and agricultural) and has slightly<br>more representative land use<br>distribution than Samish River<br>(mixed land use). | Yes                           | _                                                                                                                     |
| Discovery Bay 2           | SJF                       | Elwha River                                         | Discovery Bay 1                         | Similar land use, drainage area,<br>and close in proximity.                                                                                                                                                                     | Yes                           | Discovery Bay was<br>split into 3<br>watersheds in<br>Opt2                                                            |
| Discovery Bay 3           | SJF                       | Elwha River                                         | Discovery Bay 1                         | Has more urban and agricultural<br>land use than Discovery Bay 1,<br>but Discovery Bay 1 is a better<br>option than Elwha, as it has a<br>similar drainage area to<br>Discovery Bay 3 and does not<br>have a dam.               | Yes                           | Discovery Bay was<br>split into 3<br>watersheds in<br>Opt2                                                            |
| Eagle Creek               | Hood_Canal                | Skokomish River<br>(Duckabush River for<br>DOC/POC) | Hamma Hamma                             | Similar land use (forest and<br>shrubland), drainage area, and<br>close in proximity.                                                                                                                                           | Yes                           | Was part of<br>Hamma Hamma in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected.   |

| Watershed Name | SSM<br>Watershed<br>Basin | Original WQ regression association                  | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                   | Flow<br>Association<br>Change | Comment                                                                                                             |
|----------------|---------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Finch Creek    | Hood_Canal                | Skokomish River<br>(Duckabush River for<br>DOC/POC) | Hamma Hamma                             | Similar land use (forest and<br>shrubland), drainage area, and<br>close in proximity.                                                               |                               | Was part of<br>Hamma Hamma in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected. |
| Fox Island     | South_Sound               | Burley Creek                                        | Artondale Creek                         | Similar land use (primarily urban,<br>compared to Burley, which is<br>mixed land use), drainage area,<br>and close in proximity.                    | No                            | _                                                                                                                   |
| Fulton Creek   | Hood_Canal                | Skokomish River<br>(Duckabush River for<br>DOC/POC) | Hamma Hamma                             | Similar land use (forest and<br>shrubland), drainage area, and<br>close in proximity.                                                               | Yes                           | Was part of<br>Hamma Hamma in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected. |
| Hale Passage   | South_Sound               | Burley Creek                                        | Artondale Creek                         | Similar land use (primarily urban,<br>compared to Burley, which is<br>mixed land use), drainage area,<br>and close in proximity.                    | No                            | _                                                                                                                   |
| Jarrel Cove    | South_Sound               | Sherwood Creek                                      | Cranberry Creek                         | Both have similar land use, but<br>Cranberry Creek is slightly closer<br>in size to Jarrel Cove.                                                    | Yes                           | _                                                                                                                   |
| Johns Cr       | South_Sound               | Sherwood Creek                                      | Goldsborough Cr                         | Goldsborough land use (mixed)<br>is more representative of Johns<br>Cr than Sherwood Creek, despite<br>Goldsborough being around 5<br>times larger. | Yes                           | _                                                                                                                   |

| Watershed Name    | SSM<br>Watershed<br>Basin | Original WQ regression association                  | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                                                                   | Flow<br>Association<br>Change | Comment                                                                                                               |
|-------------------|---------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Lilliwaup Creek   | Hood_Canal                | Skokomish River<br>(Duckabush River for<br>DOC/POC) | Hamma Hamma                             | Similar land use, drainage area,<br>and close in proximity.                                                                                                                                         | Yes                           | Was part of<br>Hamma Hamma in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected.   |
| Lopez Island      | SOG                       | Samish River                                        | False Bay Creek                         | Similar land use (agriculture),<br>drainage area, and close in<br>proximity.                                                                                                                        | Yes                           | —                                                                                                                     |
| Lower Dosewallips | Hood_Canal                | Duckabush                                           | Dosewallips                             | Similar land use despite Lower<br>Dosewallips being much smaller<br>(10 Km <sup>2</sup> ) than Dosewallips (301<br>Km <sup>2</sup> )                                                                | Yes                           | Was part of<br>Dosewallips in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected.   |
| Lummi Island E    | Bellingham_Bay            | Samish River                                        | False Bay Creek                         | Lummi Island E is primarily<br>forested with a little agricultural<br>land use. False Bay Creek<br>(forested and agricultural) is<br>more representative than<br>Samish (mixed land use).           | Yes                           | Was part of<br>Whatcom Creek in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected. |
| Lummi Island W    | SOG                       | Samish River                                        | False Bay Creek                         | Lummi Island W is primarily<br>forested, with a little agriculture<br>and urban land use. False Bay<br>Creek (forested and agricultural)<br>is more representative than<br>Samish (mixed land use). | Yes                           | Was part of<br>Whatcom Creek in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected. |

| Watershed Name  | SSM<br>Watershed<br>Basin | Original WQ regression association               | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                                                                                                                                                         | Flow<br>Association<br>Change | Comment                                                                                                                        |
|-----------------|---------------------------|--------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Mayo Cove       | South_Sound               | Minter Creek                                     | Whitman Creek                           | Similar land use, drainage area,<br>and close in proximity. Minter<br>itman Creek<br>Use than both Mayo Cove and<br>Whitman Creek.                                                                                                                                                        |                               | _                                                                                                                              |
| McNeil Isl      | South_Sound               | Woodland Creek                                   | Whitman Creek                           | Whitman Creek and McNeil<br>Island are in close proximity,<br>have almost identical drainage<br>areas, and similar land use.                                                                                                                                                              | No                            | —                                                                                                                              |
| Orcas Island    | SOG                       | Samish River                                     | False Bay Creek                         | False Bay Creek and Orcas Island<br>are in close proximity, have<br>almost identical drainage areas,<br>and similar land use.                                                                                                                                                             | Yes                           | _                                                                                                                              |
| Port Angeles    | SJF                       | Elwha River                                      | Dungeness                               | Elwha is primarily forested, while<br>Dungeness and Port Angeles<br>have significant urban land use<br>near the mouth of both<br>watersheds.                                                                                                                                              | Yes                           | _                                                                                                                              |
| Port Gamble     | Hood_Canal                | Big Beef Creek<br>(Sinclair-Dyes for<br>DOC/POC) | Liberty Bay                             | Big Beef Creek is primarily<br>forested, while Port Gamble and<br>Liberty Bay have a lot of urban<br>land use in addition to forest<br>land.                                                                                                                                              | Yes                           | _                                                                                                                              |
| Port Townsend E | Admiralty                 | Elwha River                                      | Discovery Bay 1                         | Elwha is primarily forested land<br>use, while Discovery Bay 1 is<br>forested and agricultural. Port<br>Townsend E, however, does<br>have urban land use, which is<br>not represented by either<br>selection. Due to data<br>limitations, however, Discovery<br>Bay 1 is the best option. | Yes                           | Port Townsend<br>was one<br>watershed in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected. |

| Watershed Name  | SSM<br>Watershed<br>Basin | Original WQ regression association           | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                                                                                                                                                         | Flow<br>Association<br>Change | Comment                                                                                                                        |
|-----------------|---------------------------|----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Port Townsend W | Admiralty                 | Elwha River                                  | Discovery Bay 1                         | Elwha is primarily forested land<br>use, while Discovery Bay 1 is<br>forested and agricultural. Port<br>Townsend W, however, does<br>have urban land use, which is<br>not represented by either<br>selection. Due to data<br>limitations, however, Discovery<br>Bay 1 is the best option. | Yes                           | Port Townsend<br>was one<br>watershed in<br>Opt1, but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected. |
| Sequim Bay E    | SJF                       | Elwha River                                  | Sequim Bay S                            | Similar land use, drainage area,<br>and close in proximity.                                                                                                                                                                                                                               | Yes                           | Sequim Bay was<br>one watershed in<br>Opt1 but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected.        |
| Silver Creek    | Bellingham_Bay            | Nooksack River                               | Squalicum Creek                         | Silver Creek and Squalicum Creek<br>are primarily urban and<br>agricultural land use, while<br>Nooksack is mostly forested.                                                                                                                                                               | Yes                           | Was part of<br>Nooksack River in<br>Opt1 but was<br>separated in Opt2<br>as it is not<br>hydrologically<br>connected.          |
| Spencer Creek   | Hood_Canal                | Duckabush                                    | Big Quilcene                            | Spencer Creek, Duckabush, and<br>Big Quilcene are all forested<br>watersheds. Big Quilcene was<br>selected because it has a similar<br>drainage area to Spencer Creek<br>and is in closer proximity than<br>Duckabush.                                                                    | Yes                           | Was part of Dabob<br>Bay in Opt1, but<br>was separated in<br>Opt2 as it is not<br>hydrologically<br>connected.                 |
| Thorndyke Creek | Hood_Canal                | Big Beef Creek<br>(Duckabush for<br>DOC/POC) | Duckabush                               | Duckabush and Thorndyke Creek<br>are both primarily forest and<br>shrubland.                                                                                                                                                                                                              | No                            | —                                                                                                                              |

| Watershed Name | SSM<br>Watershed<br>Basin | Original WQ regression association | Updated<br>WQ regression<br>association | Reason for change                                                                                                                                                                                                   | Flow<br>Association<br>Change | Comment |
|----------------|---------------------------|------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|
| Whidbey West   | Admiralty                 | Samish River                       | Stillaguamish                           | Stillaguamish and Whidbey West<br>both have a significant amount<br>of agricultural land use, while<br>Samish River does have<br>agricultural land use, all of the<br>water quality stations are near<br>shrubland. | Yes                           | Ι       |

"—"=No comment

Watershed associations that were updated in Opt 2 were changed for all parameters other than temperature. Watershed associations for temperature in Opt 2 were either updated to native data if available or the association from Opt 1 was retained.

### **References (Appendix B1)**

- Ahmed, A., C. Figueroa-Kaminsky, J. Gala, T. Mohamedali, S. McCarthy. 2021. Technical Memorandum: Puget Sound Nutrient Source Reduction - Optimization Scenarios Phase 1. Washington State Department of Ecology, Olympia, WA.
   <u>https://www.ezview.wa.gov/Portals/ 1962/Documents/PSNSRP/OptimizationScenarioTech</u> <u>Memo 9 13 2021.pdf</u>
- Cohn, T., Delong, L., Gilroy, E., Hirsch, R., and Wells, D. 1989. Estimating constituent loads. Water Resources Research, 25(5): 937 – 942. <u>https://doi.org/10.1029/WR025i005p00937</u>
- Cohn, T., Caulder, D., Gilroy, E., Zynjuk, L., and Summers, R. 1992. The validity of a simple statistical model for estimating fluvial constituent loads: an empirical study involving nutrient loads entering Chesapeake Bay.Water Resources Research, 28(9): 2353 – 2363. https://doi.org/10.1029/92WR01008
- Gochis, D.J., Barlage, M., Cabell, R., Casali, M., Dugger, A., FitzGerald, K. et al. 2020. The WRF-Hydro<sup>®</sup> modeling system technical description (Version 5.2.0). NCAR Technical Note. 108 pages. Available online at: <u>https://ral.ucar.edu/sites/default/files/public/projects/wrf-hydro/technical-descriptionuser-guide/wrf-hydrov5.2technicaldescription.pdf</u>
- Jolliff, J., Kindle, J., Shulman, I., Penta, B., Friedrichs, M., Helber, R. and Arnone, R., 2009. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems, 76(1-2): 64-82. https://doi.org/10.1016/j.jmarsys.2008.05.014
- Mohamedali, T., M. Roberts, B. Sackmann, and A. Kolosseus. 2011. Puget Sound dissolved oxygen model nutrient load summary for 1999–2008. Publication 11-03-057. Washington State Department of Ecology, Olympia. https://apps.ecology.wa.gov/publications/SummaryPages/1103057.html
- Pederzoli, A., Thunis, P., Georgieva, E., Borge, R., Carruthers, D. and Pernigotti, D. 2012.
  Performance criteria for the benchmarking of air quality model regulatory applications: the 'target' approach. International Journal of Environment and Pollution,50(1 4):175 189. https://doi.org/10.1504/IJEP.2012.051191
- USECoS Team, 2008. Eastern US continental shelf carbon budget: Integrating models, data assimilation, and analysis. Oceanography, 21(1):86–104. <u>https://www.jstor.org/stable/24860162</u>

# **Appendix B2. Changes to Watershed Loadings**

This section presents changes in watershed flows and nutrient loading between Optimization Phase 1 (Opt1) and Optimization Phase 2 (Opt2) due to the updates made to watershed delineations and watershed regressions described in Appendix B1.

# **Flow changes**

Table B2-1 below compares annual average flows between Optimization Phase 1 (Opt1) and Optimization Phase 2 (Opt2) for years 2006 and 2014, aggregated to different basins of the Salish Sea. The total flow magnitude between Opt1 and Opt2 across all of Washington. Watersheds decreased by about 3%. At the basin level, SOG had the largest percent changes in flows (where flows decreased by 43.7% and 37.6% for 2006 and 2014 in Opt2). This big decrease in flows is primarily due to a change in how flow from creeks in the San Juan Islands is estimated — previously, flow from the San Juan Islands was estimated by scaling down flow from the Samish River. For Opt2, these flows are now estimated using WRF-Hydro hindcast flow predictions.

The second largest percent change in flows were in Admiralty Inlet (where flows decreased by 14.6% and 16.0% for 2006 and 2014 in Opt2), but this basin also had the smallest magnitude of change in flow (0.68 and 0.82 cms for 2006 and 2014, respectively) — this basin only has a few small creeks so small changes to flow estimates resulted in a larger percent change.

Whidbey Basin had the largest magnitude of change in flow, where flow decreased by 64.2 and 77.8 cms in 2006 and 2014 in Opt2. This decrease in flow estimated to Whidbey Basin was primarily because of changes to Skagit River flow data, which was likely provisional when it was downloaded for Opt1. Main Basin had the smallest change in percent flows (where flows increased by 1.5% and 0.3% respectively, for the years 2006 and 2014 for Opt2). These results show that the combination of updating watershed delineations as well as using WRF flows for some ungauged locations does not appear to have heavily changed our flow estimates at the scale of the Salish Sea (for US rivers), even though flow estimates from individual basins did change.

Table B2-1. Comparison of annual daily average watershed flows for years 2006 and2014, existing conditions between Optimization Phase 1 (Opt1) and Optimization Phase 2(Opt2) in different basins in the Salish Sea.

| Basin                      | 2006<br>Opt1<br>flow<br>(cms) | 2006<br>Opt2<br>flow<br>(cms) | 2006<br>Diff. in<br>flow<br>(cms) | 2006<br>Diff. in<br>flow<br>(%) | 2014<br>Opt1<br>flow<br>(cms) | 2014<br>Opt2<br>flow<br>(cms) | 2014<br>Diff. in<br>flow<br>(cms) | 2014<br>Diff. in<br>flow<br>(%) |
|----------------------------|-------------------------------|-------------------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------|-----------------------------------|---------------------------------|
| South Sound                | 150                           | 160                           | 5.27                              | 3.5%                            | 120                           | 130                           | 4.30                              | 3.4%                            |
| Main Basin                 | 230                           | 230                           | 3.35                              | 1.5%                            | 240                           | 240                           | 0.66                              | 0.3%                            |
| Hood Canal                 | 190                           | 200                           | 7.9                               | 4.1%                            | 150                           | 170                           | 17.8                              | 11.6%                           |
| Whidbey Basin              | 990                           | 930                           | -63.4                             | -6.4%                           | 1180                          | 1100                          | -76.8                             | -6.5%                           |
| Admiralty                  | 4.68                          | 4.00                          | -0.68                             | -14.6%                          | 5.13                          | 4.31                          | -0.82                             | -16.0%                          |
| Northern Bays <sup>1</sup> | 140                           | 130                           | -3.68                             | -2.7%                           | 160                           | 160                           | -4.51                             | -2.8%                           |
| SOG - US                   | 12.4                          | 6.97                          | -5.40                             | -43.7%                          | 14.7                          | 9.14                          | -5.52                             | -37.6%                          |
| SJF - US                   | 150                           | 150                           | -2.83                             | -1.8%                           | 150                           | 150                           | -1.15                             | -0.8%                           |
| Salish Sea<br>US Total     | 1867                          | 1811                          | -56.1                             | -3.0%                           | 2020                          | 1963                          | -56.4                             | -2.8%                           |

<sup>1</sup> Includes Bellingham, Samish, and Padilla Bays.

SOG = Strait of Georgia

SJF = Strait of Juan de Fuca

#### **Total nitrogen load changes**

Figure B2-1 and Table B2-2 compare total nitrogen (TN) load estimates between Opt1 and Opt2 for the years 2006 and 2014. Across all of Washington watersheds, existing TN load estimates between Opt1 and Opt2 increased by under 4.7%, reference TN loads decreased by 4.3% and 6.2%, while anthropogenic TN load estimates increased by about 15.8% and 19.5% for 2006 and 2014, respectively. As in other sections of the report and Appendices, "anthropogenic" refers to local and regional human loads or influence.

The largest differences in the magnitude of estimated anthropogenic loads between Opt2 and Opt1 are in Main Basin and Hood Canal. In Main Basin, estimated anthropogenic TN loads increased by 1,750 kg/day and 1,710 kg/day in 2006 and 2014, respectively, while in Hood Canal, they increased by 772 kg/day and 670 kg/day in 2006 and 2014, respectively. The increases in Main Basin TN loads between Opt 1 and Opt 2 were primarily due to regression changes for Dyes Inlet and Green River. Dyes Inlet previously used the median concentrations of water quality data from Puyallup, Nisqually, Deschutes, Green, and Cedar Lake to build regressions. In Opt 2, we acquired native data for Dyes Inlet to build regressions. For Green River, the data set used was expanded from 2006 to 2018 in Opt 1 to 1999 to 2022 in Opt 2. The new regression fit for Green River resulted in higher TN loads than in Opt 1. The changes in TN loads in Hood Canal were the result of acquiring data for watersheds that did not previously have data. In Opt 1, 25% of the watersheds in Hood Canal had native data for TN. This number

increased to 60% in Opt 2. In terms of percent changes, we see that SJF, SOG, and Hood Canal have the largest percentage increases in existing and anthropogenic TN loads.

We now have more spatial and temporal coverage in terms of freshwater nitrogen data, which allowed the development of site-specific regressions for more watersheds. For example, previously, several rivers SJF used the Elwha River regression, but now use site-specific regressions, or regressions from a different, closer watershed. Nitrogen loading estimates for rivers draining to Hood Canal are now also based on more site-specific data. This indicates that our previous estimates in Opt1 likely underestimated existing and anthropogenic TN loads for watersheds draining to Hood Canal. However, these higher loads are still much lower than those estimated for watersheds in more developed regions. For example, South Sound which has annual average freshwater inflows of 150 cms, has an estimated anthropogenic TN load in Opt2 of 4,070 kg/day in 2006, while SJF, which also has about 150 cms of freshwater flow has an estimated anthropogenic TN load in Opt2 that is 83% below that of South Sound, at 673 kg/day. Hood Canal flows are greater than those in South Sound, at 190 cms, but its estimated anthropogenic TN loads are 1,400 kg/day, which is 66% below that of South Sound.



Figure B2-1. Comparison of annual daily average reference and anthropogenic total nitrogen (TN) watershed loads entering different basins in the Salish Sea in Optimization Phase 1 (Opt1) and Optimization Phase 2 (Opt2) during 2006 (top plot) and 2014 (bottom plot).

Table B2-2. Comparison of annual daily average existing, reference, and anthropogenic total nitrogen (TN) watershed loads entering different basins in the Salish Sea in Optimization Phase 1 (Opt1) and Optimization Phase 2 (Opt2) during 2006 and 2014.

| Total Nitrogen:        | 2006     | 2006     | 2006     | 2006     | 2014           | 2014           | 2014     | 2014     |
|------------------------|----------|----------|----------|----------|----------------|----------------|----------|----------|
| Fristing loads         | Opt1     | Opt2     | Diff. in | Diff. in | Opt1           | Opt2           | Diff. in | Diff. in |
| by Basin               | load     | load     | load     | load     | load           | load           | load     | load     |
| Sy Basin               | (kg/day) | (kg/day) | (kg/day) | (%)      | (kg/day)       | (kg/day)       | (kg/day) | (%)      |
| South Sound            | 6,800    | 6,950    | 150      | 2.2%     | 5,710          | 5 <i>,</i> 800 | 90.0     | 1.6%     |
| Main Basin             | 7,840    | 8,970    | 1,130    | 14.4%    | 7,440          | 8,510          | 1,070    | 14.4%    |
| Hood Canal             | 1,700    | 2,470    | 770      | 45.3%    | 1,260          | 2,020          | 760      | 60.3%    |
| Whidbey Basin          | 16,990   | 16,760   | -230     | -1.4%    | 19,690         | 19,220         | -470     | -2.4%    |
| Admiralty              | 169      | 124      | -45.0    | -26.6%   | 216            | 116            | -100     | -46.3%   |
| Northern Bays1         | 6,750    | 6,020    | -730     | -10.8%   | 6,720          | 6,600          | -120     | -1.8%    |
| SOG – US               | 669      | 1,110    | 441      | 65.9%    | 777            | 1,320          | 543      | 69.9%    |
| SJF – US               | 774      | 1,230    | 456      | 58.9%    | 955            | 1,150          | 195      | 20.4%    |
| Salish Sea<br>US Total | 41,692   | 43,634   | 1,942    | 4.7%     | 42,768         | 44,736         | 1,968    | 4.6%     |
| Total Nitrogan         | 2006     | 2006     | 2006     | 2006     | 2014           | 2014           | 2014     | 2014     |
| Potar Nitrogen:        | Opt1     | Opt2     | Diff. in | Diff. in | Opt1           | Opt2           | Diff. in | Diff. in |
| hy Basin               | load     | load     | load     | load     | load           | load           | load     | load     |
| by Basin               | (kg/day) | (kg/day) | (kg/day) | (%)      | (kg/day)       | (kg/day)       | (kg/day) | (%)      |
| South Sound            | 2,770    | 2,880    | 110      | 3.9%     | 2,310          | 2,360          | 50.0     | 2.2%     |
| Main Basin             | 4,440    | 3,820    | -620     | -13.9%   | 4,550          | 3,910          | -640     | -14.1%   |
| Hood Canal             | 1,070    | 1,070    | 0.0      | 0.2%     | 818            | 907            | 89.0     | 10.9%    |
| Whidbey Basin          | 11,410   | 11,000   | -410     | -3.6%    | 13,330         | 12,500         | -830     | -6.2%    |
| Admiralty              | 16.3     | 15.4     | -0.90    | -5.7%    | 16.8           | 14.6           | -2.20    | -13.1%   |
| Northern Bays1         | 2,560    | 2,540    | -20.0    | -0.8%    | 3 <i>,</i> 060 | 2,960          | -100.0   | -3.3%    |
| SOG – US               | 232      | 136      | -96.0    | -41.3%   | 287            | 178            | -109     | -38.0%   |
| SJF – US               | 521      | 557      | 36.0     | 6.9%     | 491            | 501            | 10.0     | 2.0%     |
| Salish Sea<br>US Total | 23,019   | 22,018   | -1,001   | -4.3%    | 24,863         | 23,331         | -1,532   | -6.2%    |
| Total Nitrogen         | 2006     | 2006     | 2006     | 2006     | 2014           | 2014           | 2014     | 2014     |
| Anthropogenic          | Opt1     | Opt2     | Diff. in | Diff. in | Opt1           | Opt2           | Diff. in | Diff. in |
| loads by Basin         | load     | load     | load     | load     | load           | load           | load     | load     |
|                        | (kg/day) | (kg/day) | (kg/day) | (%)      | (kg/day)       | (kg/day)       | (kg/day) | (%)      |
| South Sound            | 4,030    | 4,070    | 40.0     | 1.0%     | 3,410          | 3,440          | 30.0     | 0.9%     |
| Main Basin             | 3,400    | 5,150    | 1,750    | 51.4%    | 2,890          | 4,600          | 1,710    | 59.2%    |
| Hood Canal             | 628      | 1,400    | 772      | 123%     | 440            | 1,110          | 670      | 152%     |
| Whidbey Basin          | 5,580    | 5,760    | 180      | 3.2%     | 6,360          | 6,720          | 360      | 5.7%     |
| Admiralty              | 152      | 108      | -44.0    | -28.8%   | 199            | 102            | -97.0    | -48.7%   |
| Northern Bays1         | 4,190    | 3,480    | -710     | -16.9%   | 3,660          | 3,640          | -20.0    | -0.5%    |
| SOG – US               | 438      | 978      | 540      | 123%     | 490            | 1,140          | 650      | 133%     |
| SJF – US               | 254      | 673      | 419      | 165%     | 464            | 650            | 186      | 40.1%    |
| Salish Sea<br>US Total | 18,672   | 21,619   | 2,947    | 15.8%    | 17,913         | 21,402         | 3,489    | 19.5%    |

### **Total organic carbon load changes**

Figure B2-2 and Table B2-3 compare total organic carbon (TOC) load estimates between Opt1 and Opt2 for the years 2006 and 2014. Across all of Washington watersheds, existing TOC load estimates decreased by 14.3% in 2006 and increased by 3.3% in 2014 for Opt2 relative to Opt1. Estimates of reference TOC loads increased by 5.0% in 2006 and decreased by 4.6% in 2014, while estimates of anthropogenic TOC loads decreased by 34.2% in 2006 and increased by 19.3% in 2014 for Opt2 relative to Opt1.

The largest magnitudes of changes in estimated existing and anthropogenic TOC loads were in Whidbey Basin, SJF, and Hood Canal. In Whidbey Basin, existing load estimates decreased for both years. In SJF, they decreased in 2006 and increased in 2014, while in Hood Canal, they increased for both years. The largest percent change in estimated existing and anthropogenic TOC loads between Opt1 and Opt2 was in Hood Canal (existing loads increased by 94.4% and 56.2% in 2006 and 2014, respectively, and anthropogenic loads increased by 123% in 2006, but decreased by 21.4% in 2014). Existing TOC loads in Hood Canal for Opt2 were 36.3% less in 2014 than in 2006 (25,600 kg/day vs. 40,200 kg/day), and anthropogenic loads were 66.8% less in 2014 than in 2006 (13,100 kg/day vs. 4,340 kg/day in 2006 and 2014).

Existing TOC loads for 2006 and 2014 increased from Opt 1 due to greater data coverage for Hood Canal in Opt 2. In Opt 1, many of the watersheds without TOC data were borrowing from watersheds with much lower TOC concentrations than what would be supported by our current data. The decrease in anthropogenic TOC loads in 2014, however, was primarily due to changes in Skokomish River TOC data used and due to changes in the regression. In Opt 1, we used TOC data from 2011 to 2018 to fit a regression for Skokomish, as this was the only data that we were aware of. In Opt 2, we found additional data that included the years 1996 – 2004. The data from 1996 to 2004 had TOC concentrations that were on average 2.5 times greater than the data from 2011 to 2018. The stark differences between 2014 and 2006 TOC loads in Opt 2 are due to the use of two regressions, one for 1996 – 2009 using data from 1996 to 2004 and the other for 2010 – present using the data from 2011 to 2018. The decision to split Skokomish regressions into two temporal periods was also influenced by noticeable changes in the hydrograph from 2009 onwards. The Skokomish River channel at the Potlach USGS gauge has been gradually filling in over the years, resulting in greater occurrences of overbank flow losses during high flow events (Collins et al. 2019).

The change in TOC loads between Opt1 and Opt2 is not consistent between the two years, i.e., in some basins, like in SJF, where existing and anthropogenic TOC loads decreased in 2006 and increased in 2014. This is because in Opt1, we used an expanded freshwater TOC data set for regressions to estimate concentrations for model year 2014, but an older set of regressions using a smaller TOC data set was used for model year 2006. For Opt2, we are now using a consistent and expanded freshwater database for both modeled years. As a result, the magnitude of estimated anthropogenic TOC loads is now more similar for the two years. For example, in SJF, in Opt1, existing TOC loads were estimated at 60,800 kg/day and 13,100 kg/day

in 2006 and 2014, respectively. In Opt2, these TOC loads in Opt2 are now 26,800 kg/day and 22,800 kg/day for 2006 and 2014, respectively.

Since our method of estimating reference TOC concentrations is based on calculating the 10th or 50th percentile of existing TOC concentrations, any increase or decrease in the existing TOC load estimates also resulted in analogous increases or decreases in the reference TOC load estimates.



Figure B2-2. Comparison of annual daily average reference and anthropogenic total organic carbon (TOC) watershed loads entering different basins in the Salish Sea in Optimization Phase 1 (Opt1) and Optimization Phase 2 (Opt2) during 2006 (top plot) and 2014 (bottom plot).

Table B2-3. Comparison of annual daily average existing, reference, and anthropogenic total organic carbon (TOC) watershed loads entering different basins in the Salish Sea in Optimization Phase 1 (Opt1) and Optimization Phase 2 (Opt2) during 2006 and 2014.

| Total Organic Carbon:<br>Existing Loads<br>by Basin                                                                                            | 2006 Opt1<br>load<br>(kg/day)                                                               | 2006 Opt2<br>load<br>(kg/day)                                                                | 2006 Diff.<br>in load<br>(kg/day)                                                           | 2006 Diff.<br>in load<br>(%)                                                                      | 2014<br>Opt1<br>Ioad<br>(kg/day)                                                             | 2014 Opt2<br>load<br>(kg/day)                                                                | 2014 Diff.<br>in load<br>(kg/day)                                                             | 2014 Diff.<br>in load (%)                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| South Sound                                                                                                                                    | 34,200                                                                                      | 38,800                                                                                       | 4,600                                                                                       | 13.5%                                                                                             | 28,300                                                                                       | 29,400                                                                                       | 1,100                                                                                         | 3.8%                                                                                               |
| Main Basin                                                                                                                                     | 51,500                                                                                      | 54,900                                                                                       | 3,400                                                                                       | 6.7%                                                                                              | 52 <i>,</i> 400                                                                              | 52,100                                                                                       | -300                                                                                          | -0.50%                                                                                             |
| Hood Canal                                                                                                                                     | 20,700                                                                                      | 40,200                                                                                       | 19,500                                                                                      | 94.4%                                                                                             | 16,400                                                                                       | 25,600                                                                                       | 9,200                                                                                         | 56.2%                                                                                              |
| Whidbey Basin                                                                                                                                  | 170,000                                                                                     | 123,000                                                                                      | -47,000                                                                                     | -27.5%                                                                                            | 163,000                                                                                      | 152,000                                                                                      | -11,000                                                                                       | -6.7%                                                                                              |
| Admiralty                                                                                                                                      | 1,500                                                                                       | 979                                                                                          | -521                                                                                        | -34.9%                                                                                            | 830                                                                                          | 1,110                                                                                        | 280                                                                                           | 33.6%                                                                                              |
| Northern Bays1                                                                                                                                 | 28,600                                                                                      | 29,200                                                                                       | 600                                                                                         | 2.4%                                                                                              | 35,200                                                                                       | 35,300                                                                                       | 100                                                                                           | 0.50%                                                                                              |
| SOG – US                                                                                                                                       | 2,410                                                                                       | 2,880                                                                                        | 470                                                                                         | 19.4%                                                                                             | 2,960                                                                                        | 4,070                                                                                        | 1,110                                                                                         | 37.2%                                                                                              |
| SJF – US                                                                                                                                       | 60,800                                                                                      | 26,800                                                                                       | -34,000                                                                                     | -55.9%                                                                                            | 13,100                                                                                       | 22,800                                                                                       | 9,700                                                                                         | 73.5%                                                                                              |
| Salish Sea US Total                                                                                                                            | 369,710                                                                                     | 316,759                                                                                      | -52,951                                                                                     | -14.3%                                                                                            | 312,190                                                                                      | 322,380                                                                                      | 10,190                                                                                        | 3.3%                                                                                               |
| Total Organic Carbon:                                                                                                                          | 2006 Opt1                                                                                   | 2006 Opt2                                                                                    | 2006 Diff.                                                                                  | 2225 211                                                                                          | 2014 Opt1                                                                                    | 2014 Opt2                                                                                    | 2014 Diff.                                                                                    |                                                                                                    |
|                                                                                                                                                | •                                                                                           | •                                                                                            |                                                                                             | 2006 Ditt                                                                                         | -                                                                                            | •                                                                                            |                                                                                               | 201/ Diff                                                                                          |
| Reference Loads                                                                                                                                | load                                                                                        | load                                                                                         | in load                                                                                     | 2006 Diff.<br>in load (%)                                                                         | load                                                                                         | load                                                                                         | in load                                                                                       | 2014 Diff.                                                                                         |
| Reference Loads<br>by Basin                                                                                                                    | load<br>(kg/day)                                                                            | load<br>(kg/day)                                                                             | in load<br>(kg/day)                                                                         | 2006 Diff.<br>in load (%)                                                                         | load<br>(kg/day)                                                                             | load<br>(kg/day)                                                                             | in load<br>(kg/day)                                                                           | 2014 Diff.<br>in load (%)                                                                          |
| Reference Loads<br>by Basin<br>South Sound                                                                                                     | load<br>(kg/day)<br>21,400                                                                  | load<br>(kg/day)<br>24,200                                                                   | in load<br>(kg/day)<br>2,800                                                                | 2006 Diff.<br>in load (%)<br>13.2%                                                                | load<br>(kg/day)<br>18,200                                                                   | load<br>(kg/day)<br>19,300                                                                   | in load<br>(kg/day)<br>1,100                                                                  | 2014 Diff.<br>in load (%)<br>6.3%                                                                  |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin                                                                                       | load<br>(kg/day)<br>21,400<br>35,500                                                        | load<br>(kg/day)<br>24,200<br>37,500                                                         | in load<br>(kg/day)<br>2,800<br>2,000                                                       | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%                                                        | load<br>(kg/day)<br>18,200<br>36,300                                                         | load<br>(kg/day)<br>19,300<br>35,800                                                         | in load<br>(kg/day)<br>1,100<br>-500                                                          | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%                                                         |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin<br>Hood Canal                                                                         | load<br>(kg/day)<br>21,400<br>35,500<br>14,800                                              | load<br>(kg/day)<br>24,200<br>37,500<br>27,100                                               | in load<br>(kg/day)<br>2,800<br>2,000<br>12,300                                             | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%<br>83.2%                                               | load<br>(kg/day)<br>18,200<br>36,300<br>10,900                                               | load<br>(kg/day)<br>19,300<br>35,800<br>21,300                                               | in load<br>(kg/day)<br>1,100<br>-500<br>10,400                                                | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%<br>95.5%                                                |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin<br>Hood Canal<br>Whidbey Basin                                                        | load<br>(kg/day)<br>21,400<br>35,500<br>14,800<br>87,200                                    | load<br>(kg/day)<br>24,200<br>37,500<br>27,100<br>73,200                                     | in load<br>(kg/day)<br>2,800<br>2,000<br>12,300<br>-14,000                                  | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%<br>83.2%<br>-16.0%                                     | load<br>(kg/day)<br>18,200<br>36,300<br>10,900<br>111,000                                    | load<br>(kg/day)<br>19,300<br>35,800<br>21,300<br>85,800                                     | in load<br>(kg/day)<br>1,100<br>-500<br>10,400<br>-25,200                                     | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%<br>95.5%<br>-22.8%                                      |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin<br>Hood Canal<br>Whidbey Basin<br>Admiralty                                           | load<br>(kg/day)<br>21,400<br>35,500<br>14,800<br>87,200<br>405                             | load<br>(kg/day)<br>24,200<br>37,500<br>27,100<br>73,200<br>518                              | in load<br>(kg/day)<br>2,800<br>2,000<br>12,300<br>-14,000<br>113                           | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%<br>83.2%<br>-16.0%<br>27.8%                            | load<br>(kg/day)<br>18,200<br>36,300<br>10,900<br>111,000<br>441                             | load<br>(kg/day)<br>19,300<br>35,800<br>21,300<br>85,800<br>536                              | in load<br>(kg/day)<br>1,100<br>-500<br>10,400<br>-25,200<br>95.0                             | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%<br>95.5%<br>-22.8%<br>21.5%                             |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin<br>Hood Canal<br>Whidbey Basin<br>Admiralty<br>Northern Bays1                         | load<br>(kg/day)<br>21,400<br>35,500<br>14,800<br>87,200<br>405<br>17,900                   | load<br>(kg/day)<br>24,200<br>37,500<br>27,100<br>73,200<br>518<br>16,500                    | in load<br>(kg/day)<br>2,800<br>2,000<br>12,300<br>-14,000<br>113<br>-1,400                 | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%<br>83.2%<br>-16.0%<br>27.8%<br>-7.8%                   | load<br>(kg/day)<br>18,200<br>36,300<br>10,900<br>111,000<br>441<br>20,600                   | load<br>(kg/day)<br>19,300<br>35,800<br>21,300<br>85,800<br>536<br>18,500                    | in load<br>(kg/day)<br>1,100<br>-500<br>10,400<br>-25,200<br>95.0<br>-2,100                   | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%<br>95.5%<br>-22.8%<br>21.5%<br>-10.1%                   |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin<br>Hood Canal<br>Whidbey Basin<br>Admiralty<br>Northern Bays1<br>SOG – US             | load<br>(kg/day)<br>21,400<br>35,500<br>14,800<br>87,200<br>405<br>17,900<br>1,400          | load<br>(kg/day)<br>24,200<br>37,500<br>27,100<br>73,200<br>518<br>16,500<br>2,090           | in load<br>(kg/day)<br>2,800<br>2,000<br>12,300<br>-14,000<br>113<br>-1,400<br>690          | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%<br>83.2%<br>-16.0%<br>27.8%<br>-7.8%<br>49.4%          | load<br>(kg/day)<br>18,200<br>36,300<br>10,900<br>111,000<br>441<br>20,600<br>1,580          | load<br>(kg/day)<br>19,300<br>35,800<br>21,300<br>85,800<br>536<br>18,500<br>3,060           | in load<br>(kg/day)<br>1,100<br>-500<br>10,400<br>-25,200<br>95.0<br>-2,100<br>1,480          | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%<br>95.5%<br>-22.8%<br>21.5%<br>-10.1%<br>93.3%          |
| Reference Loads<br>by Basin<br>South Sound<br>Main Basin<br>Hood Canal<br>Whidbey Basin<br>Admiralty<br>Northern Bays1<br>SOG – US<br>SJF – US | load<br>(kg/day)<br>21,400<br>35,500<br>14,800<br>87,200<br>405<br>17,900<br>1,400<br>9,560 | load<br>(kg/day)<br>24,200<br>37,500<br>27,100<br>73,200<br>518<br>16,500<br>2,090<br>16,400 | in load<br>(kg/day)<br>2,800<br>2,000<br>12,300<br>-14,000<br>113<br>-1,400<br>690<br>6,840 | 2006 Diff.<br>in load (%)<br>13.2%<br>5.6%<br>83.2%<br>-16.0%<br>27.8%<br>-7.8%<br>49.4%<br>71.5% | load<br>(kg/day)<br>18,200<br>36,300<br>10,900<br>111,000<br>441<br>20,600<br>1,580<br>8,840 | load<br>(kg/day)<br>19,300<br>35,800<br>21,300<br>85,800<br>536<br>18,500<br>3,060<br>14,000 | in load<br>(kg/day)<br>1,100<br>-500<br>10,400<br>-25,200<br>95.0<br>-2,100<br>1,480<br>5,160 | 2014 Diff.<br>in load (%)<br>6.3%<br>-1.3%<br>95.5%<br>-22.8%<br>21.5%<br>-10.1%<br>93.3%<br>58.3% |

| Total Organic Carbon:<br>Anthropogenic Loads by Basin | 2006 Opt1<br>load<br>(kg/day) | 2006 Opt2<br>load<br>(kg/day) | 2006 Diff.<br>in load<br>(kg/day) | 2006 Diff.<br>in load (%) | 2014 Opt1<br>load<br>(kg/day) | 2014 Opt2<br>load<br>(kg/day) | 2014 Diff.<br>in load<br>(kg/day) | 2014 Diff.<br>in load (%) |
|-------------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------|---------------------------|-------------------------------|-------------------------------|-----------------------------------|---------------------------|
| South Sound                                           | 12,800                        | 14,600                        | 1,800                             | 14.0%                     | 10,100                        | 10,100                        | 0.00                              | -0.80%                    |
| Main Basin                                            | 16,000                        | 17,400                        | 1,400                             | 9.0%                      | 16,100                        | 16,300                        | 200                               | 1.2%                      |
| Hood Canal                                            | 5,870                         | 13,100                        | 7,230                             | 123%                      | 5,520                         | 4,340                         | -1,180                            | -21.4%                    |
| Whidbey Basin                                         | 82,300                        | 49,700                        | -32,600                           | -39.6%                    | 51,600                        | 66,100                        | 14,500                            | 28.2%                     |
| Admiralty                                             | 1,097                         | 461                           | -636                              | -58.0%                    | 388                           | 571                           | 183                               | 47.3%                     |
| Northern Bays1                                        | 10,700                        | 12,700                        | 2,000                             | 19.5%                     | 14,600                        | 16,800                        | 2,200                             | 15.4%                     |
| SOG – US                                              | 1,010                         | 790                           | -220                              | -22.0%                    | 1,380                         | 1,010                         | -370                              | -27.1%                    |
| SJF – US                                              | 51,200                        | 10,400                        | -40,800                           | -79.6%                    | 4,300                         | 8,800                         | 4,500                             | 105%                      |
| Salish Sea US Total                                   | 180,977                       | 119,151                       | -61,826                           | -34.2%                    | 103,988                       | 124,021                       | 20,033                            | 19.3%                     |

### **References (Appendix B2)**

Collins, B.D., Dickerson-Lange, S.E., Schanz, S. and Harrington, S., 2019. Differentiating the effects of logging, river engineering, and hydropower dams on flooding in the Skokomish River, Washington, USA. Geomorphology, 332:138 – 156. https://doi.org/10.1016/j.geomorph.2019.01.021

## Appendix B3. Time Series Plots of Flow and Water Quality for Watersheds

Appendix B3 is available as a separate document at <a href="https://apps.ecology.wa.gov/publications/SummaryPages/2503003.html">https://apps.ecology.wa.gov/publications/SummaryPages/2503003.html</a>.

This appendix includes:

- Appendix B3A. Flow time series for watersheds: 2000, 2006, 2008, and 2014
- Appendix B3B. Exist and reference water quality time series for watersheds: 2000
- Appendix B3C. Exist and reference water quality time series for watersheds: 2008
- Appendix B3D. Exist and reference water quality time series for watersheds: 2006
- Appendix B3E. Exist and reference water quality time series for watersheds: 2014

For definitions of terms, refer to the glossary in the main report.

# Appendix B4. Evaluation of Inorganic Nitrogen Watershed Regressions on Continuous Data

This section presents an evaluation of watershed regressions developed for Inorganic nitrogen with continuous observed data.

# Background

To meet the data needs of the Salish Sea model, Ecology's Freshwater Monitoring Unit (FMU) installed Submersible Ultraviolet Nitrate Analyzers (SUNA) in 2023 in several major watersheds in the Puget Sound, including Puyallup, Duwamish, Skagit, Snohomish, Cedar, Stillaguamish, Nooksack, and the Nisqually. The continuous SUNA inorganic nitrogen data provided by these sensors presented us with the opportunity to thoroughly evaluate the performance of our regressions on a comprehensive and independent data set from the data used to fit the regressions. For our evaluation, we identified SUNA nitrate-nitrite monitoring locations that were coincident with discrete monthly monitoring locations used to fit the regressions. Coincident locations used for the evaluation include Nooksack, Puyallup, Skagit, and Snohomish (Figure B4-1). With the exception of Snohomish, the regressions for these locations were fit with water quality sampling data that corresponded with USGS gauge locations.

The FMU discrete monitoring location in Snohomish used to fit the regressions was collocated with a stage only USGS gauge, 12155500. Flow was approximated at 12155500 by taking an area weighted sum of the Snohomish Monroe USGS gauge (1215800) and the Pilchuck River gauge near Snohomish (12155300) (Figure B4-1) and scaling the resulting flow to 12155500 using the drainage ratio method. The USGS recently developed rating curves for 12155500 with continuous discharge dating available from September 2022 to April 2024. A comparison of our flow estimates for 12155500 with the recently available gauge flow data for 12155500 will be discussed in the Flow Conditions section below.



**Figure B4-1. Map of SUNA nitrate-nitrite stations in four major Puget Sound Watersheds used to evaluate regressions.** USGS gauges were coincident with all four of the SUNA evaluation locations. The Snohomish inset map shows the Snohomish at Snohomish USGS gauge and the gauges used to estimate it, including Snohomish at Monroe at the Pilchuck River USGS gauge.

## **Flow Conditions**

Flow conditions for the four watersheds were assessed from July 2023 to October 2024, to match the period of currently available SUNA nitrate-nitrite data. Hydrologic conditions in these watersheds are driven by snowmelt, which is the dominant influence for Nooksack and Skagit (Sobocinski 2021), and a mix of rain and snow for the Puyallup and Snohomish watersheds (Kerwin 1999; Mauger et al. 2005). Nooksack and Puyallup had moderate baseflow from July to October in both 2023 and 2024 (Figure B4-2), with Nooksack having a shorter recession period in 2024. Baseflow conditions for Skagit were relatively high at around 6,460 cfs (Table B4-1) compared to the relatively stable baseflow conditions (Figure B4-2) at Snohomish of around 2,570 cfs (Table B4-1). The Nooksack River had the greatest seasonal fluctuations of any of the watersheds, with peak discharge in February (Figure B4-2). The other three watersheds were less flashy and had peak discharge in December.

| Watershed | USGS Gauge              | Dates<br>Assessed         | Low Flow<br>(cfs) | Median Flow<br>(cfs) | High Flow |
|-----------|-------------------------|---------------------------|-------------------|----------------------|-----------|
| Nooksack  | 12213100                | 07/01/2023–<br>10/01/2024 | 1,068             | 2,464                | 4,704     |
| Puyallup  | 12101500                | 07/01/2023–<br>10/01/2024 | 1,232             | 2,340                | 4,365     |
| Skagit    | 12200500                | 07/01/2023–<br>10/01/2024 | 6,460             | 10,364               | 16,328    |
| Snohomish | 12155500                | 07/13/2023–<br>03/30/2024 | 2,570             | 6,880                | 16,540    |
| Snohomish | 12155500<br>(Estimated) | 07/13/2023–<br>10/01/2024 | 1,608             | 6,099                | 13,711    |

Low Flows = 10<sup>th</sup> percentile flow values calculated using data from Figure B4-2. High Flows = 90<sup>th</sup> percentile flow values calculated using data from Figure B4-2.

Flow ranges for Nooksack and Puyallup were nearly identical for low flow, median flow, and high flow conditions (Table B4-1). Snohomish and Skagit had very similar high flow conditions of around 16,000 cfs (Table B4-1) and peak flows greater than 60,000 cfs (Figure B4-2), however, Skagit River had nearly 3 times more flow during baseflow conditions than Snohomish and had a greater overall median across all flow conditions (Table B4-1).

Snohomish River flow estimates of 12155500, which were used for the regressions in Appendix B1, were compared against gauge flow data at 12155500 from July 13<sup>th</sup>, 2023, to October 1<sup>st</sup>, 2024. Flow estimates had good agreement with observed flow, with the estimates capturing 99% of the variance in the actual data (R<sup>2</sup>=0.99), and an NRMSE of 0.22, which is much lower than the threshold for poor performance of 1 (Figure B4-2). Flow estimates were generally slightly lower than actual flow at 1215500 (Table B4-1), with a Mean Absolute Error (MAE) of 1,084 cfs, and a Maximum Absolute Error (MaxAE) of 11,866 cfs (Figure B4-2). On a daily

average time scale these estimates appear to be a good approximation of actual flow conditions, however, because the Snohomish River is tidally influenced (Hall et al. 2018) this approximation would likely not work as well for finer time scales (15 minute, hourly, etc.) as flow at the Monroe USGS gauge was typically greater than at 12155500 during high tide.



#### USGS Daily Average Flow Near SUNA Nitrate Stations

Actual Flow — Estimated Flow

#### Figure B4-2. Hydrographs of SUNA regression evaluation sites.

The Snohomish estimated flow used for fitting the regression was compared to actual gauge flow data, which has discharge data available from September 2022 to April 2024.

#### **Nitrate-Nitrite Regression Evaluation**

In addition to the discrete data used for regression validation discussed in Appendix B1, regression performance for nitrate-nitrite was also evaluated using Ecology's FMU's continuous SUNA observations near the mouth of major Puget Sound watersheds, Nooksack, Puyallup, Skagit, and Snohomish. As mentioned previously, these SUNA locations are the same locations where the discrete monthly monitoring data used to fit the regressions were collected.

For these four rivers, we compared regression-predicted nitrate-nitrite concentrations and loads with SUNA observations. Continuous flow data and SUNA nitrate-nitrite data at these rivers spanned from either July or August 2023 to October 2024, with the exception of the Puyallup, where data spanned from November 2023 to October 2024.

Nitrate-nitrite regression performance was good for all four of the watersheds assessed. Regression predictions in all four watersheds are less variable on a daily time scale than SUNA measurements. This is likely due to the resolution of the data used to fit the regressions, which consisted of discrete monthly observations and daily average flows corresponding to the day of measurement. Nitrate-nitrite regression predictions explained 72% (Snohomish) to 86% (Nooksack) of the variance in the observed data based on R-Squared and had NRMSE values ranging from 0.4 (Nooksack) to 0.55 (Snohomish) (Figure B4-3). An NRMSE of 1 or greater signals a less representative estimate than the mean of observations (Jolliff et al. 2009; USECos Team 2008). The combination of low NRMSE values and high R-squared values indicates that the regressions are adequately representing nitrate-nitrite in these four watersheds. Overall, the regressions appear to be capturing general seasonal trends well but struggle with short-term sporadic events.



Daily Average SUNA Nitrate Observations vs. Regression Predictions

- SUNA Measurement - Regression Prediction

Figure B4-3. Comparison of continuous SUNA nitrate-nitrite data with regression predictions at four major Puget Sound Watersheds.

Regression performance was also assessed for different flow conditions using 24 years of gauge data (1999 – 2023) (Figure B4-4) for each of the four watersheds. We evaluated performance for high flow conditions (90th percentile or greater flows), low flow conditions (10th percentile or lower flows), and normal flow conditions (everything else).



# Figure B4-4. Flow Duration Curves for four SUNA evaluation watersheds constructed from 24 years of USGS gauge data.

Regression performance was found to be good for all flow conditions at all locations except low flow conditions at Snohomish and Skagit. As shown in the target plot in Figure B4-5, both Snohomish and Skagit at low flow are outside of the target plot, meaning that the NRMSE for these two watersheds during low flow conditions is greater than 1. Nooksack and Puyallup performed well for all flow regimes; however, there was greater residual error during high flow for Puyallup and during low flow for Nooksack, with both of these watersheds tending to overestimate (positive bias, Figure B4-5) SUNA measurements for each of these flow regimes. Regression performance was best during normal flow conditions for all of the watersheds. As shown in the Taylor plot (Figure B4-5), the correlation between SUNA measurements and predictions was generally between 0.6 and 0.93, with most values around 0.8. Skagit and Snohomish during low flow conditions had the lowest correlations, with Skagit exhibiting a correlation of 0.2 and Snohomish a correlation of -0.28, which indicates a complete breakdown of performance (Figure B4-5)



Figure B4-5 Taylor and target diagram performance of nitrate-nitrite regressions for different flow regimes in SUNA evaluation watersheds.

We found that the Snohomish nitrate-nitrite regression was fit on monthly data that, on average, had higher values and a greater range (min to max) of values than the continuous SUNA data during low flow conditions. (Figure B4-6) This seems to explain the overpredictions occurring during low flow in Snohomish from September 1<sup>st</sup> to October 1<sup>st</sup> in 2023 and 2024 (Figure B4-3). Similarly, the regression for Skagit was trained on data with a much higher minimum value than the continuous SUNA data, but had a lower average and maximum (Figure B4-6) and had little to no overlap between training and testing data sets during low flow. This is consistent with Skagit's predictions in Figure B4-3, which alternate from overpredicting to underpredicting during low flow conditions from September 1<sup>st</sup> to November 1<sup>st</sup>, 2023, and mid-September to October 1<sup>st</sup>, 2024. Except for low flow conditions, both Snohomish and Skagit had a high degree of overlap between the training and testing data sets.



Figure B4-6. Plots show the distribution of nitrate-nitrite data used to train and test the regression across different flow regimes for the Snohomish and Skagit Rivers. Overlap between training and testing data is an indicator of regression performance on the evaluation data for a given flow regime.

Nooksack and Puyallup rivers showed similar distributions between training and testing data across flow regimes. The most notable differences between training and testing data distributions occurred during low flow for Nooksack and during high flow for Puyallup (Figure B4-7). The Nooksack nitrate-nitrite regression was fit on monthly data that, on average, had higher values than the continuous SUNA data (Figure B4-7). This may explain the slight overpredictions occurring during low flow conditions in Nooksack in October 2023 (Figure B4-

3). Similarly, the regression for Puyallup was trained on data with greater average and maximum values than the continuous SUNA data during low and high flow conditions, but had a higher degree of overlap between training and testing data than Nooksack (Figure B4-7). Puyallup performed slightly worse during high flow conditions, with most of the error being related to random error (NRMSE), while the average error (normalized centered bias) is near zero (0.02). This is most apparent for Puyallup from December through January 2024 (Figure B4-3), where we can see that the regression has minimum average error but is missing peak spikes in concentrations in December and sharp declines in concentrations in January.



Figure B4-7. Plots show the distribution of nitrate-nitrite data used to train and test the regression across different flow regimes for the Nooksack and Puyallup Rivers. Overlap between training and testing data is an indicator of regression performance on the evaluation data for a given flow regime.

We also compared regression-predicted and SUNA observed monthly average nitrate-nitrite loads to determine how well predicted values captured seasonal patterns. Snohomish River gauge flow for 12200500 was available from July 13th, 2023, to April 1st, 2024, and was used for observed loads, while estimated flow for 12200500 (used for the regression) was used for predicted loads. For all watersheds, except for Snohomish, the same gauge flow data were used for both predicted and observed loads. Predicted and observed loads were similar for most months, with notable discrepancies in June – July for Nooksack, February, April, and July for Puyallup, July for Skagit, and September to October for Snohomish (Figure B4-8).



Figure B4-8. Comparison of 2023 to 2024 monthly average nitrate-nitrite regression-predicted and SUNA observed loads and at four major Puget Sound watersheds.

Observed flow data at Snohomish was missing for April – June 2024.

### **References (Appendix B4)**

- Hall, J.E., Khangaonkar, T.P., Rice, C.A., Chamberlin, J., Zackey, T., Leonetti, F et al.2018. Characterization of salinity and temperature patterns in a large river delta to support tidal wetland habitat restoration. Northwest Science, 92(1):36 – 52. <u>https://doi.org/10.3955/046.092.0105</u>
- Jolliff, J., Kindle, J., Shulman, I., Penta, B., Friedrichs, M., Helber, R. and Arnone, R., 2009. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems, 76(1-2): 64-82. <u>https://doi.org/10.1016/j.jmarsys.2008.05.014</u>
- Kerwin, J. 1999. Salmon Habitat Limiting Factors Report for the Puyallup River Basin. Washington Conservation Commission, Olympia, WA.
- Mauger, G.S., Casola, J.H, Morgan, H.A, Strauch, R.L, Jones, B., Curry, B et al.2015. State of Knowledge: Climate Change in Puget Sound. University of Washington Climate Impacts Group, Seattle, WA. doi: 10.7915/CIG93777D

Sobocinski, K.L. 2021. State of the Salish Sea..). Salish Sea Institute, Western Washington University. <u>https://doi.org/10.25710/vfhb-3a69</u>.

USECoS Team, 2008. Eastern US continental shelf carbon budget: Integrating models, data assimilation, and analysis. Oceanography, 21(1):86-104. <u>https://www.jstor.org/stable/24860162</u>

# Appendix B5. Open Boundary Tides and Water Quality

This appendix describes how the tidal moments (magnitudes and phases) and water quality at the open boundary were developed. For definitions of terms, refer to the glossary in the main report.
# **Estimation of Tidal harmonics (Magnitudes and Phase)**

When specifying tidal forcing at the SSM open boundary, a set of 10 major tidal constituents (magnitude and phase) is specified for each of the 87 nodes at the open boundary of SSM. These constituents include S2 (principal solar semidiurnal), M2 (principal lunar semidiurnal), N2 (larger lunar elliptic semidiurnal), K2 (lunisolar semidiurnal), K1 (lunisolar declinational diurnal), P1 (solar diurnal), O1 (lunar declinational diurnal), Q1 (larger lunar elliptic diurnal), M4 (shallow water over tides of principal lunar), and M6 (shallow water sixth diurnal constituent). Ahmed et al. (2019) derived the harmonics (magnitude and phase) for the years 2006, 2008, and 2014 for the open boundary along the continental shelf from the ENPAC-2003 database (Spargo et al. 2003). In this study, the same harmonics for the 10 tidal constituents were derived from an updated ENPAC-2015 database (Szpilka et al. 2018) for years 2000, 2006, 2008, and 2014. The procedure to create the harmonics for all the tidal constituents was developed by the Salish Sea Modeling Center (T. Khangaonkar, pers. comm, 2023).

Table B5-1 shows a key to understanding the tidal harmonics input file. This table shows the tidal constituent harmonics for the first of the 87 nodes at the open boundary of SSM. The first row is the total number of nodes. The numbers in the second row represent the node number followed by the mean sea level for that node. The 3<sup>rd</sup> and 4<sup>th</sup> rows represent the magnitude and phase for each of the 10 tidal constituents.

| Kau                  |      | Tida | al harm | nonics | (ampli | tudes a | are in c | m) !20 | 00  |     |
|----------------------|------|------|---------|--------|--------|---------|----------|--------|-----|-----|
| Key                  | S2   | M2   | N2      | К2     | K1     | P1      | 01       | Q1     | M4  | M6  |
| Total number of      |      |      |         |        |        |         |          |        |     |     |
| nodes                | 87   |      |         |        |        |         |          |        |     |     |
| Node, mean sea level | 1    | 1.18 |         |        |        |         |          |        |     |     |
| Harmonic amplitude   | 24.8 | 92.3 | 19.1    | 6.1    | 42.7   | 14.1    | 26.5     | 4.6    | 0.1 | 0.2 |
| Harmonic phase       | 9.9  | 217  | -35     | 179    | 113    | 121     | -31      | 94.4   | 265 | 8.6 |

Table B5-1. Key to understanding the tidal harmonics input file.

An input file for the 10 tidal constituents for the open boundary model nodes was generated for years 2000, 2006, 2008, 2014 and included in Tables B5-2 and B5-3.

|      | Tid  | al harm | nonics | (amplit | udes ai | re in cm | n) !2000 | )   |      |      | Ti   | idal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|----------|-----|------|------|------|----------|--------|--------|---------|----------|---------|-----|------|
| S2   | M2   | N2      | K2     | K1      | P1      | 01       | Q1       | M4  | M6   | S2   | M2   | N2       | K2     | K1     | P1      | 01       | Q1      | M4  | M6   |
| 87   | _    |         | _      |         | _       |          |          | _   | _    | 87   |      |          | _      | _      |         | _        |         | _   | _    |
| 1    | 1.18 |         | _      |         | _       |          |          | _   |      | 1    | 1.18 |          | _      | _      |         | _        |         | _   | _    |
| 24.8 | 92.3 | 19.1    | 6.1    | 42.7    | 14.1    | 26.5     | 4.6      | 0.1 | 0.2  | 24.8 | 87.5 | 18.1     | 9      | 49.4   | 14.1    | 33.3     | 5.8     | 0.1 | 0.2  |
| 9.9  | 217  | -35     | 179    | 113     | 121     | -31      | 94.4     | 265 | 8.6  | 9.9  | 19.7 | -34      | 161    | 104    | 121     | 145      | 108     | 265 | 8.6  |
| 2    | 1.18 | _       | —      |         | _       | _        | _        |     | —    | 2    | 1.18 | _        | —      | —      | _       | _        | _       | —   | —    |
| 24.6 | 91.4 | 18.9    | 6      | 42.5    | 14      | 26.3     | 4.6      | 0.1 | 0.2  | 24.6 | 86.6 | 18       | 8.9    | 49.1   | 14      | 33.1     | 5.8     | 0.1 | 0.2  |
| 10.3 | 218  | -35     | 179    | 113     | 121     | -30      | 94.9     | 265 | 9    | 10.3 | 20   | -34      | 161    | 104    | 122     | 145      | 109     | 265 | 9    |
| 3    | 1.18 | _       | —      |         | _       | _        | _        |     | —    | 3    | 1.18 | _        | —      | —      | _       | _        | _       | —   | —    |
| 24.3 | 90.7 | 18.8    | 6      | 42.3    | 14      | 26.2     | 4.6      | 0.1 | 0.2  | 24.3 | 86   | 17.8     | 8.8    | 48.9   | 14      | 32.9     | 5.8     | 0.1 | 0.2  |
| 10.6 | 218  | -35     | 179    | 113     | 121     | -30      | 95.2     | 264 | 9.4  | 10.6 | 20.2 | -34      | 161    | 104    | 122     | 146      | 109     | 264 | 9.4  |
| 4    | 1.18 | _       | _      | _       | _       | _        | _        | _   | _    | 4    | 1.18 | _        | —      | —      | _       | _        | _       | _   | —    |
| 24.1 | 90.1 | 18.7    | 5.9    | 42.2    | 13.9    | 26.1     | 4.6      | 0.1 | 0.2  | 24.1 | 85.4 | 17.7     | 8.7    | 48.8   | 13.9    | 32.8     | 5.7     | 0.1 | 0.2  |
| 11   | 218  | -34     | 180    | 113     | 121     | -30      | 95.5     | 265 | 9.8  | 11   | 20.5 | -34      | 162    | 104    | 122     | 146      | 110     | 265 | 9.8  |
| 5    | 1.18 | _       | _      | _       | _       | _        | _        | _   | _    | 5    | 1.18 | _        | —      | —      | _       | _        | _       | _   | —    |
| 24.1 | 89.9 | 18.6    | 5.9    | 42.2    | 13.9    | 26       | 4.5      | 0.1 | 0.2  | 24.1 | 85.3 | 17.7     | 8.7    | 48.8   | 13.9    | 32.8     | 5.7     | 0.1 | 0.2  |
| 11.5 | 219  | -34     | 180    | 114     | 122     | -30      | 95.8     | 266 | 10.2 | 11.5 | 20.9 | -33      | 162    | 104    | 122     | 146      | 110     | 266 | 10.2 |
| 6    | 1.18 | _       | —      | _       | _       | _        | _        |     | —    | 6    | 1.18 | _        | —      | —      | _       | _        | _       | _   | —    |
| 24.2 | 90   | 18.6    | 5.9    | 42.2    | 13.9    | 26       | 4.5      | 0.1 | 0.2  | 24.2 | 85.3 | 17.6     | 8.7    | 48.8   | 13.9    | 32.7     | 5.7     | 0.1 | 0.2  |
| 12   | 219  | -34     | 181    | 114     | 122     | -29      | 96.1     | 266 | 10.7 | 12   | 21.3 | -33      | 163    | 105    | 122     | 146      | 110     | 266 | 10.7 |
| 7    | 1.18 | _       | _      | _       | _       | _        | _        | _   | _    | 7    | 1.18 | _        | _      | _      | _       | _        | _       | _   | _    |
| 24.3 | 90.4 | 18.7    | 6      | 42.2    | 13.9    | 26       | 4.5      | 0.1 | 0.2  | 24.3 | 85.7 | 17.7     | 8.8    | 48.8   | 13.9    | 32.8     | 5.7     | 0.1 | 0.2  |
| 12.6 | 220  | -33     | 181    | 114     | 122     | -29      | 96.2     | 267 | 11.2 | 12.6 | 21.8 | -32      | 164    | 105    | 123     | 147      | 110     | 267 | 11.2 |
| 8    | 1.18 |         | —      | _       | _       | _        | _        | _   | —    | 8    | 1.18 | _        | —      | —      |         | _        | _       | —   | —    |

#### Table B5-2. Tidal harmonics for the years 2000 and 2006.

|      | Tid  | al harm | nonics | (amplit | udes ar | e in cm | ) !2000 | )   |      |      | Ti   | dal har | monics | (ampli | tudes a | re in cn | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|---------|---------|-----|------|------|------|---------|--------|--------|---------|----------|---------|-----|------|
| 24.5 | 90.8 | 18.8    | 6      | 42.2    | 13.9    | 26      | 4.5     | 0.1 | 0.2  | 24.5 | 86   | 17.8    | 8.8    | 48.8   | 13.9    | 32.8     | 5.7     | 0.1 | 0.2  |
| 13.1 | 220  | -33     | 182    | 114     | 122     | -29     | 96.3    | 268 | 11.7 | 13.1 | 22.2 | -32     | 164    | 105    | 123     | 147      | 110     | 268 | 11.7 |
| 9    | 1.18 | _       | -      | —       | _       | -       | -       | _   | _    | 9    | 1.18 | —       | -      | —      | _       | —        | _       | -   | —    |
| 24.6 | 91.1 | 18.8    | 6      | 42.3    | 14      | 26.1    | 4.5     | 0.1 | 0.2  | 24.6 | 86.3 | 17.9    | 8.9    | 48.9   | 14      | 32.8     | 5.7     | 0.1 | 0.2  |
| 13.6 | 220  | -32     | 182    | 114     | 123     | -29     | 96.4    | 268 | 12.2 | 13.6 | 22.6 | -31     | 165    | 105    | 123     | 147      | 111     | 268 | 12.2 |
| 10   | 1.18 | _       | -      | —       | _       | -       | -       | —   | _    | 10   | 1.18 | —       | _      | —      | —       | —        | —       |     | _    |
| 24.7 | 91.4 | 18.9    | 6      | 42.3    | 14      | 26.1    | 4.5     | 0.1 | 0.2  | 24.7 | 86.6 | 17.9    | 8.9    | 48.9   | 14      | 32.9     | 5.7     | 0.1 | 0.2  |
| 14.1 | 221  | -32     | 183    | 115     | 123     | -29     | 96.6    | 268 | 12.6 | 14.1 | 23   | -31     | 165    | 105    | 123     | 147      | 111     | 268 | 12.6 |
| 11   | 1.18 | _       | -      | —       | _       | -       | -       | —   | _    | 11   | 1.18 | —       | _      | —      | —       | —        | —       |     | _    |
| 24.8 | 91.7 | 19      | 6.1    | 42.4    | 14      | 26.2    | 4.6     | 0.1 | 0.2  | 24.8 | 86.9 | 18      | 8.9    | 49     | 14      | 32.9     | 5.7     | 0.1 | 0.2  |
| 14.5 | 221  | -31     | 183    | 115     | 123     | -28     | 96.7    | 268 | 13.1 | 14.5 | 23.4 | -31     | 165    | 106    | 123     | 147      | 111     | 268 | 13.1 |
| 12   | 1.18 | _       | -      | —       | _       | -       | -       | —   | _    | 12   | 1.18 | —       | _      | —      | —       | —        | —       |     | —    |
| 24.9 | 92   | 19      | 6.1    | 42.5    | 14      | 26.2    | 4.6     | 0.1 | 0.2  | 24.9 | 87.2 | 18      | 9      | 49.1   | 14      | 33       | 5.7     | 0.1 | 0.2  |
| 15   | 221  | -31     | 184    | 115     | 123     | -28     | 96.8    | 268 | 13.6 | 15   | 23.7 | -30     | 166    | 106    | 124     | 147      | 111     | 268 | 13.6 |
| 13   | 1.18 | _       | -      | —       | _       | _       | _       | —   | _    | 13   | 1.18 | —       | _      | _      | —       | —        | —       | -   | —    |
| 25.1 | 92.3 | 19.1    | 6.1    | 42.5    | 14      | 26.3    | 4.6     | 0.1 | 0.2  | 25.1 | 87.5 | 18.1    | 9      | 49.2   | 14      | 33.1     | 5.8     | 0.1 | 0.2  |
| 15.4 | 222  | -31     | 184    | 115     | 123     | -28     | 96.9    | 268 | 14.1 | 15.4 | 24   | -30     | 166    | 106    | 124     | 148      | 111     | 268 | 14.1 |
| 14   | 1.18 | _       |        | —       | _       |         |         | _   | _    | 14   | 1.18 | _       |        | _      | _       | _        | _       | ١   |      |
| 25.2 | 92.6 | 19.1    | 6.2    | 42.6    | 14.1    | 26.4    | 4.6     | 0.1 | 0.2  | 25.2 | 87.8 | 18.1    | 9.1    | 49.2   | 14.1    | 33.2     | 5.8     | 0.1 | 0.2  |
| 15.7 | 222  | -30     | 185    | 115     | 124     | -28     | 97.1    | 268 | 14.6 | 15.7 | 24.4 | -30     | 167    | 106    | 124     | 148      | 111     | 268 | 14.6 |
| 15   | 1.18 | _       | -      | —       | _       | _       | _       | —   | _    | 15   | 1.18 | —       | _      | _      | —       | —        | —       | -   | —    |
| 25.3 | 92.8 | 19.2    | 6.2    | 42.7    | 14.1    | 26.4    | 4.6     | 0.1 | 0.2  | 25.3 | 88   | 18.2    | 9.1    | 49.3   | 14.1    | 33.3     | 5.8     | 0.1 | 0.2  |
| 16.1 | 222  | -30     | 185    | 116     | 124     | -28     | 97.2    | 267 | 15   | 16.1 | 24.6 | -29     | 167    | 106    | 124     | 148      | 111     | 267 | 15   |
| 16   | 1.18 |         | _      | _       |         | _       | _       | _   |      | 16   | 1.18 | _       | _      | _      | _       | _        | _       | _   | —    |
| 25.4 | 93.1 | 19.2    | 6.2    | 42.7    | 14.1    | 26.5    | 4.6     | 0.1 | 0.2  | 25.4 | 88.3 | 18.2    | 9.1    | 49.3   | 14.1    | 33.4     | 5.8     | 0.1 | 0.2  |

|      | Tid  | al harm | nonics | (amplit | udes ai | re in cm | ) !2000 | )   |      |      | Ti   | dal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|---------|--------|--------|---------|----------|---------|-----|------|
| 16.4 | 223  | -30     | 185    | 116     | 124     | -27      | 97.5    | 267 | 15.5 | 16.4 | 24.9 | -29     | 167    | 107    | 125     | 148      | 112     | 267 | 15.5 |
| 17   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 17   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —    |
| 25.5 | 93.4 | 19.3    | 6.2    | 42.7    | 14.1    | 26.5     | 4.6     | 0.1 | 0.2  | 25.5 | 88.6 | 18.3    | 9.2    | 49.3   | 14.1    | 33.4     | 5.9     | 0.1 | 0.2  |
| 16.8 | 223  | -29     | 186    | 116     | 124     | -27      | 97.9    | 267 | 16.1 | 16.8 | 25.3 | -29     | 168    | 107    | 125     | 149      | 112     | 267 | 16.1 |
| 18   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 18   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —    |
| 25.6 | 93.8 | 19.4    | 6.3    | 42.7    | 14.1    | 26.4     | 4.7     | 0.1 | 0.2  | 25.6 | 88.9 | 18.4    | 9.2    | 49.3   | 14.1    | 33.3     | 5.9     | 0.1 | 0.2  |
| 17.2 | 223  | -29     | 186    | 116     | 124     | -26      | 98.4    | 266 | 16.6 | 17.2 | 25.6 | -28     | 168    | 107    | 125     | 149      | 113     | 266 | 16.6 |
| 19   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 19   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —    |
| 25.8 | 94.1 | 19.4    | 6.3    | 42.6    | 14.1    | 26.3     | 4.6     | 0.1 | 0.2  | 25.8 | 89.2 | 18.4    | 9.3    | 49.3   | 14.1    | 33.1     | 5.8     | 0.1 | 0.2  |
| 17.6 | 224  | -29     | 186    | 116     | 125     | -26      | 98.9    | 266 | 17.2 | 17.6 | 25.9 | -28     | 169    | 107    | 125     | 149      | 113     | 266 | 17.2 |
| 20   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 20   | 1.18 | —       | —      | _      | _       | _        | _       | —   | —    |
| 25.9 | 94.4 | 19.5    | 6.3    | 42.6    | 14.1    | 26.1     | 4.6     | 0.1 | 0.2  | 25.9 | 89.4 | 18.5    | 9.3    | 49.2   | 14.1    | 32.9     | 5.8     | 0.1 | 0.2  |
| 17.9 | 224  | -28     | 187    | 116     | 125     | -26      | 99.2    | 267 | 17.6 | 17.9 | 26.2 | -28     | 169    | 107    | 125     | 149      | 113     | 267 | 17.6 |
| 21   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 21   | 1.18 | —       | —      | —      | _       | —        | _       | —   | —    |
| 26   | 94.6 | 19.5    | 6.3    | 42.6    | 14.1    | 26       | 4.6     | 0.1 | 0.2  | 26   | 89.6 | 18.5    | 9.3    | 49.2   | 14.1    | 32.7     | 5.7     | 0.1 | 0.2  |
| 18.4 | 224  | -28     | 187    | 116     | 125     | -27      | 99.4    | 267 | 18   | 18.4 | 26.6 | -27     | 169    | 107    | 125     | 149      | 114     | 267 | 18   |
| 22   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 22   | 1.18 | —       | —      | _      | _       | _        | _       | —   | —    |
| 26   | 94.7 | 19.5    | 6.4    | 42.6    | 14.1    | 26       | 4.5     | 0.1 | 0.2  | 26   | 89.7 | 18.5    | 9.4    | 49.3   | 14.1    | 32.8     | 5.7     | 0.1 | 0.2  |
| 18.6 | 225  | -28     | 187    | 116     | 125     | -27      | 99.2    | 266 | 18.2 | 18.6 | 26.8 | -27     | 170    | 107    | 125     | 149      | 113     | 266 | 18.2 |
| 23   | 1.18 | _       | _      | —       | —       | —        | —       | —   | _    | 23   | 1.18 | —       | —      | —      | _       | —        | _       | —   | —    |
| 26.1 | 94.8 | 19.6    | 6.4    | 42.7    | 14.1    | 26.1     | 4.5     | 0.1 | 0.2  | 26.1 | 89.9 | 18.5    | 9.4    | 49.4   | 14.1    | 32.9     | 5.7     | 0.1 | 0.2  |
| 18.9 | 225  | -28     | 188    | 116     | 125     | -27      | 99      | 266 | 18.6 | 18.9 | 27   | -27     | 170    | 107    | 125     | 149      | 113     | 266 | 18.6 |
| 24   | 1.18 | _       | _      | _       | _       | _        | _       | _   | _    | 24   | 1.18 | _       | _      | _      | _       | _        | _       | _   | _    |
| 26.1 | 94.9 | 19.6    | 6.4    | 42.8    | 14.1    | 26.2     | 4.6     | 0.1 | 0.2  | 26.1 | 90   | 18.6    | 9.4    | 49.5   | 14.1    | 33       | 5.7     | 0.1 | 0.2  |
| 19.1 | 225  | -27     | 188    | 116     | 125     | -27      | 98.8    | 266 | 19   | 19.1 | 27.2 | -27     | 170    | 107    | 125     | 149      | 113     | 266 | 19   |

|      | Tid  | al harm | nonics | (amplit | udes ar | re in cm | ) !2000 | )   |      |      | Ti   | idal har | monics | (ampli | tudes a | re in cn | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|----------|--------|--------|---------|----------|---------|-----|------|
| 25   | 1.18 | _       | _      | _       | _       | _        | _       | _   | _    | 25   | 1.18 | _        | _      | _      | _       | _        | _       | _   | —    |
| 26.2 | 95.1 | 19.6    | 6.4    | 43      | 14.2    | 26.4     | 4.6     | 0.1 | 0.2  | 26.2 | 90.1 | 18.6     | 9.4    | 49.7   | 14.2    | 33.2     | 5.8     | 0.1 | 0.2  |
| 19.4 | 225  | -27     | 188    | 117     | 125     | -27      | 98.7    | 265 | 19.4 | 19.4 | 27.4 | -26      | 170    | 107    | 125     | 149      | 113     | 265 | 19.4 |
| 26   | 1.18 | _       | _      | —       | —       | —        | _       | —   | _    | 26   | 1.18 | —        | —      | —      | _       | —        | —       | -   | —    |
| 26.3 | 95.3 | 19.7    | 6.4    | 43.2    | 14.3    | 26.5     | 4.6     | 0.1 | 0.2  | 26.3 | 90.3 | 18.6     | 9.4    | 49.9   | 14.3    | 33.4     | 5.8     | 0.1 | 0.2  |
| 19.8 | 226  | -27     | 189    | 117     | 125     | -26      | 98.9    | 265 | 20.1 | 19.8 | 27.7 | -26      | 171    | 108    | 126     | 149      | 113     | 265 | 20.1 |
| 27   | 1.18 | _       | _      | —       | —       | —        |         | —   | _    | 27   | 1.18 | _        | —      | —      | _       | —        | _       | I   | —    |
| 26.4 | 95.6 | 19.7    | 6.4    | 43.3    | 14.3    | 26.6     | 4.6     | 0.1 | 0.2  | 26.4 | 90.6 | 18.7     | 9.5    | 50     | 14.3    | 33.5     | 5.8     | 0.1 | 0.2  |
| 20.1 | 226  | -27     | 189    | 117     | 126     | -26      | 99.3    | 265 | 20.6 | 20.1 | 28.1 | -26      | 171    | 108    | 126     | 150      | 113     | 265 | 20.6 |
| 28   | 1.18 | _       | _      | —       | —       | —        |         | —   | _    | 28   | 1.18 | —        | —      | —      | _       | —        | —       |     | _    |
| 26.5 | 95.8 | 19.8    | 6.5    | 43.3    | 14.3    | 26.7     | 4.6     | 0.1 | 0.2  | 26.5 | 90.8 | 18.7     | 9.5    | 50     | 14.3    | 33.6     | 5.8     | 0.1 | 0.2  |
| 20.5 | 226  | -26     | 189    | 118     | 126     | -26      | 99.5    | 266 | 20.9 | 20.5 | 28.4 | -25      | 172    | 109    | 126     | 150      | 114     | 266 | 20.9 |
| 29   | 1.18 | _       | _      | —       | —       | —        |         | —   | _    | 29   | 1.18 | —        | —      | —      | _       | —        | —       |     | _    |
| 26.6 | 96.2 | 19.8    | 6.5    | 43.1    | 14.3    | 26.7     | 4.6     | 0.1 | 0.2  | 26.6 | 91.1 | 18.8     | 9.6    | 49.9   | 14.3    | 33.6     | 5.8     | 0.1 | 0.2  |
| 21.1 | 227  | -26     | 190    | 118     | 126     | -25      | 99.7    | 268 | 21.5 | 21.1 | 28.8 | -25      | 172    | 109    | 127     | 150      | 114     | 268 | 21.5 |
| 30   | 1.18 | —       | —      | —       | _       | _        |         | _   | _    | 30   | 1.18 | —        | _      | —      | _       | —        | _       |     | _    |
| 26.7 | 96.4 | 19.9    | 6.5    | 43      | 14.2    | 26.7     | 4.7     | 0.1 | 0.2  | 26.7 | 91.4 | 18.8     | 9.6    | 49.7   | 14.2    | 33.7     | 5.9     | 0.1 | 0.2  |
| 21.5 | 227  | -25     | 190    | 118     | 126     | -25      | 99.8    | 270 | 21.3 | 21.5 | 29.2 | -25      | 173    | 109    | 127     | 151      | 114     | 270 | 21.3 |
| 31   | 1.18 | —       | —      | —       | _       | _        |         | _   | _    | 31   | 1.18 | —        | _      | —      | _       | —        | _       |     | _    |
| 26.8 | 96.6 | 19.9    | 6.5    | 42.8    | 14.2    | 26.6     | 4.6     | 0.1 | 0.2  | 26.8 | 91.5 | 18.9     | 9.6    | 49.5   | 14.2    | 33.5     | 5.9     | 0.1 | 0.2  |
| 22   | 227  | -25     | 191    | 118     | 126     | -25      | 100     | 272 | 21.3 | 22   | 29.6 | -24      | 173    | 109    | 127     | 151      | 114     | 272 | 21.3 |
| 32   | 1.18 | _       | _      | —       | _       | _        | _       | _   | _    | 32   | 1.18 | —        | _      | _      | —       | _        | _       | _   | —    |
| 27   | 96.9 | 20      | 6.6    | 43.1    | 14.2    | 26.5     | 4.6     | 0.1 | 0.1  | 27   | 91.8 | 18.9     | 9.7    | 49.8   | 14.2    | 33.4     | 5.8     | 0.1 | 0.1  |
| 22.6 | 228  | -24     | 192    | 118     | 126     | -25      | 101     | 274 | 21.6 | 22.6 | 30.2 | -24      | 174    | 109    | 127     | 151      | 115     | 274 | 21.6 |
| 33   | 1.18 | _       | _      | _       | _       | _        | _       | _   | _    | 33   | 1.18 |          | _      | _      |         | _        | _       | _   | _    |

|      | Tid  | al harm | nonics | (amplit | udes ai | re in cm | ) !2000 | )   |      |      | Ti   | idal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|----------|--------|--------|---------|----------|---------|-----|------|
| 27   | 97.1 | 20      | 6.6    | 43.3    | 14.3    | 26.6     | 4.6     | 0.1 | 0.1  | 27   | 92   | 19       | 9.7    | 50     | 14.3    | 33.5     | 5.8     | 0.1 | 0.1  |
| 23.1 | 228  | -24     | 192    | 118     | 127     | -25      | 101     | 275 | 21.5 | 23.1 | 30.6 | -23      | 174    | 109    | 127     | 151      | 115     | 275 | 21.5 |
| 34   | 1.18 | _       | _      | _       | _       | _        | _       | _   | _    | 34   | 1.18 | _        | _      | _      | _       | _        | _       | _   | _    |
| 27.1 | 97.2 | 20      | 6.6    | 43.4    | 14.3    | 26.7     | 4.6     | 0.1 | 0.1  | 27.1 | 92.1 | 19       | 9.7    | 50.1   | 14.3    | 33.6     | 5.8     | 0.1 | 0.1  |
| 23.5 | 229  | -24     | 192    | 118     | 127     | -25      | 101     | 277 | 21.3 | 23.5 | 30.9 | -23      | 174    | 109    | 127     | 151      | 115     | 277 | 21.3 |
| 35   | 1.18 | _       | —      | _       | _       | —        | —       | —   | _    | 35   | 1.18 | _        | —      | —      | —       | _        | _       | —   | —    |
| 27.2 | 97.3 | 20.1    | 6.6    | 43.6    | 14.4    | 26.8     | 4.7     | 0.1 | 0.1  | 27.2 | 92.3 | 19       | 9.8    | 50.3   | 14.4    | 33.8     | 5.9     | 0.1 | 0.1  |
| 23.9 | 229  | -23     | 193    | 119     | 127     | -25      | 101     | 278 | 20.2 | 23.9 | 31.3 | -22      | 175    | 110    | 128     | 151      | 115     | 278 | 20.2 |
| 36   | 1.18 | _       | —      | _       | _       | —        | —       | —   | _    | 36   | 1.18 | _        | —      | —      | —       | _        | _       | —   | —    |
| 27.3 | 97.4 | 20.1    | 6.6    | 43.7    | 14.4    | 27       | 4.7     | 0.1 | 0.1  | 27.3 | 92.3 | 19       | 9.8    | 50.5   | 14.4    | 33.9     | 5.9     | 0.1 | 0.1  |
| 24.4 | 230  | -23     | 193    | 119     | 127     | -24      | 101     | 280 | 15.8 | 24.4 | 31.8 | -22      | 175    | 110    | 128     | 151      | 115     | 280 | 15.8 |
| 37   | 1.18 | _       | —      | _       | _       | —        | —       | —   | _    | 37   | 1.18 | _        | —      | —      | —       | _        | _       | —   | —    |
| 27.3 | 97.3 | 20.1    | 6.6    | 43.7    | 14.5    | 27       | 4.7     | 0.1 | 0.1  | 27.3 | 92.2 | 19       | 9.8    | 50.6   | 14.5    | 34.1     | 5.9     | 0.1 | 0.1  |
| 24.8 | 230  | -22     | 194    | 119     | 128     | -24      | 101     | 282 | 9.3  | 24.8 | 32.1 | -22      | 176    | 110    | 128     | 152      | 115     | 282 | 9.3  |
| 38   | 1.18 | —       | —      | _       | _       | —        | —       | —   | _    | 38   | 1.18 | _        | —      | —      | —       | —        | _       | —   | —    |
| 27.4 | 97.4 | 20.1    | 6.7    | 43.8    | 14.5    | 27.2     | 4.7     | 0.1 | 0.1  | 27.4 | 92.3 | 19       | 9.8    | 50.6   | 14.5    | 34.2     | 6       | 0.1 | 0.1  |
| 25.1 | 230  | -22     | 194    | 120     | 128     | -23      | 102     | 282 | 7.2  | 25.1 | 32.3 | -21      | 176    | 110    | 128     | 152      | 116     | 282 | 7.2  |
| 39   | 1.18 | —       | —      | _       | _       | —        | —       | —   | _    | 39   | 1.18 | _        | —      | —      | —       | —        | _       | —   | —    |
| 27.4 | 97.4 | 20.1    | 6.7    | 43.8    | 14.5    | 27       | 4.7     | 0.1 | 0.1  | 27.4 | 92.3 | 19       | 9.8    | 50.6   | 14.5    | 34       | 5.9     | 0.1 | 0.1  |
| 25.4 | 230  | -22     | 194    | 120     | 128     | -23      | 102     | 284 | 1.6  | 25.4 | 32.6 | -21      | 176    | 111    | 129     | 153      | 116     | 284 | 1.6  |
| 40   | 1.18 | _       | —      | _       | _       | —        | —       | —   | _    | 40   | 1.18 | _        | —      | —      | —       | _        | _       | —   | —    |
| 27.4 | 97.4 | 20.1    | 6.7    | 43.7    | 14.5    | 27       | 4.7     | 0.1 | 0.1  | 27.4 | 92.3 | 19       | 9.8    | 50.5   | 14.5    | 34       | 5.9     | 0.1 | 0.1  |
| 25.6 | 230  | -22     | 194    | 120     | 128     | -23      | 102     | 285 | 359  | 25.6 | 32.7 | -21      | 176    | 111    | 129     | 153      | 116     | 285 | 359  |
| 41   | 1.18 | _       | _      | _       |         |          | _       | _   |      | 41   | 1.18 |          |        | _      | _       | _        |         | _   | _    |
| 27.6 | 97.7 | 20.1    | 6.7    | 43.8    | 14.5    | 26.9     | 4.7     | 0.1 | 0.1  | 27.6 | 92.6 | 19.1     | 9.9    | 50.6   | 14.5    | 33.8     | 5.9     | 0.1 | 0.1  |

|      | Tid  | al harm | nonics | (amplit | udes ar | re in cm | ) !2000 | )   |      |      | Ti   | dal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|---------|--------|--------|---------|----------|---------|-----|------|
| 25.9 | 231  | -22     | 195    | 120     | 128     | -23      | 103     | 285 | 0.2  | 25.9 | 32.9 | -21     | 177    | 111    | 129     | 153      | 117     | 285 | 0.2  |
| 42   | 1.18 | _       | _      | —       | —       | —        |         | _   | _    | 42   | 1.18 | —       | —      | —      | —       | _        | _       | —   |      |
| 27.7 | 98   | 20.2    | 6.8    | 44      | 14.5    | 26.9     | 4.7     | 0.1 | 0.1  | 27.7 | 92.9 | 19.1    | 9.9    | 50.8   | 14.5    | 33.9     | 5.9     | 0.1 | 0.1  |
| 26.2 | 231  | -21     | 195    | 120     | 129     | -23      | 103     | 287 | 359  | 26.2 | 33.2 | -20     | 177    | 111    | 129     | 153      | 117     | 287 | 359  |
| 43   | 1.18 | _       | _      | —       | —       | —        |         | —   | _    | 43   | 1.18 | —       | —      | —      | —       | —        | _       | —   |      |
| 27.8 | 98.4 | 20.2    | 6.8    | 44.3    | 14.6    | 27.2     | 4.7     | 0.1 | 0.1  | 27.8 | 93.2 | 19.2    | 10     | 51.2   | 14.6    | 34.2     | 5.9     | 0.1 | 0.1  |
| 26.7 | 231  | -21     | 195    | 121     | 129     | -22      | 103     | 287 | 5.4  | 26.7 | 33.5 | -20     | 178    | 112    | 130     | 153      | 117     | 287 | 5.4  |
| 44   | 1.18 | _       | _      | —       | —       | —        |         | _   | _    | 44   | 1.18 | —       | —      | —      | —       | _        | _       | —   |      |
| 28   | 98.7 | 20.3    | 6.8    | 44.1    | 14.5    | 27.3     | 4.7     | 0.1 | 0.1  | 28   | 93.6 | 19.2    | 10.1   | 51     | 14.5    | 34.3     | 6       | 0.1 | 0.1  |
| 27   | 232  | -21     | 196    | 122     | 130     | -22      | 103     | 286 | 6.7  | 27   | 33.8 | -20     | 178    | 113    | 131     | 154      | 117     | 286 | 6.7  |
| 45   | 1.18 | _       | _      | _       | _       | _        |         | _   | _    | 45   | 1.18 | _       | _      | _      | _       | _        | _       | _   | _    |
| 28.1 | 99.1 | 20.4    | 6.9    | 43.9    | 14.5    | 27.1     | 4.7     | 0.1 | 0.1  | 28.1 | 93.9 | 19.3    | 10.1   | 50.7   | 14.5    | 34.2     | 6       | 0.1 | 0.1  |
| 27.4 | 232  | -20     | 196    | 122     | 130     | -21      | 104     | 285 | 7.7  | 27.4 | 34.2 | -19     | 178    | 113    | 131     | 155      | 118     | 285 | 7.7  |
| 46   | 1.18 | _       | _      | _       | _       | _        |         | _   | _    | 46   | 1.18 | _       | _      | _      | _       | _        | _       | _   | _    |
| 28.2 | 99.3 | 20.4    | 6.9    | 43.5    | 14.4    | 26.9     | 4.7     | 0.1 | 0.1  | 28.2 | 94.1 | 19.3    | 10.2   | 50.3   | 14.4    | 33.9     | 5.9     | 0.1 | 0.1  |
| 27.8 | 232  | -20     | 197    | 122     | 130     | -21      | 104     | 284 | 9.7  | 27.8 | 34.5 | -19     | 179    | 113    | 131     | 155      | 118     | 284 | 9.7  |
| 47   | 1.18 | _       | _      | —       | _       | —        | -       | —   | _    | 47   | 1.18 | —       | —      | —      | —       | _        | _       | —   | _    |
| 28.3 | 99.5 | 20.4    | 6.9    | 43.6    | 14.4    | 26.9     | 4.7     | 0.1 | 0.1  | 28.3 | 94.3 | 19.4    | 10.2   | 50.4   | 14.4    | 33.8     | 5.9     | 0.1 | 0.1  |
| 28.2 | 233  | -20     | 197    | 122     | 130     | -21      | 104     | 284 | 10.9 | 28.2 | 34.9 | -19     | 179    | 113    | 131     | 155      | 118     | 284 | 10.9 |
| 48   | 1.18 | _       | _      | _       | _       | _        |         | _   | _    | 48   | 1.18 | _       | _      | _      | _       | _        | _       | _   | _    |
| 28.4 | 99.8 | 20.5    | 6.9    | 43.5    | 14.4    | 26.9     | 4.7     | 0.1 | 0.1  | 28.4 | 94.6 | 19.4    | 10.2   | 50.3   | 14.4    | 33.8     | 5.9     | 0.1 | 0.1  |
| 28.5 | 233  | -19     | 197    | 122     | 131     | -21      | 104     | 284 | 11.9 | 28.5 | 35.2 | -18     | 179    | 113    | 131     | 155      | 118     | 284 | 11.9 |
| 49   | 1.18 | _       |        | _       | _       | _        | _       |     |      | 49   | 1.18 | _       | _      |        |         |          |         | _   | _    |
| 28.6 | 100  | 20.5    | 7      | 43.2    | 14.3    | 27       | 4.7     | 0.1 | 0.1  | 28.6 | 94.8 | 19.5    | 10.3   | 50     | 14.3    | 34       | 5.9     | 0.1 | 0.1  |
| 29.1 | 233  | -19     | 198    | 123     | 131     | -21      | 104     | 285 | 13.8 | 29.1 | 35.7 | -18     | 180    | 113    | 131     | 155      | 118     | 285 | 13.8 |

|      | Tid  | al harm | nonics | (amplit | udes ar | re in cm | ) !2000 | )   |      |      | Ti   | idal har | monics | (ampli <sup>,</sup> | tudes a | re in cn | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|----------|--------|---------------------|---------|----------|---------|-----|------|
| 50   | 1.18 | —       | —      | —       | —       | —        | _       | _   | —    | 50   | 1.18 | _        | —      | —                   | —       | —        | —       | _   | —    |
| 28.7 | 100  | 20.6    | 7      | 43.1    | 14.3    | 27       | 4.7     | 0.1 | 0.1  | 28.7 | 95   | 19.5     | 10.3   | 49.8                | 14.3    | 34       | 5.9     | 0.1 | 0.1  |
| 29.6 | 234  | -18     | 198    | 123     | 131     | -20      | 104     | 286 | 14.8 | 29.6 | 36.1 | -18      | 181    | 113                 | 131     | 155      | 118     | 286 | 14.8 |
| 51   | 1.18 | _       | _      | —       | _       | _        |         | _   | _    | 51   | 1.18 | _        | —      | _                   | _       | _        | _       |     |      |
| 28.8 | 100  | 20.6    | 7      | 43      | 14.3    | 26.9     | 4.7     | 0.1 | 0.1  | 28.8 | 95.2 | 19.5     | 10.3   | 49.7                | 14.3    | 33.9     | 5.9     | 0.1 | 0.1  |
| 29.9 | 234  | -18     | 199    | 122     | 131     | -20      | 105     | 288 | 15.4 | 29.9 | 36.4 | -17      | 181    | 113                 | 131     | 156      | 119     | 288 | 15.4 |
| 52   | 1.18 | _       | _      | —       | _       | _        |         | —   | _    | 52   | 1.18 | _        | —      | _                   | _       | _        | _       |     | _    |
| 28.8 | 101  | 20.7    | 7      | 43      | 14.3    | 26.6     | 4.7     | 0.1 | 0.1  | 28.8 | 95.3 | 19.6     | 10.4   | 49.7                | 14.3    | 33.5     | 5.9     | 0.1 | 0.1  |
| 30.2 | 234  | -18     | 199    | 122     | 130     | -20      | 105     | 287 | 16   | 30.2 | 36.7 | -17      | 181    | 113                 | 131     | 156      | 119     | 287 | 16   |
| 53   | 1.18 | _       | _      | —       | _       | _        |         | —   | _    | 53   | 1.18 | _        | —      | _                   | _       | _        | _       |     | _    |
| 28.9 | 101  | 20.7    | 7.1    | 43.4    | 14.4    | 26.5     | 4.6     | 0.1 | 0.1  | 28.9 | 95.4 | 19.6     | 10.4   | 50.1                | 14.4    | 33.4     | 5.8     | 0.1 | 0.1  |
| 30.6 | 235  | -17     | 199    | 122     | 130     | -21      | 105     | 285 | 16.6 | 30.6 | 37   | -17      | 182    | 112                 | 131     | 155      | 119     | 285 | 16.6 |
| 54   | 1.18 | _       | _      | —       | _       | _        |         | —   | _    | 54   | 1.18 | _        | —      | _                   | _       | _        | _       |     | _    |
| 29   | 101  | 20.7    | 7.1    | 43.8    | 14.5    | 26.8     | 4.7     | 0.1 | 0.1  | 29   | 95.5 | 19.6     | 10.4   | 50.6                | 14.5    | 33.7     | 5.9     | 0.1 | 0.1  |
| 30.8 | 235  | -17     | 200    | 122     | 130     | -21      | 104     | 285 | 16.9 | 30.8 | 37.2 | -16      | 182    | 113                 | 131     | 155      | 118     | 285 | 16.9 |
| 55   | 1.18 | _       | _      | —       | _       | _        |         | —   | _    | 55   | 1.18 | _        | —      | _                   | _       | _        | _       |     | _    |
| 29.1 | 101  | 20.7    | 7.1    | 44      | 14.5    | 27       | 4.7     | 0.1 | 0.1  | 29.1 | 95.7 | 19.6     | 10.5   | 50.8                | 14.5    | 34.1     | 5.9     | 0.1 | 0.1  |
| 31.2 | 235  | -17     | 200    | 122     | 131     | -20      | 104     | 285 | 17.3 | 31.2 | 37.5 | -16      | 182    | 113                 | 131     | 155      | 119     | 285 | 17.3 |
| 56   | 1.18 | —       | _      | —       | —       | —        | -       | —   | —    | 56   | 1.18 | —        | —      | —                   | —       | —        | —       |     | —    |
| 29.1 | 101  | 20.8    | 7.1    | 44.1    | 14.6    | 27       | 4.7     | 0.1 | 0.1  | 29.1 | 95.8 | 19.7     | 10.5   | 51                  | 14.6    | 34       | 5.9     | 0.1 | 0.1  |
| 31.5 | 236  | -16     | 200    | 123     | 131     | -20      | 105     | 285 | 17.7 | 31.5 | 37.8 | -16      | 182    | 114                 | 132     | 156      | 119     | 285 | 17.7 |
| 57   | 1.18 | _       | _      | _       | _       | _        | _       | _   | _    | 57   | 1.18 | _        | _      | _                   | _       | _        | _       | _   | _    |
| 29.2 | 101  | 20.8    | 7.1    | 44.1    | 14.6    | 27       | 4.7     | 0.1 | 0.1  | 29.2 | 96   | 19.7     | 10.5   | 51                  | 14.6    | 34.1     | 5.9     | 0.1 | 0.1  |
| 31.8 | 236  | -16     | 201    | 123     | 132     | -20      | 105     | 286 | 18   | 31.8 | 38.1 | -15      | 183    | 114                 | 132     | 156      | 119     | 286 | 18   |
| 58   | 1.18 | _       | _      | _       | _       | _        | _       | _   | _    | 58   | 1.18 |          | _      | _                   | _       | _        | _       |     | _    |

|      | Tid  | al harm | nonics | (amplit | udes ar | re in cm | ) !2000 | )   |      |      | Ti   | dal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|---------|--------|--------|---------|----------|---------|-----|------|
| 29.3 | 102  | 20.8    | 7.2    | 43.9    | 14.5    | 27.3     | 4.7     | 0.1 | 0.1  | 29.3 | 96.2 | 19.7    | 10.6   | 50.7   | 14.5    | 34.3     | 6       | 0.1 | 0.1  |
| 32.2 | 236  | -16     | 201    | 124     | 132     | -20      | 105     | 286 | 18.2 | 32.2 | 38.4 | -15     | 183    | 115    | 133     | 156      | 119     | 286 | 18.2 |
| 59   | 1.18 | _       | _      | —       | —       | —        | -       | —   | _    | 59   | 1.18 | —       | —      | -      | —       | _        | —       |     | —    |
| 29.4 | 102  | 20.9    | 7.2    | 43.7    | 14.5    | 27.2     | 4.8     | 0.1 | 0.1  | 29.4 | 96.3 | 19.8    | 10.6   | 50.5   | 14.5    | 34.3     | 6       | 0.1 | 0.1  |
| 32.5 | 236  | -16     | 201    | 124     | 132     | -19      | 106     | 286 | 18.4 | 32.5 | 38.7 | -15     | 184    | 115    | 133     | 156      | 120     | 286 | 18.4 |
| 60   | 1.18 | _       | _      | —       | —       | —        |         | _   | _    | 60   | 1.18 | —       | —      |        | —       | _        | _       | I   | —    |
| 29.5 | 102  | 20.9    | 7.2    | 43.8    | 14.5    | 27.1     | 4.7     | 0.1 | 0.1  | 29.5 | 96.5 | 19.8    | 10.6   | 50.7   | 14.5    | 34.2     | 6       | 0.1 | 0.1  |
| 32.8 | 237  | -15     | 202    | 124     | 132     | -19      | 106     | 285 | 18.5 | 32.8 | 39   | -15     | 184    | 114    | 133     | 157      | 120     | 285 | 18.5 |
| 61   | 1.18 | _       | _      | —       | —       | —        | -       | —   | _    | 61   | 1.18 | —       | —      | -      | —       | _        | —       |     | —    |
| 29.6 | 102  | 20.9    | 7.2    | 43.9    | 14.5    | 27.2     | 4.7     | 0.1 | 0.1  | 29.6 | 96.7 | 19.8    | 10.6   | 50.8   | 14.5    | 34.2     | 6       | 0.1 | 0.1  |
| 32.9 | 237  | -15     | 202    | 124     | 132     | -19      | 106     | 285 | 18.5 | 32.9 | 39.1 | -14     | 184    | 115    | 133     | 157      | 120     | 285 | 18.5 |
| 62   | 1.18 | _       | _      | —       | —       | —        | -       | —   | _    | 62   | 1.18 | —       | —      | -      | —       | _        | —       |     | —    |
| 29.7 | 102  | 21      | 7.2    | 43.9    | 14.5    | 27.2     | 4.7     | 0.1 | 0.1  | 29.7 | 96.8 | 19.9    | 10.7   | 50.8   | 14.5    | 34.3     | 6       | 0.1 | 0.1  |
| 33.1 | 237  | -15     | 202    | 124     | 132     | -19      | 106     | 285 | 18.4 | 33.1 | 39.3 | -14     | 184    | 115    | 133     | 157      | 120     | 285 | 18.4 |
| 63   | 1.18 | —       | _      | —       | —       | —        |         | —   | _    | 63   | 1.18 | —       | —      |        | —       | —        | —       |     | —    |
| 29.7 | 102  | 21      | 7.3    | 43.9    | 14.5    | 27.2     | 4.8     | 0.1 | 0.1  | 29.7 | 97   | 19.9    | 10.7   | 50.7   | 14.5    | 34.3     | 6       | 0.1 | 0.1  |
| 33.3 | 237  | -15     | 202    | 124     | 132     | -19      | 106     | 284 | 18.3 | 33.3 | 39.4 | -14     | 184    | 115    | 133     | 157      | 120     | 284 | 18.3 |
| 64   | 1.18 | _       | _      | —       | _       | _        |         | _   | _    | 64   | 1.18 | —       | —      |        | —       | _        | _       | ١   | —    |
| 29.8 | 102  | 21      | 7.3    | 43.9    | 14.5    | 27.2     | 4.7     | 0.1 | 0.1  | 29.8 | 97.1 | 19.9    | 10.7   | 50.8   | 14.5    | 34.2     | 6       | 0.1 | 0.1  |
| 33.5 | 237  | -15     | 202    | 124     | 132     | -19      | 106     | 284 | 18.1 | 33.5 | 39.6 | -14     | 185    | 115    | 133     | 157      | 120     | 284 | 18.1 |
| 65   | 1.18 | _       | _      | —       | —       | —        | _       | —   | _    | 65   | 1.18 | —       | —      | _      | —       | _        | —       | -   | —    |
| 29.8 | 103  | 21      | 7.3    | 44      | 14.6    | 27.3     | 4.7     | 0.1 | 0.1  | 29.8 | 97.1 | 19.9    | 10.7   | 50.9   | 14.6    | 34.3     | 6       | 0.1 | 0.1  |
| 33.6 | 237  | -15     | 203    | 124     | 132     | -19      | 106     | 284 | 17.9 | 33.6 | 39.7 | -14     | 185    | 115    | 133     | 157      | 120     | 284 | 17.9 |
| 66   | 1.18 | _       | _      | _       | _       | _        | _       | —   |      | 66   | 1.18 | _       | _      | _      | _       | -        | _       | _   | —    |
| 29.9 | 103  | 21      | 7.3    | 44      | 14.6    | 27.4     | 4.8     | 0.1 | 0.1  | 29.9 | 97.2 | 19.9    | 10.7   | 50.9   | 14.6    | 34.4     | 6       | 0.1 | 0.1  |

|      | Tid  | al harn | nonics | (amplit | udes ar | re in cm | ) !2000 | )   |      |      | Ti   | dal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |      |
|------|------|---------|--------|---------|---------|----------|---------|-----|------|------|------|---------|--------|--------|---------|----------|---------|-----|------|
| 33.7 | 238  | -14     | 203    | 124     | 133     | -19      | 106     | 284 | 17.8 | 33.7 | 39.8 | -14     | 185    | 115    | 133     | 157      | 120     | 284 | 17.8 |
| 67   | 1.18 | _       | _      | —       | —       | —        |         | _   | _    | 67   | 1.18 | —       | —      | _      | —       | _        | _       | _   | —    |
| 29.9 | 103  | 21.1    | 7.3    | 44      | 14.6    | 27.3     | 4.8     | 0.1 | 0.1  | 29.9 | 97.3 | 20      | 10.8   | 50.9   | 14.6    | 34.4     | 6       | 0.1 | 0.1  |
| 33.9 | 238  | -14     | 203    | 124     | 133     | -18      | 107     | 284 | 17.5 | 33.9 | 39.9 | -14     | 185    | 115    | 133     | 157      | 121     | 284 | 17.5 |
| 68   | 1.18 | _       | _      | —       | —       | —        |         | —   | _    | 68   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —    |
| 30   | 103  | 21.1    | 7.3    | 44      | 14.6    | 27.3     | 4.8     | 0.1 | 0.1  | 30   | 97.5 | 20      | 10.8   | 50.8   | 14.6    | 34.3     | 6       | 0.1 | 0.1  |
| 34   | 238  | -14     | 203    | 124     | 133     | -18      | 107     | 284 | 16.9 | 34   | 40.1 | -13     | 185    | 115    | 133     | 158      | 121     | 284 | 16.9 |
| 69   | 1.18 | _       | _      | —       | —       | —        |         | —   | _    | 69   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —    |
| 30.1 | 103  | 21.1    | 7.3    | 43.9    | 14.6    | 27.1     | 4.7     | 0.1 | 0.1  | 30.1 | 97.6 | 20      | 10.8   | 50.8   | 14.6    | 34.2     | 6       | 0.1 | 0.1  |
| 34.2 | 238  | -14     | 203    | 124     | 133     | -18      | 107     | 284 | 16   | 34.2 | 40.2 | -13     | 185    | 115    | 133     | 158      | 121     | 284 | 16   |
| 70   | 1.18 | _       | _      | —       | —       | —        |         | _   | _    | 70   | 1.18 | —       | —      | _      | —       | _        | _       | _   | —    |
| 30.1 | 103  | 21.1    | 7.4    | 43.9    | 14.6    | 27.1     | 4.7     | 0.1 | 0.1  | 30.1 | 97.7 | 20      | 10.8   | 50.8   | 14.6    | 34.1     | 5.9     | 0.1 | 0.1  |
| 34.3 | 238  | -14     | 203    | 124     | 133     | -18      | 107     | 283 | 14.8 | 34.3 | 40.3 | -13     | 185    | 115    | 133     | 157      | 121     | 283 | 14.8 |
| 71   | 1.18 | _       | _      | _       | _       | _        |         | _   | _    | 71   | 1.18 | _       | _      | _      | _       | _        | _       | _   | _    |
| 30.2 | 103  | 21.2    | 7.4    | 44      | 14.6    | 27.1     | 4.7     | 0.1 | 0.1  | 30.2 | 97.8 | 20.1    | 10.9   | 50.8   | 14.6    | 34.1     | 5.9     | 0.1 | 0.1  |
| 34.4 | 238  | -14     | 203    | 124     | 133     | -18      | 107     | 281 | 13.6 | 34.4 | 40.4 | -13     | 185    | 115    | 133     | 157      | 121     | 281 | 13.6 |
| 72   | 1.18 | _       | _      | —       | _       | —        | -       | —   | _    | 72   | 1.18 | —       | —      | _      | —       | _        | _       | _   | —    |
| 30.3 | 103  | 21.2    | 7.4    | 44      | 14.6    | 27.2     | 4.7     | 0.1 | 0.1  | 30.3 | 98   | 20.1    | 10.9   | 50.9   | 14.6    | 34.2     | 5.9     | 0.1 | 0.1  |
| 34.5 | 238  | -14     | 203    | 124     | 133     | -19      | 107     | 279 | 12.1 | 34.5 | 40.5 | -13     | 186    | 115    | 133     | 157      | 121     | 279 | 12.1 |
| 73   | 1.18 | _       | _      | _       | _       | _        |         | _   | _    | 73   | 1.18 | _       | _      | _      | _       | _        | _       | _   | _    |
| 30.4 | 104  | 21.2    | 7.4    | 44.1    | 14.6    | 27.3     | 4.7     | 0.1 | 0.1  | 30.4 | 98.3 | 20.1    | 10.9   | 50.9   | 14.6    | 34.4     | 6       | 0.1 | 0.1  |
| 34.6 | 238  | -14     | 204    | 125     | 133     | -18      | 107     | 275 | 10.9 | 34.6 | 40.6 | -13     | 186    | 115    | 134     | 157      | 121     | 275 | 10.9 |
| 74   | 1.18 | _       |        | _       | _       | _        | _       |     |      | 74   | 1.18 | _       | _      |        |         |          |         | _   | _    |
| 30.5 | 104  | 21.3    | 7.5    | 44.1    | 14.6    | 27.4     | 4.8     | 0   | 0.1  | 30.5 | 98.7 | 20.2    | 11     | 50.9   | 14.6    | 34.4     | 6       | 0   | 0.1  |
| 34.8 | 239  | -13     | 204    | 125     | 133     | -18      | 107     | 266 | 9.4  | 34.8 | 40.8 | -13     | 186    | 116    | 134     | 158      | 121     | 266 | 9.4  |

|      | Tid  | al harm | nonics | (amplit | udes ar | e in cm | ) !2000 | )   |     |      | Ti   | idal har | monics | (ampli | tudes a | re in cn | n) !200 | 6   |     |
|------|------|---------|--------|---------|---------|---------|---------|-----|-----|------|------|----------|--------|--------|---------|----------|---------|-----|-----|
| 75   | 1.18 | _       | _      | _       | _       | _       | _       | —   | _   | 75   | 1.18 | _        | _      | _      | _       | _        | _       | _   | —   |
| 30.7 | 105  | 21.4    | 7.5    | 44      | 14.6    | 27.3    | 4.8     | 0   | 0.1 | 30.7 | 99.1 | 20.3     | 11     | 50.9   | 14.6    | 34.4     | 6       | 0   | 0.1 |
| 34.9 | 239  | -13     | 204    | 125     | 133     | -18     | 107     | 253 | 7.2 | 34.9 | 40.9 | -13      | 186    | 116    | 134     | 158      | 121     | 253 | 7.2 |
| 76   | 1.18 | —       | —      | —       | —       |         |         | —   |     | 76   | 1.18 | _        | —      | —      | —       | —        | —       |     | —   |
| 31   | 105  | 21.6    | 7.6    | 44.1    | 14.6    | 27.3    | 4.8     | 0   | 0.1 | 31   | 99.7 | 20.4     | 11.1   | 50.9   | 14.6    | 34.3     | 6       | 0   | 0.1 |
| 35   | 239  | -13     | 204    | 125     | 133     | -18     | 107     | 238 | 6.1 | 35   | 41.1 | -12      | 186    | 116    | 134     | 158      | 121     | 238 | 6.1 |
| 77   | 1.18 | —       | _      | —       | —       |         |         | —   |     | 77   | 1.18 | _        | —      | —      | —       | —        | _       | I   | —   |
| 31.8 | 108  | 22      | 7.8    | 44.2    | 14.7    | 27.3    | 4.8     | 0.1 | 0.2 | 31.8 | 102  | 20.9     | 11.5   | 51.1   | 14.7    | 34.4     | 6       | 0.1 | 0.2 |
| 36.1 | 240  | -12     | 205    | 126     | 134     | -17     | 108     | 218 | 354 | 36.1 | 42   | -11      | 187    | 116    | 135     | 159      | 122     | 218 | 354 |
| 78   | 1.18 | —       | —      | —       | —       |         |         | —   |     | 78   | 1.18 | _        | —      | —      | —       | —        | —       |     | _   |
| 32.9 | 110  | 22.6    | 8      | 44.4    | 14.8    | 27.6    | 4.8     | 0.1 | 0.2 | 32.9 | 105  | 21.4     | 11.8   | 51.3   | 14.8    | 34.8     | 6.1     | 0.1 | 0.2 |
| 36.6 | 240  | -11     | 205    | 126     | 135     | -16     | 108     | 198 | 341 | 36.6 | 42.4 | -11      | 188    | 117    | 135     | 159      | 122     | 198 | 341 |
| 79   | 1.18 | —       | —      | —       | —       |         |         | —   |     | 79   | 1.18 | _        | —      | —      | —       | —        | —       |     | _   |
| 33.6 | 112  | 23      | 8.2    | 44.4    | 14.8    | 27.5    | 4.8     | 0.2 | 0.2 | 33.6 | 106  | 21.8     | 12.1   | 51.3   | 14.8    | 34.7     | 6.1     | 0.2 | 0.2 |
| 37.1 | 241  | -11     | 206    | 127     | 135     | -16     | 109     | 193 | 336 | 37.1 | 42.9 | -10      | 188    | 117    | 136     | 160      | 123     | 193 | 336 |
| 80   | 1.18 | _       | _      | —       | _       |         |         | _   |     | 80   | 1.18 | _        | —      | _      | _       | _        | _       |     | _   |
| 34.4 | 114  | 23.4    | 8.4    | 44.3    | 14.7    | 27.4    | 4.8     | 0.2 | 0.3 | 34.4 | 108  | 22.1     | 12.4   | 51.2   | 14.7    | 34.6     | 6.1     | 0.2 | 0.3 |
| 37.5 | 241  | -11     | 206    | 127     | 136     | -15     | 110     | 189 | 334 | 37.5 | 43.2 | -9.8     | 188    | 118    | 136     | 160      | 124     | 189 | 334 |
| 81   | 1.18 | _       | _      | —       | _       |         |         | _   |     | 81   | 1.18 | _        | —      | _      | _       | _        | _       |     | _   |
| 34.9 | 116  | 23.7    | 8.5    | 44.2    | 14.7    | 27.4    | 4.8     | 0.2 | 0.4 | 34.9 | 110  | 22.4     | 12.6   | 51.1   | 14.7    | 34.5     | 6.1     | 0.2 | 0.4 |
| 37.9 | 241  | -10     | 207    | 128     | 136     | -15     | 110     | 188 | 334 | 37.9 | 43.5 | -9.4     | 189    | 119    | 137     | 161      | 124     | 188 | 334 |
| 82   | 1.18 | _       |        | _       | _       | _       | _       | _   | _   | 82   | 1.18 | _        | _      | _      | _       | _        |         | _   | _   |
| 35.3 | 117  | 23.9    | 8.6    | 44.2    | 14.7    | 27.4    | 4.8     | 0.2 | 0.4 | 35.3 | 111  | 22.6     | 12.7   | 51.1   | 14.7    | 34.5     | 6.1     | 0.2 | 0.4 |
| 38.1 | 241  | -10     | 207    | 128     | 137     | -14     | 110     | 187 | 334 | 38.1 | 43.7 | -9.2     | 189    | 119    | 137     | 161      | 124     | 187 | 334 |
| 83   | 1.18 | _       | _      | _       | _       | _       |         | _   | _   | 83   | 1.18 |          | _      | _      | _       | _        | _       | _   | _   |

|      | Tid  | al harm | nonics | (amplit | udes ai | re in cm | ) !2000 | )   |     |      | Ti   | dal har | monics | (ampli | tudes a | re in cr | n) !200 | 6   |     |
|------|------|---------|--------|---------|---------|----------|---------|-----|-----|------|------|---------|--------|--------|---------|----------|---------|-----|-----|
| 35.7 | 118  | 24.1    | 8.8    | 44.4    | 14.8    | 27.5     | 4.8     | 0.3 | 0.5 | 35.7 | 112  | 22.9    | 12.9   | 51.3   | 14.8    | 34.6     | 6.1     | 0.3 | 0.5 |
| 38.3 | 242  | -9.8    | 207    | 129     | 137     | -14      | 111     | 187 | 334 | 38.3 | 43.8 | -9      | 189    | 119    | 138     | 162      | 125     | 187 | 334 |
| 84   | 1.18 | —       | —      | —       | —       | _        | —       | —   | —   | 84   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —   |
| 36.1 | 119  | 24.3    | 8.8    | 44.5    | 14.8    | 27.6     | 4.8     | 0.3 | 0.5 | 36.1 | 113  | 23.1    | 13     | 51.5   | 14.8    | 34.8     | 6.1     | 0.3 | 0.5 |
| 38.3 | 242  | -9.7    | 207    | 129     | 137     | -14      | 111     | 185 | 335 | 38.3 | 43.9 | -9      | 189    | 120    | 138     | 162      | 125     | 185 | 335 |
| 85   | 1.18 | —       | —      | —       | —       | _        | —       | —   | —   | 85   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —   |
| 36.4 | 120  | 24.5    | 8.9    | 44.6    | 14.8    | 27.7     | 4.8     | 0.3 | 0.6 | 36.4 | 114  | 23.2    | 13.1   | 51.6   | 14.8    | 34.8     | 6.1     | 0.3 | 0.6 |
| 38.3 | 242  | -9.7    | 207    | 129     | 137     | -14      | 111     | 183 | 338 | 38.3 | 43.8 | -9      | 189    | 120    | 138     | 162      | 125     | 183 | 338 |
| 86   | 1.18 | —       | —      | —       | —       | _        | —       | —   | —   | 86   | 1.18 | —       | —      | —      | —       | —        | _       | —   | —   |
| 36.6 | 121  | 24.6    | 8.9    | 44.7    | 14.8    | 27.7     | 4.8     | 0.3 | 0.6 | 36.6 | 114  | 23.3    | 13.2   | 51.6   | 14.8    | 34.8     | 6.1     | 0.3 | 0.6 |
| 38.1 | 241  | -9.9    | 207    | 129     | 138     | -14      | 111     | 181 | 340 | 38.1 | 43.7 | -9.1    | 189    | 120    | 138     | 162      | 125     | 181 | 340 |
| 87   | 1.18 | —       | _      | _       | _       | _        | —       | —   | _   | 87   | 1.18 | —       | —      | —      | _       | _        | _       | —   | _   |
| 36.7 | 121  | 24.7    | 9      | 44.6    | 14.8    | 27.7     | 4.8     | 0.3 | 0.6 | 36.7 | 115  | 23.4    | 13.2   | 51.6   | 14.8    | 34.8     | 6.1     | 0.3 | 0.6 |
| 37.8 | 241  | -10     | 206    | 129     | 138     | -14      | 111     | 178 | 343 | 37.8 | 43.4 | -9.4    | 188    | 120    | 138     | 162      | 125     | 178 | 343 |

|      | Tic  | lal harn | nonics | amplit | udes ar | e in cm | ) !2008 |     |      |      | Ti   | dal har | monic | s (ampli | itudes a | are in c | m) !201 | 4   |      |
|------|------|----------|--------|--------|---------|---------|---------|-----|------|------|------|---------|-------|----------|----------|----------|---------|-----|------|
| S2   | M2   | N2       | K2     | K1     | P1      | 01      | Q1      | M4  | M6   | S2   | M2   | N2      | K2    | К1       | P1       | 01       | Q1      | M4  | M6   |
| 87   | _    | _        | _      | _      | _       | _       | _       | _   | _    | 87   | _    | _       | _     | _        | _        | _        | _       | _   | —    |
| 1    | 1.18 | _        |        | _      | _       | —       | —       | _   | _    | 1    | 1.18 | _       | _     | _        | —        | _        | _       | —   | —    |
| 24.8 | 88.2 | 18.3     | 8.5    | 48.5   | 14.1    | 32.4    | 5.7     | 0.1 | 0.2  | 24.8 | 93.9 | 19.5    | 5.2   | 39.7     | 14.1     | 23.4     | 4.1     | 0.1 | 0.2  |
| 9.9  | 177  | -60      | 151    | 99.2   | 121     | -51     | 89.5    | 265 | 8.6  | 9.9  | -18  | -57     | 153   | 99.4     | 121      | 114      | 92.8    | 265 | 8.6  |
| 2    | 1.18 | _        | _      | _      | _       | _       | _       | _   | _    | 2    | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 24.6 | 87.4 | 18.1     | 8.4    | 48.2   | 14      | 32.2    | 5.6     | 0.1 | 0.2  | 24.6 | 93   | 19.3    | 5.2   | 39.5     | 14       | 23.2     | 4.1     | 0.1 | 0.2  |
| 10.3 | 177  | -59      | 152    | 99.4   | 121     | -51     | 90      | 265 | 9    | 10.3 | -18  | -56     | 153   | 99.6     | 122      | 114      | 93.3    | 265 | 9    |
| 3    | 1.18 | —        | -      | —      | —       | —       | —       | —   | —    | 3    | 1.18 | —       | —     | —        | —        | —        | —       | —   | —    |
| 24.3 | 86.7 | 18       | 8.3    | 48     | 14      | 32      | 5.6     | 0.1 | 0.2  | 24.3 | 92.3 | 19.1    | 5.1   | 39.4     | 14       | 23.1     | 4       | 0.1 | 0.2  |
| 10.6 | 177  | -59      | 152    | 99.6   | 121     | -51     | 90.3    | 264 | 9.4  | 10.6 | -18  | -56     | 154   | 99.8     | 122      | 114      | 93.6    | 264 | 9.4  |
| 4    | 1.18 | —        | -      | —      | —       | —       | —       | —   | —    | 4    | 1.18 | —       | —     | —        | —        | —        | —       | —   | —    |
| 24.1 | 86.1 | 17.8     | 8.2    | 47.9   | 13.9    | 31.9    | 5.6     | 0.1 | 0.2  | 24.1 | 91.7 | 19      | 5.1   | 39.3     | 13.9     | 23       | 4       | 0.1 | 0.2  |
| 11   | 178  | -59      | 152    | 99.7   | 122     | -51     | 90.6    | 265 | 9.8  | 11   | -18  | -56     | 154   | 99.9     | 122      | 114      | 93.9    | 265 | 9.8  |
| 5    | 1.18 | _        |        | _      | —       | —       | —       | _   | _    | 5    | 1.18 | —       | —     | —        | —        | —        | —       | —   | —    |
| 24.1 | 86   | 17.8     | 8.2    | 47.9   | 13.9    | 31.9    | 5.6     | 0.1 | 0.2  | 24.1 | 91.6 | 19      | 5.1   | 39.2     | 13.9     | 23       | 4       | 0.1 | 0.2  |
| 11.5 | 178  | -59      | 153    | 99.9   | 122     | -50     | 90.9    | 266 | 10.2 | 11.5 | -17  | -55     | 155   | 100      | 122      | 115      | 94.2    | 266 | 10.2 |
| 6    | 1.18 | _        |        | _      | —       | —       | —       | _   | _    | 6    | 1.18 | —       | —     | —        | —        | —        | _       | —   | —    |
| 24.2 | 86   | 17.8     | 8.3    | 47.9   | 13.9    | 31.8    | 5.6     | 0.1 | 0.2  | 24.2 | 91.6 | 19      | 5.1   | 39.2     | 13.9     | 22.9     | 4       | 0.1 | 0.2  |
| 12   | 179  | -58      | 154    | 100    | 122     | -50     | 91.2    | 266 | 10.7 | 12   | -17  | -55     | 155   | 100      | 123      | 115      | 94.5    | 266 | 10.7 |
| 7    | 1.18 | _        |        | _      | —       | —       | —       | _   | _    | 7    | 1.18 | —       | —     | —        | —        | —        | _       | —   | —    |
| 24.3 | 86.4 | 17.9     | 8.3    | 47.9   | 13.9    | 31.9    | 5.6     | 0.1 | 0.2  | 24.3 | 92   | 19      | 5.1   | 39.3     | 13.9     | 23       | 4       | 0.1 | 0.2  |
| 12.6 | 179  | -58      | 154    | 100    | 122     | -50     | 91.3    | 267 | 11.2 | 12.6 | -16  | -54     | 156   | 101      | 123      | 115      | 94.6    | 267 | 11.2 |
| 8    | 1.18 | _        | _      | _      | _       | _       | _       | _   | _    | 8    | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 24.5 | 86.8 | 17.9     | 8.4    | 48     | 13.9    | 31.9    | 5.6     | 0.1 | 0.2  | 24.5 | 92.4 | 19.1    | 5.1   | 39.3     | 13.9     | 23       | 4       | 0.1 | 0.2  |

### Table B5-3. Tidal harmonics for year 2008 and 2014.

|      | Tic  | lal harn | nonics ( | amplit | udes ar | e in cm | ) !2008 |     |      |      | Ti   | dal har | monic | s (ampli | itudes a | are in c | m) !201 | .4  |      |
|------|------|----------|----------|--------|---------|---------|---------|-----|------|------|------|---------|-------|----------|----------|----------|---------|-----|------|
| 13.1 | 179  | -57      | 155      | 101    | 122     | -50     | 91.4    | 268 | 11.7 | 13.1 | -16  | -54     | 156   | 101      | 123      | 115      | 94.7    | 268 | 11.7 |
| 9    | 1.18 | _        |          | _      | —       | —       | _       | _   | _    | 9    | 1.18 | _       | _     | _        |          | _        | _       | —   | —    |
| 24.6 | 87.1 | 18       | 8.4      | 48     | 14      | 31.9    | 5.6     | 0.1 | 0.2  | 24.6 | 92.7 | 19.2    | 5.2   | 39.3     | 14       | 23       | 4       | 0.1 | 0.2  |
| 13.6 | 180  | -57      | 155      | 101    | 123     | -50     | 91.5    | 268 | 12.2 | 13.6 | -16  | -54     | 157   | 101      | 123      | 115      | 94.8    | 268 | 12.2 |
| 10   | 1.18 | _        |          | _      | —       | —       | _       | _   | _    | 10   | 1.18 | _       | _     | —        |          | _        | _       | —   | —    |
| 24.7 | 87.4 | 18.1     | 8.4      | 48.1   | 14      | 32      | 5.6     | 0.1 | 0.2  | 24.7 | 93   | 19.2    | 5.2   | 39.4     | 14       | 23       | 4       | 0.1 | 0.2  |
| 14.1 | 180  | -56      | 156      | 101    | 123     | -49     | 91.7    | 268 | 12.6 | 14.1 | -15  | -53     | 157   | 101      | 123      | 115      | 95      | 268 | 12.6 |
| 11   | 1.18 | _        |          | _      | —       | —       | _       | _   | _    | 11   | 1.18 | _       | _     | _        |          | _        | _       | —   | —    |
| 24.8 | 87.6 | 18.1     | 8.5      | 48.1   | 14      | 32      | 5.6     | 0.1 | 0.2  | 24.8 | 93.3 | 19.3    | 5.2   | 39.4     | 14       | 23.1     | 4       | 0.1 | 0.2  |
| 14.5 | 181  | -56      | 156      | 101    | 123     | -49     | 91.8    | 268 | 13.1 | 14.5 | -15  | -53     | 158   | 101      | 124      | 116      | 95.1    | 268 | 13.1 |
| 12   | 1.18 | _        |          | _      | —       | —       | _       | _   | _    | 12   | 1.18 | _       | _     | _        |          | _        | _       | —   | —    |
| 24.9 | 87.9 | 18.2     | 8.5      | 48.2   | 14      | 32.1    | 5.6     | 0.1 | 0.2  | 24.9 | 93.6 | 19.4    | 5.2   | 39.5     | 14       | 23.1     | 4       | 0.1 | 0.2  |
| 15   | 181  | -56      | 157      | 101    | 123     | -49     | 91.9    | 268 | 13.6 | 15   | -14  | -53     | 158   | 102      | 124      | 116      | 95.2    | 268 | 13.6 |
| 13   | 1.18 | _        | _        | _      | —       | —       | _       | —   | _    | 13   | 1.18 | —       | _     | —        | -        | _        | _       | —   | —    |
| 25.1 | 88.3 | 18.2     | 8.6      | 48.3   | 14      | 32.2    | 5.6     | 0.1 | 0.2  | 25.1 | 94   | 19.4    | 5.3   | 39.6     | 14       | 23.2     | 4       | 0.1 | 0.2  |
| 15.4 | 181  | -55      | 157      | 102    | 123     | -49     | 92      | 268 | 14.1 | 15.4 | -14  | -52     | 159   | 102      | 124      | 116      | 95.3    | 268 | 14.1 |
| 14   | 1.18 | _        | _        | _      | —       | —       | _       | —   | _    | 14   | 1.18 | —       | _     | —        | -        | _        | _       | —   | —    |
| 25.2 | 88.5 | 18.3     | 8.6      | 48.4   | 14.1    | 32.3    | 5.6     | 0.1 | 0.2  | 25.2 | 94.3 | 19.5    | 5.3   | 39.6     | 14.1     | 23.3     | 4.1     | 0.1 | 0.2  |
| 15.7 | 182  | -55      | 157      | 102    | 124     | -49     | 92.2    | 268 | 14.6 | 15.7 | -14  | -52     | 159   | 102      | 124      | 116      | 95.5    | 268 | 14.6 |
| 15   | 1.18 | _        | _        | _      | —       | —       | _       | —   | _    | 15   | 1.18 | —       | _     | —        | -        | _        | _       | —   | —    |
| 25.3 | 88.8 | 18.3     | 8.6      | 48.4   | 14.1    | 32.4    | 5.6     | 0.1 | 0.2  | 25.3 | 94.5 | 19.5    | 5.3   | 39.7     | 14.1     | 23.3     | 4.1     | 0.1 | 0.2  |
| 16.1 | 182  | -55      | 158      | 102    | 124     | -48     | 92.3    | 267 | 15   | 16.1 | -14  | -52     | 159   | 102      | 124      | 117      | 95.6    | 267 | 15   |
| 16   | 1.18 | _        | _        | _      | _       | _       | _       | _   | _    | 16   | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 25.4 | 89   | 18.4     | 8.7      | 48.5   | 14.1    | 32.5    | 5.7     | 0.1 | 0.2  | 25.4 | 94.8 | 19.6    | 5.3   | 39.7     | 14.1     | 23.4     | 4.1     | 0.1 | 0.2  |
| 16.4 | 182  | -54      | 158      | 102    | 124     | -48     | 92.6    | 267 | 15.5 | 16.4 | -13  | -51     | 160   | 102      | 125      | 117      | 95.9    | 267 | 15.5 |

|      | Tic  | lal harn | nonics ( | amplit | udes ar | e in cm | ) !2008 | ;   |      |      | Ti   | dal har | monic | s (ampli | itudes a | are in c | m) !201 | .4  |      |
|------|------|----------|----------|--------|---------|---------|---------|-----|------|------|------|---------|-------|----------|----------|----------|---------|-----|------|
| 17   | 1.18 | _        | _        | _      | _       | _       | _       | _   | _    | 17   | 1.18 | _       | _     | _        | _        | _        | _       | _   | —    |
| 25.5 | 89.3 | 18.4     | 8.7      | 48.5   | 14.1    | 32.4    | 5.7     | 0.1 | 0.2  | 25.5 | 95.1 | 19.6    | 5.4   | 39.7     | 14.1     | 23.4     | 4.1     | 0.1 | 0.2  |
| 16.8 | 182  | -54      | 158      | 102    | 124     | -48     | 93      | 267 | 16.1 | 16.8 | -13  | -51     | 160   | 103      | 125      | 117      | 96.3    | 267 | 16.1 |
| 18   | 1.18 | _        | _        | _      | _       | —       | _       | —   | _    | 18   | 1.18 | _       | _     | —        | —        | _        | _       | —   | —    |
| 25.6 | 89.7 | 18.5     | 8.7      | 48.4   | 14.1    | 32.3    | 5.7     | 0.1 | 0.2  | 25.6 | 95.5 | 19.7    | 5.4   | 39.7     | 14.1     | 23.3     | 4.1     | 0.1 | 0.2  |
| 17.2 | 183  | -54      | 159      | 103    | 124     | -47     | 93.5    | 266 | 16.6 | 17.2 | -13  | -51     | 160   | 103      | 125      | 118      | 96.8    | 266 | 16.6 |
| 19   | 1.18 | _        | -        | _      | _       | _       | _       | _   | _    | 19   | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 25.8 | 90   | 18.6     | 8.8      | 48.4   | 14.1    | 32.2    | 5.7     | 0.1 | 0.2  | 25.8 | 95.8 | 19.8    | 5.4   | 39.6     | 14.1     | 23.2     | 4.1     | 0.1 | 0.2  |
| 17.6 | 183  | -53      | 159      | 103    | 125     | -47     | 94      | 266 | 17.2 | 17.6 | -12  | -50     | 161   | 103      | 125      | 118      | 97.3    | 266 | 17.2 |
| 20   | 1.18 | _        | -        | _      | _       | _       | _       | _   | _    | 20   | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 25.9 | 90.2 | 18.6     | 8.8      | 48.4   | 14.1    | 32      | 5.6     | 0.1 | 0.2  | 25.9 | 96   | 19.8    | 5.4   | 39.6     | 14.1     | 23.1     | 4.1     | 0.1 | 0.2  |
| 17.9 | 183  | -53      | 160      | 103    | 125     | -47     | 94.3    | 267 | 17.6 | 17.9 | -12  | -50     | 161   | 103      | 125      | 118      | 97.6    | 267 | 17.6 |
| 21   | 1.18 | _        | _        |        |         | _       |         | _   | _    | 21   | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 26   | 90.4 | 18.7     | 8.9      | 48.3   | 14.1    | 31.8    | 5.6     | 0.1 | 0.2  | 26   | 96.3 | 19.9    | 5.5   | 39.6     | 14.1     | 22.9     | 4       | 0.1 | 0.2  |
| 18.4 | 184  | -53      | 160      | 103    | 125     | -47     | 94.5    | 267 | 18   | 18.4 | -12  | -50     | 162   | 103      | 125      | 118      | 97.8    | 267 | 18   |
| 22   | 1.18 | _        |          | _      | _       | —       | _       | _   | _    | 22   | 1.18 | _       | _     | _        | _        | _        | _       | —   | —    |
| 26   | 90.5 | 18.7     | 8.9      | 48.4   | 14.1    | 31.9    | 5.6     | 0.1 | 0.2  | 26   | 96.3 | 19.9    | 5.5   | 39.7     | 14.1     | 23       | 4       | 0.1 | 0.2  |
| 18.6 | 184  | -53      | 160      | 103    | 125     | -48     | 94.3    | 266 | 18.2 | 18.6 | -11  | -49     | 162   | 103      | 125      | 117      | 97.6    | 266 | 18.2 |
| 23   | 1.18 | _        |          | _      | _       | —       | _       | _   | _    | 23   | 1.18 | _       | _     | —        | —        | _        | _       | —   | —    |
| 26.1 | 90.6 | 18.7     | 8.9      | 48.5   | 14.1    | 32      | 5.6     | 0.1 | 0.2  | 26.1 | 96.5 | 19.9    | 5.5   | 39.8     | 14.1     | 23.1     | 4       | 0.1 | 0.2  |
| 18.9 | 184  | -52      | 160      | 103    | 125     | -48     | 94.1    | 266 | 18.6 | 18.9 | -11  | -49     | 162   | 103      | 125      | 117      | 97.4    | 266 | 18.6 |
| 24   | 1.18 | _        | _        | _      | _       | _       | _       | _   | _    | 24   | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 26.1 | 90.7 | 18.7     | 8.9      | 48.6   | 14.1    | 32.1    | 5.6     | 0.1 | 0.2  | 26.1 | 96.6 | 19.9    | 5.5   | 39.8     | 14.1     | 23.1     | 4       | 0.1 | 0.2  |
| 19.1 | 184  | -52      | 161      | 103    | 125     | -48     | 93.9    | 266 | 19   | 19.1 | -11  | -49     | 162   | 103      | 125      | 117      | 97.2    | 266 | 19   |
| 25   | 1.18 | _        | _        |        |         | _       |         | _   | _    | 25   | 1.18 | _       | _     | _        | _        |          | _       | _   | _    |

|      | Tic  | lal harn | nonics | amplit | udes ar | e in cm | ) !2008 |     |      |      | Ti   | dal har | monic | s (ampl | itudes a | are in ci | m) !201 | 4   |      |
|------|------|----------|--------|--------|---------|---------|---------|-----|------|------|------|---------|-------|---------|----------|-----------|---------|-----|------|
| 26.2 | 90.9 | 18.8     | 8.9    | 48.8   | 14.2    | 32.3    | 5.6     | 0.1 | 0.2  | 26.2 | 96.8 | 20      | 5.5   | 40      | 14.2     | 23.3      | 4       | 0.1 | 0.2  |
| 19.4 | 185  | -52      | 161    | 103    | 125     | -47     | 93.8    | 265 | 19.4 | 19.4 | -11  | -49     | 163   | 103     | 125      | 117       | 97.1    | 265 | 19.4 |
| 26   | 1.18 | _        | —      | _      | _       | —       | _       | _   | _    | 26   | 1.18 | _       | _     | _       | —        | _         | _       | —   | —    |
| 26.3 | 91.1 | 18.8     | 9      | 49     | 14.3    | 32.5    | 5.6     | 0.1 | 0.2  | 26.3 | 97   | 20      | 5.5   | 40.1    | 14.3     | 23.4      | 4.1     | 0.1 | 0.2  |
| 19.8 | 185  | -52      | 161    | 103    | 125     | -47     | 94      | 265 | 20.1 | 19.8 | -10  | -48     | 163   | 104     | 126      | 118       | 97.3    | 265 | 20.1 |
| 27   | 1.18 | _        | —      | _      | —       | —       | _       | —   | _    | 27   | 1.18 | —       | _     | —       | —        | _         | _       | —   | —    |
| 26.4 | 91.4 | 18.8     | 9      | 49.1   | 14.3    | 32.6    | 5.7     | 0.1 | 0.2  | 26.4 | 97.3 | 20.1    | 5.5   | 40.3    | 14.3     | 23.5      | 4.1     | 0.1 | 0.2  |
| 20.1 | 185  | -51      | 162    | 104    | 126     | -47     | 94.4    | 265 | 20.6 | 20.1 | -10  | -48     | 163   | 104     | 126      | 118       | 97.7    | 265 | 20.6 |
| 28   | 1.18 | _        | —      | _      | —       | —       | _       | —   | _    | 28   | 1.18 | —       | _     | —       | —        | _         | _       | —   | —    |
| 26.5 | 91.6 | 18.9     | 9      | 49.1   | 14.3    | 32.6    | 5.7     | 0.1 | 0.2  | 26.5 | 97.5 | 20.1    | 5.6   | 40.2    | 14.3     | 23.5      | 4.1     | 0.1 | 0.2  |
| 20.5 | 186  | -51      | 162    | 104    | 126     | -47     | 94.6    | 266 | 20.9 | 20.5 | -9.8 | -48     | 164   | 104     | 126      | 118       | 97.9    | 266 | 20.9 |
| 29   | 1.18 | _        | —      | _      | —       | —       | _       | —   | _    | 29   | 1.18 | —       | _     | —       | —        | _         | _       | —   | —    |
| 26.6 | 91.9 | 19       | 9.1    | 49     | 14.3    | 32.7    | 5.7     | 0.1 | 0.2  | 26.6 | 97.9 | 20.2    | 5.6   | 40.1    | 14.3     | 23.6      | 4.1     | 0.1 | 0.2  |
| 21.1 | 186  | -50      | 163    | 104    | 126     | -46     | 94.8    | 268 | 21.5 | 21.1 | -9.3 | -47     | 164   | 105     | 127      | 119       | 98.1    | 268 | 21.5 |
| 30   | 1.18 | —        | —      | _      | _       | —       | _       | —   | _    | 30   | 1.18 | _       | _     | _       | —        | _         | _       | —   | —    |
| 26.7 | 92.1 | 19       | 9.1    | 48.8   | 14.2    | 32.7    | 5.7     | 0.1 | 0.2  | 26.7 | 98.1 | 20.2    | 5.6   | 40      | 14.2     | 23.6      | 4.1     | 0.1 | 0.2  |
| 21.5 | 186  | -50      | 163    | 105    | 127     | -46     | 94.9    | 270 | 21.3 | 21.5 | -8.9 | -47     | 165   | 105     | 127      | 119       | 98.2    | 270 | 21.3 |
| 31   | 1.18 | —        | —      | _      | _       | —       | _       | —   | _    | 31   | 1.18 | _       | _     | _       | —        | _         | _       | —   | —    |
| 26.8 | 92.3 | 19       | 9.1    | 48.6   | 14.2    | 32.6    | 5.7     | 0.1 | 0.2  | 26.8 | 98.3 | 20.3    | 5.6   | 39.8    | 14.2     | 23.5      | 4.1     | 0.1 | 0.2  |
| 22   | 187  | -50      | 164    | 105    | 127     | -45     | 95.5    | 272 | 21.3 | 22   | -8.5 | -46     | 165   | 105     | 127      | 120       | 98.8    | 272 | 21.3 |
| 32   | 1.18 | —        | —      | _      | _       | —       | _       | —   | _    | 32   | 1.18 | _       | _     | _       | —        | _         | _       | —   | —    |
| 27   | 92.6 | 19.1     | 9.2    | 48.9   | 14.2    | 32.5    | 5.7     | 0.1 | 0.1  | 27   | 98.6 | 20.3    | 5.7   | 40.1    | 14.2     | 23.4      | 4.1     | 0.1 | 0.1  |
| 22.6 | 187  | -49      | 164    | 105    | 126     | -45     | 95.6    | 274 | 21.6 | 22.6 | -7.9 | -46     | 166   | 105     | 127      | 119       | 98.9    | 274 | 21.6 |
| 33   | 1.18 | _        | _      |        |         | _       |         | _   |      | 33   | 1.18 |         | _     |         |          |           |         | _   | _    |
| 27   | 92.8 | 19.1     | 9.2    | 49.1   | 14.3    | 32.5    | 5.7     | 0.1 | 0.1  | 27   | 98.8 | 20.4    | 5.7   | 40.3    | 14.3     | 23.4      | 4.1     | 0.1 | 0.1  |

|      | Tic  | lal harn | nonics ( | amplit | udes ar | e in cm | ) !2008 |     |      |      | Ti   | dal har | monic | s (ampli | itudes a | are in ci | m) !201 | .4  |      |
|------|------|----------|----------|--------|---------|---------|---------|-----|------|------|------|---------|-------|----------|----------|-----------|---------|-----|------|
| 23.1 | 188  | -49      | 165      | 105    | 127     | -46     | 95.6    | 275 | 21.5 | 23.1 | -7.5 | -45     | 166   | 105      | 127      | 119       | 98.9    | 275 | 21.5 |
| 34   | 1.18 | _        | _        | —      | —       | —       | _       | _   | _    | 34   | 1.18 | _       | _     | —        | —        | _         | _       | —   | —    |
| 27.1 | 92.9 | 19.2     | 9.2      | 49.3   | 14.3    | 32.6    | 5.7     | 0.1 | 0.1  | 27.1 | 99   | 20.4    | 5.7   | 40.4     | 14.3     | 23.5      | 4.1     | 0.1 | 0.1  |
| 23.5 | 188  | -48      | 165      | 105    | 127     | -46     | 95.7    | 277 | 21.3 | 23.5 | -7.2 | -45     | 167   | 105      | 127      | 119       | 99      | 277 | 21.3 |
| 35   | 1.18 | —        | _        | —      | _       | _       | _       | —   | —    | 35   | 1.18 | _       | _     | _        | _        | _         | _       | _   | _    |
| 27.2 | 93.1 | 19.2     | 9.2      | 49.4   | 14.4    | 32.8    | 5.7     | 0.1 | 0.1  | 27.2 | 99.1 | 20.4    | 5.7   | 40.5     | 14.4     | 23.7      | 4.1     | 0.1 | 0.1  |
| 23.9 | 189  | -48      | 165      | 105    | 127     | -45     | 95.8    | 278 | 20.2 | 23.9 | -6.8 | -45     | 167   | 105      | 128      | 120       | 99.1    | 278 | 20.2 |
| 36   | 1.18 | —        | _        | —      | _       | _       | _       | —   | —    | 36   | 1.18 | _       | _     | _        | _        | _         | _       | _   | _    |
| 27.3 | 93.1 | 19.2     | 9.3      | 49.6   | 14.4    | 33      | 5.7     | 0.1 | 0.1  | 27.3 | 99.1 | 20.4    | 5.7   | 40.6     | 14.4     | 23.8      | 4.1     | 0.1 | 0.1  |
| 24.4 | 189  | -47      | 166      | 105    | 127     | -45     | 96      | 280 | 15.8 | 24.4 | -6.4 | -44     | 168   | 106      | 128      | 120       | 99.3    | 280 | 15.8 |
| 37   | 1.18 | _        | _        | —      | —       | —       | _       | _   | _    | 37   | 1.18 | _       | _     | —        | —        | _         | _       | —   | —    |
| 27.3 | 93   | 19.2     | 9.3      | 49.7   | 14.5    | 33.1    | 5.8     | 0.1 | 0.1  | 27.3 | 99.1 | 20.4    | 5.7   | 40.7     | 14.5     | 23.9      | 4.2     | 0.1 | 0.1  |
| 24.8 | 189  | -47      | 166      | 106    | 128     | -45     | 96.3    | 282 | 9.3  | 24.8 | -6   | -44     | 168   | 106      | 128      | 120       | 99.6    | 282 | 9.3  |
| 38   | 1.18 | _        | _        | —      | —       | —       | _       | —   | _    | 38   | 1.18 | —       | _     | —        | —        | _         | _       | —   | —    |
| 27.4 | 93.1 | 19.2     | 9.3      | 49.7   | 14.5    | 33.3    | 5.8     | 0.1 | 0.1  | 27.4 | 99.1 | 20.4    | 5.7   | 40.8     | 14.5     | 24        | 4.2     | 0.1 | 0.1  |
| 25.1 | 190  | -47      | 167      | 106    | 128     | -44     | 96.7    | 282 | 7.2  | 25.1 | -5.8 | -44     | 168   | 106      | 129      | 121       | 100     | 282 | 7.2  |
| 39   | 1.18 | _        | _        | —      | —       | —       | _       | _   | _    | 39   | 1.18 | _       | _     | —        | —        | _         | _       | —   | —    |
| 27.4 | 93.1 | 19.2     | 9.3      | 49.7   | 14.5    | 33.1    | 5.8     | 0.1 | 0.1  | 27.4 | 99.1 | 20.4    | 5.7   | 40.7     | 14.5     | 23.9      | 4.2     | 0.1 | 0.1  |
| 25.4 | 190  | -47      | 167      | 106    | 128     | -44     | 97.3    | 284 | 1.6  | 25.4 | -5.6 | -43     | 168   | 107      | 129      | 121       | 101     | 284 | 1.6  |
| 40   | 1.18 | _        | _        | —      | —       | —       | _       | _   | _    | 40   | 1.18 | _       | _     | —        | —        | _         | _       | —   | —    |
| 27.4 | 93.1 | 19.2     | 9.3      | 49.6   | 14.5    | 33      | 5.8     | 0.1 | 0.1  | 27.4 | 99.2 | 20.4    | 5.7   | 40.7     | 14.5     | 23.8      | 4.2     | 0.1 | 0.1  |
| 25.6 | 190  | -46      | 167      | 106    | 128     | -44     | 97.4    | 285 | 359  | 25.6 | -5.5 | -43     | 169   | 106      | 129      | 121       | 101     | 285 | 359  |
| 41   | 1.18 | _        | —        | —      | —       | —       | —       | —   | _    | 41   | 1.18 | —       | _     | —        | —        | —         | _       | —   | —    |
| 27.6 | 93.4 | 19.2     | 9.4      | 49.7   | 14.5    | 32.9    | 5.7     | 0.1 | 0.1  | 27.6 | 99.4 | 20.5    | 5.8   | 40.8     | 14.5     | 23.7      | 4.1     | 0.1 | 0.1  |
| 25.9 | 190  | -46      | 167      | 106    | 129     | -43     | 97.7    | 285 | 0.2  | 25.9 | -5.2 | -43     | 169   | 107      | 129      | 121       | 101     | 285 | 0.2  |

|      | Tid  | al harn |     |      | Ti   | dal har | monics | s (ampli | itudes a | are in ci | m) !201 | .4   |     |      |      |      |     |     |      |
|------|------|---------|-----|------|------|---------|--------|----------|----------|-----------|---------|------|-----|------|------|------|-----|-----|------|
| 42   | 1.18 | _       | _   | _    | _    | _       | _      | _        | _        | 42        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 27.7 | 93.7 | 19.3    | 9.4 | 49.9 | 14.5 | 33      | 5.7    | 0.1      | 0.1      | 27.7      | 99.8    | 20.5 | 5.8 | 40.9 | 14.5 | 23.8 | 4.1 | 0.1 | 0.1  |
| 26.2 | 190  | -46     | 168 | 107  | 129  | -43     | 97.6   | 287      | 359      | 26.2      | -5      | -43  | 169 | 107  | 129  | 121  | 101 | 287 | 359  |
| 43   | 1.18 | —       | _   | _    | _    | —       | —      | —        | —        | 43        | 1.18    | —    | —   | —    | _    | —    | —   | —   | _    |
| 27.8 | 94   | 19.3    | 9.5 | 50.3 | 14.6 | 33.3    | 5.8    | 0.1      | 0.1      | 27.8      | 100     | 20.6 | 5.8 | 41.2 | 14.6 | 24   | 4.1 | 0.1 | 0.1  |
| 26.7 | 191  | -46     | 168 | 108  | 130  | -43     | 97.6   | 287      | 5.4      | 26.7      | -4.6    | -42  | 170 | 108  | 130  | 122  | 101 | 287 | 5.4  |
| 44   | 1.18 | —       |     | _    | _    | —       | —      | —        | —        | 44        | 1.18    | —    | —   | —    |      | —    | —   | _   |      |
| 28   | 94.4 | 19.4    | 9.5 | 50.1 | 14.5 | 33.4    | 5.8    | 0.1      | 0.1      | 28        | 101     | 20.7 | 5.9 | 41   | 14.5 | 24.1 | 4.2 | 0.1 | 0.1  |
| 27   | 191  | -45     | 168 | 108  | 130  | -43     | 98.1   | 286      | 6.7      | 27        | -4.3    | -42  | 170 | 108  | 131  | 122  | 101 | 286 | 6.7  |
| 45   | 1.18 | —       |     | _    | _    | —       | —      | —        | —        | 45        | 1.18    | —    | —   | —    |      | —    | —   | _   |      |
| 28.1 | 94.7 | 19.5    | 9.6 | 49.8 | 14.5 | 33.2    | 5.8    | 0.1      | 0.1      | 28.1      | 101     | 20.7 | 5.9 | 40.8 | 14.5 | 24   | 4.2 | 0.1 | 0.1  |
| 27.4 | 191  | -45     | 169 | 108  | 130  | -42     | 98.7   | 285      | 7.7      | 27.4      | -3.9    | -42  | 171 | 109  | 131  | 123  | 102 | 285 | 7.7  |
| 46   | 1.18 | —       |     | _    | _    | —       | —      | —        | —        | 46        | 1.18    | —    | —   | —    |      | —    | —   | _   |      |
| 28.2 | 94.9 | 19.5    | 9.6 | 49.4 | 14.4 | 32.9    | 5.8    | 0.1      | 0.1      | 28.2      | 101     | 20.8 | 5.9 | 40.5 | 14.4 | 23.7 | 4.1 | 0.1 | 0.1  |
| 27.8 | 192  | -45     | 169 | 109  | 130  | -42     | 99.2   | 284      | 9.7      | 27.8      | -3.6    | -41  | 171 | 109  | 131  | 123  | 103 | 284 | 9.7  |
| 47   | 1.18 | —       |     | _    | _    | —       | —      | —        | —        | 47        | 1.18    | —    | —   | —    |      | —    | —   | _   |      |
| 28.3 | 95.1 | 19.6    | 9.6 | 49.5 | 14.4 | 32.9    | 5.7    | 0.1      | 0.1      | 28.3      | 101     | 20.8 | 5.9 | 40.5 | 14.4 | 23.7 | 4.1 | 0.1 | 0.1  |
| 28.2 | 192  | -44     | 170 | 109  | 130  | -42     | 99.2   | 284      | 10.9     | 28.2      | -3.3    | -41  | 171 | 109  | 131  | 123  | 103 | 284 | 10.9 |
| 48   | 1.18 | _       |     | _    | _    | _       | —      | —        | —        | 48        | 1.18    | _    | _   | _    |      | _    | _   | _   |      |
| 28.4 | 95.4 | 19.6    | 9.7 | 49.4 | 14.4 | 32.9    | 5.7    | 0.1      | 0.1      | 28.4      | 102     | 20.9 | 6   | 40.5 | 14.4 | 23.7 | 4.1 | 0.1 | 0.1  |
| 28.5 | 192  | -44     | 170 | 109  | 131  | -42     | 99.2   | 284      | 11.9     | 28.5      | -3      | -41  | 172 | 109  | 131  | 123  | 103 | 284 | 11.9 |
| 49   | 1.18 | _       | _   | _    | _    | _       | _      | _        | _        | 49        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 28.6 | 95.6 | 19.6    | 9.7 | 49.1 | 14.3 | 33      | 5.7    | 0.1      | 0.1      | 28.6      | 102     | 20.9 | 6   | 40.2 | 14.3 | 23.8 | 4.1 | 0.1 | 0.1  |
| 29.1 | 193  | -43     | 171 | 109  | 131  | -42     | 99     | 285      | 13.8     | 29.1      | -2.4    | -40  | 172 | 109  | 131  | 123  | 102 | 285 | 13.8 |
| 50   | 1.18 | _       | _   | _    |      | _       | _      | _        |          | 50        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |

|      | Tid  | lal harn | nonics | amplit | udes ar | e in cm | ) !2008 |     |      |      | Ti   | dal har | monic | s (ampli | itudes a | are in ci | m) !201 | .4  |      |
|------|------|----------|--------|--------|---------|---------|---------|-----|------|------|------|---------|-------|----------|----------|-----------|---------|-----|------|
| 28.7 | 95.8 | 19.7     | 9.8    | 48.9   | 14.3    | 33.1    | 5.8     | 0.1 | 0.1  | 28.7 | 102  | 21      | 6     | 40.1     | 14.3     | 23.9      | 4.2     | 0.1 | 0.1  |
| 29.6 | 193  | -43      | 171    | 109    | 131     | -41     | 99.3    | 286 | 14.8 | 29.6 | -2   | -40     | 173   | 109      | 131      | 124       | 103     | 286 | 14.8 |
| 51   | 1.18 | —        | —      | _      | _       | —       | _       | _   | _    | 51   | 1.18 | —       | —     | —        |          | _         |         | _   | _    |
| 28.8 | 96   | 19.7     | 9.8    | 48.8   | 14.3    | 32.9    | 5.8     | 0.1 | 0.1  | 28.8 | 102  | 21      | 6     | 40       | 14.3     | 23.7      | 4.2     | 0.1 | 0.1  |
| 29.9 | 194  | -43      | 171    | 109    | 131     | -41     | 99.8    | 288 | 15.4 | 29.9 | -1.7 | -39     | 173   | 109      | 131      | 124       | 103     | 288 | 15.4 |
| 52   | 1.18 | _        | —      | _      | _       | —       | _       | _   | _    | 52   | 1.18 | _       | _     | —        |          | _         |         | _   | _    |
| 28.8 | 96.1 | 19.7     | 9.8    | 48.9   | 14.3    | 32.6    | 5.7     | 0.1 | 0.1  | 28.8 | 102  | 21      | 6.1   | 40       | 14.3     | 23.5      | 4.1     | 0.1 | 0.1  |
| 30.2 | 194  | -42      | 172    | 108    | 130     | -41     | 100     | 287 | 16   | 30.2 | -1.5 | -39     | 173   | 109      | 131      | 124       | 104     | 287 | 16   |
| 53   | 1.18 | —        | —      | _      | _       | —       | _       | _   | _    | 53   | 1.18 | —       | —     | —        |          | _         |         | _   | _    |
| 28.9 | 96.2 | 19.8     | 9.9    | 49.3   | 14.4    | 32.5    | 5.6     | 0.1 | 0.1  | 28.9 | 103  | 21      | 6.1   | 40.4     | 14.4     | 23.4      | 4.1     | 0.1 | 0.1  |
| 30.6 | 194  | -42      | 172    | 108    | 130     | -42     | 99.7    | 285 | 16.6 | 30.6 | -1.1 | -39     | 174   | 108      | 131      | 123       | 103     | 285 | 16.6 |
| 54   | 1.18 | —        | —      | —      | _       | —       | —       | _   | —    | 54   | 1.18 | —       | —     | —        |          | _         |         | _   | _    |
| 29   | 96.3 | 19.8     | 9.9    | 49.7   | 14.5    | 32.8    | 5.7     | 0.1 | 0.1  | 29   | 103  | 21.1    | 6.1   | 40.7     | 14.5     | 23.6      | 4.1     | 0.1 | 0.1  |
| 30.8 | 194  | -42      | 172    | 108    | 130     | -42     | 99.2    | 285 | 16.9 | 30.8 | -0.9 | -39     | 174   | 108      | 131      | 123       | 103     | 285 | 16.9 |
| 55   | 1.18 | _        | —      | _      | _       | —       | _       | _   | _    | 55   | 1.18 | _       | _     | —        |          | _         |         | _   | _    |
| 29.1 | 96.5 | 19.8     | 9.9    | 49.9   | 14.5    | 33.1    | 5.8     | 0.1 | 0.1  | 29.1 | 103  | 21.1    | 6.1   | 40.9     | 14.5     | 23.9      | 4.2     | 0.1 | 0.1  |
| 31.2 | 195  | -41      | 173    | 109    | 131     | -41     | 99.5    | 285 | 17.3 | 31.2 | -0.6 | -38     | 174   | 109      | 131      | 124       | 103     | 285 | 17.3 |
| 56   | 1.18 | —        | _      | —      | —       | —       | —       | —   | —    | 56   | 1.18 |         | —     | —        | _        | _         | _       | —   | _    |
| 29.1 | 96.7 | 19.8     | 9.9    | 50.1   | 14.6    | 33.1    | 5.8     | 0.1 | 0.1  | 29.1 | 103  | 21.1    | 6.1   | 41       | 14.6     | 23.9      | 4.2     | 0.1 | 0.1  |
| 31.5 | 195  | -41      | 173    | 109    | 131     | -41     | 100     | 285 | 17.7 | 31.5 | -0.3 | -38     | 175   | 109      | 132      | 124       | 103     | 285 | 17.7 |
| 57   | 1.18 | _        | —      | _      | _       | —       | _       | _   | _    | 57   | 1.18 | _       | _     | —        |          | _         |         | _   | _    |
| 29.2 | 96.8 | 19.9     | 10     | 50.1   | 14.6    | 33.1    | 5.7     | 0.1 | 0.1  | 29.2 | 103  | 21.2    | 6.1   | 41       | 14.6     | 23.9      | 4.1     | 0.1 | 0.1  |
| 31.8 | 195  | -41      | 173    | 110    | 132     | -41     | 100     | 286 | 18   | 31.8 | 0    | -38     | 175   | 110      | 132      | 124       | 103     | 286 | 18   |
| 58   | 1.18 | _        | _      | _      | _       | _       | _       | _   | _    | 58   | 1.18 | _       | _     | _        | _        | _         | _       | _   | _    |
| 29.3 | 97   | 19.9     | 10     | 49.8   | 14.5    | 33.4    | 5.8     | 0.1 | 0.1  | 29.3 | 103  | 21.2    | 6.2   | 40.8     | 14.5     | 24.1      | 4.2     | 0.1 | 0.1  |

|      | Tic  | lal harn | nonics ( | amplit | udes ar | e in cm | ) !2008 |     |      |      | Ti   | dal har | monic | s (ampli | itudes a | are in c | m) !201 | .4  |      |
|------|------|----------|----------|--------|---------|---------|---------|-----|------|------|------|---------|-------|----------|----------|----------|---------|-----|------|
| 32.2 | 196  | -41      | 174      | 110    | 132     | -41     | 100     | 286 | 18.2 | 32.2 | 0.3  | -37     | 175   | 110      | 133      | 124      | 103     | 286 | 18.2 |
| 59   | 1.18 | _        | _        | —      | _       | —       |         | _   | _    | 59   | 1.18 | _       | _     | _        | _        | _        | _       | —   | —    |
| 29.4 | 97.2 | 19.9     | 10       | 49.6   | 14.5    | 33.3    | 5.8     | 0.1 | 0.1  | 29.4 | 104  | 21.2    | 6.2   | 40.7     | 14.5     | 24       | 4.2     | 0.1 | 0.1  |
| 32.5 | 196  | -40      | 174      | 110    | 132     | -40     | 101     | 286 | 18.4 | 32.5 | 0.6  | -37     | 176   | 110      | 133      | 125      | 104     | 286 | 18.4 |
| 60   | 1.18 | _        | _        | —      | —       | —       |         | —   | _    | 60   | 1.18 | _       | _     | —        | —        | _        | —       | —   | —    |
| 29.5 | 97.4 | 20       | 10.1     | 49.8   | 14.5    | 33.2    | 5.8     | 0.1 | 0.1  | 29.5 | 104  | 21.3    | 6.2   | 40.8     | 14.5     | 23.9     | 4.2     | 0.1 | 0.1  |
| 32.8 | 196  | -40      | 174      | 110    | 132     | -40     | 101     | 285 | 18.5 | 32.8 | 0.9  | -37     | 176   | 110      | 133      | 125      | 104     | 285 | 18.5 |
| 61   | 1.18 | _        | _        | —      | —       | —       |         | —   | _    | 61   | 1.18 | _       | _     | —        | —        | _        | —       | —   | —    |
| 29.6 | 97.5 | 20       | 10.1     | 49.8   | 14.5    | 33.3    | 5.8     | 0.1 | 0.1  | 29.6 | 104  | 21.3    | 6.2   | 40.8     | 14.5     | 24       | 4.2     | 0.1 | 0.1  |
| 32.9 | 196  | -40      | 175      | 110    | 132     | -40     | 101     | 285 | 18.5 | 32.9 | 1    | -37     | 176   | 110      | 133      | 125      | 104     | 285 | 18.5 |
| 62   | 1.18 | _        | _        | —      | _       | —       |         | _   | _    | 62   | 1.18 | _       | _     | _        | _        | _        | _       | —   | —    |
| 29.7 | 97.7 | 20       | 10.1     | 49.9   | 14.5    | 33.4    | 5.8     | 0.1 | 0.1  | 29.7 | 104  | 21.3    | 6.2   | 40.9     | 14.5     | 24       | 4.2     | 0.1 | 0.1  |
| 33.1 | 196  | -40      | 175      | 110    | 132     | -40     | 101     | 285 | 18.4 | 33.1 | 1.1  | -36     | 176   | 110      | 133      | 125      | 104     | 285 | 18.4 |
| 63   | 1.18 | _        | _        | —      | —       | —       | _       | —   | _    | 63   | 1.18 | —       | _     | —        | —        | _        | —       | —   | —    |
| 29.7 | 97.8 | 20.1     | 10.1     | 49.8   | 14.5    | 33.3    | 5.8     | 0.1 | 0.1  | 29.7 | 104  | 21.4    | 6.2   | 40.8     | 14.5     | 24       | 4.2     | 0.1 | 0.1  |
| 33.3 | 197  | -39      | 175      | 110    | 132     | -40     | 101     | 284 | 18.3 | 33.3 | 1.3  | -36     | 177   | 111      | 133      | 125      | 105     | 284 | 18.3 |
| 64   | 1.18 | _        | _        | —      | —       | —       | _       | —   | _    | 64   | 1.18 | —       | _     | —        | —        | _        | —       | —   | —    |
| 29.8 | 97.9 | 20.1     | 10.2     | 49.9   | 14.5    | 33.2    | 5.8     | 0.1 | 0.1  | 29.8 | 104  | 21.4    | 6.3   | 40.9     | 14.5     | 24       | 4.2     | 0.1 | 0.1  |
| 33.5 | 197  | -39      | 175      | 110    | 132     | -40     | 101     | 284 | 18.1 | 33.5 | 1.5  | -36     | 177   | 110      | 133      | 125      | 104     | 284 | 18.1 |
| 65   | 1.18 | _        | _        | —      | —       | —       | _       | —   | _    | 65   | 1.18 | —       | _     | —        | —        | _        | —       | —   | —    |
| 29.8 | 98   | 20.1     | 10.2     | 50     | 14.6    | 33.4    | 5.8     | 0.1 | 0.1  | 29.8 | 104  | 21.4    | 6.3   | 40.9     | 14.6     | 24.1     | 4.2     | 0.1 | 0.1  |
| 33.6 | 197  | -39      | 175      | 110    | 132     | -40     | 101     | 284 | 17.9 | 33.6 | 1.6  | -36     | 177   | 111      | 133      | 125      | 104     | 284 | 17.9 |
| 66   | 1.18 | _        | _        | _      | _       | _       | _       | _   | _    | 66   | 1.18 | _       | _     | _        | _        | _        | _       | _   | _    |
| 29.9 | 98   | 20.1     | 10.2     | 50     | 14.6    | 33.5    | 5.8     | 0.1 | 0.1  | 29.9 | 104  | 21.4    | 6.3   | 41       | 14.6     | 24.1     | 4.2     | 0.1 | 0.1  |
| 33.7 | 197  | -39      | 175      | 111    | 133     | -39     | 101     | 284 | 17.8 | 33.7 | 1.7  | -36     | 177   | 111      | 133      | 125      | 105     | 284 | 17.8 |

|      | Tid  | lal harn |      |      | Ti   | dal har | monics | s (ampli | itudes a | are in ci | m) !201 | .4   |     |      |      |      |     |     |      |
|------|------|----------|------|------|------|---------|--------|----------|----------|-----------|---------|------|-----|------|------|------|-----|-----|------|
| 67   | 1.18 | _        | _    | _    | _    | _       | _      | _        | _        | 67        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 29.9 | 98.2 | 20.1     | 10.2 | 50   | 14.6 | 33.5    | 5.9    | 0.1      | 0.1      | 29.9      | 105     | 21.4 | 6.3 | 40.9 | 14.6 | 24.1 | 4.2 | 0.1 | 0.1  |
| 33.9 | 197  | -39      | 175  | 111  | 133  | -39     | 102    | 284      | 17.5     | 33.9      | 1.8     | -36  | 177 | 111  | 133  | 126  | 105 | 284 | 17.5 |
| 68   | 1.18 | _        | _    | _    | _    | _       | _      | _        | _        | 68        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 30   | 98.3 | 20.2     | 10.2 | 49.9 | 14.6 | 33.4    | 5.8    | 0.1      | 0.1      | 30        | 105     | 21.5 | 6.3 | 40.9 | 14.6 | 24.1 | 4.2 | 0.1 | 0.1  |
| 34   | 197  | -39      | 176  | 111  | 133  | -39     | 102    | 284      | 16.9     | 34        | 2       | -36  | 177 | 111  | 134  | 126  | 105 | 284 | 16.9 |
| 69   | 1.18 |          | _    |      |      | _       | _      | _        |          | 69        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 30.1 | 98.4 | 20.2     | 10.2 | 49.9 | 14.6 | 33.2    | 5.8    | 0.1      | 0.1      | 30.1      | 105     | 21.5 | 6.3 | 40.9 | 14.6 | 23.9 | 4.2 | 0.1 | 0.1  |
| 34.2 | 197  | -39      | 176  | 111  | 133  | -39     | 102    | 284      | 16       | 34.2      | 2.1     | -35  | 177 | 111  | 133  | 126  | 105 | 284 | 16   |
| 70   | 1.18 |          | _    |      |      | _       | _      | _        |          | 70        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 30.1 | 98.6 | 20.2     | 10.3 | 49.9 | 14.6 | 33.2    | 5.8    | 0.1      | 0.1      | 30.1      | 105     | 21.5 | 6.3 | 40.9 | 14.6 | 23.9 | 4.2 | 0.1 | 0.1  |
| 34.3 | 198  | -39      | 176  | 111  | 133  | -39     | 102    | 283      | 14.8     | 34.3      | 2.2     | -35  | 178 | 111  | 133  | 126  | 105 | 283 | 14.8 |
| 71   | 1.18 |          | _    |      |      | _       | _      | _        |          | 71        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 30.2 | 98.7 | 20.2     | 10.3 | 49.9 | 14.6 | 33.2    | 5.8    | 0.1      | 0.1      | 30.2      | 105     | 21.5 | 6.3 | 40.9 | 14.6 | 23.9 | 4.2 | 0.1 | 0.1  |
| 34.4 | 198  | -38      | 176  | 111  | 133  | -39     | 102    | 281      | 13.6     | 34.4      | 2.3     | -35  | 178 | 111  | 133  | 126  | 105 | 281 | 13.6 |
| 72   | 1.18 | _        | —    | _    | _    | _       |        | _        | _        | 72        | 1.18    | _    | _   | _    |      | —    | _   | _   |      |
| 30.3 | 98.9 | 20.3     | 10.3 | 50   | 14.6 | 33.3    | 5.8    | 0.1      | 0.1      | 30.3      | 105     | 21.6 | 6.4 | 41   | 14.6 | 24   | 4.2 | 0.1 | 0.1  |
| 34.5 | 198  | -38      | 176  | 111  | 133  | -39     | 102    | 279      | 12.1     | 34.5      | 2.4     | -35  | 178 | 111  | 133  | 126  | 105 | 279 | 12.1 |
| 73   | 1.18 | —        | —    |      | _    | _       |        | —        | —        | 73        | 1.18    | —    | —   | —    |      | —    | —   | _   |      |
| 30.4 | 99.1 | 20.3     | 10.4 | 50   | 14.6 | 33.5    | 5.8    | 0.1      | 0.1      | 30.4      | 106     | 21.6 | 6.4 | 41   | 14.6 | 24.1 | 4.2 | 0.1 | 0.1  |
| 34.6 | 198  | -38      | 176  | 111  | 133  | -39     | 102    | 275      | 10.9     | 34.6      | 2.5     | -35  | 178 | 111  | 134  | 126  | 105 | 275 | 10.9 |
| 74   | 1.18 | _        | _    | _    | _    | _       | _      | _        | _        | 74        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |
| 30.5 | 99.5 | 20.4     | 10.4 | 50   | 14.6 | 33.5    | 5.8    | 0        | 0.1      | 30.5      | 106     | 21.7 | 6.4 | 41   | 14.6 | 24.1 | 4.2 | 0   | 0.1  |
| 34.8 | 198  | -38      | 176  | 111  | 133  | -39     | 102    | 266      | 9.4      | 34.8      | 2.7     | -35  | 178 | 111  | 134  | 126  | 105 | 266 | 9.4  |
| 75   | 1.18 |          | _    |      |      | _       | _      | _        |          | 75        | 1.18    | _    | _   | _    | _    | _    | _   | _   | _    |

|      | Tic  | lal harn | nonics ( | amplit | udes ar | e in cm | ) !2008 |     |     |      | Ti   | dal har | monic | s (ampli | itudes a | are in ci | m) !201 | .4  |     |
|------|------|----------|----------|--------|---------|---------|---------|-----|-----|------|------|---------|-------|----------|----------|-----------|---------|-----|-----|
| 30.7 | 100  | 20.5     | 10.5     | 50     | 14.6    | 33.4    | 5.8     | 0   | 0.1 | 30.7 | 106  | 21.8    | 6.5   | 40.9     | 14.6     | 24.1      | 4.2     | 0   | 0.1 |
| 34.9 | 198  | -38      | 177      | 111    | 133     | -39     | 102     | 253 | 7.2 | 34.9 | 2.8  | -35     | 178   | 111      | 134      | 126       | 105     | 253 | 7.2 |
| 76   | 1.18 | _        | _        | —      | —       | -       | _       | —   | —   | 76   | 1.18 | —       | _     | _        | —        | _         | -       |     | —   |
| 31   | 101  | 20.6     | 10.6     | 50     | 14.6    | 33.4    | 5.8     | 0   | 0.1 | 31   | 107  | 21.9    | 6.5   | 41       | 14.6     | 24.1      | 4.2     | 0   | 0.1 |
| 35   | 198  | -38      | 177      | 111    | 133     | -39     | 102     | 238 | 6.1 | 35   | 2.9  | -35     | 178   | 111      | 134      | 126       | 106     | 238 | 6.1 |
| 77   | 1.18 | _        | _        | —      | —       | -       | _       | —   | —   | 77   | 1.18 | —       | _     | _        | —        | _         | -       |     | —   |
| 31.8 | 103  | 21       | 10.9     | 50.1   | 14.7    | 33.5    | 5.9     | 0.1 | 0.2 | 31.8 | 109  | 22.4    | 6.7   | 41.1     | 14.7     | 24.1      | 4.2     | 0.1 | 0.2 |
| 36.1 | 199  | -37      | 178      | 112    | 134     | -38     | 103     | 218 | 354 | 36.1 | 3.9  | -34     | 179   | 112      | 135      | 127       | 106     | 218 | 354 |
| 78   | 1.18 | _        | _        | —      | —       | -       | _       | —   | —   | 78   | 1.18 | —       | _     | _        | —        | _         | -       |     | —   |
| 32.9 | 105  | 21.6     | 11.2     | 50.4   | 14.8    | 33.8    | 5.9     | 0.1 | 0.2 | 32.9 | 112  | 23      | 6.9   | 41.3     | 14.8     | 24.4      | 4.3     | 0.1 | 0.2 |
| 36.6 | 200  | -36      | 178      | 113    | 135     | -37     | 103     | 198 | 341 | 36.6 | 4.3  | -33     | 180   | 113      | 135      | 128       | 107     | 198 | 341 |
| 79   | 1.18 | _        | _        | —      | _       |         |         | —   | —   | 79   | 1.18 | _       | _     | _        | —        | _         |         | —   | —   |
| 33.6 | 107  | 22       | 11.5     | 50.4   | 14.8    | 33.7    | 5.9     | 0.2 | 0.2 | 33.6 | 114  | 23.4    | 7.1   | 41.3     | 14.8     | 24.3      | 4.3     | 0.2 | 0.2 |
| 37.1 | 200  | -36      | 179      | 113    | 135     | -37     | 104     | 193 | 336 | 37.1 | 4.7  | -32     | 180   | 113      | 136      | 128       | 107     | 193 | 336 |
| 80   | 1.18 | —        | _        | —      | _       |         |         | —   | —   | 80   | 1.18 | _       | _     | _        | —        | _         |         | —   | —   |
| 34.4 | 109  | 22.3     | 11.7     | 50.3   | 14.7    | 33.6    | 5.9     | 0.2 | 0.3 | 34.4 | 116  | 23.8    | 7.2   | 41.2     | 14.7     | 24.2      | 4.3     | 0.2 | 0.3 |
| 37.5 | 200  | -35      | 179      | 114    | 136     | -36     | 105     | 189 | 334 | 37.5 | 5.1  | -32     | 181   | 114      | 136      | 129       | 108     | 189 | 334 |
| 81   | 1.18 | _        | _        | —      | _       |         |         | _   | —   | 81   | 1.18 | _       | _     | _        | —        | _         |         | _   | —   |
| 34.9 | 111  | 22.6     | 11.9     | 50.2   | 14.7    | 33.6    | 5.9     | 0.2 | 0.4 | 34.9 | 118  | 24.1    | 7.3   | 41.1     | 14.7     | 24.2      | 4.2     | 0.2 | 0.4 |
| 37.9 | 201  | -35      | 179      | 114    | 136     | -36     | 105     | 188 | 334 | 37.9 | 5.4  | -32     | 181   | 114      | 137      | 129       | 108     | 188 | 334 |
| 82   | 1.18 | _        | _        | —      | _       |         |         | _   | —   | 82   | 1.18 | _       | _     | _        | —        | _         |         | _   | —   |
| 35.3 | 112  | 22.8     | 12       | 50.2   | 14.7    | 33.6    | 5.9     | 0.2 | 0.4 | 35.3 | 119  | 24.3    | 7.4   | 41.1     | 14.7     | 24.2      | 4.2     | 0.2 | 0.4 |
| 38.1 | 201  | -35      | 179      | 114    | 137     | -35     | 105     | 187 | 334 | 38.1 | 5.6  | -31     | 181   | 115      | 137      | 130       | 109     | 187 | 334 |
| 83   | 1.18 | _        | _        | —      | _       | _       | _       | _   | —   | 83   | 1.18 | _       | _     | _        | _        | _         | _       | _   | _   |
| 35.7 | 113  | 23.1     | 12.2     | 50.4   | 14.8    | 33.7    | 5.9     | 0.3 | 0.5 | 35.7 | 121  | 24.6    | 7.5   | 41.3     | 14.8     | 24.3      | 4.3     | 0.3 | 0.5 |

|      | Tid  | lal harn | nonics | (amplit | udes ar | e in cm | ) !2008 |     |     |      | Ti   | dal har | monic | s (ampli | itudes a | are in ci | m) !201 | .4  |     |
|------|------|----------|--------|---------|---------|---------|---------|-----|-----|------|------|---------|-------|----------|----------|-----------|---------|-----|-----|
| 38.3 | 201  | -34      | 180    | 115     | 137     | -35     | 106     | 187 | 334 | 38.3 | 5.7  | -31     | 181   | 115      | 138      | 130       | 109     | 187 | 334 |
| 84   | 1.18 | _        | —      | —       | _       | _       | —       | _   | —   | 84   | 1.18 | —       | _     | _        | _        | _         |         | _   | —   |
| 36.1 | 114  | 23.3     | 12.3   | 50.6    | 14.8    | 33.8    | 5.9     | 0.3 | 0.5 | 36.1 | 122  | 24.8    | 7.6   | 41.4     | 14.8     | 24.4      | 4.3     | 0.3 | 0.5 |
| 38.3 | 201  | -34      | 180    | 115     | 137     | -35     | 106     | 185 | 335 | 38.3 | 5.7  | -31     | 181   | 115      | 138      | 130       | 109     | 185 | 335 |
| 85   | 1.18 | —        | —      | —       | —       | —       | —       | —   | —   | 85   | 1.18 | —       | —     | —        | —        | —         | _       | —   | —   |
| 36.4 | 115  | 23.4     | 12.4   | 50.7    | 14.8    | 33.9    | 5.9     | 0.3 | 0.6 | 36.4 | 122  | 24.9    | 7.7   | 41.5     | 14.8     | 24.4      | 4.3     | 0.3 | 0.6 |
| 38.3 | 201  | -34      | 179    | 116     | 138     | -35     | 106     | 183 | 338 | 38.3 | 5.7  | -31     | 181   | 116      | 138      | 130       | 109     | 183 | 338 |
| 86   | 1.18 | —        | —      | —       | —       | —       | —       | —   | —   | 86   | 1.18 | —       | —     | —        | —        | —         | -       | —   | —   |
| 36.6 | 115  | 23.5     | 12.5   | 50.7    | 14.8    | 33.9    | 5.9     | 0.3 | 0.6 | 36.6 | 123  | 25      | 7.7   | 41.5     | 14.8     | 24.4      | 4.3     | 0.3 | 0.6 |
| 38.1 | 201  | -35      | 179    | 116     | 138     | -34     | 106     | 181 | 340 | 38.1 | 5.5  | -31     | 181   | 116      | 138      | 131       | 109     | 181 | 340 |
| 87   | 1.18 | —        | _      | —       | —       | _       | —       | —   | _   | 87   | 1.18 | —       | —     | _        | _        | _         |         | —   | _   |
| 36.7 | 116  | 23.6     | 12.5   | 50.7    | 14.8    | 33.9    | 5.9     | 0.3 | 0.6 | 36.7 | 123  | 25.1    | 7.7   | 41.5     | 14.8     | 24.4      | 4.3     | 0.3 | 0.6 |
| 37.8 | 201  | -35      | 179    | 116     | 138     | -34     | 106     | 178 | 343 | 37.8 | 5.3  | -32     | 181   | 116      | 138      | 131       | 110     | 178 | 343 |

"—"=Nothing to report

# Water Quality at the SSM Open Boundary

Water quality at the open boundary was established using data from the Department of Fisheries and Oceans (DFO) and outputs from the Hybrid Coordinate Ocean Model (HYCOM). The open boundary conditions were set up similarly to those in our Optimization Scenarios Phase 1 report (Ahmed et al. 2021). As in Ahmed et al. (2021), we reduced the temporal resolution of HYCOM outputs from a 3-hour to a daily interval. Temperature and salinity variations were gradual, showing noticeable changes over longer periods but minimal fluctuations within a given day. Except for 2008, we used HYCOM outputs for temperature and salinity, and applied piecewise regressions based on salinity to predict dissolved oxygen (DO), dissolved inorganic carbon (DIC), alkalinity, and nitrate (Ahmed et al. 2021).

The remaining variables, including inorganic solids, algal and zooplankton groups, organic carbon fractions, ammonium, organic nitrogen and organic phosphorus fractions, and inorganic phosphorus, were developed using DFO data. These variables were interpolated to the model ocean boundary over space and time using the procedure developed by Pacific Northwest National Laboratory (Khangaonkar et al. 2018). For variables without data, we used default values to represent them. Default values were primarily used for nutrient variables, including organic nitrogen, organic phosphorus, organic carbon, and algal groups. Apart from algal groups 1 and 2 (default: 0.06 gC/m<sup>3</sup>), labile dissolved organic carbon (default: 0.48 gC/m<sup>3</sup>), and labile particulate organic carbon (POC) (default: 0.06 gC/m<sup>3</sup>), all other nutrient variables were assigned a default value of zero.

Open boundary data limitations were present for the years 2000 and 2008. DFO algal data were limited to September and October for the year 2000. Algal data were interpolated between September and October. For the remainder of the year, we used default values of 0.06 gC/m<sup>3</sup> for the photic zone and 0 gC/m<sup>3</sup> below the photic zone. We approximated the photic zone for each SSM open boundary node using depths of zero algal biomass from the 2014 model open boundary conditions.

For model year 2008, we did not use HYCOM outputs for open boundary conditions due to several days of model instability near the Washington coast. We found a number of issues with the 2008 HYCOM model output, including days with temperatures of up to 52 °C in the bottom layers as well as near-zero salinity. Further, for the days with temperature and salinity anomalies, we also found layers below the typical bottom layer to be active. Communication with Allan Wallcraft (May 22, 2024) from the HYCOM consortium confirmed that these irregularities were caused by corrupted GOFS 3.1 Reanalysis files on HYCOM.org. As a result, for 2008, we used the same open boundary conditions as in the 2019 Bounding Scenarios report (Ahmed et al. 2019), which consisted of interpolated DFO data.



Figure B5-9. Year 2000 open boundary water quality data for select days (Jan 1, May 1, July 1, and Dec 1) for temperature, salinity, algae, and dissolved inorganic nitrogen (DIN).



Figure B5-10. Year 2000 open boundary water quality data for select days (Jan 1, May 1, July 1, and Dec 1) for total organic carbon (TOC), total organic nitrogen (TON), and dissolved oxygen (DO).



Figure B5-11. Year 2006 open boundary water quality data for select days (Jan 1, May 2, July 2, and Dec 2) for temperature, salinity, algae, and dissolved inorganic nitrogen (DIN).



Figure B5-12. Year 2006 open boundary water quality data for select days (Jan 1, May 2, July 2, and Dec 2) for total organic carbon (TOC), total organic nitrogen (TON), and dissolved oxygen (DO).



Figure B5-13. Year 2008 open boundary water quality data for select days (Jan 1, April 30, June 29, and Nov 26) for temperature, salinity, algae, and dissolved inorganic nitrogen (DIN).



Figure B5-14. Year 2008 open boundary water quality data for select days (Jan 1, April 30, June 29, and Nov 26) for total organic carbon (TOC), total organic nitrogen (TON), and dissolved oxygen (DO).



Figure B5-15. Year 2014 open boundary water quality data for select days (Jan 1, May 2, July 2, and Dec 2) for temperature, salinity, algae, and dissolved inorganic nitrogen (DIN).



Figure B5-16. Year 2014 open boundary water quality data for select days (Jan 1, May 2, July 2, and Dec 2) for total organic carbon (TOC), total organic nitrogen (TON), and dissolved oxygen (DO).

# **References (Appendix B5)**

- Ahmed A., C. Figueroa-Kaminsky, J. Gala, T. Mohamedali, G. Pelletier, and S. McCarthy. 2019.
   Puget Sound Nutrient Source Reduction Project, Volume 1: Model Updates and Bounding Scenarios. Publication 19-03-001. Washington State Department of Ecology, Olympia. <a href="https://apps.ecology.wa.gov/publications/SummaryPages/1903001.html">https://apps.ecology.wa.gov/publications/SummaryPages/1903001.html</a>
- Khangaonkar, T., A. Nugraha, W. Xu, W. Long, L. Bianucci, A. Ahmed, T. Mohamedali, and G. Pelletier. 2018. Analysis of hypoxia and sensitivity to nutrient pollution in Salish Sea. Journal of Geophysical Research: Oceans (123): 4735–4761. https://doi.org/10.1029/2017JC013650.
- Spargo, E., Westerink, J., Luettich, R., and Mark, D. 2003. Developing a tidal constituent database for the eastern North Pacific Ocean. Estuarine and Coastal Modeling: 217–235. <u>https://doi.org/10.1061/40734(145)15</u>.
- Szpilka, C., Dresback, K., Kolar, R., and Massey, T.C. 2018. Improvements for the Eastern North Pacific ADCIRC tidal database (ENPAC15). Journal of Marine Science and Engineering, 6(4):131 https://doi.org/10.3390/jmse6040131.

Publication 25-03-003: Appendix B